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ABSTRACT
We present a new method for determining the local dark matter density using kinematic data
for a population of tracer stars. The Jeans equation in the z-direction is integrated to yield an
equation that gives the velocity dispersion as a function of the total mass density, tracer density,
and the ‘tilt’ term that describes the coupling of vertical and radial motions. We then fit a dark
matter mass profile to tracer density and velocity dispersion data to derive credible regions on
the vertical dark matter density profile. Our method avoids numerical differentiation, leading to
lower numerical noise, and is able to deal with the tilt term while remaining one dimensional.
In this study we present the method and perform initial tests on idealized mock data. We
also demonstrate the importance of dealing with the tilt term for tracers that sample �1 kpc
above the disc plane. If ignored, this results in a systematic underestimation of the dark matter
density.

Key words: Galaxy: disc – Galaxy: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

Dark matter (DM) is an elusive component of the cosmos. Its ex-
istence has long been inferred from its gravitational interactions
with ordinary matter on scales ranging from dwarf galaxies and
galactic rotation curves to lensing galaxies, galaxy clusters, and the
Universe as a whole (for reviews see e.g. Rubin 1993; Jungman,
Kamionkowski & Griest 1996; Bergström 2000; Bertone, Hooper
& Silk 2005; Bertone 2010; Massey, Kitching & Richard 2010).
However its exact nature remains unknown.

Understanding the distribution of DM in cosmological structures,
and in particular in the Milky Way, is of great importance to test the
standard �cold dark matter (�CDM) cosmological model, to make
predictions – and allow the interpretation – of experiments that seek
to detect DM, and to probe more exotic models for DM (e.g. Read
2014). Here, we will focus our attention on the local DM density
– i.e. the average density of DM over a small volume (typically
of size ∼100–1000 pc) centred around the Sun. The local DM
density is a vital input for so-called direct DM experiments, based
on the detection of the recoil energy of nuclei struck by DM particles
streaming through underground detectors, as the expected event rate
is proportional to the local DM density and the DM–nucleon cross-
section. In addition, the local DM density is important for indirect
searches that look for neutrinos produced by the annihilation of
DM particles trapped at the centre of Sun (see e.g. Klasen, Pohl

� E-mail: hamish.silverwood@gmail.com (HS); sofias@fysik.su.se (SS)

& Sigl 2015, and references therein for a recent update on direct
and indirect searches). The results of these searches are also used
in explorations of theoretical parameter space, such as those of
Supersymmetry (e.g. Allanach & Lester 2006; Buchmueller et al.
2014; Strege et al. 2014; Bertone et al. 2016; Roszkowski, Sessolo
& Williams 2015).

Methods of determining the local DM density can be divided
into two categories: those utilizing measurements of stars in a small
volume around the Sun (e.g. Kapteyn 1922; Jeans 1922; Oort 1932;
Bahcall 1984; Kuijken & Gilmore 1989b, 1991; Creze et al. 1998;
Garbari et al. 2012; Bovy & Tremaine 2012; Smith, Whiteoak &
Evans 2012; Zhang et al. 2013; Bienaymé et al. 2014) and those
utilizing a host of dynamical tracers – particularly the rotation curve
– to constrain more global mass models of the Milky Way (Dehnen
& Binney 1998; Catena & Ullio 2010; Salucci et al. 2010; Weber
& de Boer 2010; McMillan 2011; Nesti & Salucci 2013; Piffl et al.
2014; Iocco, Pato & Bertone 2015; Pato & Iocco 2015; Pato, Iocco
& Bertone 2015). Following the notation of Read (2014) we denote
the local DM density derived from local measurements by ρDM,
and those extrapolated from rotation curves assuming a spherical
DM halo as ρDM, ext. With the advent of large survey data, local and
global methods are beginning to converge (Bovy & Rix 2013; Piffl
et al. 2014).

The comparison of ρDM to ρDM, ext can provide insight into the
shape of the Milky Way’s DM halo, and thus into the formation
of the galaxy (Read 2014). If ρDM from local measurements is
smaller than that extrapolated from global measurements, ρDM, ext,
then this implies a prolate halo, while the opposite would imply a
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squashed, oblate halo. While the former is produced by DM only
N-body simulations, the introduction of baryons into the simulations
produces the latter (Katz & Gunn 1991; Dubinski 1994; Debattista
et al. 2008; Read et al. 2009).

If ρDM is derived from tracers distributed vertically in the plane
it is possible to probe not only the local DM density but also its
vertical profile, ρDM(z). This could potentially reveal deviations
from a spherical halo profile, which can form in a number of ways.
First, the DM halo should respond to the formation of the bary-
onic disc by flattening into an oblate halo (Katz & Gunn 1991;
Dubinski 1994; Debattista et al. 2008; Read et al. 2009). Secondly,
the accretion of subhaloes after the formation of the baryonic disc
can also lead to the formation of a ‘dark disc’ (DD) that coro-
tates with the baryonic disc (Lake 1989; Read et al. 2008, 2009;
Purcell, Bullock & Kaplinghat 2009; Ling et al. 2010; Pillepich
et al. 2014). Gravitationally these two features, an oblate halo and
a DD, are indistinguishable and degenerate. One method to dis-
tinguish the two is to hunt for the chemically and kinematically
distinct sub-halo stars that would accompany the accreted DD, but
not the contracted DM halo. Recent Gaia-ESO observational data
find no evidence for such stars (Ruchti et al. 2014, 2015), suggest-
ing that the Milky Way has had a rather quiet past since its disc
formed, and therefore does not host a significant accreted DD. If
correct, then any gravitationally detected non-sphericity must im-
ply a non-rotating locally oblate halo. An enhancement in ρDM

over ρDM, ext is also a feature in some more exotic models, such
as Partially Interacting Dark Matter (PIDM) (Fan et al. 2013),
and some modified theories of gravity (e.g. Read & Moore 2005;
Nipoti et al. 2007).

Measurement of the local DM density dates back almost 100 years
(Kapteyn 1922). The history of this measurement is one of both in-
creasingly precise data and decreasingly strong assumptions. As
such, the error bars on ρDM have not always shrunk with time,
as better data often allows one to discard previous assumptions.
With the advent of Gaia data from 2016 onwards we will have
access to high-precision data on individual stars, and the pri-
mary uncertainty in the determination of ρDM will be systematic
model uncertainties. Recent results for the local DM density include
Bienaymé et al. (2014), who used RAVE data to derive a value of
ρDM = 0.0143 ± 0.0011 M� pc−3 = 0.542 ± 0.042 GeVcm−3,
and Zhang et al. (2013) who used Sloan Digital Sky Survey
(SDSS)/SEGUE data to find ρDM = 0.0065 ± 0.0023 M� pc−3 =
0.25 ± 0.09 GeVcm−3. Note that these two results do not overlap
within their stated uncertainties. The significance of this discrep-
ancy is hard to interpret though, as they each use different data
sets and analysis techniques, and both methodologies rely on rather
different assumptions. To make progress we should endeavour to
minimize the number of assumptions made, and apply the same
analysis techniques to both data sets.

