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1 Introduction

It is an extremely important open problem to understand the full set of constraints that

ultraviolet consistency places on the infrared behavior of quantum field theories. Conformal

field theories provide an exciting arena for probing this question, in part due to the existence

of powerful additional symmetry, the availability of experimental data in condensed matter

and statistical systems, and deep connections with quantum gravity through holography.

The recent striking success of the conformal bootstrap in isolating and solving the low-lying

spectrum of the 3d Ising model [2–5] gives us reason to think that such constraints may be

even more restrictive in d > 2 than previously thought.

One powerful example of such constraints was given in [1], where it was argued that

the coefficients appearing in the three-point functions between currents and stress tensors,

〈JJT 〉 and 〈TTT 〉, are bounded to a finite region of parameter space. These constraints

are particularly striking in superconformal field theories where these coefficients are often

calculable. The basic argument in [1] behind these bounds is that for any initial state the

energy flux measured at infinity integrated over time should be positive. In other words,

calorimeters in a “conformal collider experiment” should pick up positive energies. Notice

that the positivity of the spectrum of energy flux operators was not proved in [1], but was

only postulated.

These “conformal collider bounds” were originally conjectured in 4d, where even in

non-supersymmetric theories they place highly nontrivial bounds on the central charges

a and c appearing in the trace anomaly, while their generalizations to other dimensions

was given in [6, 7]. For example in 4d, for any CFT (with or without supersymmetry) the

central charges must lie in the region:

31

18
≥ a

c
≥ 1

3
. (1.1)

Since [1], it has been an open question whether these constraints are consequences of

CFT first principles, such as unitarity, associativity of the operator algebra, and causality.

Moreover in [8] it was recently questioned whether there may exist consistent theories that

violate these constraints but satisfy a weaker set of conditions.

While a full proof of these bounds has not been available, significant progress on this

issue has been made on a number of different fronts. In [9, 10] it was argued that such

constraints follow from causality in holographic large N theories by using and extending

preliminary results in [11, 12].1 Also in [10], a CFT argument was presented by making as-

sumptions on the behavior of lightcone operator product expansions and unitarity bounds

on non-local operators. Furthermore, in [14] some suggestive (but incomplete) arguments

were given that the bounds were related to unitarity when the CFT is placed at finite tem-

perature. More recently, the bounds and some generalizations to non-conserved operators

have been derived in the context of deep inelastic scattering (DIS) in [15] after making

the assumption that the DIS amplitude is bounded by a certain power of the kinematical

1For a very interesting discussion of the origins and consequences of these constraints in the language of

bulk AdS physics, see [13].
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invariant given by limx→0A(q2, x) < x−2. While all these results are extremely interesting,

it is important to stress that there was always some important assumption made that went

beyond basic CFT principles.

Another perspective comes from analytical studies of the bootstrap in the lightcone

limit, which reveal a direct relation between couplings of low-twist operators and the asymp-

totic behavior of CFT spectra at large spin [16, 17], extended further in [18–28]. In par-

ticular, in [27] analytic lightcone bootstrap arguments were given for correlation functions

containing global symmetry currents and the stress tensor, where a direct connection was

found between the 3d conformal collider bounds for 〈JJT 〉 and 〈TTT 〉 and negativity of

the anomalous dimensions of large spin double-twist operators.

Finally, another important development occurred in [29], where it was demonstrated

that CFT unitarity/reflection positivity implies both causality and sum rules leading to

constraints on the signs of products of OPE coefficients. These constraints are closely

related to the bound on chaos [30, 31] as discussed in the context of CFT correlators

in [32–35]. The argument was made for scalar 4-point functions in [29] and was recently

generalized to spinning 4-point functions in [36]. In the latter work a set of constraints,

somewhat weaker than the conformal collider bounds, were derived for the coefficients in

〈JJT 〉 and 〈TTT 〉 for CFTs in general dimensions. The argument in [36] additionally

assumed the absence of scalar operators in the J × J and T × T OPEs with dimensions
d
2 − 1 < ∆ < d− 2.

In the present work we will give a complete proof that the conformal collider bounds

must hold in any unitary, parity-preserving conformal field theory with a unique stress

energy tensor. We combine the basic argument of [29] with the refined understanding of

positivity conditions obtained from generalizing the lightcone bootstrap arguments of [27]

to general dimensions. We will additionally explain why the bounds hold even in the

presence of light scalar operators. Generalizing our argument to non-conserved operators,

we reproduce the constraints obtained in the context of deep inelastic scattering in [15].

Throughout, we assume the CFT preserves parity and has a unique conserved, spin two

operator, which is the stress tensor.

Our paper is organized as follows. In section 2 we give a brief sketch of our argument. In

section 3 we review the argument of [29] in the context of operators with spin. In sections 4

and 5 we give our argument for the conformal collider bounds as well as derivations of large

spin anomalous dimensions for CFTs in general dimensions. In section 6 we describe the

generalization to 3-point functions between non-conserved spinning operators. Finally, in

section 7 we summarize our results and discuss future directions. Details and extensions

of our computations are presented in appendices A, B, and C.

2 Overview

In this section, we start by providing a sketch of the derivation of the conformal collider

bounds on the coefficients in 〈JµJνT ρσ〉 in a unitary conformal field theory. We will

– 3 –
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make our argument for CFTs with a unique stress tensor and no conserved currents with

spin ` > 2.2

In [29], it was demonstrated that very general bounds on the OPE coefficients in unitary

CFTs can be derived from the analyticity of the 4-point function 〈φ(0)O(z, z̄)O(1)φ(∞)〉.
This 4-point function can be expanded in different OPE channels. In the lightcone limit

of z̄ → 1, crossing symmetry implies:3

G(z, z̄) = 〈φ(0)O(z, z̄)O(1)φ(∞)〉 ∼ 1 + λOOTλφφT gT (1− z, 1− z̄) + · · · ∼
∑
h,h̄

ah,h̄z
hz̄h̄,

(2.1)

where we show the contribution from the identity operator and the stress tensor T in the

t-channel. Using analyticity, the t-channel coefficients λOOTλφφT can be related to an

integral of Re(G(z, z̄)−G(ze−2πi, z̄)) over a domain where z, z̄ are real and positive. This

integrand is positive because reflection positivity implies ah,h̄ ≥ 0. This leads to a bound

on the t-channel OPE coefficients: λOOTλφφT ≥ 0.

We apply the same argument now to the 4-point function GµνJ ≡ 〈JµφφJν〉 and derive

bounds on the coefficients of 〈JµJνT ρσ〉 which appear in the t-channel of this 4-point

function. There are two independent coefficients CJ and λJJT , where CJ is the current

central charge. We move the 4 points to a common 2d plane with conformal transformations

and use {+,−, t} to represent the two lightcone directions on this plane and an arbitrary

perpendicular direction. (x± are related to the usual Cartesian coordinates of Euclidean

space by x± = x1 ± ix0.)

We focus first on 〈J+φφJ+〉. In the t-channel, the dominant contributions in the

lightcone limit come from the identity operator and the T−− component of the stress

tensor. In the J+ × φ channels, only symmetric traceless tensors (STTs) contribute at

leading order:

G++
J (z, z̄) ∼ −2 + λJ+J+T−−λφφT g

++
T (1− z, 1− z̄) + . . . ∼ G++

J,STT (z, z̄) . (2.2)

Again, one can show that the correlation function is analytic in the region of interest and

the power series coefficients of G++
J (z, z̄) in the z, z̄ expansion are negative, a++

h,h̄
≤ 0.

This implies a bound on the product of t-channel coefficients λJ+J+T−−λφφT ≤ 0, where

λφφT ≤ 0 due to the Ward identity. Expressing λJ+J+T−− as a function of CJ and λJJT ,

this constraint becomes

λJJT ≤
Γ
(
d
2 + 1

)
2π

d
2

CJ . (2.3)

This is the upper half of the conformal collider bounds on 〈JJT 〉 and is saturated in a

theory of free fermions.

Next, we focus on 〈J tφφJ t〉. We will show that in the J t × φ channel, two families

of operators contribute in the leading lightcone limit, the STTs and the mixed symmetry

2It was shown in [37, 38] that the presence of higher spin symmetry forces 〈JµJνTρσ〉 to saturate the

conformal collider bounds for unitary CFTs in d ≥ 3.
3Some prefactors and overall coefficients are omitted in this section. They can be found in later sections.
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tensors denoted as A, which have a pair of antisymmetrized indices while the rest of the

indices are symmetrized:

GttJ (z, z̄) ∼ 1 + λJtJtT−−λφφT g
tt
T (1− z, 1− z̄) + . . . ∼ GttJ,STT (z, z̄) +GttJ,A(z, z̄) . (2.4)

The same argument will apply, except here the power series coefficients of GttJ are positive,

att
h,h̄
≥ 0. This implies λJtJtT−−λφφT ≥ 0 or λJtJtT−− ≤ 0. However this bound is not

optimal, which is expected since we have two analytic functions of z, z̄ on the right hand

side and each has a power series with positive coefficients. Indeed, we can get a stronger

bound by subtracting GttJ,STT (z, z̄) from both sides of the crossing equation (2.4), leading to:

d− 2

d− 1
+ λJtJtT−−λφφT g

tt
T (1− z, 1− z̄) +

1

d
λJ+J+T−−λφφT g

++
T (1− z, 1− z̄) ∼ GttJ,A(z, z̄) .

(2.5)

On the left hand side, we have used conformal symmetry to relate GttJ,STT (z, z̄) to G++
J,STT

(z, z̄), which is in turn written in terms of the t-channel conformal blocks using crossing

symmetry. Analyticity and reflection positivity of GttJ,A(z, z̄) then imply:

λJJT ≥
(d− 2)Γ

(
d
2 + 1

)
2(d− 1)π

d
2

CJ . (2.6)

This bound is saturated in a theory of free bosons. Together with (2.3), we have obtained

the conformal collider bounds on 〈JJT 〉 that imply energy flux positivity.

The derivation of the conformal collider constraints for 〈TTT 〉 from 〈TφφT 〉 exactly

mirrors that of 〈JφφJ〉. The main difference is that for d ≥ 4, 〈TTT 〉 depends on

three parameters and we will need to consider three crossing relations, corresponding to

〈T++φφT++〉, 〈T+3φφT+3〉, and 〈(T 33 − T 44)φφ(T 33 − T 44)〉. Due to extra degeneracies,

〈TTT 〉 in d = 3 depends on two parameters (assuming parity), so we will only need to

consider the first two equations. In both cases we will re-derive the full conformal collider

bounds.

In the remainder of the paper we will give the above argument in more detail.

3 Scalar correlators

In this section we review the constraints obtained by analyzing the 4-point function of

scalar operators, following [29]:

G(z, z̄) = 〈φ(0)O(z, z̄)O(1)φ(∞)〉 . (3.1)

In the Euclidean region where z̄ = z∗, this 4-point function may only have singularities as

z → 0, 1,∞, as pairs of operators approach each other. They are generically branch points

that make the 4-point function multi-valued for independent complex z and z̄. The first

sheet of G(z, z̄) embeds the Euclidean region. The second sheet, G(ze−2πi, z̄), is obtained

from the first sheet by taking z around the branch point at 0.

– 5 –



J
H
E
P
0
6
(
2
0
1
6
)
1
1
1

R0

σ

Figure 1. The region D is a small half disc on the complex σ plane above the origin (which is

excluded). Here 0 < η � R� 1.

In this work, we will use the properties of this 4-point function in a very small region

near (z, z̄) ∼ (1, 1). Following the notation of [29], let us define

z = 1 + σ , (3.2)

z̄ = 1 + ησ , (3.3)

where σ is complex with Im(σ) ≥ 0 and |σ| ≤ R, while η is real and satisfies 0 < η � R� 1.

On the σ plane, this is a small half disc above σ = 0 and we exclude the origin from it.

We refer to this as region D (see figure 1). We define the normalized 4-point functions on

the first and the second sheet:

Gη(σ) ≡ 〈φ(0)O(z, z̄)O(1)φ(∞)〉
〈φ(0)φ(∞)〉〈O(z, z̄)O(1)〉

= (ησ2)∆OG(1 + σ, 1 + ησ) , (3.4)

Ĝη(σ) ≡ 〈φ(0)O(ze−2πi, z̄)O(1)φ(∞)〉
〈φ(0)φ(∞)〉〈O(z, z̄)O(1)〉

= (ησ2)∆OG
(
(1 + σ)e−2πi, 1 + ησ

)
. (3.5)

We will show that both Gη(σ) and Ĝη(σ) are analytic in D and finite at σ = 0.

