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Abstract: Traditionally latent class (LC) analysis is used by applied researchers as a 
tool for identifying substantively meaningful clusters. More recently, LC models 
have also been used as a density estimation tool for categorical variables. We 
introduce a divisive LC (DLC) model as a density estimation tool that may offer 
several advantages in comparison to a standard LC model. When using an LC model 
for density estimation, a considerable number of increasingly large LC models may 
have to be estimated before sufficient model-fit is achieved. A DLC model consists 
of a sequence of small LC models. Therefore, a DLC model can be estimated much 
faster and can easily utilize multiple processor cores, meaning that this model is 
more widely applicable and practical. In this study we describe the algorithm of 
fitting a DLC model, and discuss the various settings that indirectly influence the 
precision of a DLC model as a density estimation tool. These settings are illustrated 
using a synthetic data example, and the best performing algorithm is applied to a 
real-data example. The generated data example showed that, using specific decision 
rules, a DLC model is able to correctly model complex associations amongst 
categorical variables. 
 
Keywords: Latent class analysis; Categorical data; Mixture model; Density estima-
tion; Divisive latent class model; Missing data; Multiple imputation. 
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1. Introduction 
 

Traditionally, latent class (LC) analysis (Lazarsfeld 1950; also see, 
e.g. Collins and Lanza 2010; Goodman 1974; Hagenaars and McCutcheon 
2002; Magidson and Vermunt 2004; McCutcheon 1987; Rindskopf and 
Rindskopf 1986) is used as a statistical method to identify substantively 
gmeaningful groups from multivariate categorical data. For example, Keel 
et al. (2004) distinguished 4 LCs of people with eating disorders that were 
labeled ‘restricting anorexia nervosa’, ‘anorexia nervosa and bulimia 
nervosa with the use of multiple methods of purging’, ‘restricting anorexia 
nervosa without obsessive-compulsive features’, and ‘bulimia nervosa 
with self-induced vomiting as the sole form of purging’. To facilitate 
interpretation, it is desirable to keep the number of LCs small, and because 
the interpretation of the LCs is based on the estimated model parameters, it 
is also desirable that the LC model is identifiable (e.g. Goodman 1974) and 
the global maximum of the likelihood has been found. 

More recently, LC models have been used in a different way: as 
estimators of the joint density of a set of categorical variables. The often 
complex multivariate density is approximated by a finite mixture of 
simpler multinomial densities. For example, density estimation by means 
of an LC model has been used for multiple imputation of categorical data 
(Gebregziabher and DeSantis 2010; Van der Palm, Van der Ark, and 
Vermunt in press; Vermunt, Van Ginkel, Van der Ark, and Sijtsma 2008), 
for smoothing large sparse contingency tables (Linzer 2011), for 
estimating test-score reliability (Van der Ark, Van der Palm, and Sijtsma 
2011), and for summarizing image-data bases for pattern recognition 
(Bouguila and ElGuebaly 2009). The idea of approximating a complex 
density by a mixture of simpler densities is well-known in finite mixture 
modeling (e.g. McLachlan and Peel 2000, pp. 11-14), but the majority of 
research has focused on mixtures of continuous distributions (e.g. Everitt, 
Landau, and Leese 2001, pp. 8-10). The most important issue when using 
LC models to estimate densities is the precision of the density estimate. 
Depending on the application of interest, the two-way, three-way, or 
higher-way interactions among the variables should be accurately 
described by the LC model. In this context, the LC model is solely used as 
a tool, and the substantive interpretation of the LCs is not important. 
Consequently, for density estimation, issues such as model identification, 
convergence to the global maximum, and having as few LCs as possible 
do not play a dominant role.  

For datasets containing a large number of variables, density 
estimation by means of an LC model is problematic because a large 
number of LCs is usually required for precise density estimation. Let LC(K) 
denote an LC model with K classes. For example, in the context of 
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handling missing data, Vermunt, Van Ginkel, Van der Ark, and Sijtsma 
(2008), used AIC (Akaike 1974) as a criterion and selected LC(50) to 
estimate the joint density of the 79 variables  of a survey dataset. They 
indicated that even more LCs may have been needed for precise density 
estimation. A typical model-fitting strategy is to estimate LC(5), LC(10), 
LC(15), LC(20), etcetera, until the model fit no longer improves. This can 
be a very time-consuming process: For example, we reanalyzed the survey 
data set used by Vermunt et al. (2008), containing 4292 cases and 79 
categorical variables, and estimated LC(5), LC(10), LC(15), …, LC(60), 
and LC(65). The analysis took 8 hours and 18 minutes (details in Figure 1, 
left-hand panel) on a, for current standards, very fast personal computer (i7 
2600 quadcore processor, 8GB of internal memory). LC(60) had the 
lowest AIC value (Figure 1, right-hand panel) and may be taken as the 
final solution. The long computation time and comparison of many LC 
models can be an obstacle for researchers, especially when a density has to 
be estimated multiple times (e.g. multiple imputation based on bootstrap 
replications). 

As a solution, we introduce the divisive LC (DLC) model as a fast 
alternative to the LC model for density estimation. First, we provide an 
intuitive description of the DLC model. Second, we discuss estimation of 
the DLC model and some arbitrary choices that can be made in the 
estimation algorithm. Third, using a generated data example, we compare 
the effect of these different choices on the precision of estimating complex 
densities. Fourth, the best performing estimation algorithm is applied to a 
dataset that was also analyzed by Vermunt et al. (2008) using a standard 
LC model, and we compare the results. 