In this paper we make progress towards the first goal of reducing
model assumptions. To achieve this we introduce a one-dimensional
Jeans analysis method to probe the local DM density using the ver-
tical motions of tracer stars. We construct a representation of the
tracer density ν, and also allow for a DM density profile that is
more complex than simply constant with height as previous local
studies have assumed. Additionally, we deal with the so-called tilt
term, which links radial and vertical motions of the tracer stars. This
term is crucial to understand stellar motions at high-z, where the
baryonic contribution falls off and DM becomes increasingly im-
portant. Using the vertical Jeans equation we calculate the velocity
dispersion σ z(z) for each mass model, and then fit to data in ν, σ z,
and σ Rz using MULTINEST (Feroz & Hobson 2008; Feroz, Hobson

& Bridges 2009; Feroz et al. 2013). We test this method on mock
data sets, and explore the impact of tracer star sample size, the tilt
term, and non-constant DM profiles. The mock data for this paper
are ‘as good as it gets’ – we assume the population to have no obser-
vational biases and there to be no measurement error on individual
stars – allowing us to isolate the effects of sampling error and model
uncertainties. This is similar to what we will have with Gaia data,
where the measurement errors on stars will be small compared to
sampling error. We will explore the effect of adding realistic Gaia
uncertainties to our method in a separate work.

We reiterate that this method is one dimensional, allowing us to
keep assumptions to a minimum. However, we show that we are
still able to deal with tilt and high-z data, which usually require
a two-dimensional method. The key disadvantages of our method
are that we bin data and thus lose information, and that our strictly
local method cannot take advantage of the ‘long lever arm’ of a
global model that would ensure, for example, that the DM density
in radial slices close to the ‘local volume’ is continuous and smooth.
However, the effect of these disadvantages is to overestimate the
errors on ρDM, which is acceptable as we aim for a conservative and
robust estimate of ρDM.

The paper is organized as follows: in Section 2 we introduce our
method, covering the Jeans equation based mathematical formalism,
our treatment of the rotation curve and tilt term, our descriptions of
the elements of our mass and tracer density models. We then outline
our statistical analysis, introducing the framework for Bayesian
parameter estimation and the MULTINEST nested sampling code. In
Section 3 we describe the array of mock data sets we use to test
out methods. In Section 4 we present and discuss the results of our
analyses, before finally concluding the paper with Section 5.

2 M E T H O D

The broad picture of our problem is this: we have quantities derived
from the motions of the tracer stars, namely ν, the tracer density,
σ z, the vertical velocity dispersion, and σ R, z, the (R, z) velocity
dispersion. Then we have elements of the mass profile, one of
which is unknown – the DM density ρDM, and the other which is
known within a band of uncertainty – the baryon density ρbaryon.
In this section we first derive the equations to link these quantities,
and then describe how each is modelled.

2.1 Deriving a general 1D jeans method

A population of ‘tracer’ stars moving vertically near the Sun obeys
the collisionless Boltzmann equation:

df

dt
= ∂f

∂t
+ ∇xf · v − ∇vf · ∇x� = 0 (1)

where f (x, v) is the stellar distribution function; x and v are the
positions and velocities, respectively; and � is the gravitational
potential.

If the system is in dynamic equilibrium (steady state), then we
may neglect the partial time derivative of f. Thus for equilibrium
tracers, if we know their phase space distribution function f, then
we can directly measure the gravitational force from equation (1).
In practice, however, this is hard because f is six-dimensional (even
a million stars give only 10 sample points per dimension) and we
need to estimate the partial derivatives of f to solve equation (1).
For this reason, it is common to integrate equation (1) over velocity
to obtain a set of moment equations: the Jeans equations (Binney
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& Tremaine 2008). Adopting cylindrical polar coordinates (R, φ, z)
and focusing on the z-Jeans equation, we have

1

Rν

∂

∂R
(RνσRz)︸ ︷︷ ︸

‘tilt’ term: T

+ 1

Rν

∂

∂φ

(
νσφz

)
︸ ︷︷ ︸

‘axial’ term: A

+ 1

ν

d

dz

(
νσ 2

z

) = −d�

dz︸ ︷︷ ︸
Kz

(2)

where ν and σ 2
z are the density and vertical velocity dispersion

profile of a tracer population as a function of height z above the
disc plane, σ Rz is the cross term in the velocity dispersion tensor
that couples radial and vertical motions, and σφz is the cross-term
coupling vertical and axial motions.

Integrating both sides of equation (2), we derive our key equation
for this paper:

σ 2
z (z) = 1

ν(z)

∫ z

0
ν(z′)

[
Kz(z

′) − T (z′) − A(z′)
]

dz′ + C

ν(z)
(3)

where C is a normalization parameter. For z = 0, we have that

σ 2
z (0)ν(0) = C, (4)

and so C simply sets the vertical velocity dispersion at z = 0. [Note
that a similar but less general equation was derived recently in
Smith et al. (2012), equation (10).] We implement the constant C as
a parameter in our model that we will ultimately marginalize over.
The alternative would be to calculate C directly from equation (3),
utilizing the fact that as z → ∞, ν(z) → 0, which gives us

C = −
∫ ∞

0
ν(z′)

[
Kz(z

′) − T (z′) − A(z′)
]

dz′. (5)

However, this would mean that the derived value for σ z(z) at some
finite z would depend the properties of our mass model, tilt and
axial terms not just in the range [0, z] but also for the range [0, ∞).