On the first sheet, we can expand G(z, z̄) in three different OPE channels:

s-channel: G(z, z̄) = (zz̄)−
1
2

(∆O+∆φ)
∑
O
λφOOλOφOg

∆φO,−∆φO

∆O,`O
(z, z̄) , (3.6)

t-channel: G(z, z̄) = [(1− z)(1− z̄)]−∆O
∑
O
λOOOλφφOg

0,0
∆O,`O

(1− z, 1− z̄) , (3.7)

u-channel: G(z, z̄) = (zz̄)
1
2

(∆φ+∆O)
∑
O
λφOOλOφOg

∆φO,−∆φO

∆O,`O
(1/z, 1/z̄) . (3.8)

The positions of the singularities indicate that these expansions converge for |z| < 1,

|1− z| < 1, and |z| > 1 respectively. The analyticity of Gη(σ) in D is a direct consequence

of the convergence of the t-channel OPE expansion. In terms of σ and η, we have

Gη(σ) = 1 +
∑
∆,`

a∆,`η
1
2

(∆−`)σ∆, (3.9)

where the sum runs over all operators appearing in the t-channel expansion, including

descendants. It is also obvious from this convergent expansion that Gη(0) = 1 is finite

since unitarity constrains ∆ to be positive.

– 6 –
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Convergence of the t-channel expansion is not enough to guarantee analyticity on the

second sheet. This is because taking z → ze−2πi can have a nontrivial effect on the t-

channel sum. For example, we can consider the sum in the lightcone limit with η → 0 and

σ finite. The t-channel expansion becomes

G(z, z̄) = [(1− z)(1− z̄)]−∆O

(
1 +

∑
Om

λm(1− z̄)
1
2

(∆m−`m)g̃∆m,`m(1− z) + . . .

)
, (3.10)

where λm = λOOOmλφφOm denotes the coefficient of the contributions of minimal twist

operators Om. We have omitted higher order terms in η. The lightcone conformal block

g̃∆m,`m(1 − z) is regular on the first sheet around z = 1, but develops singularities on

the second sheet. For example, the lightcone conformal block for the stress tensor in

4-dimensions is given by

g̃4,2(1− z) = −15[3(1− z2) + (1 + 4z + z2) log(z)]

2(1− z)2
. (3.11)

It is easy to see that this function is regular as z → 1, but a pole emerges from the log

term as z → ze−2πi.

More generally, using the t-channel conformal blocks, Ĝη(σ) in the limit η � |σ| � 1

takes the form

Ĝη(σ) = 1− iλ̂m
η

1
2

(∆m−`m)

σ`m−1
+ . . . , (3.12)

where Om is the minimal twist operator of largest spin and

λ̂m = λm ×
21−`mπΓ(∆m + `m)2

(∆m + `m − 1)Γ
(

1
2(∆m + `m)

)4 . (3.13)

The appearance of singularities in the conformal blocks indicate that individual terms in

the t-channel sum may increase as we move to the second sheet. So convergence on the

first sheet does not imply convergence on the second sheet. These singularities, however,

do not indicate that Ĝη(0) is divergent. In fact, when σ < η, similar contributions from

the omitted terms in (3.10) and (3.12) will come in and cancel the divergence.

We will show that Ĝη(σ) is analytic in D and Ĝη(0) is finite using positivity and

convergence of the s- and u-channel expansions. The 4-point function is reflection positive

in the s-channel and this implies that the expansion of the 4-point function around (z, z̄) ∼
(0, 0) has positive coefficients:

G(z, z̄) = (zz̄)−
1
2

(∆O+∆φ)
∑
h,h̄>0

ah,h̄z
hz̄h̄, ah,h̄ ≥ 0 . (3.14)

This was shown in [29] by considering the following state in a radially quantized Hilbert

space:

|f〉 ≡
∫ 1

0
dr1

∫ 2π

0
dθf(r1, θ1)O(r1e

iθ1 , r1e
−iθ1)φ(0) |0〉 . (3.15)

Reflection positivity in radial quantization states that 〈f | f〉 ≥ 0 and requiring this hold

for arbitrary f(r, θ) implies ah,h̄ ≥ 0.

– 7 –
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In fact, this positivity condition can be further refined. Following [16, 39], and [40],

we can insert the projector |O| ≡
∑

α=O,PO,...
|α〉〈α| and still have positivity:

〈f |O|f〉 ≥ 0 . (3.16)

This implies that each partial wave contribution in the s-channel has positive coefficients

in its z, z̄ expansion:

λOφOλφOOg
∆φO,−∆φO

O (z, z̄) = z−az̄−b
∑

p,q∈Z+

bp,qz
pz̄q, bp,q ≥ 0 , (3.17)

where the powers a, b are related to the scaling dimensions.

In the Euclidean region where z̄ = z∗, the s-channel expansion converges for |z| < 1.

The positivity of ah,h̄ immediately implies that for independent complex numbers z, z̄

satisfying |z|, |z̄| < 1, the sum still converges since∣∣(zz̄)
1
2

(∆O+∆φ)G(z, z̄)
∣∣ =

∣∣ ∑
h,h̄>0

ah,h̄z
hz̄h̄
∣∣ ≤ ∑

h,h̄>0

ah,h̄|z|h|z̄|h̄, |z|, |z̄| < 1 . (3.18)

This implies that Ĝη(σ) is analytic in the region D ∩ {|z|, |z̄| < 1}. Restricting to real

z, z̄ ∈ (0, 1), we have

|G(ze−2πi, z̄)| ≤ G(z, z̄) . (3.19)

This in turn yields the inequality

Re
(
Gη(σ)− Ĝη(σ)

)
≥ 0 , σ ∈ [−R, 0) . (3.20)

In fact, using radial coordinates [41], the region of convergence for the s-channel expansion

can be expanded to the whole complex plane excluding [1,+∞). As detailed in [29],

the bounds analogous to (3.18) in the radial coordinate implies that Ĝη(σ) is analytic

in D/[0, R], while the same argument in the u-channel implies analyticity in D/[−R, 0].

Combining these two channels, we have shown that Ĝη(σ) is analytic in D.4

Analyticity of both Gη(σ) and Ĝη(σ) in the region D implies that for `m ≥ 2 we can

write the sum rule

Re

∮
∂D

dσσ`m−2
(
Ĝη(σ)−Gη(σ)

)
= 0 . (3.21)

This contour is a sum of the half circle S and the real line segment [−R,R]. Taking the

real part of the integral along the half circle will pick up the residue of the pole in σ using

the identity

Re i

∫
S
dσσn = −πδn,−1 . (3.22)

Using (3.9) and (3.12), we then have

Re

∫
S
dσσ`m−2

(
Ĝη(σ)−Gη(σ)

)
= πλ̂mη

1
2

(∆m−`m) +O(R`m−1) . (3.23)

4The branch cuts of G(z, z̄) with respect to z are chosen in the following way. The first branch cut

originates from z = 1 and lies in the lower half plane. The second branch cut originates from z = 0 and

goes along the negative real axis to connect to the branch point at z =∞. There are no other branch cuts

on the z plane. The branch cuts on the z̄ plane are chosen in the same way.
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Together with the sum rule (3.21) and the positivity property (3.20), this implies that for

`m ≥ 2:5

λ̂m =
1

π
lim
R→0

lim
η→0

η−
1
2

(∆m−`m)

∫ R

−R
dσσ`m−2 Re

(
Gη(σ)− Ĝη(σ)

)
≥ 0 , (3.24)

where λ̂m ∝ λOOOmλφφOm . If Om is the stress tensor, then we have derived constraints on

the OPE coefficients of 〈φφT 〉 and 〈OOT 〉 using reflection positivity. The condition we get

here is trivial and can also be obtained easily using the Ward identity. In future sections,

we will generalize this analysis to 4-point functions involving spinning operators, leading

to nontrivial constraints on 〈JJT 〉 and 〈TTT 〉.
Here we would like to emphasize that scalar operators in the t-channel with dimen-

sion d−2
2 < ∆ < d − 2 will not change the result. To see this we note that that the

discontinuity of the t-channel conformal block along the branch cut z ∈ (−∞, 0] is purely

imaginary. Therefore the integral (3.23), due to the Kronecker δ function in (3.22), serves

as a projector onto blocks of definite spin `m.6 This projection is reminiscent of the sim-

plified lightcone OPE structure presented in [10], where the scalar contributions dropped

out after integration.

As detailed in [29], one can show using (3.12) that a finite number of conserved higher

spin currents in the t-channel will contradict the analyticity of Ĝη(σ) in the region D.

If there are an infinite number of higher spin currents the analytic structure of Ĝη(σ)

can be changed so (3.24) no longer applies. Therefore, among the possible conserved cur-

rents, (3.24) is only useful for bounding the OPE coefficients involving the stress tensor T .

It has been proven in d = 3 [37] and in d ≥ 4 [38] that in a unitary CFT with a finite

central charge and a unique stress tensor satisfying the cluster decomposition principle,

the presence of one conserved higher spin current forces the three point functions of the

conserved operators to coincide with a free field theory expression. Specializing to our case,

this means the conformal collider bounds are saturated for 〈JJT 〉 and 〈TTT 〉. Therefore,

although our methods will not apply if the theory contains higher spin currents, with our

set of assumptions, the conformal collider bounds also hold for CFTs with a higher spin

symmetry.

Finally, one can consider how to derive constraints on the coupling to an exchanged

non-conserved higher spin operator. Exactly analogous to how one can isolate the stress

tensor block even in the presence of a light scalar, one can use (3.23) to isolate the contri-

bution of a higher spin operator and derive constraints on the relevant OPE coefficients. In

particular, for each choice of spin, the operator with the smallest twist can be isolated. It

would be interesting to compare the constraints from reflection positivity to those derived

recently in the context of deep inelastic scattering [15], but we postpone this analysis to

future work.

5Note that we cannot choose `m = 0, 1 here, otherwise the integral may not be well defined.
6For d > 6, a finite number of subleading η orders in the conformal block for scalar exchange could also

dominate over the contribution from the stress tensor. But their σ dependence is the same as the leading

order. So they cannot be picked up in (3.22) either.
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4 Bounds on 〈JJT 〉

The above analysis carries over almost verbatim for the case of spinning operators. Again,

the t-channel OPE guarantees that the first sheet correlator Gη(σ) is analytic in D, while

the analyticity of Ĝη(σ) is ensured by reflection positivity and convergence of the s- and u-

channel OPEs. Using the t-channel spinning conformal blocks, we will compute Ĝη(σ) for

0 < η � |σ| � 1 and the result takes the same functional form as in (3.12). We can then

use the contour integral of Ĝη(σ)−Gη(σ) along ∂D to relate these coefficients to positive

quantities. We will see that this reproduces the conformal collider bounds.

In this section, we first elucidate the structures of the three conformal block decompo-

sitions of 〈JφφJ〉 and explicitly work out the consequence of reflection positivity in the t-

and s-channel. We then demonstrate the extraction of the bounds by applying the contour

argument to 〈J+φφJ+〉 and 〈J tφφJ t〉.

4.1 Crossing symmetry

Let us consider the correlator

GµνJ (z, z̄) ≡ 〈Jµ(0)O(z, z̄)O(1)Jν(∞)〉 . (4.1)

This 4-point function can be expanded in s-, t- and u-channel conformal blocks. In gen-

eral, the conformal block expansion for a 4-point function of symmetric traceless fields

O(`)(x, ε) = Oµ1...µ`εµ1 . . . εµ` with ε2 = 0 takes the form

〈O`11 (x1, ε1)O`22 (x2, ε2)O`33 (x3, ε3)O`44 (x4, ε4)〉 =

1

x∆1+∆2
12 x∆3+∆4

34

(
x24

x14

)∆12
(
x14

x13

)∆34 ∑
O,a,b,p

λa12Oλ
b
34Og

∆12,∆34

O,a,b,p (z, z̄)Qp({xi, εi}) ,

(4.2)

where O runs over any operator which can appear in both OPEs, a, b run over different

possible 3-point function structures, and p runs over each 4-point function structure Qp,

which is defined to have weight 0 in all coordinates.