 
2. Divisive Latent Class Model 

 
The DLC model is a top-down clustering of respondents into LCs. It 

is obtained by fitting a sequence of LC(1) and LC(2) models. Figure 2 
shows a graphic representation of the structure of a DLC model. It has 
different levels. In general, let ݎ denote the level in the sequential structure 
( ݎ ൌ 0, 1, 2, … ). Each level has a discrete latent variable denoted ܺሺ௥ሻ 
ݎ) ൌ 0, 1, 2, …).  Latent variable ܺሺ௥ሻ	has ܳሺ௥ሻ	categories, which are the LCs. 
We use ݍ and ݏ to index the categories of ܺሺ௥ሻ, and we write ܺሺ௥ሻ ൌ  to ݍ
denote the ݍth LC at Level ݎ. This notation is convenient for the formal 
description of the DLC model. First, at Level 0, we start with LC(1) to 
describe the joint density of the manifest variables. Hence, ܺ଴ has only one 
LC (ܳሺ଴ሻ ൌ 1). In Figure 2, a rectangle is used at Level 0 to indicate that ܺ଴ 
is in fact a constant rather than a latent variable because the entire sample 
belongs to the same LC. A decision is made whether or not the goodness 
of  fit  would  be  improved  if  the  LC  is  split into two LCs.  If LC(2) fits 
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Figure 1. Computation time in minutes (left-hand panel) and AIC value (right-hand panel) 
for 13 estimated LC Models having, 5, 10, 15, … , 65 latent classes. Each model was fitted 
on a survey data set consisting of 79 variables. 
 
 
better than LC(1), then we have two LCs at Level 1, otherwise we have 
one LC at Level 1 and the procedure stops. Suppose that LC(2) fits better 
than LC(1) and we have two LCs at Level 1 (case depicted in Figure 2), 
then for each LC a decision is made whether or not the goodness of fit 
would be improved by splitting the LC again into two LCs. In Figure 2, the 
first LC is split whereas the second LC is not, yielding three LCs at Level 
2. Suppose that the first LC has weight 0.6; ܲ൫ܺሺଵሻ ൌ 1൯ ൌ 0.6, and the 
second LC has weight 0.4; ܲ൫ܺሺଵሻ ൌ 2൯ ൌ 0.4. The splitting of the first LC 
means that at Level 2 the weight of 0.6 is redistributed across LCs 
ܺሺଶሻ ൌ 1	and ܺሺଶሻ ൌ 2. The fact that the second LC is not split implies that 
at Level 2, ܲ൫ܺሺଶሻ ൌ 3൯ ൌ 0.4. Once it has been decided that splitting an LC 
does not improve the goodness of fit, the particular LC remains unchanged 
for the rest of the procedure. The splitting procedure continues until 
splitting LCs no longer improves the goodness of fit. In Figure 2, this is 
the case at Level 5, where we have six LCs. Numbering the LCs per level 
from 1 to ܳሺ௥ሻis arbitrary. We used the following procedure: Once all LCs 
at Level r have been either split or maintained, Level r + 1 has been 
established, and the LCs at Level r + 1 are simply numbered from 1 to ܳሺ௥ሻ 
(from left to right in Figure 2). The DLC model is somewhat similar to 
divisive clustering, from which we took its name. The difference is that in 
a DLC model each respondent, at each level, has a probability to belong to 
each LC (soft partitioning), and in divisive clustering each respondent, at 
each level, belongs to a cluster with certainty (hard partitioning). The DLC 
model was inspired by the work of Ueda and Nakano (2000) and Wang, 
Luo, Zhang, and Wei (2004). Ueda and Nakano introduced a split-and-
merge approach to estimating mixture models to overcome the problem of 
local   maxima,   whereas   Wang  et  al.  used  a  stepwise  split-and-merge  
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Figure 2. A graphic illustration of the DLC model. For details, see text. 
 
 

approach to determine the number of components of a mixture model. In 
the Discussion we compare the DLC model to these papers and related 
work. 

The computational advantage of the DLC model over the standard 
LC model is that the estimation problem is broken down into a series of 
small problems coined local problems. Each local problem concerns the 
question whether splitting LC ݍ	at Level ݎ	will improve model fit (Figure 
3). To this end, at Level ݎ ൅ 1, we estimate an	LC∗(1) model and an	LC∗(2) 
model. The asterisks indicate that the models are fitted on a weighted 
sample in LC ݍ at Level ݎ instead of the unweighted total sample. If the 
LC∗(2) model has a sufficiently better fit than the LC∗(1) model, then LC ݍ 
at Level ݎ will be split. The estimation of the LC∗(1) model and the LC∗(2) 
model does not affect the LCs that are not part of the local problem. In the 
local problem, we arbitrarily number the LCs 1 and 2 for the LC∗(2) model 
and 1 for the LC∗ (1) model. Note that an LC∗ (1) model and an LC∗ (2) 
model are estimated repeatedly – once for every local problem – in order 
to investigate whether a split is necessary. 

Let ܺ be a discrete latent variable and let y௜ ൌ ൫ݕ௜ଵ, … , ,௜௝ݕ … ,  ௜௃൯ beݕ
the response vector of respondent ݅ to manifest variables	 ଵܻ, … , ௝ܻ, … , ௃ܻ. In a 
standard LC(ܭ) model, the density ܲሺy௜ሻ is modeled as  
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Figure 3. Graphic representation of a local DLC problem: Should an LC at Level r be split 
into two LCs at Level r + 1 (left) or not (right)? 