Equation (3) is numerically appealing to solve since, unlike many
previous methods (e.g. Garbari, Read & Lake 2011; Garbari et al.
2012), it does not require any numerical differentiation and is there-
fore rather robust to noise in the data. Furthermore, equation (3) is
valid for any gravity theory and can therefore be used as a constraint
on alternative gravity models. In this sense, we follow the early pi-
oneering work of Hill (1960) who attempted to also measure Kz

directly without reference to the Poisson equation.
To connect the vertical acceleration Kz to the surface mass density

of the disc, however, we must specify a gravitational model. For
standard Newtonian weak field gravity, this is given by the Poisson
equation:

∇2� = ∂2�

∂z2
+ 1

R

∂V 2
c (R)

∂R︸ ︷︷ ︸
‘rotation curve’ term: R

= 4πGρ (6)

where Vc(R) is the circular speed (rotation) curve at radius R, and
ρ is the total matter density. Notice that for a flat rotation curve,
Vc = const., and the ‘rotation curve’ term R vanishes. If R does not
vanish, then it appears as a shift (potentially as a function of height
z) to the recovered ρDM that can be corrected for at the end of the
calculation (Garbari et al. 2012). Equation (6) can be rewritten as

∂2�

∂z2
= 4πGρ(z)eff (7)

where

ρ(z)eff = ρ(z) − 1

4πGR

∂V 2
c (R)

∂R
. (8)

Table 1. Values of Oort constants. We include the F giants even though
the errors for them are substantially larger to show that, within current
uncertainties, the Oort constants A and B do not depend on stellar type.

Source Stellar A B
type (km s−1kpc−1)

Mignard (2000) K-M giants 14.5 ± 1.0 − 11.5 ± 1.0
Branham (2010) F giants 14.85 ± 7.47 − 10.85 ± 6.83
Branham (2011) G giants 14.05 ± 3.28 − 9.30 ± 2.87

The contribution of this term to the mass density profile can be
quantified via the Oort constants A and B (Binney & Tremaine
2008):

1

4πGR

∂V 2
c (R)

∂R
= B2 − A2

2πG
. (9)

Note that |B| < |A|, meaning that the terms in equation (9) are
negative. Thus the effective density ρ(z)eff will be higher with the
inclusion of a non-zero rotation curve term. If the rotation curve term
is erroneously neglected it will be absorbed into the density profile,
yielding an over-estimate of the DM density, assuming the baryonic
contribution is well constrained. Taking the most precise values for
A and B from Table 1 (Mignard 2000) yields a value for equation (9)
of ∼0.1 GeV/c2, which is roughly a third of the expected local DM
density (e.g. Read 2014). For any accurate measure of the local
DM density derived from real data we will need to incorporate this
correction, but we leave this for future work.

NeglectingR and integrating both sides of equation (6), we derive
the familiar result:

	z(z) = |Kz|
2πG

(10)

where 	z(z) is the surface mass density of the disc.
The overall flow of our method is now apparent. We model the

tracer density ν(z), the mass density distribution ρ(z) = ρDM(z) +
ρbaryon(z) (which gives us the Kz term), the tilt term T (z), and the
axial term A(z). These elements each have a number of parameters,
and so in total each model will have an N-dimensional parameter
space. Specifying values for each of these parameters will then give
us quantitative values for each of these elements, which can then be
inserted into equation (3) to derive σ 2

z (z) for that parameter space
point. We then compare ν(z) and σ 2

z (z) [and σ Rz(z) as part of the
tilt term model] to data via a χ2 test, and then change the values of
our parameters.

Note that the only assumptions that go into equation (3) are that
the motions of stars obey the collisionless Boltzmann equation,
and that the galaxy is in dynamic equilibrium. The assumption of
dynamic equilibrium can be negated somewhat by the presence of
disequilibria (‘wobbling’) in the disc caused by e.g. the Sagittarius
merger (Purcell et al. 2011; Gómez et al. 2013) or in part by the
presence of spiral arms (Faure, Siebert & Famaey 2014). However,
the impact of these effects on the measurement of the local DM
density is estimated to be approximately 10 per cent (Widrow et al.
2012; Read 2014), less than the corrections arising from the tilt and
rotation curve terms.

In practice, further assumptions are necessary to model the in-
dividual components on the RHS of equation (3). However, this
method can accommodate almost any model for each of these el-
ements – the only strict requirement is that each element can be
defined at the z-values corresponding to the centres of the bins used
to calculate the tracer density and velocity dispersion. Hence we
call this method ‘non-parametric’ – we can in principle have many
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more parameters for each model than there are data points. In the
following subsections we describe how we model each element
for this particular study. In Section 2.6 we discuss model selection
using the Bayesian evidence, which could potentially allow us to
compare alternate models.

As the galaxy is close to being axisymmetric in both the thin disc
(Dehnen 1998; Hogg et al. 2005; Aumer & Binney 2009; Bovy,
Hogg & Roweis 2009; Pasetto et al. 2012b; Aghajani & Lindegren
2013) and the thick disc (Pasetto et al. 2012a; Sharma et al. 2014),
the axial term A(z) is expected to be small. For this study we
assume complete axisymmetry, and thus take A(z) = 0. If the data
show significant non-axisymmetry in the Milky Way, the axial term
could be modelled in a similar way to the tilt term as described
below.

Note that if the axial term were non-negligible, in the context
of the Milky Way, this would imply the presence of significant
spiral arms or a bar. Such features are time dependent, implying
that if A(z) 	= 0, we should also worry about the time dependence
of the gravitational potential �(t) and, therefore, also the partial
time derivative of the distribution function ∂f /∂t (e.g. Monari,
Famaey & Siebert 2016). It is not clear if there can exist a regime in
which A(z) 	= 0 and such time dependence can be ignored. Here,
we simply note that since empirically A(z) 
 T (z) ∀z (e.g. Pasetto
et al. 2012a,b), to leading order we can also safely neglect the time
dependence of the distribution function, as we have already done.

2.2 Tracer density model

To apply the Jeans equations we bin data to obtain the tracer density
ν and the velocity dispersions σ z and σ Rz. Thus at a bare minimum
we only have to define ν and σ Rz, and derive σ z via equation (3), at
the bin centres, i.e. at a discrete set of z values.

For this work we model the tracer density as a sum of N expo-
nential discs:

ν(z) =
∑

i

ν(0)i exp

(
− z

hi

)
, (11)

where for the ith disc ν(0)i is the tracer density at z = 0 and hi is the
scale height. The number of exponential discs can be increased until
the Bayesian evidence shows no improvement (see Section 2.6).
This method avoids overfitting as each disc is smooth, while still
giving freedom to describe more complex data. From this point
onwards we consider only z ≥ 0.

2.3 Baryon parametrization

For this study we use a simple two-parameter model to describe the
baryon distribution:1

ρbaryon(z) = 1

4πG

∣∣∣∣ KbnD
2
bn

(D2
bn + z2)1.5

∣∣∣∣ . (12)

The Kbn parameter sets the mass of the disc, and has dimensions
of acceleration, while Dbn controls the scale height of the disc, and
has dimensions of length. Expressed in terms of the Kz parameter
of equation (3), the baryon profile becomes

Kz,baryon = −
[

Kbnz√
z2 + D2

bn

]
. (13)

1 In the context of the values of the prior ranges given in Table 2, the
gravitational constant equals G = 4.229 × 10−6 km2 kpc M−1� s−2.