Specializing to the present case, we have:

s-channel: GµνJ (z, z̄) = (zz̄)−
1
2

(∆φ−∆J )
∑
O
λJφOλφJOg

∆Jφ,∆φJ ,µν
O (z, z̄) (4.3)

= GµνJ,STT (z, z̄) +GµνJ,A(z, z̄) ,

t-channel: GµνJ (z, z̄) = [(1− z)(1− z̄)]−∆φ
∑
O,b

λbJJOλφφOg
0,0,µν
O,b (1− z, 1− z̄) , (4.4)

where we have absorbed the tensor structures Qp into the conformal blocks, since in our

configuration they will also become functions of z and z̄. This will not be true for generic

configurations. J is a conserved current, so ∆J = d−1. In the J×φOPE there are in general

two families of operators, corresponding to symmetric traceless tensors STT ≡ {O[`], ` ≥ 0}
and mixed symmetry tensors A ≡ {O[`,1], ` ≥ 1}, where the latter has a pair of indices

antisymmetrized and the other (`− 1) indices symmetrized.
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The case d = 3 is special since all irreducible tensors are equivalent to symmetric

traceless tensors through the use of the ε tensor. Since we assume that the theory preserves

parity we can still distinguish two families of operators by their parity. In this case we use

the label STT for operators that are parity even and A for operators that are parity odd.

In both d = 3 and d ≥ 4, each class of operators has a unique tensor structure in the

J × φ OPE.

In the J × J OPE, operators with spin can appear with two independent parity-

preserving tensor structures, while scalars have a unique tensor structure. The index b

on λbJJO is introduced to account for the generic appearance of multiple 3-point function

structures.

In the lightcone limit where z̄ → 1 and z is finite, the t-channel expansion is organized

by the twist ∆ − `. The leading order contribution is given by the identity operator,

which has twist zero. The identity contribution has a power law singularity (1 − z̄)−∆φ in

the lightcone limit, while each single conformal block in the s-channel contains at most a

log(1− z̄) singularity. Therefore, as established in [16], leading terms in the t-channel can

only be reproduced via infinite sums over the spins of families of operators in the s-channel.

In the present case, there are two such families: [Jφ]
[`]
n,` ∈ STT , with the schematic form

Jµ1∂(µ2 . . . ∂µ`)∂2nφ, and [Jφ]
[`,1]
n,` ∈ A, with the schematic form J [µ1∂(µ2]∂µ3 . . . ∂µ`)∂2nφ.

As ` → ∞, the anomalous dimensions of these operators vanish as a power law in ` and

their twists approach d− 2 + ∆φ + 2n and d− 1 + ∆φ + 2n, respectively.

We will work with two polarizations of the 4-point function, G++
J and GttJ . As demon-

strated for d = 3 in [27], if we take z to be small then at leading order in z only [Jφ]
[`]
0,`

contributes in the matching of the low-twist t-channel contributions to G++
J , while for GttJ

both [Jφ]
[`]
n,` and [Jφ]

[`,1]
n,` contribute.7 Using the spinning conformal blocks, we show in

appendix A that this structure holds in general dimensions and persists when z is finite.

The next-to-leading order contribution in the t-channel comes from the stress tensor

conformal block, which will contain a log(z) term.8 It is this log(z) that eventually leads

to the σ−1 enhancement of the correlator on the second sheet when we take z → ze−2πi.

In the s-channel, this term is reproduced via the anomalous dimensions of the large-spin

double-twist operators. The s-channel conformal blocks are proportional to z
τ
2 , where the

twist τ is given by

τ
[Jφ]

[`]
n,`

= d− 2 + ∆φ + 2n+
γ

[Jφ]
[`]
n,`

`d−2
+ . . . , (4.5)

τ
[Jφ]

[`,1]
n,`

= d− 1 + ∆φ + 2n+
γ

[Jφ]
[`,1]
n,`

`d−2
+ . . . . (4.6)

Expanding z
τ
2 to first order in 1

`d−2 , we see that a log(z) term appears. The power d − 2

ensures that after the large spin sum, this term matches the 1− z̄ dependence of the log(z)

7In [27] the roles of the s- and t-channels are reversed.
8As discussed in the end of section 3, the presence of scalars and spin-1 conserved currents in the t-

channel does not change the result of our analysis. So to simplify the discussion we ignore their possible

contributions. We assume that the CFT we are considering has no higher spin symmetries.

– 11 –



J
H
E
P
0
6
(
2
0
1
6
)
1
1
1

term in the t-channel stress tensor block. The coefficients γ
[Jφ]

[`]
n,`

and γ
[Jφ]

[`,1]
n,`

are also

determined by this matching and are functions of the t-channel OPE coefficients appearing

in 〈JJT 〉 and 〈φφT 〉.

4.2 Reflection positivity

To elucidate the consequences of reflection positivity, we consider the following states in

the Hilbert space of radial quantization

|f, ε〉 =

∫ 1

0
dr1

∫ 2π

0
dθ1r

∆J+∆φ

1 f(r1, θ1)φ(r1e
iθ1 , r1e

−iθ1)Jµεµ(0) |0〉 , (4.7)

〈f, ε∗| = 〈0| ε∗νIνρ (∞x̂1)Jρ(∞x̂1)

∫ 1

0
dr2

∫ 2π

0
dθ2r

∆J−∆φ

2 f∗(r2, θ2)φ

(
1

r2
eiθ2 ,

1

r2
e−iθ2

)
.

(4.8)

We used the notation f(∞x̂1) ≡ lim
r→∞

f(rx̂1) where x̂1 is the unit vector pointing at the

direction x1 = 1
2(x+ + x−). Note that the inversion tensor,

Iµν(x) = ηµν − 2
xµxν

x2
, (4.9)

appears in the definition of 〈f, ε∗|, and in particular I−+ (∞x̂1) = −1, which will lead to

some additional signs compared to the scalar case. Namely, for εµ pointing in the + or

the t direction, positivity 〈f, ε∗| f, ε〉 ≥ 0 will imply that the power series coefficients of

−G++
J (z, z̄) or GttJ (z, z̄) will be positive semidefinite when expanded around (z, z̄) ∼ (0, 0).

Setting z = 1 +σ and z̄ = 1 + ησ, we define the following normalized correlation functions:

GµνJ,η(σ) ≡ (ησ2)∆φGµνJ (1 + σ, 1 + ησ) , (4.10)

ĜµνJ,η(σ) ≡ (ησ2)∆φGµνJ
(
(1 + σ)e−2πi, 1 + ησ

)
. (4.11)

As in the scalar case, these positivity conditions lead to the analyticity of Ĝ++
J,η (σ) and

ĜttJ,η(σ) in region D as well as the positivity of −G++
J,η (σ) + Ĝ++

J,η (σ) and GttJ,η(σ)− ĜttJ,η(σ)

on the real line segment σ ∈ [−R,R].

We can sharpen these conditions by inserting the projector |O| into the norm. Since

〈f, ε∗|α〉〈α|f, ε〉 ≥ 0 for any state α in the conformal multiplet of O, we see that each

conformal block λJφOλφJOG
µν
O has negative coefficients in the z, z̄ expansion if µ = ν = +

and positive coefficients if µ = ν = t. Therefore, the analyticity and boundedness still

holds on the second sheet for this partial contribution to the 4-point function.

Finally, we note that the results in this subsection do not depend on taking the light-

cone limit. In particular, they hold when |σ| < η.
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4.3 〈J+φφJ+〉

Using the t-channel spinning conformal blocks for stress tensor exchange, we can derive

the correlation function on the second sheet Ĝ++
η (σ) at next-to-leading order in η:

Ĝ++
η (σ) = −2CJ + iλφφT

d(d−2)Γ(d+1)
[
2d+2π

d+1
2 Γ
(
d+3

2

)
λJJT−πΓ(d+2)CJ

]
π
d
2
√
CTΓ

(
d
2 + 1

)3 η
d
2
−1

σ
+ . . . ,

(4.12)

λφφT = −
d∆φ

d− 1

1√
CT

. (4.13)

Up to the sign flip from the inversion tensor, this has the same form as the scalar case,

Ĝη(σ) = 1− iλ̂η
τ
2 σ−1. Similarly, the contour integral implies the sum rule

πΓ(d+ 2)CJ − 2d+2π
d+1

2 Γ

(
d+ 3

2

)
λJJT = (4.14)

A lim
R→0

lim
η→0

η1− d
2

∫ R

−R
dσRe

(
−G++

J,η (σ) + Ĝ++
J,η (σ)

)
≥ 0 ,

where A is a positive constant. After some simplification, we arrive at the inequality

λJJT ≤
Γ
(
d
2 + 1

)
2π

d
2

CJ . (4.15)

This inequality is one of the conformal collider bounds, saturated by a theory of free

fermions.

4.4 〈J tφφJ t〉

To find the free boson bound, we need to remove the contribution from all symmetric

traceless tensors to Gtt(z, z̄):

GttJ,A(z, z̄) = GttJ (z, z̄)−GttJ,STT (z, z̄) . (4.16)

As mentioned in section 4.2, GttJ,A(z, z̄) is also analytic on the second sheet and is bounded

by its magnitude on the first sheet.

The functions GttJ,STT (z, z̄) and G++
J,STT (z, z̄) are related by conformal symmetry and

this relation can be worked out order-by-order in (1 − z̄) using the explicit form of the

spinning conformal blocks. To leading and next-to-leading order in (1− z̄), the ratio of the

two contributions is independent of z. We show in appendix A.3 that the ratios between

them are 1
2

1
1−d at order (1 − z̄)−∆φ and −1

d at order (1 − z̄)
d−2

2
−∆φ . Furthermore, the

leading lightcone singularities of G++
J (z, z̄) from the exchange of the identity and the stress

tensor operators come exclusively from the infinite sum over STT double twist operators

in the s-channel. Therefore, in the lightcone limit G++
J (z, z̄) is related in a simple way to

GttJ,STT (z, z̄). The subtraction (4.16) can then be computed explicitly in the small η limit.
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After continuing to the second sheet we find

ĜttJ,A,η(σ) ≡ (ησ2)∆φGttJ,A
(
(1 + σ)e−2πi, 1 + ησ

)
=
d− 2

d− 1
CJ

−iλφφT
2Γ(d+2)

[
2d+1π

d+1
2 (d−1)Γ

(
d+1

2

)
λJJT−π(d−2)Γ(d+1)CJ

]
π
d
2
√
CTΓ

(
d
2 + 1

)3 η
d
2
−1

σ
+ . . . .

(4.17)

Using a contour integral similar to (3.21), reflection positivity then implies the inequality

λJJT ≥
(d− 2)Γ

(
d
2 + 1

)
2(d− 1)π

d
2

CJ . (4.18)

This inequality is the other conformal collider bound on 〈JJT 〉, saturated by a theory of

free bosons.

Finally, as in [1], the supersymmetric conformal collider bounds follow from the general

bounds derived above. If the current does not correspond to the R symmetry then it is

contained in a multiplet with a scalar. In this case supersymmetry fixes λJJT in terms of

CJ via the relation [1, 42]

λJJT =
d(d− 2)Γ

(
d
2 + 1

)
2(d− 1)2π

d
2

CJ , (4.19)

which satisfies the conformal collider bounds.

If we consider 4d N = 1 SCFTs and J is the superconformal U(1)R current, then we

instead have9

λJJT =
2(a+ 3c)

9cπ2
CJ ⇒ 3

2
≥ a

c
≥ 0 , (4.20)

where a is the Euler anomaly and c is proportional to the central charge CT (see ap-

pendix C.3 for the precise relation). Notice that, in this case, this is not the strongest

lower bound in a N = 1 SCFT. A stronger bound, 3
2 ≥

a
c ≥

1
2 , comes from looking at the

the stress tensor, see section 5.

For 4d N = 2 SCFTs, if J is the superconformal SU(2)R current, we have instead

λJJT =
4(a+ c)

9cπ2
CJ ⇒ 5

4
≥ a

c
≥ 1

2
. (4.21)

These constitute the strongest bounds on the ratio a
c for 4d N = 2 theories. In 4d N = 4

SCFTs a = c, so the bounds are always satisfied.