 
 
					P	ሺܡ௜; ીሻ ൌ 	∑ ܲሺܺ ൌ ∏ሻݍ ܲ൫ݕ௜௝หܺ ൌ ൯௃ݍ

௝ୀଵ
௄
௤ୀଵ .																				   (1) 

The set of parameters, denoted by ી , consists of probabilities ܲሺܺ ൌ
 ሻ—the probability that a randomly selected respondent belongs to LCݍ
ܺ|௜௝ݕ)and probabilities P—ݍ ൌ  ݍ ሻ—the probability that a member of LCݍ
has response ݕ௜௝. The log-likelihood for the LC(ܭ) model is  
 

										logܮሺી; yሻ ൌ 	∑ 	௜logݓ ∑ ܲሺܺ ൌ ሻ௄ݍ
௤ୀଵ ∏ ܲ൫ݕ௜௝หܺ ൌ ൯௃ݍ

௝ୀଵ
ே
௜ୀଵ ,								 (2) 

 

where	ݓ௜ denotes the contribution of the response vector of respondent ݅ to 
the log-likelihood. For standard LC models, the weights	ݓ௜ are equal to 1 
by definition. 

For a local problem, depicted in Figure 3, an LC∗(1) model (ܭ ൌ 1ሻ 
and an LC∗(2) model (ܭ ൌ 2ሻ	are estimated for the sample in LC ݍ at Level 
 consists of the entire ݎ at Level ݍ It may be noted that the sample in LC .ݎ
sample, in which each observation has been reweighted (to be discussed 
shortly) rather than a subsample of the observations. Hence, ܲ∗൫y௜൯ ≡
ܲ൫y௜|ܺ

ሺ௥ሻ ൌ  as the index of ݍ ൯ is modeled rather than ܲ൫y௜൯. We will useݍ
LCs at Level ݎ, and ݏ as the index of LCs at Level ݎ ൅ 1. The LC model in 
Equation 1, then becomes 

 

ܲ∗൫y௜; ી
∗൯ ൌ ∑ ܲ∗൫ܺሺ௥ାଵሻ ൌ ∏൯ݏ ܲ∗൫ݕ௜௝หܺ

ሺ௥ାଵሻ ൌ ൯௃ݏ
௝ୀଵ

௄
௦ୀଵ .		   (3) 

 

In Equation 3, density ܲ∗൫y௜൯	is modeled by local parameters; the local 
parameters have the same interpretation as the parameters of a standard LC 
model,  except  for  the  fact  that  they are conditional on being member of 
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LC	ܺሺ௥ሻ ൌ .ݍ  Thus, ܲ∗൫ܺሺ௥ାଵሻ ൌ ൯ݏ ≡ ܲ൫ܺሺ௥ାଵሻ ൌ หܺሺ௥ሻݏ ൌ ൯ݍ  and 
ܲ∗൫ݕ௜௝หܺሺ௥ାଵሻ ൌ ൯ݏ ≡ 	ܲ൫ݕ௜௝หܺሺ௥ାଵሻ ൌ ;ݏ ܺሺ௥ሻ ൌ  ൯.The local parameters areݍ
denoted by ી∗. The subsample in LC ݍ at Level ݎ is fuzzy because each 
respondent has a probability of belonging to this LC. The probability that a 
respondent having response vector	y௜ belongs to LC ݍ at Level ݎ is denoted 
as ܲሺܺሺ௥ሻ ൌ  .y௜ሻ, and referred to as the posterior membership probability|ݍ
The posterior membership probability determines the weight of a parti-
cular respondent in the log-likelihood: 
 

௜௤ݓ	
ሺ௥ሻ ൌ 		ܲሺܺሺ௥ሻ ൌ  .y௜ሻ|ݍ

 

Hence, the log-likelihood for the LC∗(K) model (ܭ ൌ 1, 2) in the local 
problem is 
 

					logܮሺી∗; yሻ ൌ 	∑ ௜௤ݓ
ሺ௥ሻlog	 ∑ ܲ∗൫ܺሺ௥ାଵሻ ൌ ൯௄ݏ

௦ୀଵ ∏ ܲ∗൫ݕ௜௝หܺ
ሺ௥ାଵሻ ൌ ൯௃ݏ

௝ୀଵ
ே
௜ୀଵ .		(4) 

 

The parameter estimates of the selected LC model at Level 1+ݎ in the local 
problem also yields a local posterior membership probability for ܺሺ௥ାଵሻ: 
 

					ܲ∗ሺܺሺ௥ାଵሻ ൌ y௜ሻ|ݏ ≡ ܲ∗ሺܺሺ௥ାଵሻ ൌ ;หy௜ݏ ܺ
ሺ௥ሻ ൌ  ൯ݍ

																																																										ൌ
௉∗൫௑ሺೝశభሻୀ௦൯∏ ௉∗൫௬೔ೕห௑

ሺೝశభሻୀ௦൯಻
ೕసభ

∑ ௉∗൫௑ሺೝశభሻୀ௞൯∏ ௉∗൫௬೔ೕห௑ሺೝశభሻୀ௞൯
಻
ೕసభ

಼
ೖసభ

.	   (5) 

For the LC∗ (2) model, the local posterior is the probability that a 
respondent belongs to each of the two LCs at level r + 1, conditional on 
being member of LC q at level r. For the LC∗(1) model, the local posterior 
equals 1 by definition.The local posterior membership probability is used 
to determine the weights of the respondents in the likelihood for the local 
problems at the next level. Hence, the sample is not physically separated 
out, but only the weights change. The weights at Level ݎ	1 + are obtained 
by multiplying the local posterior probability at Level ݎ ൅ 1	and the (global) 
posterior probability at Level r: 
 

௜௦ݓ						
ሺ௥ାଵሻ ൌ ܲ൫ܺሺ௥ାଵሻ ൌ y௜൯	|ݏ ൌ ܲ∗൫ܺሺ௥ାଵሻ ൌ y௜൯	|ݏ ൈ ܲ൫ܺሺ௥ሻ ൌ  y௜൯.    (6)	|ݍ

 

The DLC model is estimated by the following iterative procedure.  