While this model is not likely realistic for the Milky Way (Flynn
et al. 2006; McKee, Parravano & Hollenbach 2015), it has been
applied to observational data by Kuijken & Gilmore (1989a,b),
and also more recently by Zhang et al. (2013). When applying our
method to real data we will consider more sophisticated baryon
models, but for this initial study where we are primarily interested
in testing our methodology, equation (13) will suffice.

2.4 Dark matter parametrization

The simplest way to parametrize the DM density profile ρDM is to
assume it is constant with z, as done in previous work (e.g. Bahcall
1984; Kuijken & Gilmore 1989a,b; Creze et al. 1998; Garbari et al.
2011, 2012). This assumption works well at low z: for a spherical
NFW halo with a scale radius of 20 kpc the mid-plane value is
correct within 10 per cent up to a height of z ∼ 3 kpc. For some
analyses we also make this assumption, and set ρDM(z) = ρDM, const..

However, this assumption does not allow for the exploration of
several interesting effects such as a flattened, oblate halo or a DD. To
accommodate such phenomena we add a DD on top of the constant
DM. The DD is described using the same disc model as we use for
the baryons, yielding a total DM profile:

ρDM(z) = ρDM,const. + 1

4πG

∣∣∣∣ KDDD2
DD

(D2
DD + z2)1.5

∣∣∣∣ . (14)

To ensure this disc does not simply become degenerate with the
baryonic disc we give the scale height DDD a higher prior range
than that for Dbn. In terms of the Kz parameter of equation (3), the
DM profile is

Kz,DM = −
[

2Fz + KDDz√
z2 + D2

DD

]
(15)

where F = 2πGρDM, const. This disc parametrization of the non-
constant DM profile can describe both the accreted DD and a flat-
tened DM halo, and so henceforth we refer only to a ‘dark disc’.

Additional DD terms could in principle be added to ρDM(z) with
parameters KDD, n and DDD, n, giving a total density profile of

ρDM(z) = ρDM,const. + 1

4πG

∑
n

∣∣∣∣∣ KDD,nD
2
DD,n

(D2
DD,n + z2)1.5

∣∣∣∣∣ . (16)

The prior ranges on the nth DD parameters KDD, n and DDD, n can
be set in relation to those of the (n − 1)th DD, e.g. requiring
KDD, n < KDD, n − 1, meaning each DD is less massive than the pre-
vious one. The number of DD to add could be determined from
the data via the Bayesian evidence, with DD terms being added up
until this degrades significantly. For this study, however, we limit
ourselves to one DD term.

2.5 Tilt term

The tilt term from equation (2) links radial and vertical motion. The
importance of this term has been noted previously, e.g. Kuijken &
Gilmore (1989a), Smith, Wyn Evans & An (2009), Büdenbender
et al. (2015). Here, we demonstrate that it is possible to deal with this
term while remaining within our vertical, one-dimensional frame-
work. Given the data quality currently available for the Milky Way
we are required to make a well-motivated assumption about the
radial form of T , but in the Gaia-era we will be able to directly
measure this from the data.

We first assume that the radial profiles of the tracer density and
the (R, z)-velocity dispersion are exponentials with scale radii of R0
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Measuring the local dark matter density 4195

Figure 1. σRz for two populations of G-type dwarf stars in the solar neigh-
bourhood from the SDSS/SEGUE survey (Büdenbender, van de Ven &
Watkins 2015). The blue data points are from a younger, high-metallicity
population, with [Fe/H] = −0.07 and [α/H] = 0.11, while the data points
in red are from an older, low-metallicity population with [Fe/H] = −0.89
and [α/H] = 0.34. The blue and red lines are power laws in the form of
equation (20) fitted to the blue and red data points, respectively. The older,
lower metallicity stars probe further above the disc plane. Dashed lines
indicate extrapolation from data.

and R1, respectively:

ν(R, z) = ν(z) exp(−R/R0), (17)

σRz(R, z) = σRz(z) exp(−R/R1). (18)

With this assumption the tilt term becomes

T (R, z) = σRz(R, z)

[
1

R
− 1

R0
− 1

R1

]
. (19)

If the disc were observed not to be an exponential then an alternative
model could be easily applied at this stage. Indeed, similar but more
complex models have featured previously in the literature (see e.g.
Binney et al. 2014).

We then model the (R, z)-velocity dispersion as a power law at a
given galactocentric radius R:

σRz(R, z) = A

(
z

kpc

)n∣∣∣∣
R

. (20)

We take R = R�, and also R0 = R1, simplifying the tilt term to a
model described by the parameters A, n, and R0:

T (R�, z) = A

(
z

kpc

)n∣∣∣∣
R�

[
1

R�
− 2

R0

]
. (21)

Note that we are not affected by the assumption R0 = R1 since
these two parameters are trivially degenerate in equation (21). It
remains the case that any observational constraints on R0 and/or
R1 can be used as priors on equation (21), where these would
constrain the term 2/R0. The description of σ R, z(z) of equa-
tion (20) fulfils σ R, z(z = 0) = 0 by construction and fits remark-
ably well to different populations, as shown in Fig. 1. This figure
presents (z, σ Rz) data points for high- and low-metallicity popu-
lations (blue and red points, respectively) from the SDSS/SEGUE

Figure 2. The importance of tilt, as quantified by equation (22). The blue
and red lines correspond to tilt terms derived from the high- and low-
metallicity population fits of Fig. 1. The deviation arising from the tilt
term increases more rapidly with height for the low-metallicity population
(red line), which probes the high-z region most useful for determining the
DM profile. Dashed lines indicate extrapolation from data. For this case
R0 = R1 = 2.5 kpc, and F = 267.65 km2 kpc−2 s−2.

survey as analysed and presented in Büdenbender et al. (2015),
with a sign correction applied.2 The high metallicity sample has
[Fe/H] = −0.07 and [α/H] = 0.11, while the low-metallicity sam-
ple has [Fe/H] = −0.89 and [α/H] = 0.34. Metallicity can be
used as a proxy for age, with the high-metallicity sample being
younger than the older, low-metallicity population (e.g. Loebman
et al. 2011).