9These relations are straightforwardly derived using the covariant formalism of [43, 44] or in superem-

bedding space [45–53].
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4.5 Anomalous dimensions

We will now show that following the above analysis, the large ` anomalous dimensions

of the [Jφ]
[`]
0,` and [Jφ]

[`,1]
0,` double-twist operators due to the exchange of the stress tensor

are negative semidefinite, generalizing the d = 3 results of [27] to arbitrary dimensions.

Matching the t-channel identity contribution in the s-channel yields the large ` asymptotics

of the OPE coefficient for double twist operators:

(
λ
Jφ[Jφ]

[`]
0,`

)2
=
CJ
√
π2−∆φ−d+5

2`Γ(∆φ)Γ(d)
`

1
2

(2∆φ+2d−7), (4.22)

(
λ
Jφ[Jφ]

[`,1]
0,`

)2
=
CJ
√
π(d/2− 1)2−∆φ−d+4

2`Γ(∆φ)Γ(d)
`

1
2

(2∆φ+2d−5). (4.23)

Matching the log(z) term that comes from the stress tensor contribution in the t-channel,

we can find the large ` anomalous dimensions of double-twist operators in the s-channel.

The coefficients in (4.5) and (4.6) for n = 0 are given by

γ
[Jφ]

[`]
0,`

= λφφT
(d− 2)Γ(d+ 1)Γ(d+ 2)Γ(∆φ)

[
dΓ
(
d
2

)
CJ − 4π

d
2λJJT

]
16π

d
2
√
CTCJΓ

(
d
2 + 1

)3
Γ
(
− d

2 + ∆φ + 1
) 1

`d−2
, (4.24)

γ
[Jφ]

[`,1]
0,`

= λφφT
Γ(d+ 1)Γ(d+ 2)Γ(∆φ)

[
2(d− 1)π

d
2λJJT − (d− 2)Γ

(
d
2 + 1

)
CJ
]

4π
d
2
√
CTCJ(d− 2)Γ

(
d
2 + 1

)3
Γ
(
− d

2 + ∆φ + 1
) 1

`d−2
.

(4.25)

Comparing with the inequalities (4.15) and (4.18), this proves that in the large ` limit,

the symmetric traceless double-twist states [Jφ]
[`]
0,` and the mixed symmetry double-twist

states [Jφ]
[`,1]
0,` have negative anomalous dimensions arising from the exchange of the stress

tensor.

In fact, extending these formulas to all γ
[Jφ]

[`]
n,`

and γ
[Jφ]

[`,1]
n,`

in the regime when ` �
n ≥ 0, the anomalous dimensions are always proportional to the same linear combination

of t-channel OPE coefficients. We have explicitly computed these anomalous dimensions

in appendix B. We find that they are all negative semidefinite because of the conformal

collider bounds. In a quantum gravitational theory in AdS dual to a CFT, the double-

twist states correspond to two-particle bound states and the anomalous dimensions from

T exchange correspond to the gravitational binding energy between the particles. We have

therefore proven that due to unitarity and crossing symmetry of the CFT, gravity must be

attractive in AdS between a scalar particle and a gauge boson separated at super-horizon

distances. Note that this result does not rely on any large N limit.

The universal attractive character of gravity at long distances is precisely violated

by Gauss-Bonnet theories of AdS gravity with large higher derivative corrections. It was

precisely this fact that led originally to bounds on shear viscosity in [11, 12] which were

later generalized and reinterpreted in terms of conformal collider bounds in [1, 9, 10]. The

argument above establishes universal attractiveness of gravity as an inevitable consequence

of the holographic principle.
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5 Bounds on 〈TTT 〉

In this section, we apply a similar argument to what was used in section 4 to a 4-point

function containing two scalars φ and two stress tensors T :

GµνρσT (z, z̄) ≡ 〈Tµν(0)φ(z, z̄)φ(1)T ρσ(∞)〉 . (5.1)

We will show that the conformal collider bounds on the coefficients in 〈TTT 〉 follow from

crossing symmetry and reflection positivity. We will parametrize 〈TTT 〉 in general di-

mensions by CT , t2, and t4, where CT is the central charge which appears in the 2-point

function of the stress tensor. The relation between t2, t4 and the basis used in [42] is given

in appendix C.

5.1 Crossing symmetry

The 4-point function can be expanded in three different OPE channels. The s- and t-

channel are:

s-channel: GµνρσT (z, z̄) = (zz̄)−
1
2

(∆φ−∆T )
∑
O
λTφOλφTOg

∆Tφ,∆φT ,µνρσ
O (z, z̄) , (5.2)

= GµνρσT,STT (z, z̄) +GµνρσT,A (z, z̄) +GµνρσT,B (z, z̄) , (5.3)

t-channel: GµνρσT (z, z̄) = [(1−z)(1−z̄)]−∆φ
∑
O,b

λbTTOλφφOg
0,0,µνρσ
O,b (1−z, 1−z̄) , (5.4)

where ∆T = d. We’ve absorbed the tensor structures into the conformal blocks, since in our

configuration they become functions of z and z̄. The u-channel is similar to the s-channel

but we will not need it explicitly. In general d ≥ 4, there are three types of operators

in the T × φ OPE, each with a unique 3-point structure: symmetric traceless tensors

STT = {O[`], ` ≥ 0}, tensors A = {O[`,1], ` ≥ 1} with a pair of indices antisymmetrized

and the other (` − 1) indices symmetrized, and tensors B = {O[`,2], ` ≥ 2} two pairs of

indices antisymmetrized and the other (`− 2) indices symmetrized.

When d = 3 we once again assume the theory preserves parity and use the label STT

for operators of even parity and the label A for operators of odd parity. Finally, we use

the index b in (5.4) to take into account that operators with spin in the T ×T OPE can in

general have three different parity-preserving 3-point structures in d ≥ 4 and two in d = 3.

Scalar operators appear with a unique tensor structure in the T × T OPE.

Similar to what happened for 〈JφφJ〉, we show in appendix A that at the leading order

in the lightcone limit, the s-channel expansion has the following structure:

G++++
T = G++++

T,STT , (5.5)

G+3+3
T = G+3+3

T,STT +G+3+3
T,A , (5.6)

G34
T = G34

T,STT +G34
T,A +G34

T,B , (5.7)

where in the last line we consider the function G34
T ≡

1
2〈(T

33 − T 44)φφ(T 33 − T 44)〉 so

that we can ignore all trace terms in the 4-point function tensor structures, simplifying the

analysis.
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As demonstrated in section 4, the strongest bounds follow from the positivity of in-

dividual classes of s-channel operators. In particular, we will find that analyticity and

reflection positivity of G++++
T,STT , G+3+3

T,A , and G34
T,B on the second sheet imply the 3 confor-

mal collider bounds on the 3 coefficients of 〈TTT 〉.

5.2 〈T++φφT++〉

The t-channel conformal block of the stress energy tensor can be used to compute the

following normalized correlation function on the second sheet:

(ησ2)∆φG++++
T

(
(1 + σ)e−2πi, 1 + ησ

)
= (ησ2)∆φG++++

T,STT

(
(1 + σ)e−2πi, 1 + ησ

)
= 4CT + iλφφT

√
CT 2dπ

1
2
− d

2 (d− 2)(d+ 4)Γ
(
d+3

2

)
Γ(d+ 3)

(d2 − 1)3Γ
(
d
2 + 1

)2 (5.8)

×
[
(d+ 1)

(
(d− 3)t2 + d− 1

)
+
(
(d− 1)d− 4

)
t4
]η d2−1

σ
+ . . . .

Applying a contour integral as in (3.21), reflection positivity and analyticity of G++++
T

implies the bound (
1− 1

d− 1
t2 −

2

d2 − 1
t4

)
+
d− 2

d− 1
(t2 + t4) ≥ 0 . (5.9)

5.3 〈T+tφφT+t〉

To isolate the G+3+3
T,A contribution to this correlator, we need to subtract the contribution

from the STT operators. This is straightforwardly done by relating G+3+3
T,STT to G++++

T,STT by

conformal symmetry (see table 1). Using the t-channel conformal block to compute G+3+3
T

and subtracting the STT contribution using (5.8), we obtain:

(ησ2)∆φG+3,+3
T,A

(
(1 + σ)e−2πi, 1 + ησ

)
=

1− d
1 + d

CT

− iλφφT
√
CT 2d−3π

1
2
− d

2 Γ
(
d−1

2

)
Γ(d+ 3)

[
(d+ 1)

(
d(t2 + 2)− 3t2 − 2

)
− 4t4

]
(d+ 1)2Γ

(
d
2 + 1

)2 η
d
2
−1

σ
.

(5.10)

Applying a contour integral as in (3.21), reflection positivity and analyticity of G+3+3
T,A

implies the bound10 (
1− 1

d− 1
t2 −

2

d2 − 1
t4

)
+

1

2
t2 ≥ 0 . (5.11)

5.4 〈T ttφφT tt〉

To get the exclusive contribution of the [`, 2] operators to this correlator, we need to

substract the contributions from STT and A. This is done by relating G34
T,STT to G++++

T,STT

10Formally, we have also removed the contribution from B operators. They can only show up at subleading

orders in the lightcone limit so they do not change (5.10).
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Figure 2. Conformal collider bounds in several dimensions d. Filled regions correspond to the

allowed values of the parameters t2, t4.

and G34
T,A to G+3+3

T,A by conformal symmetry (see table 1). Using the t-channel conformal

block of the stress tensor, (5.8), and (5.10), we obtain:

(ησ2)∆φG34
T,B

(
(1 + σ)e−2πi, 1 + ησ

)
=

(d− 1)2

d(d+ 1)
CT

+ iλφφT

√
CT 22d+1π−

d
2 Γ
(
d+1

2

)2
[(d+ 1)(d− t2 − 1)− 2t4]

(d+ 1)Γ
(
d
2 + 1

) η
d
2
−1

σ
. (5.12)

Through a contour integral similar to (3.21), reflection positivity and analyticity of G34
T,B

implies the bound (
1− 1

d− 1
t2 −

2

d2 − 1
t4

)
≥ 0 . (5.13)

Each of the bounds (5.9), (5.11), and (5.13) corresponds to a conformal collider bound in

general dimensions as can be seen by comparing with [6, 54]. Furthermore, in d = 3, due to

the extra degeneracy in tensor structures t2 = 0, and the third bound becomes equivalent

to the second. Alternatively one can work in d = 3 directly and use the first two crossing

equation to rederive the d = 3 collider bounds. In figure 2 we illustrate the bounds in t2,

t4 in a few different dimensions.

These bounds are also strengthened in the presence of SUSY. In a 4d N = 1 SCFT

we have the relations

t2 = 6

(
1− a

c

)
, t4 = 0 ⇒ 3

2
≥ a

c
≥ 1

2
, (5.14)
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which yields a stronger lower bound than what we obtained from applying the 〈JJT 〉 bound

to U(1)R currents, as pointed out earlier.

In a 4d N = 2 SCFTs the lower bound is identical to the one in (4.21) but the upper

bound is weaker [10], so there are no new constraints from 〈TTT 〉. These bounds are also

trivially satisfied in a 4d N = 4 SCFT where a = c.

5.5 Anomalous dimensions

In the lightcone limit, the s-channel sum is dominated by the large spin double-twist op-

erators. The large spin STT operators have the following schematic form: [Tφ]
[`]
n,` =

Tµ1µ2∂(µ3 . . . ∂µ`)∂2nφ. The large spin A operators [Tφ]
[`,1]
n,` has one index on T anti-

symmetrized with a ∂µ, while the large spin B operators [Tφ]
[`,2]
n,` have both indices on

T antisymmetrized with ∂µ’s. We will now show that the large ` anomalous dimension

asymptotics for [Tφ]
[`]
0,`, [Tφ]

[`,1]
0,` , and [Tφ]

[`,2]
0,` are negative.