1. Initial step: At Level 0, set ݓ௜ଵ	
ሺ଴ሻ:ൌ 1 , ܲ൫ܺሺ଴ሻ ൌ 1൯ ∶ൌ 1 , and 

ܳሺ଴ሻ: ൌ 1. 
 

2. Solve the local problem of LC q at Level r: Estimate an LC∗(1) and 
LC∗(2) model for the fuzzy sample in LC	ܺሺ௥ሻ ൌ  by optimizing	ݍ
the likelihood in Equation 4, and choose either an LC∗(1) model or 
LC∗(2) model. If an LC∗(1) model is chosen, LC ܺሺ௥ሻ ൌ  is no	ݍ
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longer considered for division at later levels and steps 3, 4, and 5 
are skipped; see discussion hereunder. 
 

3. Compute the local posterior membership probabilities (Equation 
5). 
 

4. Update the posterior membership probabilities from the local 
membership probabilities (Equation 6). The updated posterior 
membership probabilities are the weights for the local problems at 
Level ݎ ൅ 1. 
 

5. Update the parameter estimates using the posterior membership 
probabilities and local parameter estimates. 
 ܲ൫ܺሺ௥ାଵሻ ൌ ൯ݏ ൌ 	

ଵ

ே
∑ ܲ൫ܺሺ௥ାଵሻ ൌ ௜൯࢟|ݏ
ே
௜ୀଵ  

 ܲ൫ݕ௜௝หܺሺ௥ାଵሻ ൌ ൯ݏ ൌ 	ܲ∗൫ݕ௜௝หܺሺ௥ାଵሻ ൌ  ൯ݏ
 

6. Repeat steps 2 through 5 for all LCs at Level ݎ. 
 

7. Renumber the LCs from 1 to ܳሺ௥ሻ, and let	ݎ ൌ ݎ ൅ 1. 
 

8. Repeat steps 2 to 7 until no more classes are split. 

The remaining problem of DLC estimation is the choice of either 
the LC∗(1) model or the LC∗(2) model in each local problem (Figure 3). 
The choice depends on the required precision and the sample size. If the 
number of LCs becomes too large, the density estimate may be based on 
chance capitalization. If the number of LCs becomes too small, the density 
estimation may not be precise enough. Relevant factors for the choice of 
either the LC∗(1) model or the LC∗(2) model may be the difference in log-
likelihood, the sample sizes in the LCs, and the size of residual 
associations between the observed variables. In the generated data study, 
we investigate this issue. 

 
3. Generated Data Study 

 
The main question was whether the DLC model can precisely 

estimate a complex density that was not generated by an LC model. To this 
end, we used a DLC model to estimate a complex density under ideal 
circumstances, so removing all influences of sampling error. Additionally, 
we investigated different choices for selecting an LC∗ (1) model or an 
LC∗(2) model in the local problem.  

 
3.1 Method 

 
We defined a complex population model, depicted in Figure 4, for 

11 dichotomous variables ( ଵܻ, … , ଵܻଵ). The population model consists of 
two sets of independent variables ( ሼ ଵܻ, ଶܻ, ଷܻሽ  and 	ሼ ସܻ, … , ଼ܻ ሽ ) and three 
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dependent variables 	 ଽܻ , 	 ଵܻ଴ , and ଵܻଵ . Log-linear models describe the 
associations among the independent variables, and logit models described 
the relations between the independent and dependent variables. The model 
contained several two-way and three-way interactions. The appendix gives 
the details of the population model. Multiplying the population probability 
for each of the 211 = 2048 response patterns by 1,000 produced the 
frequencies for all response patterns, amounting to a sample (of size	ܰ ൌ
1,000) that is exactly in accordance with the population. 

We compared the true and the estimated marginal probabilities by a 
DLC model for three combinations of variables: 	ሼ ଽܻ, ଵܻ଴ሽ, ሼ଼ܻ , ଵܻଵሽ, 
and	ሼ ଺ܻ, ଻ܻ, ଵܻ଴ሽ. Variables	 ଺ܻ,	 ଻ܻ, and ଵܻ଴ have a three-way association and it 
is important to determine whether a DLC model is able to correctly pick 
up this complex association. The estimated marginal probabilities can be 
computed from the estimated DLC parameters. For example, the 
probabilities of 	 ଺ܻ , ଻ܻ , and ଵܻ଴	 can be obtained by ෠ܲሺ ଺ܻ, ଻ܻ, ଵܻ଴ሻ ൌ
	∑ ෠ܲሺܺ ൌ ሻ௄ݏ

௦ୀଵ ෠ܲሺ ଺ܻ|ܺ ൌ ሻݏ ෠ܲሺ ଻ܻ|ܺ ൌ ሻݏ ෠ܲሺ ଵܻ଴|ܺ ൌ ሻݏ . As an outcome var-
iable we reported Pearson's chi-squared statistic for the differences 
between the true and the estimated expected frequencies for a sample size 
of	ܰ ൌ 1,000. The degrees of freedom are equal to 3 for the two-way 
interactions, 7 for the three-way interactions, and 2047 for the entire 
density. 