Taking these data points we fit power-law models as per equa-
tion (20), with parameters A = 123.99 km2 s−2, n = 1.16 for the
high-metallicity population (blue) and A = 180.08 km2 s−2, n = 1.44
for the low-metallicity population (red). The low metallicity popu-
lation samples further above the disc plane and populates the canon-
ical thick disc of the Milky Way. Populations such as this are more
interesting for local DM searches as they allow us to probe higher
z regions where the baryon mass contribution begins to drop away
leaving behind the DM halo. However as we go higher in the disc
the tilt term becomes increasingly important, as illustrated by Fig. 2,
which shows the variable ζ (z):

ζ (z) = Kz,DM

Kz,DM − T (22)

where Kz, DM = −2Fz, the constant DM density term, with
F = 267.65 km2 kpc−2 s−2 and R0 = R1 = 2.5 kpc, the same values
as are used to later generate our mock data in Section 3. Compared
to the thin disc population (blue line), the effects of the tilt term
become important at much lower z values. In short, to probe local
DM we want to use thick disc stars probing higher-z ranges, but the
cost is that we must include the tilt term in our analyses.

Ignoring the tilt term will always cause an underestimation of
the local DM density, if all other components of the model such

2 Private communication with authors.
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4196 H. Silverwood et al.

as baryons are held steady. Looking at equation (21), we note that
R0 < R� and A > 0, meaning the tilt term T (R�, z) is always
negative. Then considering equation (3) we see that to fit to σ 2

z (z)
in the absence of the tilt term T (z′), the Kz(z′) term, a negative
term, is forced to become less negative in order to compensate. This
requires a lower mass density, which, if the baryon density profile is
held constant, manifests itself as a decrease in the DM mass density.

2.6 Statistical analysis and MULTINEST

The model outlined above gives us an N-dimensional parameter
space. To explore this parameter space and derive limits on the
various observables we adopt nested sampling (Skilling 2006) as
implemented in the publicly available MULTINEST code (Feroz &
Hobson 2008; Feroz et al. 2009; Feroz et al. 2013). MULTINEST

is a tool for Bayesian inference and parameter estimation. Bayes
theorem is

P (θ |D,M) = P (D|θ,M)P (θ |M)

P (D|M)
(23)

where M is the given model, θ is the set of parameters for that
model, and D is the data. The left hand side, P (θ |D,M), is known
as the posterior, while the three terms on the right are the likelihood
P (D|θ,M) = L(θ ), the prior P (θ |M), and the Bayesian evidence
P (D|M).

The Bayesian evidence, a.k.a. the marginal or model likelihood,
is a measure of how well the model performs given the data, and
can be expressed as

Z = P (D|M) =
∫

P (D|θ,M)P (θ |M) dθ. (24)

The performance of two different models given the same data can
be compared using the Bayes factor:

B01 = P (D|M0)

P (D|M1)
. (25)

Assuming Gaussian errors it is possible to derive an empirical
scale relating the Bayes factor to the strength of evidence for one
model over another, as done in Trotta (2008). There, a |ln B01| value
of less than 1 is considered inconclusive, while values of 1.0, 2.5
and 5.0 are considered to give weak, moderate and strong evidence,
respectively.

MULTINEST takes a given prior probability distribution and likeli-
hood function and calculates the posterior distribution and Bayesian
evidence. Our likelihood function is based on the χ2 distribution:

L(θ ) = exp

(−χ2

2

)
. (26)

The value of χ2 is simply

χ2 = χ2
ν + χ2

σ 2
z

+ χ2
σRz

, (27)

where

χ2
ν =

∑
j

(νdata,j − νmodel,j )2

SD2
ν,j

, (28)

χ2
σz

=
∑

j

(σz,data,j − σz,model,j )2

SD2
σ 2
z ,j

, (29)

χ2
σRz

=
∑

j

(σRz,data,j − σRz,model,j )2

SD2
σRz,j

. (30)

Note that if the reconstruction model does not contain a tilt term
(e.g. T = 0) then χ2

σRz
is set to zero.

Table 2. Prior ranges for parameters. Gaussian priors are described by a
median μ and a standard deviation SD. Note that ν(0) and σz(0) are the
tracer density and velocity dispersion at z = 0, while quantities subscripted
with 0, such as ν0 and SDν,0, are the values derived from data in the 0th bin,
whose bin centre z0 > 0. Tracer density ν(0) has units of [stars kpc−3]. Kbn

and KDD terms have units [km2 kpc−1 s−2].

Model parameter Range or Gaussian μ & SD Type

Baryons Kbn μ = 1500, SD = 150 Gaussian
Dbn μ = 0.18 kpc, SD = 0.02 kpc Gaussian

Constant DM ρDM [2, 20] × 10−3 M� pc−3 Linear
[0.076, 0.796] GeV cm−3

DD KDD [0, 1500] Linear
DDD [1.5, 3.5] kpc Linear

Tilt term A [0, 200] km2 s−1 Linear
n [1.0, 1.9] Linear

R0 μ = 2.5 kpc, SD = 0.5 kpc Gaussian

Tracer density ν(0) [0, ν0 + 2 × SDν,0] Linear
h [0.4, 1.4] kpc Linear

Velocity disp. σz(0) [σz,0 − 2 × SDσz,0, Linear
σz,0 + 2 × SDσz,0] km s−1

Table 2 shows the prior ranges used for our analyses. We derive
credible regions (CRs) for the DM density parameters by taking its
posterior distribution and marginalizing over the remaining param-
eters. As outlined above our model has several components that can
be turned on or off, such as the DD. Using the Bayesian evidence as
calculated by MULTINEST it is potentially possible to perform model
comparison to determine which reconstruction model best fits the
data. This idea will be explored in greater depth in subsequent
studies.

3 MO C K DATA SE T S

In this paper we apply our method only to mock data in order to
hone and verify it. This mock data is ‘as good as it gets’, in the sense
that it has no measurement errors, nor observational biases added
to it, and is drawn from relatively simple, known distribution func-
tions. While dynamically realistic ‘N-body’ mocks are preferred,
it has already been shown that 1D Jeans analyses are robust to the
presence of local non-axisymmetric structure in the disc (Garbari
et al. 2011). Furthermore, N-body mocks are expensive; even state-
of-the-art simulations do not approach the local sampling expected
from Gaia. Finally, the expense of building well-sampled N-body
mocks makes it challenging to explore a large parameter space of
models, including models with and without tilt, or with and without
a DD. For these reasons, we focus here on simpler mock data, simi-
larly to the Read (2014) review. We will consider more dynamically
realistic mocks, and mocks that give a faithful representation of the
expected Gaia data uncertainties in future work.

