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Article

A comparison of incomplete-data
methods for categorical data

Daniël W van der Palm, L Andries van der Ark
and Jeroen K Vermunt

Abstract

We studied four methods for handling incomplete categorical data in statistical modeling: (1) maximum

likelihood estimation of the statistical model with incomplete data, (2) multiple imputation using a

loglinear model, (3) multiple imputation using a latent class model, (4) and multivariate imputation by

chained equations. Each method has advantages and disadvantages, and it is unknown which method

should be recommended to practitioners. We reviewed the merits of each method and investigated

their effect on the bias and stability of parameter estimates and bias of the standard errors. We found

that multiple imputation using a latent class model with many latent classes was the most promising

method for handling incomplete categorical data, especially when the number of variables used in the

imputation model is large.

Keywords

Missing data, categorical data, multiple imputation, latent class analysis, MICE, maximum likelihood,

medical research

1 Introduction

This paper discusses methods to handle incomplete categorical data. Many medical studies deal solely
with analyzing categorical data and, consequently, the statistical model that is used to analyze the data
(from here on referred to as the substantive model) is also tailored to categorical data. For example,
predictors of reduced length of hospital stay were studied using logistic regression,1 determinants of
caregivers’ health were studied using loglinear modeling,2 and the effectiveness of the World Health
Organization Disability Assessment Schedule II was investigated using a nonparametric item response
analysis.3 A frequently encountered problem is that the data are incomplete, which prevents a
straightforward statistical analysis; a researcher should handle this problem appropriately. Klebanoff
andCole4 found that themajority of applied researchers resort to ad-hocmethods such as complete-case
analysis or pair-wise deletion, which may lead to biased statistical results5 and reduced power.5,6
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For handling incomplete continuous data, adequate alternatives have been proposed, extensively
researched,7 and implemented in major software packages such as SPSS8 and SAS.9 Hence, there is no
need for applied researchers to resort to ad-hoc methods in case of continuous data.

Incomplete data methods for categorical data have not yet been crystallized out, and it is
unknown which method should be recommended to practitioners. Ideally, an incomplete-data
method should meet three criteria. For the substantive model, it should produce parameter
estimates (i) that are unbiased, (ii) that are stable in order to avoid unnecessary loss of power in
the statistical analysis, and (iii) that have standard errors correctly reflecting the uncertainty due to
missing data. Ideally, these criteria should be met for data sets with both small and large numbers of
variables, sample sizes, and percentages of incomplete data, and for both simple and complex
associations in the data.

With respect to these criteria, two incomplete-data methods for categorical data are especially
promising: Multiple imputation using latent class analysis (MILC10,11) and multivariate imputation
using chained equations (MICE12–14). Both methods have the practical advantage that they can easily
handle data sets containing a large number of variables and respondents. However, researchers
having incomplete categorical data cannot yet readily apply MILC and MICE because there are
various unresolved issues (explained hereunder). The impact of these issues on the three criteria for
substantive models is unknown. In this study, we discuss two reasonable options for the unresolved
issues for both MILC and MICE, and investigate to which degree they meet the three criteria, so as
to decide which incomplete-data method should be selected for categorical data. Multiple imputation
using a loglinear model (MILL6) and maximum likelihood for incomplete data (MLID,5,15–17 also
known as full information maximum likelihood) are used as benchmarks. MILL is known to
produce unbiased parameter estimates6,18,19 but can only handle a small number of variables;
MLID is known to be asymptotically unbiased but may run into difficulties as the number of
variables becomes very large.10

The remainder of this paper is organized as follows. First, we briefly discuss the four incomplete-
data methods. For both MILC and MICE, we discuss two variants, resulting in six incomplete-data
methods in total. Second, we compare the advantages and disadvantages of the methods in a
theoretical discussion. Third, we present the results of two simulation studies. In Study 1, for
dichotomous data, we compared MILC, MICE, MILL, and MLID with respect to the three
criteria. In Study 2, for trichotomous data, we compared MILC, MICE, and complete-case
analysis with respect to the three criteria. Fourth, we applied MLID, MILC, MICE, and
complete-case analysis to a medical data set. Finally, we give recommendations based on the
theoretical discussion and the two simulation studies.