We investigated 21 decision rules for model selection in the local 
problem. Each decision rule is a combination of a model-fit criterion (7 
levels) and a minimum sample size for an LC (3 levels):  

 
1. Model fit criteria. Using a model-fit criterion implies that an LC is 

split if the resulting LC∗(2) model shows better fit than the LC∗(1) 
model. Six model-fit criteria were a combination of a minimum 
increase in the log-likelihood (levels 'at least 1 point increase' and 
'at least 3 points increase'), and a maximum value of the highest 
standardized bivariate residual (levels 'unrestrictive', 'stop if all 
bivariate residuals are less than 1', and 'stop if all bivariate 
residuals are less than 3)'. A 7th model-fit criterion is to keep 
splitting LCs as long as AIC decreases, which amounts to a 
minimum improvement of the log-likelihood equal to the number 
of additional parameters. We refer to Vermunt et al. (2008) for the 
discussion of preferring AIC over other relative fit statistics, such 
as AIC3 and BIC, in density estimation.  
 

2. Minimum sample size for an LC. Using this criterion means that an 
LC is only considered for splitting if it contains a minimal number 
of respondents. We considered minimal sample sizes of 0, 30, and 
60. 
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Figure 4. Population model used in the generated-data study. For details, see text. 
 
 

 
The DLC model was estimated for all decision rules. The question 

whether the DLC model is able to accurately describe a complex density 
under ideal circumstances was investigated by examining the difference in 
true and estimated marginal probabilities under the least restrictive levels 
of the decision rules. This cell was used as an upper benchmark for 
investigating the effect of using more stringent levels of the decision rules. 
Note that levels of the decision rules of the upper benchmark should not be 
used in practice because one would also model all sampling fluctuations. 
Yet, comparing more stringent levels of decision rules to the upper 
benchmark is useful because it shows the relative decrease of precision in 
estimating the two-way and three-way interactions. Using a similar train of 
thought we used the independence model as a lower benchmark. 

 

3.2 Results 
 

For the upper bench mark (Table 1, first row), the values of the chi-
squared statistics were very small compared to the degrees of freedom, 
indicating that the DLC can pick up complex associations in the data under 
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Table 1. Chi-square statistics for the difference between the estimated frequencies using a 
DLC model and the true frequencies of three marginal tables: 109 yy , 118 yy , and 1076 yyy , 

and the total data. seven variants of a DLC model were crossed with three levels of 
minimum class size (0 , 30, and 60). The first row contains the least restrictive decision 
rules, and serves as an upper benchmark, the last row contains the chi-square values for the 
independence model as a lower benchmark. 
 

Decision rules Marginals 

L Residual          N  ݕଽݕଵ଴ ݕ଼ݕଵଵ ݕ଺ݕ଻ݕଵ଴ Total 

1 0 0 .012 .065 .021 69.118 

  30 .012 .897 .023 81.855 

  60 .085 4.400 .208 187.064 

1 1 0 .012 .053 .021 81.392 

  30 .012 .896 .023 92.402 

  60 .085 4.398 .208 192.870 

1 5 0 .022 3.033 .470 164.787 

  30 .022 3.033 .470 167.080 

  60 .111 8.498 .828 219.414 

5 0 0 .011 5.718 .059 174.113 

  30 .011 5.718 .059 174.113 

  60 .111 8.498 .828 219.414 

5 1 0 .022 5.541 .477 180.048 

  30 .022 5.541 .477 180.048 

  60 .111 8.498 .828 219.414 

5 5 0 .022 5.541 .477 180.048 

  30 .022 5.541 .477 180.048 

  60 .111 8.498 .828 219.414 

AIC 0 0 .107 36.988 .857 337.374 

  30 .010 37.639 .064 342.344 

  60 .107 36.862 .858 331.970 
Independence model 80.661 96.097 374.989 5740.297 

 
 
 

ideal circumstances. Note that these values are too good to be true because 
the data contain no error, and an additional simulation study (not tabulated) 
using data that were sampled from the model showed that the chi-square 
statistic – quantifying the difference between the estimated density and the 
population density – may actually increase if too many divisions are made 
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(i.e. overfitting the data). As expected the lower benchmark (Table 1, last 
row) showed high values of the chi-squared statistics compared to the 
degrees of freedom, indicating that the independence model cannot 
describe complex associations in the data. 

The more conservative decision rules especially deteriorated the 
model-fit for the two-way interaction of ଼ܻ 	 and 	 ଵܻଵ . The additional 
safeguards to have at least 30 respondents in each cell and to stop splitting 
when all standardized residuals are less than 1 did not affect the precision 
greatly. Other levels of the decision rules seriously deteriorated the density 
estimate, in particular choosing AIC as a criterion seems insufficient. 
 

4. Real-Data Example 
 

A well-known application of the LC model as a density estimator is 
to handle missing data problems by means of multiple imputation (e.g. 
Vermunt et al. 2008; Gebgziabher and DeSantis 2010; Van der Palm, Van 
der Ark and Vermunt 2012). The procedure consists of the following steps. 
First, ݉ nonparametric bootstrap samples are drawn from the incomplete 
data. Typically ݉ = 5, but larger values may improve the quality of the 
statistical analysis. Second, for each bootstrap sample, a well-fitting LC 
model is estimated, yielding ݉  LC-models numbered 	1, … ,݉ . Third, ݉ 
completed data sets are constructed, where completed data set ݅  ( ݅ ൌ
1,… ,݉) was constructed by replacing the missing values of the original 
incomplete data by a value drawn from model 	݅ . Fourth, the statistical 
analysis of choice is performed m  times, on each completed dataset. 
Finally, the parameters of interest in the m analyses are combined using 
Rubin's (1987) rules. For details of applying the LC model in the context 
of missing data, we refer to Vermunt et al. (2008). 