We generate here a variety of mock data sets as outlined in
Table 3, with different samplings (104, 105, and 106 tracer stars),
with and without a tilt term, and also with either no DD, a DD
(dd), or a more massive ‘big dark disc’ (bdd). We assume the
axial term A and the rotation curve term R are zero. Our simple
baryonic disc model is set up to mimic the real Milky Way, with
a scale height parameter of Dbn = 0.18 kpc and a surface density
of 	bn = 55.53 M� pc−2, similar to those measured near the solar
position (Flynn et al. 2006; Read 2014; McKee et al. 2015). The
value of the F parameter (see equation 15) corresponds to a DM
density of ρDM, const = 10 × 10−3 M� pc−3 = 0.38 GeV cm−3. For
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Measuring the local dark matter density 4197

Table 3. Mock data parameters. _X is the number of stars sampled, e.g.
104, 105, 106, and _M is the mock number, ranging from 0 to 19. Empty
spaces indicate that a certain mock data set does not include that ele-
ment. The baryon model corresponds to a baryonic surface density of
	bn = 55.53 M� pc−2, while the F parameter corresponds to a constant
DM density of ρDM, const = 10 × 10−3 M� pc−3 = 0.38 GeV cm−3. Kbn and
KDD terms have units [km2 kpc−1 s−2], while F has units [km2 kpc−2 s−2].
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Tracer h [kpc] 0.9
density

Potential Kbn 1500
Dbn [kpc] 0.18

F 267.65

DD KDM 300 900 900
DDD [kpc] 2.5 2.5 2.5

Tilt Term A [km2 s−2] 180.08 180.08
n 1.44 1.44

R0 [kpc] 2.5 2.5

each scenario we generate 20 mock data sets, allowing us to explore
the effects of Poisson noise over a range of realizations.

The mock data consist of a list of stars each with three pieces of
data: the position z, the vertical velocity vz, and the product of the
vertical and radial velocities, vRvZ. The first element, z, is generated
by drawing randomly from an exponential tracer distribution with
scale height h:

ν(z) = exp
(
− z

h

)
. (31)

This gives us our list of stellar positions.
To derive the velocities for the mock catalogue we first must

define a mass model and tilt. Taking the same parametrizations as
described in Sections 2.3, 2.4, and 2.5 for baryons, DM, and tilt,
respectively, we set their parameters as per Table 3. This allows
us to calculate Kz and T (z). Using equation (5) and its associated
assumptions we can calculate C. We then use equation (3) to derive
σ z(z). For each star we take its position z′, find the value of σ z(z′),
and then draw a velocity from a Gaussian centred on vz = 0 and
with variance σ 2

z (z′).
To generate vRvZ mock data, when necessary, we take the A, n, and

R0 parameters listed in Table 3 and calculate the σ Rz(z) profile via
equation (20). Taking each star’s position z′, we calculate σ Rz(z′),
and draw a value of vRvz from a Gaussian centred on vRvz = 0 and
with variance of σ 2

Rz(z
′).

4 R ESULTS

Here we present the results of our scans. We first investigate how
the precision of the reconstruction varies with different numbers of
tracer stars. We then look at the effects of the tilt term and the DD.
For certain parts of these analyses the model used to generate the
mock data and the model used to reconstruct the mock data are not
the same – this is done to investigate the effects of ignoring terms
(as in the case of the tilt term) or using incorrect models.

In the following figures we plot the marginalized posterior for
the DM density ρDM(z), showing 68 per cent, 95 per cent, and
99.7 per cent CRs in dark, medium and light shading, respectively.
The mock data profile is shown by the solid black line, while the
median of the posterior distribution is shown by a solid line in the
same colour as the CR. Binning of stars to calculate ν(z), σ z(z), and
σ Rz(z) is performed such that each bin contains an equal number
of stars. For this study we use 20 bins, and in Appendix A we
briefly explore the effects of changing the number of bins used.
For plots with constant DM density in both mock data set and
reconstruction model we plot all 20 mock data sets together, while
for non-constant DM density in either mock or reconstruction we
show one representative figure in this section, and show the full set
of figures in Appendix B (Figs B1 to B6).

Our method and code is set up to describe the tracer density
as a sum of exponentials. To determine the necessary number of
exponentials required to describe the data we can use the Bayes
factor as described earlier in Section 2.6. Test reconstructions give
a Bayes factor of 1.5 when comparing one exponential to two, and
3.3 when comparing one exponential to three, with one exponential
favoured in both cases. This is to be expected given that the mock
data are generated using a single exponential. Given this result we
use a single exponential for all subsequent reconstructions.

4.1 Sampling

Fig. 3 shows reconstructions of the local DM density for using
varying numbers of tracer stars. The mock data sets used here are
the most simple case, thick_X_M as described in Table 3, and has
no DD or tilt added. As expected the CRs shrink as the number of
tracer stars is increased from 104 stars up to 106 stars. The SDSS has
sampling of the order of 104 stars (Zhang et al. 2013; Büdenbender
et al. 2015) while data from Gaia will give upwards of 106 tracer
stars.

4.2 Tilt

In Fig. 4 we explore the effects of the tilt term. The left-hand set of
CRs in Fig. 4 is the same as the right hand set of CRs from Fig. 3,
with no tilt term in the mock data or reconstruction. In the centre set
of Fig. 4, however, the mock data thick_tilt_1e6_M has the
tilt term turned on, but the analyses are performed with the tilt term
set to zero. This illustrates the danger of ignoring tilt as discussed
earlier in Section 2.5: the reconstructions return narrow CRs, but
as expected they systematically underestimate the value of ρDM,
with the true ρDM lying outside even the 99.7 per cent CRs. This
underestimation, however, is remedied by turning on the tilt term
in the model, as shown in the right hand set CRs in Fig. 4, where
the correct DM density is always at least within the 95 per cent
CR. The inclusion of extra parameters to describe the tilt term does,
however, increase the size of the CRs.

Just as our determination of ρDM(z) is dependent on the tilt term,
the tilt term is in turn dependent on its input parameters, A, n, and
R0 = R1. While we have been able to fit for A and n using G-type
dwarf data (Section 2.5), for R0 we have taken the canonical value
of R0 = 2.5 ± 0.5 kpc from Binney & Tremaine (2008), and further
made the assumption that σ Rz(R, z) has the same radial profile as
ν(R, z) (i.e. R0 = R1). When using only a single population, deter-
mination of R0 and R1 will be important, as illustrated in Fig. 5.
This figure shows the 2D marginalized posterior for ρDM, const and
R0 for a reconstruction of mock data set thick_tilt_1e6_0
with a model including tilt, and demonstrates the degeneracy that

MNRAS 459, 4191–4208 (2016)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/459/4/4191/2624056 by U
niversiteit van Am

sterdam
 user on 14 N

ovem
ber 2018



4198 H. Silverwood et al.

Figure 3. Determination of the DM density profile for varying numbers of tracer stars. These plots show marginalized posteriors for ρDM(z) = ρDM, const for
the 20 mock data sets generated for each sampling level. Dark, medium, and light shading show the 68 per cent, 95 per cent, and 99.7 per cent CRs, respectively.
Green, purple, and orange colouring indicates that the 68 per cent, 95 per cent, or 99.7 per cent CR, respectively, contains the correct answer. The median value
of each posterior is shown by a solid line in green, purple, or orange, while the DM density value used to generate the mock data is shown as a solid black line
across the entire plot. The mock data and reconstruction models used contain no tilt term or DD terms. As the number of tracer stars is increased from 104 to
106 the CRs for ρDM, const naturally shrink around the mock data value.