Matching the t-channel identity contribution in the s-channel yields the large ` asymp-

totics of the double twist OPE coefficients:

(
λ
Tφ[Tφ]

[`]
0,`

)2
= CT

√
π2−∆φ−d+6

Γ(∆φ)Γ(d+ 2)
2−``

1
2

(−7+2∆φ+2d), (5.15)

(
λ
Tφ[Tφ]

[`,1]
0,`

)2
= CT

√
π(d− 1)2−∆φ−d+5

Γ(∆φ)Γ(d+ 2)
2−``

1
2

(2∆φ+2d−5), (5.16)

(
λ
Tφ[Tφ]

[`,2]
0,`

)2
= CT

√
πd(d− 1)2−∆φ−d+2

Γ(∆φ)Γ(d+ 2)
2−``

1
2

(2∆φ+2d−3). (5.17)

Matching the leading log(z) terms, we obtain the large spin anomalous dimensions due

to the t-channel exchange of the stress energy tensor:

γ
[Tφ]

[`]
0,`

= λφφT
22d−5(d− 2)π−

d
2
−1Γ

(
d−1

2

)2
Γ(∆φ)

√
CT (d− 1)Γ

(
− d

2 + ∆φ + 1
)

×
[
(d+ 1)

(
(d− 3)t2 + d− 1

)
+
(
(d− 1)d− 4

)
t4
] 1

`d−2
, (5.18)

γ
[Tφ]

[`,1]
0,`

= λφφT
22d−5π−

d
2
−1Γ

(
d−1

2

)2
Γ(∆φ)

[
(d+ 1)

(
d(t2 + 2)− 3t2 − 2

)
− 4t4

]
√
CTΓ

(
− d

2 + ∆φ + 1
) 1

`d−2
,

(5.19)

γ
[Tφ]

[`,2]
0,`

= λφφT
22d−3π−

d
2
−1Γ

(
d−1

2

)2
Γ(∆φ)

[
(d+ 1)(d− t2 − 1)− 2t4

]
√
CTΓ

(
− d

2 + ∆φ + 1
) 1

`d−2
. (5.20)

Because of (5.9), (5.11), (5.13), and λφφT < 0 due to the Ward identity, these anomalous

dimensions are negative. We find that this behavior also extends to n > 0 in the ` � n

limit (see appendix B). For a quantum gravity theory in AdS dual to a unitary CFT,

we have proven that gravity must be attractive in AdS between a scalar particle and a

graviton separated by super-horizon distances. Once again, this result does not make any

assumption about being in a large N limit.
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6 Non-conserved currents

We will now generalize the above discussion to external non-conserved operators. In partic-

ular we will be interested in the correlation function GµνV (z, z̄) = 〈V µ(0)φ(z, z̄)φ(1)V ν(∞)〉
where V µ is a generic vector with dimension ∆V > d − 1 and φ is a scalar of arbitrary

dimension. In [15] it was observed that the bounds derived via deep inelastic scattering

(DIS) are weaker than the bounds derived from positivity of the energy one point function

〈E(~n)〉. Here we will find that the bounds we obtain from reflection positivity and crossing

symmetry for this correlation function coincide with the results of the DIS argument.

The general 3-point function 〈V φO〉, where O is a symmetric traceless tensor primary,

using the formalism of [55, 56], takes the form

(b1D11Σ1,0 + b2D12Σ0,1)
V `

3

P
1
2

(∆V +∆φ−∆O−`)
12 P

1
2

(∆V +∆O+`−∆φ)

13 P
1
2

(∆φ+∆O+`−∆V )

23

. (6.1)

When O is in the [`, 1] representation of SO(d) for d ≥ 4, or a parity odd operator

in d = 3, the 3-point function 〈V φO〉 is uniquely determined up to a single overall OPE

coefficient. The corresponding conformal block is the same as when V is a conserved current

and is written in appendix A.1.1

Matching the identity block in the t-channel we find that the double-twist operators

[V φ]
[`]
n,` and [V φ]

[`,1]
n,` with twist τV + ∆φ + 2n and τV + 1 + ∆φ + 2n, respectively, must be

present in the regime ` � n. Moreover the effect of the b1 term is necessarily subleading

at small (1− z̄). We then define the OPE coefficient λ
V φ[V φ]

[`]
n,`

to be equal to b2. We will

also canonically normalize the 2-point function as

〈V µ(x)V ν(0)〉 =
Iµν(x)

x2∆V
12

. (6.2)

Once again, we find that in reproducing the divergences in the t-channel, the STT

operators will contribute to both the ++ crossing equation and the tt crossing equation,

while the [`, 1] operators will only contribute to the tt equation. The ratio between the

STT contribution in the tt polarization and the ++ polarization is −1
2∆V

for the identity

matching and −1
2

1
1+∆V −d/2 for the stress tensor matching.

Next, we need to find the general form of the 3-point function 〈V V T 〉. Working in the

differential basis and imposing conservation we obtain:

〈V V T 〉 = (e1D11D22 + e2D12D21 + e3H12)Σ1,1 V 2
3

P
∆V −d/2−1
12 P

d/2+1
13 P

d/2+1
23

. (6.3)

The relation between this basis and the basis used in [15] is

e1 = a3 , e2 = −2a2 − a3 , e3 = a1 − 2(d/2− 1)a2 + a3(1− d) , (6.4)

where the Ward identity additionally imposes the condition

a1 = −(∆V − d+ 1)(a2 + a3) . (6.5)
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Similar to the case of conserved vectors, we will be interested in the following two

functions:

G++
V (z, z̄) ≡ 〈V +(0)φ(z, z̄)φ(1)V +(∞)〉 , (6.6)

GttV,A(z, z̄) ≡ GttV (z, z̄)−GttV,STT (z, z̄) . (6.7)

Going to the second sheet z → ze−2πi, writing z = 1 + σ and z̄ = 1 + ησ, and going to

the limit η � |σ| � 1, we find

(ησ2)∆φG++
V

(
(1 + σ)e−2πi, 1 + ησ

)
= −2

− iλφφT
22d+1Γ

(
d+1

2

)
Γ
(
d+3

2

)[
a2(d2 − 6d+ 4∆V + 4) + 4a3(−d+ ∆V + 1)

]
√
CTΓ

(
d
2 + 1

)2 η
d
2
−1

σ
,

(6.8)

(ησ2)∆φGttV,A
(
(1 + σ)e−2πi, 1 + ησ

)
=

∆V − 1

∆V

+ iλφφT
4d+1Γ

(
d+1

2

)
Γ
(
d+3

2

)[
a3

(
d(∆V −2)−2∆2

V +2
)
+2(∆V −1)a2(d−∆V −1)

]
√
CT
(
d− 2(∆V + 1)

)
Γ
(
d
2 + 1

)2 η
d
2
−1

σ
.

(6.9)

Using same contour integral argument as in the previous sections we find the bounds

a2 ≤ 0 & a3 ≥
a2(d2 − 6d+ 4∆V + 4)

4(d−∆V − 1)
, (6.10)

or a2 > 0 & a3 ≥
2a2(−d∆V + d+ ∆2

V − 1)

d(∆V − 2)− 2∆2
V + 2

. (6.11)

These constraints match exactly on to the first line of (4.28) and (4.29) of [15], while

positivity of the one point energy function yields a stronger constraint when a2 is less

than zero.

Finally, we will repeat the solving of the lightcone bootstrap equation on the first sheet.

Matching the identity contribution, we find the n = 0 asymptotic behavior for the OPE

coefficients

(
λ
V φ[V φ]

[`]
0,`

)2
=

√
π2−∆V −∆φ+4

Γ(∆V + 1)Γ(∆φ)
`

1
2

(2∆V +2∆φ−5), (6.12)

(
λ
V φ[V φ]

[`,1]
0,`

)2
=

√
π(∆V − 1)2−∆V −∆φ+2

Γ(∆V + 1)Γ(∆φ)
`

1
2

(2∆V +2∆φ−3). (6.13)
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The large spin anomalous dimension asymptotics due to the exchange of the stress

tensor for the n = 0 double twist states are given by:

γ
[`]
0,` = λφφT

Γ(d+ 2)Γ(∆φ)Γ(∆V + 1)
[
a2(d2 − 6d+ 4∆V + 4) + 4a3(−d+ ∆V + 1)

]
4
√
CTΓ

(
d
2 + 1

)2
Γ
(
− d

2 + ∆φ + 1
)
Γ
(
− d

2 + ∆V + 2
) 1

`d−2
,

(6.14)

γ
[`,1]
0,` = λφφT

Γ(d+ 2)Γ(∆φ)Γ(∆V + 1)

2
√
CT (∆V − 1)Γ

(
d
2 + 1

)2
Γ
(
− d

2 + ∆φ + 1
)
Γ
(
− d

2 + ∆V + 2
)

×
[
2a2(−d∆V + d+ ∆2

V − 1) + a3(−d∆V + 2d+ 2∆2
V − 2)

] 1

`d−2
. (6.15)

These are negative if and only if the the constraints derived above hold.

7 Discussion

In this work, we have proven that the “conformal collider bounds” originally proposed

in [1] hold for any unitary parity-preserving conformal field theory (CFT) with a unique

stress tensor in dimensions d ≥ 3. This presents the first complete field theory proof of the

“conformal collider bounds” conjectured in [1]. While there was a large amount of evidence

suggesting the result was indeed correct, as reviewed in the introduction, until now it had

remained remarkably difficult to obtain a full proof purely based on unitarity, conformal

symmetry, and quantum field theory axioms. Due to the ubiquitous relevance of the energy

momentum and current 3-point functions and their relation to anomalies, it is reassuring

to find that the basic principles of conformal field theory imply these constraints.

Our result also shows the power of the bootstrap methods, first championed by [57–59]

and revived more recently in [60]. In its strongest form, unitarity and crossing symmetry

may contain all necessary information to classify the whole landscape of conformal field

theories without any extra input. Numerical results in recent years certainly point in this

direction (e.g. [2–5, 61–72]). If it is possible to define all CFTs through the bootstrap

method, it would be a significant step forward in the understanding of strongly coupled

quantum field theory as they are connected to CFTs by renormalization group flows. This

work adds to the list of positive results by tackling a problem that had resisted attacks

from other methods.

In parallel to the numerical approach, there is an important line of research that uses

analytic methods to explore the consequences of the crossing symmetry [16–28]. This

approach has opened up regimes of the CFT data that are difficult to probe numerically,

but which have clear and crucial relevance to quantum gravitational theories in AdS. For

example, AdS observables such as binding energies [16, 17, 25, 27] and Eikonal phases [73–

75] are directly related to the anomalous dimensions of classes of CFT operators with large

dimensions and large spin, which are more accessible with the analytic bootstrap methods.

More generally, once we understand CFTs, we can use them as starting points to answer

important questions in quantum gravity. An especially exciting question is the quantum

origin of universal features of gravitational interactions, such as causality, (non-)locality

and attractiveness [16–18, 32, 76–78]. The bounds proved in this paper are directly related
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to properties of 3-particle vertices in the bulk, including at least one graviton [1]. These

bounds also imply that the gravitational interaction is attractive between two particles

separated by super-horizon distances in AdS, as a direct consequence of the unitarity of

the underlying quantum theory. It would be interesting to apply the bootstrap method

to other questions in quantum gravity, for instance: finding all CFTs dual to approximate

Einstein gravity in AdS, where a = c. It was shown in [13] using bulk causality that

|a−cc | satisfies a bound directly related to the dimension of the lightest higher spin single

particle operator. Establishing this result within the CFT would be a solid step towards

understanding the most general UV completions of Einstein gravity in AdS.

Another important direction is to prove a much stronger positive energy condition

from CFT principles. It is possible that unitarity and consistency require the energy flux

operators constructed in [1] to have only positive semi-definite eigenvalues, so they ac-

quire positive expectation values in any state, not just the ones created by conserved local

operators. This result is not only important theoretically, but is also relevant in experi-

mental setups where energy correlation functions are used because of their IR finiteness

properties. The obvious first step is to understand the conformal collider bounds involving

non-conserved currents. The results in section 6, being the same as the corresponding

bounds obtained from the Deep Inelastic Scattering approach in [15], are weaker than the

conformal collider bounds and still allow for negative energy flux. It would be interesting

to see whether the full energy flux positivity conditions can be derived by considering more

complicated 4-point functions.

In this work we have assumed that the stress tensor is the unique conserved, spin-2

operator. One may ask what happens if there are many such operators in the spectrum.