We applied this procedure and used both the LC model and the DLC 
model to estimate the joint density (i.e., second step of the procedure) to 
illustrate the effect on the computation time of the entire procedure and the 
effect on the parameter estimates at the end of the procedure. The LC 
model yielding the lowest AIC value was selected, and for DLC we used a 
minimum increase of the log-likelihood of 1 point and a minimal sample 
size of 30 (see Table 1, second row) as a criterion for splitting. 

We expected that using the DLC model is much faster than using the 
LC model, and we expected that the effect on the parameter estimates and 
their standard errors would be negligible. The latter indicates that the DLC 
model yields a sufficiently precise density estimate. To be able to assess 
whether the effect on the parameter estimates is small, we also used 
complete-case analysis as a benchmark. Complete-case analysis may have 
a large effect on the parameter estimates (e.g. Schafer and Graham 2002). 
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We analyzed a dataset from the ATLAS Cultural Tourism Research 
Project (Richards 2010), a survey that addresses topics such as motivations, 
activities, and impressions of visitors of cultural sites and events. The 
dataset contained the scores of 4292 respondents on 79 categorical var-
iables: 52 had two categories, one had three categories, 19 had five 
categories, two had six categories, and the remaining five variables had 7, 
8, 9, 10 and 17 categories, respectively. Complete information was 
available for only 794 respondents. Steps 1, 2, and 3 of the procedure were 
carried out as described above performing with either ݉	 ൌ 	10  LC 
analyses or ݉ ൌ 10	DLC analyses on all 79 variables in step 2. 

In step 4, we used two (adjacent-category) ordinal regression 
models (Agresti 2002, pp. 286–288) to predict the responses to the 
question “I want to find out more about the local culture” with four and 
five explanatory variables, respectively. In the first model, the variable 
Admission Expenditure was excluded as an explanatory variable, 
rendering 3950 complete cases, whereas in the second model this variable 
was included, which reduced the number of complete cases to 1424. Table 
2 shows the details of the variables involved. 

The LC(65) model and the DLC(95) model were selected. Table 3 
shows the coefficients and standard errors of the two ordinal regression 
models, estimated after complete-case analysis, multiple impution using 
the LC(65) model,  and multiple imputation using the DLC(95) model. For 
the first regression model (Table 3, upper panel), Age and Gender had a 
negative effect, which means that younger people and men have a greater 
desire to learn more about local culture. The effect of the other explanatory 
variables was not significant. The parameter estimates and standard errors 
are rather similar across the methods, except for some differences in the 
parameter estimates for Education. Because there is only a small 
proportion of missing values in this analysis, it is not surprising that 
complete-case analysis and MI gave similar results. It is reassuring that for 
most regression coefficients, MI using the LC model and the DLC model 
provided similar estimates. For the second regression analysis (Table 3, 
lower panel), the substantive results did not change because the effect of 
the added explanatory variable Admission Expenditure was not significant, 
but we found significant differences in parameter estimates between 
complete-case analysis and MI. The estimates based on MI are similar in 
the two regressions, whereas the estimates based on complete-case 
analysis have changed: The estimated coefficients of age, gender, and edu-
cation nearly doubled and all standard errors became larger. Admission 
Expenditure had no significant effect, but its inclusion resulted in more 
cases having missing values and consequently the effects of Age and 
Gender were overestimated when complete-case analysis was used. 
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Table 2. Variables used in the ordinal regression for the ATLAS Cultural Tourism 
Research Project 2003 data. 
 

 
 

Variable 

 
 

 
 

Categories 

Number of 
Missing 

Values (N = 
4292) 

I want to find out more about the 
local   culture 

1 Totally disagree 154 

2 Disagree  

 3 Neutral  

 4 Agree  

 5 Totally agree  

Gender 1 Male 41 

 2 Female  

Age 1 15 or younger 28 

 2 16-19  

 3 20-29  

 4 30-39  

 5 40-49  

 6 50-59  

 7 60 or older  

Highest level of educational 
qualification 

1 Primary school 62 

 2 Secondary school  

    

 3 Vocational education  

 4 Bachelor’s degree  

 5 Master’s or doctoral 
d

 

Is your current occupation (or 
former) connected with culture? 

1 Yes 149 

 2 No  

Admission expenditure 1 0 - < 25 euro 2801 

 2 25 - < 50 euro  

 3 50 - < 75 euro  

 4 75 - < 100 euro  

 5 ≥ 100 euro  
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Table 3. Parameter estimates and standard errors of two ordinal regression for the ATLAS 
Cultural Tourism Research Project 2003 data using Complete Case Analysis, MI using an 
LC model, and MI using a DLC model (minimum increase of the log-likelihood of 1 point 
and a minimal sample size of 30). 
 

 
 Multiple imputation 

 Complete-case 
Analysis 

 
LC (K=65) DLC (95) 

Predictor Coef. S.E. Coef. S.E. Coef. S.E. 