Figure 4. Determination of the DM density profile using 106 tracer stars and exploring the effects of including or neglecting the tilt term in the mock data
sets and reconstruction models. These plots show marginalized posteriors for ρDM(z) = ρDM, const for the 20 mock data sets generated for each tilt scenario.
Dark, medium, and light shading show the 68 per cent, 95 per cent, and 99.7 per cent CRs, respectively. Green, purple, and orange colouring indicates that the
68 per cent, 95 per cent, or 99.7 per cent CR, respectively, contains the correct answer, while pink colouring indicated that the correct answer lies outside even
the 99.7 per cent CR. The median value of each posterior is shown by a solid line in green, purple, or orange, while the DM density value used to generate the
mock data is shown as a solid black line across the entire plot. The left set of mocks shows the same result as the right set of Fig. 3, with no tilt term in mock
data or reconstruction model. The centre set has a tilt term in the mock data but not in the reconstruction model, yielding a systemic underestimation of ρDM.
The right set has a tilt term in both mock data and reconstruction model, demonstrating that our method can successfully deal with the tilt term.

exists between ρDM, const and R0 = R1. If using multiple tracer pop-
ulation, each will have different R0 and/or R1, but will all have their
motions dictated by the same potential. This will help us break the
degeneracy between R0, R1, and ρDM. Further, with the advent of
Gaia data we will be able to directly measure the radial profile of
σ Rz and ν(R, z) for a given set of tracer stars.

4.3 Dark disc

Fig. 6 shows mock data set thick_1e6_0-19,
thick_dd_1e6_0, and thick_bdd_1e6_0 reconstructed
using models with and without a DD component. The top left panel
shows the same CRs as seen in the left hand set of Fig. 4 and the
right hand set of Fig. 3.

The left column of Fig. 6 shows the reconstruction of mock data
sets with a constant DM density profile: mocks 0–19 in top left and
mock 0 in bottom left. The reconstruction in the top panel uses a

model with a constant DM density, while the bottom panel uses a
model with an additional DD component. The DD reconstruction
exhibits a disc structure even though the correct answer is constant
ρDM. This is likely due to a bias in the hyper-volume set by the
priors – the prior range on the DD parameters goes between no DD
(KDD = 0) and a maximal DD (KDD = 1500), and thus the bulk of
the parameter space features at least some DD. There is no ‘negative
dark disc’ to counteract this effect and push the mean of the prior
range back to no DD.

In the centre and right columns of Fig. 6 we reconstruct mock
data sets with a DD of different masses: thick_dd_1e6_0 and
thick_bdd_1e6_0 (the ‘big dark disc’). A constant DM density
reconstruction (top row) is able to contain the thick_dd_1e6
DD within the 95 per cent CR almost to the last bin, but fails to
contain the big dark disc beyond z = 1.3 kpc. Adding a DD term
allows the reconstruction to fit to the mock data DM profile nicely,
as shown in the bottom centre and bottom right panels of Fig. 6.
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Measuring the local dark matter density 4199

Figure 5. 2D marginalized posterior of the constant DM density
ρDM(z) = ρDM, const and the R0 parameter of the tilt term (equation 19),
generated from mock data set thick_tilt_1e6_0 reconstructed us-
ing a model with tilt. Contours show the 68 per cent, 95 per cent, and
99.7 per cent CRs. Marginalization and plotting performed using BARRETT

(Sebastian Liem, private communication).

When working with real data, however, we will not have the
luxury of knowing the DM profile underlying the data. The black
mock data model line will not be there. In subsequent studies we
will explore the potential use of the Bayesian evidence, as calculated
by MULTINEST, to determine if a DD is justified by observational
data.

4.4 Tilt and dark disc

Here, we combine the two elements discussed in previous sections,
the tilt term and the DD. Fig. 7 shows reconstructions of the mock
data set thick_bdd_tilt_1e6_0. In the top panel the recon-
struction model contains neither DD nor tilt term. Again, we see
the same effects as we did previously. The missing tilt term yields
a consistent underestimation of the DM density, and the constant
DM density envelope is too narrow to encompass the density range
of the DD. The consistent underestimation can be remedied by
adding a tilt term to the reconstruction model, as shown in the mid-
dle panel, where the reconstruction model has a tilt term included.
Both problems can be resolved in tandem by using a reconstruction
model with both tilt and DD terms, as shown in the bottom panel of
Fig. 7.

Figure 6. Determination of the DM density profile using 106 tracer stars and exploring the effects of including or neglecting a DD in the mock data sets and
reconstruction models. For comparison the top left panel shows the same reconstructions as the right hand set from Fig. 3, i.e. basic mock data sets with no
DD, reconstructed with a constant DM density. The remaining panels each show one representative mock and reconstruction, with the full set of mocks and
reconstructions given in Appendix B. These panels show marginalized posteriors for ρDM(z), with dark, medium, and light shading indicating the 68 per cent,
95 per cent, and 99.7 per cent CRs, respectively. The median value of the posterior is shown by the solid blue line, while the DM density profile used to
generate the mock data is shown as a solid black line. From left to right the columns show reconstructions of mock data sets containing no DD (ρDM, const

only), a DD, or a ‘big’ dark disc (BDD). The top centre and top right panels show the determination of a constant DM density from the DD and BDD mock
data sets, respectively. The bottom row shows the reconstruction of each of the mock data sets using a model with a constant DM term and a DD term. Light
grey vertical lines indicate the bin centres.
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4200 H. Silverwood et al.

Figure 7. Determination of the DM density profile using 106 tracer
stars with a combination of a tilt term and a DD in the mock data
(thick_bdd_tilt_1e6_0) and using a variety of reconstruction mod-
els. These plots show marginalized posteriors for ρDM(z), with dark,
medium, and light shading indicating the 68 per cent, 95 per cent, and
99.7 per cent CRs, respectively. The median value of the posterior is shown
as the solid blue line, while the DM density profile used to generate the
mock data is shown as a solid black line.