If the theory is a product of CFTs, each with a unique stress tensor, then our arguments

will go through for each sector of the theory.11 In general, the number of conserved,

spin-2 operators does not necessarily correspond to the number of mutually decoupled

sectors in the theory [37]. Another simple example is a CFT with non-Abelian global

symmetries. The current OPE Ja × Jb may contain different conserved spin-2 currents

in different representations. However, as long as the stress tensor is the unique singlet

spin-2 conserved current, our argument applies after projecting this OPE to the singlet

sector. In more general cases, direct application of our method leads to bounds on certain

linear combinations of OPE coefficients involving multiple spin-2 conserved currents. It is

interesting to see whether there is a method that selects the stress tensor from this group,

leading to the conformal collider bounds for generic CFTs with multiple spin-2 conserved

currents.

Last but not least, efforts in the modern conformal bootstrap program have largely

focused on the 4-point function of scalar operators. This is primarily due to limited knowl-

edge of spinning conformal blocks. However, it was already demonstrated in [27, 36, 69]

and this work that the crossing symmetry of 4-point functions involving spinning opera-

tors harbors rich information inaccessible from scalar 4-point functions. Fortunately, much

11The result of [37, 38] also holds for each sector and the conformal collider bounds are satisfied where

there is higher spin symmetry in a subset of the decoupled sectors.
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progress has taken place in the last year on spinning conformal blocks. For example, the

work in [27, 40, 55, 56, 79, 80] was of crucial importance to develop the results in this

paper. Other important progress on spinning blocks includes [81–83]. These results are

extremely valuable and could lead to new breakthroughs for the bootstrap, both on the

numerical and analytical front. Extending these ideas to include the energy-momentum

tensor would also open up new opportunities to understand universal physics in CFTs and

the bulk properties of their holographic duals.
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A Spinning conformal blocks at large spin

In this appendix we derive the relevant s-channel spinning conformal blocks in the lightcone

limit. We find that they can be written as (derivatives of) a single scalar conformal block.

This simplification occurs because the sum over spins in the s-channel is performed via∫ ∞
0

d` `αKν(2`
√

1− z̄) =
(1− z̄)−(α+1)/2

4
Γ

(
1 + α− ν

2

)
Γ

(
1 + α+ ν

2

)
, (A.1)

so that terms with higher powers in 1/` result in subleading terms in (1− z̄), for (1− z̄)� 1

and ` � 1 with (1 − z̄)`2 . 1. Therefore the idea is to count the relative powers of 1/`,

where (1− z̄) has a weight of O(1/`2).

Our strategy will be to write the conformal blocks as differential operators acting on

a basic set of ‘seed’ blocks, following the general approach developed in [56, 69, 79–83].

For the seed blocks we expect, motivated by the results in [79], that they can be written

as gseed ∼ gscalar + ( . . . ), where the term ( . . . ) includes STT conformal blocks of higher-

spin correlators (see for example eq. (4.87) in that paper). Moreover one can check, using

the results of [56], that the spinning blocks in ( . . . ) are sub-leading in 1/` with respect

to gscalar.
12 For blocks that can be derived from seed blocks, the simplifications can be

inferred by looking at the differential operators of [56] when acting on seeds.

The projection of these results into different polarizations gives an explicit check of the

the triangular structure (5.5) for finite z. Furthermore, contributions from each irreducible

representation are related by a z-independent factor, at each order in (1 − z̄).

12The differential operators are constructed in such a way that the spin is increased while maintaining

the dimensions of the original three-point function. Thus there are no relative powers of (1 − z̄) coming

from the difference in external dimensions (see (A.16)). The sub-leading powers of ` then come from the

matrix transforming the differential basis to the standard one.

– 24 –



J
H
E
P
0
6
(
2
0
1
6
)
1
1
1

A.1 Seed blocks

First we look at the seed conformal blocks for the [`, 1] and [`, 2] representations that appear

in 〈JφφJ〉 and 〈TφφT 〉 respectively.

Notice that the simplification for [`, 1] can be easily obtained by taking the z̄ → 1,

(1− z̄)`2 . 1 limit in the expressions for gA given in (4.87)–(4.91) of [79]. Nonetheless we

include this calculation given that the logic is the same as for the [`, 2] blocks, where the

explicit expressions are not known yet.

A.1.1 [`, 1] seed

The integral representation of the [`, 1] conformal block in 〈JφφJ〉 is given by

g
∆Jφ,∆φJ ,µν
A (z, z̄) =

NA(λ
φJÃ

/λφJA)

X∆i

∫
ddx0 〈Jµ(x1)φ(x2)A(x0)〉Π[`,1]〈Ã(x0)φ(x3)Jν(x4)〉 , (A.2)

where the tensor contraction is Π[`,1] = m
(10)
µρ P [`,1] ρ

σ m
(40)σ
ν , with

P [`,1] ρ
σ (k(012), k(034)) ≡ k(012)

ρ1
· · · k(012)

ρ`
Π

[`,1] ρρ1···ρ`
σσ1···σ` k(034)σ1 · · · k(034)σ` . (A.3)

Here k and m are given in (A.3) and (A.4) of [79] respectively, Ã is a shadow operator,

and the integral has an implicit monodromy projection (as discussed in [40]). Using the

results of [84] we can write this tensor as

P [`,1] ρ
σ (X,Y ) =

1

`+ 1

(
`δρσ +

X2∂σ∂
ρ − (`− 1)Xρ∂σ
d+ `− 3

−Xσ∂
ρ

)
P [`](X,Y ) , (A.4)

where P [`] is the traceless-symmetric contraction of ` indices,

P [`](X,Y ) = Xa1 · · ·Xa`Π
[`] a1···a`
b1···b` Y b1 · · ·Y b` . (A.5)

Notice that derivatives acting on P [`] are structures that appear in STT spinning blocks,

and thus sub-leading with respect to scalar blocks. Therefore keeping only the first term

in (A.4) leads to a single scalar block times a tensor structure,

g
∆Jφ,∆φJ ,µν
A (z, z̄) =

NA(λ
φJÃ

/λφJA)

NO(λ
φJÕ/λφJO)

g
∆Jφ,∆φJ

(∆A,`)
(z, z̄)

(
m(14)
µν + 2(zz̄)−

1
2k(124)
µ k(413)

ν

)
+O(1/`) , (A.6)

where the prefactor is given in (G.1) of [79]. Notice that this prefactor can always be set

to one by changing the normalization of A. Evaluating the relevant polarizations leads to

g
∆Jφ,∆φJ ,++
A (z, z̄) = O

(
(1− z̄)1

)
, (A.7)

g
∆Jφ,∆φJ ,tt
A (z, z̄) = g

∆Jφ,∆φJ

∆A,`
(z, z̄) +O(1/`) , (A.8)

where the tensor structure of the last term is of order O
(
(1− z̄)0

)
.
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A.1.2 [`, 2] seed

For 〈TφφT 〉 we have

g
∆Tφ,∆φT ,µνρσ
B (z, z̄) =

NB(λ
φTB̃

/λφTB)

X∆i

∫
ddx0 〈Tµν(x1)φ(x2)B(x0)〉Π[`,2]〈B̃(x0)φ(x3)Tρσ(x4)〉 , (A.9)

where B ∈ [`, 2]. Here the contraction is Π[`,2] = m
(10)
µα1m

(10)
να2P

[`,2]α1α2

β1β2
m

(40)β1
ρ m

(40)β2
σ ,

with [84]

P [`,2]α1α2

β1β2
(X,Y ) =

(
`− 1

`+ 1
δα1

(β1
δα2

β2) + derivatives

)
P [`](X,Y ) . (A.10)

By the same arguments as in the previous case

g
∆Tφ,∆φT ,µνρσ
B (z, z̄) =

NB(λ
φTB̃

/λφTB)

NO(λ
φT Õ/λφTO)

g
∆Tφ,∆φT

(∆B ,`)
(z, z̄)Π[2]µν;αβ

Π[2]ρσ;γδ(
m(14)
αγ + 2(zz̄)−

1
2k(124)
α k(413)

γ

)
×
(
m

(14)
βδ + 2(zz̄)−

1
2k

(124)
β k

(413)
δ

)
+O(1/`) . (A.11)

Notice that we can set the prefactor to one by a suitable normalization of B. Evaluating

the relevant polarizations at lowest order in O(1− z̄) gives

g
∆Tφ,∆φT ,++++
B (z, z̄) = O

(
(1− z̄)2

)
, (A.12)

g
∆Tφ,∆φT ,+3+3
B (z, z̄) = O

(
(1− z̄)1

)
, (A.13)

g
∆Tφ,∆φT ,34
B (z, z̄) = g

∆Tφ,∆φT

∆B ,`
(z, z̄) +O(1/`) , (A.14)

where the last term’s tensor structure is of order O
(
(1− z̄)0

)
.

A.2 Derived blocks

Now we turn to the conformal blocks that can be obtained from seeds, by acting with the

differential operators Dij of [56].13 The STT exchange in both 〈JφφJ〉 and 〈TφφT 〉 can

be computed from the lightcone approximation to the scalar block [16]

g∆12,∆34

τ,` (u, v)

`�1, (1−z̄)`2.1
v�u<1

= f∆12,∆34
1 (`, 1− z̄)f∆12,∆34

2 (τ, u)
(
1 +O(1/

√
`,
√

1− z̄)
)
,

(A.15)

where v ≈ (1− z̄)(1− u), u ≈ z, and

f∆12,∆34
1 (`, x) =

(
− 1

2

)̀
π−

1
2 22``

1
2x

∆12−∆34
4 K∆34−∆12

2

(2`
√
x) , (A.16)

f∆12,∆34
2 (τ, u) =

2τu
τ
2

(1− u)
d
2
−1

2F1

(
τ − d+ 2−∆12

2
,
τ − d+ 2 + ∆34

2
, τ − d+ 2;u

)
.

(A.17)

13It may also be interesting to derive these blocks more directly by expressing the OPE in embedding

space [85].
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This limit holds for even d ≥ 2 as long as the sum over ` only receives contributions in

the region where the product `2(1 − z̄) is kept fixed. For the [`, 1] exchange in 〈TφφT 〉
the procedure is completely analogous given that its seed is also a scalar conformal block,

as shown in (A.8). In both cases one can analyze the differential operators and drop

derivatives as well as powers of ` and (1 − z̄) that produce subleading terms. The results

are summarized below.

A.2.1 STT

For 〈JφφJ〉, the differential operator is(
aL1D11Σ1,0

L +D12Σ0,1
L

)(
aR1 D44Σ0,1

R +D43Σ1,0
R

)
. (A.18)

The aL,R1 terms can be found by imposing conservation, but their effect is subleading in

the lightcone limit. The action of the differential operators on partial waves leads to

g
∆Jφ,∆φJ ,++
∆O,`

(u, v) = 2[v∂v −∆Jφ]g
∆Jφ,∆φJ ,tt
∆O,`

(u, v) , (A.19)

g
∆Jφ,∆φJ ,tt
∆O,`

(u, v) =
1

2

√
u[∆Jφ − 1− v∂v]g

∆Jφ−1,∆φJ+1
∆O,`

(u, v)
(
1 +O(1/`)

)
. (A.20)

For 〈TφφT 〉, the differential operator is(
bL1 (D11)2Σ2,0

L + bL2D12D11Σ1,1
L + (D12)2Σ0,2

L

)(
bR1 (D44)2Σ0,2

R + bR2 D43D44Σ1,1
R + (D43)2Σ2,0

R

)
.

(A.21)

Similar to the previous case, the contribution of the bL,R1,2 terms are fixed by conservation

and subleading in 1/`. Counting powers in the differential operator gives

g
∆Tφ,∆φT ,++++
∆O,`

(u, v) = 2[v∂v − (∆Tφ + 1)]g
∆Tφ,∆φT ,+3,+3
∆O,`

(u, v) , (A.22)

g
∆Tφ,∆φT ,+3+3
∆O,`

(u, v) = [v∂v −∆Tφ]g
∆Tφ,∆φT ,34
∆O,`

(u, v) , (A.23)

g
∆Tφ,∆φT ,34
∆O,`

(u, v) =
u

2
[(∆Tφ − 2)(∆Tφ − 1)

+ v(4− 2∆Tφ + v∂v)∂v]g
∆Tφ−2,∆φT+2
∆O,`

(u, v)
(
1 +O(1/`)

)
.

(A.24)

A.2.2 [`, 1]

In this case the seed 3-point function is given by (here we are using the formalism of [80])

〈J(P1;Z1)φ(P2)A(X3;Z3,Θ3)〉 =
V

(Θ3)
3 H

(Z1,Θ3)
13 (V

(Z)
3 )`−1

P
1
2

(∆φ+∆J−∆A−`)
12 P

1
2

(∆Jφ+∆A+`+2)

13 P
1
2

(∆A−∆Jφ+`)

23

.