Gender -.049 .026 -.052 .026 -.050 .025 

Age -.058 .010 -.062 .009 -.061 .009 

Primary School   .000    .000   .000  

  Secondary School -.008 .098 -.039 .092 -.054 .093 

  Vocational Education -.080 .098 -.098 .092 -.110 .094 

  Bachelor’s Degree -.067 .096 -.094 .089 -.105 .091 

  Master’s or doctoral -.091 .097 -.109 .091 -.124 .093 

Occupation and culture -.015 .030 -.017 .030 -.021 .029 

 

 
 Multiple imputation 

 
Complete Cases 

(N = 1424) 
LC (K=65)      DLC (95) 

Predictor Coef. S.E. Coef. S.E. Coef. S.E. 

Gender -.077 .044 -.052 .026 -.050 .025 

Age -.082 .017 -.063 .009 -.061 .009 

Primary School   .000    .000   .000  

  Secondary School -.110 .180 -.042 .092 -.058 .093 

  Vocational -.152 .181 -.101 .092 -.114 .093 

  Bachelor’s -.106 .176 -.097 .089 -.109 .091 

  Master’s or -.244 .179 -.113 .091 -.128 .093 

Occupation and -.041 .049 -.017 .030 -.021 .029 

Admission   .013 .014 .007 .012 .010 .012 
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Table 4. Data log-likelihood and computation time under four different models. 

Method Log-likelihood Computation time 

LC (65) -216,043.09 8h12m 

DLC(62)1 -217,990.25 0h47m 

DLC(95)2 -213,337.94 1h02m 

DLC(149)3 -205,340.37 1h06m 

 

Note: 1 = minimum class-size at least N = 60, 2 = minimum class-size at least N = 30, 3 = 
minimum class-size at least N = 10. 
 
 
 
Although we cannot compare the estimates of the three methods to the 
population values, this result indicates that both the LC model and the 
DLC model perform well in this application. It is reassuring that the results 
based on the LC model and the DLC model are similar and largely concur 
with those of complete-case analysis when the proportion of missingness is 
small and that the estimates are stable across the two regression analyses. 

Table 4 shows the log-likelihood and the computation time for the 
LC model and the DLC model used for MI in the real-data example, plus 
for some alternative DLC models. The computation time for the standard 
LC model also includes the required computation time to estimate the LC 
models with fewer LCs. Table 4 shows that the DLC (minimal improve-
ment in the LL of 1 point and minimal sample size of 30) and DLC-1 
(minimal improvement in the LL of 1 point and minimal sample size of 10) 
models yield a better fit than the LC(65) model, and in much less time.  

 
5. Discussion 

 

For density estimation, the DLC had three advantages over the 
standard LC model. First, in the processes of finding a well-fitting LC 
model, say LC(K), standard LC analysis requires estimating K models, 
whereas DLC analysis requires estimating one model. Hence, it is no 
longer necessary to manually estimate and compare several models. 
Second, in standard LC analysis, the number of LCs is specified a priori, 
whereas in DLC analysis it is not; the number of LCs is increased during 
the estimation process until a sufficiently precise density estimate is 
obtained. Third, each LC model starts from scratch: the information in an 
LC(K) model is neglected when fitting an LC(K + 1) model, whereas the 
DLC model is a sequence of small local problems and each local problem 
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at Level ݎ ൅ 1 takes into account the information obtained at Level r. Due 
to this efficiency and relative simplicity, DLC estimation is much faster 
than LC estimation.  

Several authors (e.g. Ueda and Nakano 2000; Wang, Luo, Zhang, 
and Wei 2004; Hoijtink and Notenboom 2004) also have proposed a 
splitting procedure. We would like to stress that these approaches serve 
different purposes. The procedures proposed by Ueda and Nakano and 
Wang et al. pertain to continuous data whereas our procedure pertains to 
discrete data. In addition, they use the splitting only to obtain starting 
values. For instance, in case of a mixture of ܳ normal distributions, they 
split one of the classes yielding a mixture of ܳ ൅ 1 normal distributions, 
and they use this solution as starting values for an unrestricted mixture of 
ܳ ൅ 1  normal distributions. Hoijtink and Notenboom (also, see Van 
Hattum and Hoijtink 2009) used the splitting of LCs as a clever trick 
enabling the estimation of a traditional LC model by means of a Gibbs 
sampler: They split the largest LC (and if that does not work the second 
largest LC, etc.) and also use the solution as starting values for an 
unrestricted LC(ܳ ൅ 1) model. Without the splitting, the Gibbs sampler 
would not be able to estimate models with large numbers of classes. Our 
approach is substantially different because it produces a truly divisive 
solution: The relation between the levels is known, whereas Ueda and 
Nakano (2000), Wang, Luo, Zhang and Wei (2004) and Hoijtink and 
Notenboom (2004) do not use such levels; their solution produces a series 
of mixtures with 1, 2, 3 ... LCs, just as an ordinary LC analysis.  

The generated data example showed that the DLC model is able to 
pick up two-way and three-way associations from a complex population 
model. The suggested decision rules for splitting classes worked well for 
the generated-data example. In a missing-data context, Vermunt et al. 
(2008) found that over-fitting did not pose a big problem when using an 
LC model for density estimation suggesting rather liberal stopping rules. 
However, Van der Palm, Van der Ark, and Sijtsma (2014) found that 
density estimation using the DLC model in the context of test-score 
reliability required a conservative stopping criterion. Hence, a systematic 
evaluation of the DLC density estimation procedure is required, including 
the effect of different stopping rules and the effect of sample size. This is a 
topic for future research. As an aside, in a Bayesian framework, 
Richardson and Green (1997) introduced the birth-and-death algorithm to 
automatically determine number of components for mixture models, and it 
would be interesting to investigate whether such a Bayesian methodology 
would work well for density estimation. 