5 C O N C L U S I O N S

In this paper we have presented a new method of determining the
vertical DM density profile, and thus the local DM density. The key
equation of this method, equation (3), depends only on the assump-
tion of dynamical equilibrium. In practice, further assumptions are
made to describe the components going in to equation (3); however
the scope of possible models is wide, and in principle model selec-
tion using the Bayesian evidence can be used to determine the best
model. We leave exploration of this last aspect to future work.

The importance of the tilt term has been previously noted
(Kuijken & Gilmore 1989a; Smith et al. 2009; Büdenbender et al.
2015), and to derive an accurate value for the local DM density it
is vital that our method be able to deal with this term. The bary-
onic contribution to the galactic density profile drops rapidly as z

increases, leaving DM as the dominant component. Thus to probe
the DM density profile sampling thick disc stars that travel higher
above the plane are preferable. For these populations the tilt term
is more important, as illustrated in Fig. 2. Failure to include the tilt
term in the analysis leads to a systematic underestimation of the
local DM density, as explained in Section 2.5 and demonstrated in
Section 4.2.

One of the novel aspects of our method is that it can deal with the
tilt term while remaining within the confines of the one-dimensional
z-direction Jeans equation, which can be seen in Fig. 4. With only
the data currently available for the Milky Way, this requires several
well-motivated assumptions, as described in Section 2.5. However,
with data from Gaia we will be able to directly measure the radial
profile of the tilt and tracer density, removing the need for such
assumptions. While for this paper we have disregarded the rotation
curve term (equation 6), we note that an accurate determination
of this will be necessary for the implementation of this or other
z-direction methods to real data.

Non-spherical DM density profiles, such as oblate haloes or ac-
creted DDs, can also be fitted using our method by incorporating a
DD term into the reconstruction model, which is shown in Fig. 6.
Our method can also reconstruct mock data sets containing both a
tilt term and a DD, as shown in Fig. 7.
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A P P E N D I X A : VA R I AT I O N D U E TO T H E
N U M B E R O F B I N S

Fig. A1 illustrates the effects of changing the number of bins used
for this analysis. There we plot the 68 per cent, 95 per cent, or
99.7 per cent CRs for 20 mock data sets (thick_1E6_0-19, no
tilt and no DD), and vary the number of bins from five to 30, in
increments of five. For only five bins (top left set), the true answer
for ρDM, const is outside the 99.7 per cent CR for all but two of the
mocks, for which the true answer is within only the 99.7 per cent CR.
The systematic underestimation is due to an overestimation of the
baryonic disc. The fifth bin in this scheme covers a range from 1.2 to
2.4 kpc and has its bin centre at z = 1.6 kpc, so it is unsurprising
that such a low number of bins fail to correctly reconstruct the DM
profile, which is a subdominant component, only becomes apparent
at higher z. Increasing the number of bins to 10, 15, and then to 20
improves the results. The gains from increasing from 20 to 25 and
30 bins are very slight.

APPENDI X B: DARK DI SC
R E C O N S T RU C T I O N S W I T H M U LT I P L E
M O C K S

Here we show the results of reconstructing all mocks data sets gen-
erated using a constant DM density only (thick_X_M), constant
DM and a regular DD (thick_dd_X_M), or constant DM and a
‘big’ DD (thick_bdd_X_M) (see Table 3 for details). The re-
construction models either have a constant DM density only or a
constant DM density plus a DD.
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Figure A1. Exploring the effects of binning on the determination of ρDM. These plots show marginalized posteriors for ρDM(z) = ρDM, const for the 20 mock
data sets thick_1E6_0-19, reconstructed using 5, 10, 15, 20, 25, and 30 bins. Dark, medium, and light shading show the 68 per cent, 95 per cent, and
99.7 per cent CRs, respectively. Green, purple, and orange colouring indicates that the 68 per cent, 95 per cent, or 99.7 per cent CR, respectively, contains the
correct answer, while pink colouring indicated that the correct answer lies outside even the 99.7 per cent CR. The median value of each posterior is shown by
a solid line in green, purple, or orange, while the DM density value used to generate the mock data is shown as a solid black line across the entire plot.
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Figure B1. Marginalized posteriors of ρDM(z) for mock data sets thick_1E6_0-19 with ρDM, const only (no DD component) reconstructed using a model
with ρDM, const plus a DD. Dark, medium, and light shading indicate the 68 per cent, 95 per cent, and 99.7 per cent CRs, respectively. The median value of the
posterior is shown as the solid blue line, while the DM density profile used to generate the mock data is shown as a solid black line.
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Figure B2. Marginalized posteriors of ρDM(z) for mock data sets thick_dd_1E6_0-19 with ρDM, const plus a DD component, reconstructed using a model
with ρDM, const only. Dark, medium, and light shading indicate the 68 per cent, 95 per cent, and 99.7 per cent CRs, respectively. The median value of the
posterior is shown as the solid blue line, while the DM density profile used to generate the mock data is shown as a solid black line.
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Figure B3. Marginalized posteriors of ρDM(z) for mock data sets thick_dd_1E6_0-19 with ρDM, const plus a DD component, reconstructed using a model
with ρDM, const and a DD component. Dark, medium, and light shading indicate the 68 per cent, 95 per cent, and 99.7 per cent CRs, respectively. The median
value of the posterior is shown as the solid blue line, while the DM density profile used to generate the mock data is shown as a solid black line.
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Figure B4. Marginalized posteriors of ρDM(z) for mock data sets thick_bdd_1E6_0-19 with ρDM, const plus a DD component, reconstructed using a
model with ρDM, const only. Dark, medium, and light shading indicate the 68 per cent, 95 per cent, and 99.7 per cent CRs, respectively. The median value of the
posterior is shown as the solid blue line, while the DM density profile used to generate the mock data is shown as a solid black line.
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Figure B5. Marginalized posteriors of ρDM(z) for mock data sets thick_bdd_1E6_0-19 with ρDM, const plus a ‘big’ DD component, reconstructed using
a model with ρDM, const and a DD component. Dark, medium, and light shading indicate the 68 per cent, 95 per cent, and 99.7 per cent CRs, respectively. The
median value of the posterior is shown as the solid blue line, while the DM density profile used to generate the mock data is shown as a solid black line.
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Figure B6. Marginalized posteriors of ρDM(z) for mock data sets thick_bdd_tilt_X_0-19 with ρDM, const plus a ‘big’ DD component and including the
effects of tilt, reconstructed using a model with ρDM, const, a DD component, and incorporating tilt. Dark, medium, and light shading indicate the 68 per cent,
95 per cent, and 99.7 per cent CRs, respectively. The median value of the posterior is shown as the solid blue line, while the DM density profile used to generate
the mock data is shown as a solid black line.
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