(A.25)

To construct 〈T (P1;Z1)φ(P2)A(X3;Z3,Θ3)〉 we act with a linear combination of D11Σ1,0

and D12Σ0,1 and impose conservation. The spinning blocks for this exchange are then given

by acting on partial waves WA with the differential operator(
λL1D11Σ1,0

L +D12Σ0,1
L

)(
λR1 D44Σ1,0

R +D43Σ0,1
R

)
, (A.26)
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where

λL1 = λR1 =

(
−

(∆φ −∆A + `− 1)(−∆φ + ∆A + d+ `− 1)

(∆φ −∆A)(∆φ + ∆A − d)− (`− 1)(d+ `− 1)

)
. (A.27)

This leads to

g
∆Tφ,∆φT ,++++
A (u, v) = 0 , (A.28)

g
∆Tφ,∆φT ,+3+3
A (u, v) =

1

2
[v∂v −∆Tφ]g

∆Tφ,∆φT ,34
A (u, v) , (A.29)

g
∆Tφ,∆φT ,34
A (u, v) = −1

2

√
u[1−∆Tφ + v∂v]g

∆Tφ−1,∆φT+1
∆A,`

(u, v)
(
1 +O(1/`)

)
, (A.30)

where we used the approximation given in (A.8).

A.3 Polarization ratios

Now we check that the different polarizations of the 4-point function G(z, z̄) are related

to each other by a z-independent factor. To see this we perform the sum over spins in the

s-channel, via (A.1). For 〈JφφJ〉 this results in

G++
J,STT ∝ −

Γ(d)Γ(∆φ)

24

∑
n

(
λ
Jφ[Jφ]

[`]
n

)2
Fn(u)

−
Γ
(
d
2 + 1

)
Γ
(
∆φ − d

2 + 1
)

25
(1− z̄)

d
2
−1
∑
n

(
λ
Jφ[Jφ]

[`]
n

)2
γ

[Jφ]
[`]
n
Fn(u) ln(u) ,

(A.31)

GttJ,STT ∝
Γ(d− 1)Γ(∆φ)

25

∑
n

(
λ
Jφ[Jφ]

[`]
n

)2
Fn(u)

+
Γ
(
d
2

)
Γ
(
∆φ − d

2 + 1
)

26
(1− z̄)

d
2
−1
∑
n

(
λ
Jφ[Jφ]

[`]
n

)2
γ

[Jφ]
[`]
n
Fn(u) ln(u) , (A.32)

where we defined

Fn(u) ≡ 2∆φ+d+2nun

√
π(1− u)1− d

2

2F1

(
d

2
+ n− 1,

d

2
+ n− 1; ∆φ + 2n;u

)
,(

λ
Jφ[Jφ]

[`]
n

)2 ≡ 2``−
1
2

(2∆φ+2d−7)
(
λ
Jφ[Jφ]

[`]
n,`

)2
, γ

[Jφ]
[`]
n
≡ `d−2γ

[Jφ]
[`]
n,`

,

and used (4.5). The proportionality coefficient is the kinematical term in front of the 4-

point function. The ratios GttJ,STT /G
++
J,STT are then 1

2(1−d) at order O
(
(1− z̄)0

)
and −1

d at

order O
(
(1− z̄)

d
2
−1
)
. Similarly, for 〈TφφT 〉 we have

G++++
T,STT ∝

Γ(d+ 2)Γ(∆φ)

24

∑
n

(
λ
Tφ[Tφ]

[`]
n

)2
Fn(u)

+
Γ
(
d
2 + 3

)
Γ
(
∆φ − d

2 + 1
)

25
(1−z̄)

d
2
−1
∑
n

(
λ
Tφ[Tφ]

[`]
n

)2
γ

[Tφ]
[`]
n
Fn(u) ln(u) ,

(A.33)
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O
(
(1− z̄)0

)
O
(
(1− z̄)

d
2−1
)

G+3+3
T,STT /G

++++
T,STT − 1

2(d+1) − 1
d+4

G34
T,STT /G

++++
T,STT

1
2d(d+1)

2
(d+2)(d+4)

G34
T,A/G

+3+3
T,A − 2

d − 4
d+2

Table 1. Ratios for the different polarizations of 〈TφφT 〉 in the lightcone limit.

G+3+3
T,STT ∝ −

Γ(d+ 1)Γ(∆φ)

25

∑
n

(
λ
Tφ[Tφ]

[`]
n

)2
Fn(u)

−
Γ
(
d
2 + 2

)
Γ
(
∆φ − d

2 + 1
)

26
(1−z̄)

d
2
−1
∑
n

(
λ
Tφ[Tφ]

[`]
n

)2
γ

[Tφ]
[`]
n
Fn(u) ln(u) ,

(A.34)

G34
T,STT ∝

Γ(d)Γ(∆φ)

25

∑
n

(
λ
Tφ[Tφ]

[`]
n

)2
Fn(u)

+
Γ
(
d
2 + 1

)
Γ
(
∆φ − d

2 + 1
)

26
(1−z̄)

d
2
−1
∑
n

(
λ
Tφ[Tφ]

[`]
n

)2
γ

[Tφ]
[`]
n
Fn(u) ln(u) ,

(A.35)

G+3+3
T,A ∝ −

Γ(d+ 1)Γ(∆φ)

25

∑
n

(
λ
Tφ[Tφ]

[`,1]
n

)2
F̃n(u)

−
Γ
(
d
2 + 2

)
Γ
(
∆φ − d

2 + 1
)

26
(1−z̄)

d
2
−1
∑
n

(
λ
Tφ[Tφ]

[`,1]
n

)2
γ

[Tφ]
[`,1]
n

F̃n(u) ln(u) ,

(A.36)

G34
T,A ∝

Γ(d)Γ(∆φ)

24

∑
n

(
λ
Tφ[Tφ]

[`,1]
n

)2
F̃n(u)

+
Γ
(
d
2 + 1

)
Γ
(
∆φ − d

2 + 1
)

25
(1−z̄)

d
2
−1
∑
n

(
λ
Tφ[Tφ]

[`,1]
n

)2
γ

[Tφ]
[`,1]
n

F̃n(u) ln(u) ,

(A.37)

where the twist for A is given by (4.6) and

F̃n(u) ≡ 2∆φ+d+2nun

√
π(1− u)−

d
2

2F1

(
d

2
+ n,

d

2
+ n; ∆φ + 2n+ 1;u

)
,(

λ
Tφ[Tφ]

[`]
n

)2 ≡ 2``−
1
2

(2∆φ+2d−7)
(
λ
Tφ[Tφ]

[`]
n,`

)2
, γ

[Tφ]
[`]
n
≡ `d−2γ

[Tφ]
[`]
n,`

,(
λ
Tφ[Tφ]

[`,1]
n

)2 ≡ 2`−1`−
1
2

(2∆φ+2d−5)
(
λ
Tφ[Tφ]

[`,1]
n,`

)2
, γ

[Tφ]
[`,1]
n
≡ `d−2γ

[Tφ]
[`,1]
n,`

.

For this case the ratios are summarized in table 1.

B Anomalous dimensions for non-zero n

In this appendix we generalize our results for anomalous dimensions to n > 0 in the regime

`� n.
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B.1 〈JφφJ〉

In order to match the identity at all orders in z, we use the summation formula

(1− x)b =
∑
n≥0

xn(b)n(c)n
n!(b+ c+ n− 1)n

2F1(b+ n, b+ n; b+ c+ 2n;x) (B.1)

in the s-channel expansion. This fixes the OPE coefficients, which we write in terms of the

n = 0 result: (
λ
Jφ[Jφ]

[`]
n,`

)2
=

(
1− d

2 + ∆φ

)
n

(
d
2 − 1

)
n

4nn!(∆φ + n− 1)n

(
λ
Jφ[Jφ]

[`]
0,`

)2
, (B.2)

(
λ
Jφ[Jφ]

[`,1]
n,`

)2
=

(
1− d

2 + ∆φ

)
n

(
d
2

)
n

4nn!(∆φ + n)n

(
λ
Jφ[Jφ]

[`,1]
0,`

)2
. (B.3)

Now we split the anomalous dimensions as

γ
[Jφ]

[`]
n,`

= γ̃
[Jφ]

[`]
n
γ

[Jφ]
[`]
0,`

, γ
[Jφ]

[`,1]
n,`

= γ̃
[Jφ]

[`,1]
n

γ
[Jφ]

[`,1]
0,`

, (B.4)

and match the stress-tensor at all orders in z. This leads to the following equations

Γ
(
d
2 − 1

)
Γ
(
∆φ − d

2 + 1
)(

d
2 + 1

)2
j

(j!)2Γ
(
∆φ − d

2 + 1 + j
)2 3F2

(
−j,−j,∆φ − d
−d

2 − j,−
d
2 − j

; 1

)
=

j∑
n=0

(∆φ + 2n− 1)Γ
(
d
2 + n− 1

)
Γ(∆φ + n− 1)

n!(j − n)Γ
(
∆φ + n− d

2 + 1
)
Γ(∆φ + n+ j)

γ̃
[Jφ]

[`]
n
, (B.5)

Γ
(
d
2

)
Γ
(
∆φ − d

2 + 1
)(

d
2 + 1

)2
j

(j!)2Γ
(
∆φ − d

2 + 1 + j
)2 3F2

(
−j,−j,∆φ − d
−d

2 − j,−
d
2 − j

; 1

)
=

j∑
n=0

(∆φ + 2n)Γ
(
d
2 + n

)
Γ(∆φ + n)

n!(j − n)Γ
(
∆φ + n− d

2 + 1
)
Γ(∆φ + n+ j + 1)

γ̃
[Jφ]

[`,1]
n

, (B.6)

where j represents the power of z in the Taylor expansion. Using the techniques of [19, 23],

we write γ̃ in terms of terminating hypergeometric functions:

γ̃
[Jφ]

[`]
n

=
(−1)nn!Γ

(
∆φ − d

2 + 1
)
Γ
(
∆φ + n− d

2 + 1
)(

d
2 − 1

)
n
Γ
(
d
2 + 1

)2
×

n∑
i=0

(−1)i(i+ 1)2
d
2

(∆φ + n− 1)i

(n− i)!Γ
(
∆φ − d

2 + 1 + i
)2 3F2

(
−i,−i,∆φ − d
−d

2 − i,−
d
2 − i

; 1

)
, (B.7)

γ̃
[Jφ]

[`,1]
n

=
(−1)nn!Γ

(
∆φ − d

2 + 1
)
Γ
(
∆φ + n− d

2 + 1
)(

d
2

)
n
Γ
(
d
2 + 1

)2
×

n∑
i=0

(−1)i(i+ 1)2
d
2

(∆φ + n)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
−d

2 − i,−
d
2 − i

; 1

)
. (B.8)

One can check that this solves (B.5) and (B.6) order by order in n, for arbitrarily high

values.
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B.2 〈TφφT 〉

Following the same steps as in the previous case, we find the OPE coefficients

(
λ
Tφ[Tφ]

[`]
n,`

)2
=

(
1− d

2 + ∆φ

)
n

(
d
2 − 1

)
n

4nn!(∆φ + n− 1)n

(
λ
Tφ[Tφ]

[`]
0,`

)2
, (B.9)

(
λ
Tφ[Tφ]

[`,1]
n,`

)2
=

(
1− d

2 + ∆φ

)
n

(
d
2

)
n

4nn!(∆φ + n)n

(
λ
Tφ[Tφ]

[`,1]
0,`

)2
, (B.10)

(
λ
Tφ[Tφ]

[`,2]
n,`

)2
=

(
1− d

2 + ∆φ

)
n

(
d
2 + 1

)
n

4nn!(∆φ + n+ 1)n

(
λ
Tφ[Tφ]

[`,2]
0,`

)2
. (B.11)

Notice that for [`] and [`, 1], the n-dependence is the same as in 〈JφφJ〉. Finally, we define

anomalous dimensions for n ≥ 0 as

γ
[Tφ]

[`]
n,`

= γ̃
[Tφ]

[`]
n
γ

[Tφ]
[`]
0,`

, γ
[Tφ]

[`,1]
n,`

= γ̃
[Tφ]

[`,1]
n

γ
[Tφ]

[`,1]
0,`

, γ
[Tφ]

[`,2]
n,`

= γ̃
[Tφ]

[`,2]
n

γ
[Tφ]

[`,2]
0,`

.