The real-data example showed that a DLC model can easily be 
applied to a dataset with a large number of cases and polytomous variables. 
For a standard LC model with 65 LCs it took more than 8 hours to 
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establish the best fitting model for this dataset, whereas a DLC model only 
required 1 hour and 2 minutes. In addition to being faster, it yielded a 
better fit to the data. In a practical sense, this makes a substantial 
difference for researchers that use an LC model as a density estimation 
tool. The application that we discussed underlines the benefits of a DLC 
model. If a researcher wants to use MI, the density of the data has to be 
estimated several times (10 times in this case). Hence, using a DLC model 
for MI instead of an LC model reduced the runtime for this dataset from 
83h (10*8h18m) to 10h20m (10*1h2m).  

DLC estimation has now been implemented in the software 
package LatentGOLD (Vermunt and Magidson 2008) which makes it 
easier to apply the method. As an aside, we note that it is relatively easy to 
use multiple processing cores for the estimation of a DLC model because 
estimating the DLC model boils down to estimating a sequence of 
independent local problems. For the standard LC model, the processing 
load would have to be divided and delegated to each processor core within 
one estimation algorithm, which is more difficult and less efficient. For 
example, suppose a computer has four processor cores. After the first split 
(e.g. Figure 2), one processor cores can handle the estimation of the LCs 
beyond the first LC, and a second processing core can handle the 
estimation of the LCs beyond the second LC. After another split, the third 
processor core can be used. This makes the estimation process even faster. 

 
Appendix  

 
The densities are described in terms of the realizations of	ܻ, denoted 

by	ݕ. Let	ߚ௝	denote a log-linear parameter value. The joint density of 1y ,

2y , and 3y  is defined as, 
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Hence, the joint density of 1y , 2y , and 3y is in agreement with a saturated 
log-linear model containing all one-, two-, and three-variables associations. 
Table A1 shows the actual values of the parameters. 

The joint density of	ݕସ, ,ହݕ ,଺ݕ ,଻ݕ and	଼ݕ	is defined as 
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and only contains two-way associations. Table A2 shows the actual values 
of the parameters. 
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Table A1. Log-linear parameters for the density of	 ଵܻ, ଶܻ, and ଷܻ. 

Parameter Value 

ଵߚ
ଵ .2 

ଶߚ
ଵ -.6 

ଷߚ
ଵ .4 

ସߚ
ଵ .2 

ହߚ
ଵ .6 

ଶଷߚ
ଶ  -.1 

ଵଶଷߚ
ଷ  .2 

 
 

Table A2. Log-linear parameters for the density of	 ସܻ, ହܻ, ଺ܻ, ଻ܻ, and ଼ܻ . 

 
 
 

 
 
 
 
 

 
 

The conditional probabilities of the three dependent variables are 
defined to be in agreement with logit models, using effects coding for the 
parameters. Let ߚ௝

௤ denote a logit regression parameter for the regression 
of dependent variable q on the jth independent variable. For dependent 
variable ݕଽ, 

 

ଽሻݕሺݐ݅݃݋݈								 ൌ ଴ߚ
௬వ ൅ ଵߚ

௬వݕଵ ൅ ଶߚ
௬వݕଶ ൅ ଷߚ

௬వݕଷ ൅ ଵଶߚ
௬వݕଵݕଶ ൅ ଵଷߚ

௬వݕଵݕଷ 			
൅ ଶଷߚ

௬వݕଶݕଷ ൅ ଵଶଷߚ
௬వ  ,ଷݕଶݕଵݕ

 

for dependent variable	ݕଵ଴, 
 

logitሺݕଵ଴ሻ ൌ ଴ߚ
௬భబ ൅ ଽߚ

௬భబݕଽ ൅ ସߚ
௬భబݕସ ൅ ହߚ

௬భబݕହ ൅ ଺ߚ
௬భబݕ଺ ൅ ଻ߚ

௬భబݕ଻
൅ ଼ߚ

௬భబ଼ݕ ൅ ଻଼ߚ
௬భబݕ଻଼ݕ, 

 

and for dependent variable	ݕଵଵ, 
  

logitሺݕଵଵሻ ൌ ଴ߚ
௬భభ ൅ ଻ߚ

௬భభݕ଻ ൅ ଼ߚ
௬భభ଼ݕ ൅ ଵ଴ߚ

௬భభݕଵ଴. 
 

These relationships yield a complex density including three-way 
associations. Table A3 shows the values of the logistic regression 
parameters. 

Parameter Value Parameter Value Parameter Value 

ସߚ
ଵ .2 ߚସହ

ଶ ହ଻ߚ 4. 
ଶ  .6 

ହߚ
ଵ -.6 ߚସ଺

ଶ ହ଼ߚ 2.- 
ଶ  -.2 

଺ߚ
ଵ .4 ߚସ଻

ଶ ଺଻ߚ 6. 
ଶ  .1 

଻ߚ
ଵ .2 ߚସ଼

ଶ ଺଼ߚ 3.- 
ଶ  -.2 

଼ߚ
ଵ .6 ߚହ଺

ଶ ଻଼ߚ 8. 
ଶ  .6 
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Table A3. Logistic regression parameters for the conditional densities of	 ଽܻ, ଵܻ଴, and ଵܻଵ. 
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