2 Incomplete-data methods

2.1 Incomplete data

Let Y ¼ Y1,Y2, . . . ,YJð Þ denote the scores on the J variables, and let h be the generic notation for
the vector of unknown parameters of the joint distribution of Y, denoted PðY; hÞ. To distinguish
specific models Greek letters other than h may also be used to denote paramete r vectors. Note that
Yj may be either a predictor variable or an outcome variable depending on the substantive model.
If confusion arises, we add the superscripts p and o to indicate that a variable serves as a predictor
variable or outcome variable, respectively. Y may contain missing values, and the objective is to deal
with them appropriately.

Most incomplete-data methods, including the ones considered in this paper, assume that the
mechanism that caused the missing values is ignorable,16 which means that two conditions should
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hold. First, the parameters that govern the missing data process must be unrelated to the parameters
to be estimated, which is a rather unrestrictive assumption.5 Second, the data must be missing at
random (MAR), which means that whether or not a score is missing only depends on scores observed
in the study. If, after conditioning on all observed data, the missingness depends on missing values of
variables included in the study or on variables not included in the study, MAR is violated and, as a
result, the missingness mechanism is non-ignorable. Non-ignorable missingness may cause biased
parameters in the substantive model (first criterion). Apart from special studies with planned
missingness,6 MAR is unlikely to hold in practice, and it is impossible to test whether the MAR
assumption holds for a particular data set.7 Therefore, the degree to which MAR is violated (i.e. the
degree to which the observed scores cannot explain the missingness mechanism) becomes important:
If the violation of MAR becomes more severe, the parameter bias in the substantive model is likely
to increase. If the number of variables in a data set increases, the degree to which the variables can
explain the missingness mechanism is also likely to increase. Hence, if an incomplete-data method
can handle a large number of variables, and if a large number of variables is available, the violation
of MAR will most likely be less severe and the missingness mechanism is more likely to be ignorable.
This notion6 plays an important role in our evaluation of incomplete-data methods and will be
referred to as Schafer’s notion on the number of variables.

2.2 Description of incomplete-data methods

2.2.1 Maximum likelihood for incomplete data

MLID is a well-known and documented method to obtain parameter estimates and standard errors
in the presence of missing data.5 MLID constitutes estimating the parameters of the substantive
model and their standard errors, using all observed data. For example, when studying predictors of
reduced length of hospital stay using logistic regression,1 MLID can be used to estimate the logistic
regression model using all observed data. No further action is required; the obtained parameter
estimates and standard errors can be directly interpreted. The substantive model can be an
asymmetric model such as a logistic regression model or an item response theory model, which
describe the conditional distribution of the outcome variables given the predictor variables
PðYojYp; hÞ, or a symmetric model, such as a loglinear model, latent class model, or canonical
correlation model, which describe the joint distribution of all variables PðY; hÞ. MLID assumes
that the missingness mechanism is ignorable. For categorical data, specialized software is usually
required to conduct MLID, such as LEM20 or Mplus.21

2.2.2 Multiple imputation

Multiple imputation consists of creating m completed data sets by replacing the missing values in the
data with plausible values m times. These plausible values replacing the missing values are called the
imputed values. The statistical model that generates imputed values is referred to as the imputation
model. After the multiple imputation, on each of the m completed data sets a substantive model is
estimated, and the m sets of parameter estimates and standard errors are combined into a single set.
Most researchers use m¼ 5, but this value is currently debated.22 Using multiple imputation allows
for separating the missing data handling and the substantive analysis; a researcher can estimate
substantive models as if there had been no missing data, or distribute the completed data to other
researchers for further analysis.

Multiple imputation starts in the same way as MLID for symmetric models: A statistical model is
estimated describing the joint distribution PðY; hÞ. Rather than a substantive model, this model is an
imputation model for obtaining imputed values from PðY; hÞ. For example, when studying
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predictors of reduced length of hospital stay using logistic regression,1 a loglinear model describing
the joint distribution of both predictor variables and reduced length of hospital stay may be used as
an imputation model to generate imputed values replacing the missing data m times. After the
multiple imputation, logistic regression analysis can be conducted on the completed data sets.