(B.12)

For STT and A we find the same equations as in 〈JφφJ〉. Therefore γ̃
[Tφ]

[`]
n

= γ̃
[Jφ]

[`]
n

and

γ̃
[Tφ]

[`,1]
n

= γ̃
[Jφ]

[`,1]
n

. On the other hand, for B we have

Γ
(
d
2 + 1

)
Γ
(
∆φ − d

2 + 1
)(

d
2 + 1

)2
j

(j!)2Γ
(
∆φ − d

2 + 1 + j
)2 3F2

(
−j,−j,∆φ − d
−d

2 − j,−
d
2 − j

; 1

)
=

j∑
n=0

(∆φ + 2n+ 1)Γ
(
d
2 + n+ 1

)
Γ(∆φ + n+ 1)

n!(j − n)Γ
(
∆φ + n− d

2 + 1
)
Γ(∆φ + n+ j + 2)

γ̃
[Tφ]

[`,2]
n

. (B.13)

The solution is

γ̃
[Tφ]

[`,2]
n

=
(−1)nn!Γ

(
∆φ − d

2 + 1
)
Γ
(
∆φ + n− d

2 + 1
)(

d
2 + 1

)
n
Γ
(
d
2 + 1

)2
×

n∑
i=0

(−1)i(i+ 1)2
d
2

(∆φ + n+ 1)i

(n− i)!Γ
(
∆φ − d

2 + 1 + i
)2 3F2

(
−i,−i,∆φ − d
−d

2 − i,−
d
2 − i

; 1

)
. (B.14)

B.3 Examples

Now using the identities in the appendices of [19, 23] we can rewrite the terminating

hypergeometric and perform the sum over i for specific even dimensions. In d = 4 we have

γ̃
[Tφ]

[`]
n

= 1 +
3n(∆φ + n− 1)

(
∆φ + n(∆φ + n− 1)

)
∆φ(∆φ − 1)

,

γ̃
[Tφ]

[`,1]
n

=
(n+ 1)(∆φ + n− 1)

(
∆φ + n(∆φ + n)

)
∆φ(∆φ − 1)

, (B.15)

γ̃
[Tφ]

[`,2]
n

=
(n+ 1)(n+ 2)(∆φ + n− 1)(∆φ + n)

2∆φ(∆φ − 1)
,
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whereas in d = 6

γ̃
[Tφ]

[`]
n

=
(n+ 1)(∆φ + n− 2)

(
5n2(n− 1)2 + 2∆φ(5n3 − 5n− 3) + ∆2

φ

(
5n(n+ 2) + 6

))
6∆φ(∆φ − 1)(∆φ − 2)

,

γ̃
[Tφ]

[`,1]
n

=
(n+ 1)(n+ 2)(∆φ + n− 2)(∆φ + n− 1)

(
3∆φ + 2n(∆φ + n)

)
6∆φ(∆φ − 1)(∆φ − 2)

, (B.16)

γ̃
[Tφ]

[`,2]
n

=
(n+ 1)(n+ 2)(n+ 3)(∆φ + n− 2)(∆φ + n− 1)(∆φ + n)

6∆φ(∆φ − 1)(∆φ − 2)
.

It is easy to check that for ∆φ ≥ d
2 − 1 these expressions are positive for all n.

C Correlation functions of conserved operators

In this appendix we will provide more details on the 3-point functions 〈JJJ〉 and 〈TTT 〉.

C.1 Tensor structures

We follow the notation and techniques of [55, 56]. See also [27] for more details on the

differential representation on the 3-point functions.

We start by lifting the points xµ and polarizations εµ in Rd−1,1 to vectors Pµ and Zµ,

respectively, in Rd,2. This lifting allows us to linearize the action of the conformal group.

The projection from embedding space to the Poincaré section is explicitly given by,

Px = (P+, P−, Pµ) = (1, x2, xµ) , Zε = (0, 2x · ε, εµ) (C.1)

The metric on the embedding space is given by P · P = −P+P− + δabP
aP b. The basic

buildings blocks are given by

Hij = −2
[
(Zi ·Zj)

(
Pi ·Pj−(Zi ·Pj)(Zj ·Pi)

)]
, Vi,jk =

(Zi ·Pj)(Pi ·Pk)−(Zi ·Pk)(Pi ·Pj)
Pj ·Pk

.

(C.2)

We will use the shorthand V1 = V1,23, V2 = V2,31, and V3 = V3,1,2.

C.2 〈JJT 〉

We will normalize the operators as follows:

〈J(P1, Z1)J(P2, Z2)〉 = CJ
H12

P d12

, 〈T (P1, Z1)T (P2, Z2)〉 = CT
H2

12

P d+2
12

. (C.3)

The general form of the 〈JJT 〉 3-point function, after imposing symmetry under 1↔ 2,

is given by

〈J(P1;Z1)J(P2;Z2)T (P3;Z3)〉 =
αV1V2V

2
3 + β(H13V2 +H23V1)V3 + γH12V

2
3 + ηH13H23

(P12)
d
2
−1(P13)

d
2

+1(P23)
d
2

+1
.

Imposing conservation implies

−α− dβ + (2 + d)γ = 0 ,

−2β + 2γ + (2− d)η = 0 . (C.4)
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The relation between our basis and that used in [42], see eqs. (3.11)–(3.14) is given by14

η = 2ẽ , β = −2c̃ ,

γ = ã− b̃

d
− 4c̃

d
, α = 2ã+ b̃

(
1− 2

d

)
− 8c̃

d
.

(C.5)

They also found that the Ward identity for the stress energy tensor implies

2Sd(c̃+ ẽ) = dCJ . (C.6)

Where Sd is the volume of a (d− 1)-dimensional sphere, Sd = 2π
d
2

Γ( d
2

)
. So 〈JJT 〉 is fixed up

to one OPE coefficient, c̃, and CJ . We labeled the parameter c̃ as λJJT in the body of the

paper, following the conventions of [27]. In the rest of this appendix we will also adopt

this convention. To construct the conformal block corresponding to Tµν exchange in the

s-channel of 〈JJφφ〉 we apply the following differential operator on the scalar partial wave,

DL,T =

[(
2λJJT −

CJd(d−2)

(d−1)Sd

)
D11D22 +

(
2λJJT +

CJd
2

Sd(1−d)

)
D12D21 − 2λJJTH12

]
Σ1,1
L .

(C.7)

The conformal block for Tµν exchange in the t-channel of 〈JφφJ〉 is then found by letting

2↔ 4 everywhere in the resulting expression.

Finally, in [1] the parameter a2 was introduced, distinct from the a2 OPE coefficient

used in 〈V V T 〉, which gives the energy distribution for a state created by a conserved

current:

〈E(n)〉ε·j =
1

Sd

(
1 + a2

(
cos2(θ)− 1

d− 1

))
(C.8)

where θ is the angle between the spatial polarization εi and the point on Sd−1 labelled by

ni. Requiring that the energy one point function be positive yields the bounds

− d− 1

d− 2
≤ a2 ≤ d− 1 . (C.9)

The upper bound is saturated in a theory of free bosons and the lower bound is saturated

in a theory of free fermions. The relation between λJJT and a2 is given by

λJJT = −
CJ(d− 2)dπ−

d
2 (a2 − d2 + d)Γ

(
d
2

)
4(d− 1)3

. (C.10)

C.3 〈TTT 〉

In this section we will review the connection between the parametrization of 〈TTT 〉 in

terms of the variables ĉ, ê, and CT as defined in [42], the t2, t4, CT parametrization used

in studies of the energy one point function [6], and the free field theory results.

14We add tildes to the variables to avoid confusion between these variables, the conformal anomalies a

and c, and the 〈TTT 〉 OPE coefficients.

– 33 –



J
H
E
P
0
6
(
2
0
1
6
)
1
1
1

We start by defining the following basis of parity-even tensor structures for 〈TTT 〉,

Q1 = V 2
1 V

2
2 V

2
3 , (C.11)

Q2 = H23V
2

1 V2V3 +H13V1V
2

2 V3 , (C.12)

Q3 = H12V1V2V
2

3 , (C.13)

Q4 = H12H13V2V3 +H12H23V1V3 , (C.14)

Q5 = H13H23V1V2 , (C.15)

Q6 = H2
12V

2
3 , (C.16)

Q7 = H2
13V

2
2 +H2

23V
2

1 , (C.17)

Q8 = H12H13H23 . (C.18)

In [42] they parametrized the correlation function in general dimensions in terms of

8 variables: â, b̂, b̂′, ĉ, ĉ′, ê, ê′, and f̂ . Labeling the coefficients of Qi by xi, the relation

between the bases is given by

x1 = 8(ĉ+ ê) + f̂ , x2 = −4(4b̂′ + ê′) , x3 = 4(2ĉ+ ê) , (C.19)

x4 = −8b̂′, x5 = 8b̂+ 16â , x6 = 2ĉ , (C.20)

x7 = 2ĉ′, x8 = 8â . (C.21)

Conservation of the stress-energy tensor implies

x1 = 2x2 +
1

4
(d2 + 2d− 8)x4 −

1

2
d(2 + d)x7 , x8 =

x2 −
(
d
2 + 1

)
x4 + 2dx7

d2

2 − 2
, (C.22)

x2 = x3 , x4 = x5 , x6 = x7 , (C.23)

which is consistent with the conservation constraints of [42]. Finally, they found that

solving the Ward identity yields

4Sd
(d− 2)(d+ 3)â− 2b̂− (d+ 1)ĉ

d(d+ 2)
= CT . (C.24)

In d > 3 dimensions we can parametrize the parity-even structures in 〈TTT 〉 by ĉ, ê, and

CT , while in d = 3 the H12H13H23 structure is not linearly independent and 〈TTT 〉 is fixed

up to two parameters, 2â− ĉ and CT .

The relation between this basis and the t2 and t4 basis is given by

ĉ = −
CTπ

− d
2 Γ
(
d
2 +2

)[(
d(−3d2+d+2)+4

)
t4+(d+1)

(
2d4−d3(t2+4)+d2+d+3t2

)]
2(d−1)3(d+1)2(d+2)

,

(C.25)

ê =
CTπ

− d
2 Γ
(
d
2 +2

)[
(d+1)

(
(d−3)(d2−3)t2+2(d−2)d2+2

)
+
(
2(d−5)d2+4d+12

)
t4
]

4(d−1)3(d+1)2
.

(C.26)
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Finally, as noted in [6], in even dimensions we can parametrize 〈TTT 〉 by its expressions

in free field theories of conformally coupled scalars, fermions, and ( d2 − 1)-forms:

〈TTT 〉 = ns〈TTT 〉s + nf 〈TTT 〉f + nt〈TTT 〉t , (C.27)

where ns, nf , and nt give the effective number of real scalars, Dirac fermions, and ( d2 − 1)

forms, although there may not necessarily be any connection to the actual field content.

The conformal collider constraints can then be written as [6, 54],(
1− 1

d− 1
t2 −

2

d2 − 1
t4

)
+
d− 2

d− 1
(t2 + t4) ∝ ns ≥ 0 , (C.28)(

1− 1

d− 1
t2 −

2

d2 − 1
t4

)
+

1

2
t2 ∝ nf ≥ 0 , (C.29)(

1− 1

d− 1
t2 −

2

d2 − 1
t4

)
∝ nt ≥ 0 . (C.30)

The constraints (C.28), (C.29), and (C.30) are equivalent to the constraints derived by

considering 〈T++φφT++〉, 〈T+3φφT+3〉, and 〈(T 33 − T 44)φφ(T 33 − T 44)〉, respectively. In

three dimensions t2 = 0 and the second and third constraints are redundant. Finally in

four dimensions we have [1, 42, 86]

a

c
=

2ns + 124nt + 22nf
6ns + 72nt + 36nf

, (C.31)

where nt now counts the number of real free vectors, a is the Euler anomaly, and c is

related to central charge CT as c = π4

40CT . The bounds from equations (C.28) and (C.30)

then imply
31

18
≥ a

c
≥ 1

3
. (C.32)
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