One must account for the fact that the imputed values are not observed and, therefore, uncertain.
There are two sources of uncertainty.23 Firstly, the estimated parameters of the imputation model
are uncertain; this uncertainty is expressed by their standard errors. Secondly, there is uncertainty
due to sampling variability when drawing imputed values from PðY; hÞ. To account for parameter
uncertainty, for each of the m data sets, a different set of parameters of the imputation model is used.
In a Bayesian framework, the m sets of parameters of the imputation models are random draws from
PðhjYÞ, the distribution of the parameters given the data.5 In a frequentist framework, the m sets of
parameters are estimated using m nonparametric bootstrap samples of the data.10 A nonparametric
bootstrap sample consists of randomly drawing a new sample of N observations with replacement.24

To reflect uncertainty due to sampling variability, the replacement of missing values is done m times,
yielding m completed data sets. The three multiple imputation methods for categorical data
discussed in this paper differ in the way that they describe the joint distribution, PðY; hÞ, and
how they account for parameter uncertainty. MILL is discussed briefly because this method is
ready for use; MILC and MICE are described in more detail so as to allow the discussion of the
specific options these methods offer.

Multiple imputation using a loglinear model. MILL uses a loglinear model as the imputation
model. Let the parameters of the loglinear model be denoted j; the saturated loglinear model for
dichotomous responses can be written as

logPðY;jÞ ¼ �þ
XJ
i¼1

�iYi þ
XJ�1
i¼1

XJ
j¼iþ1

�ijYiYj þ � � � þ �1,2, ...; JY1Y2 � � �YJ: ð1Þ

The joint distribution is obtained by taking the exponential of the right-hand side of equation (1).
Typically, a saturated loglinear model is used to obtain imputation values because it captures all
possible associations in the data; therefore, it is the gold standard for multiple imputation of
categorical data.10 If higher-order interaction terms are omitted, the approximation of the joint
distribution by the loglinear model may deteriorate. MILL can, for example, be conducted using
software packages CAT6 or Latent GOLD 4.5,25 which utilize a Bayesian and a nonparametric
bootstrap approach, respectively, to account for parameter uncertainty.

Multiple imputation using a latent class model. MILC uses a latent class model to estimate the
joint distribution of the variables in the data. Let X denote a discrete latent variable with K latent
classes, indexed by k ðk ¼ 1, . . . ,KÞ. Let n denote the vector of parameters of the latent class model;
n can be divided into nx, the latent class proportions, and ny the conditional response probabilities.
Under a latent class model, joint distribution PðY; nÞ has the following form26–29:

PðY; nÞ ¼
XK
k¼1

P X ¼ k; nxð ÞP YjX ¼ k; ny
� �

¼
XK
k¼1

P X ¼ k; nxð Þ
YJ
j¼1

P Yj jX ¼ k;nyj
� �

:
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If the number of latent classes is sufficiently large, a latent class model correctly picks up the first,
second, and higher order moments of the response variables, as is the case with all forms of mixture
models.30 It is unknown how many latent classes are sufficient for a good approximation of the joint
distribution. Vermunt et al.10 argued that it is better to have too many than too few latent classes.
Therefore, out of three selection criteria, Akaike’s information criterion (AIC31), Bayesian
information criterion (BIC32), and AIC3,33 they suggested using AIC to select the number of
latent classes because it yields the largest number of latent classes. Hence, letting AIC determine
the number of latent classes, abbreviated MILC (AIC), is the first option for MILC. However, it is
expected that an even larger number of latent classes can further improve the approximation of the
joint distribution. Having a relatively large number of latent classes, abbreviated MILC (Large), is
the second option for MILC. MILC can be applied using Latent GOLD,25 which uses the
nonparametric bootstrap to account for parameter uncertainty.

Multivariate imputation using chained equations. MICE12 is a fully conditional specification
method, which specifies the imputation model on a variable-by-variable basis using a separate
conditional distribution for each incomplete variable. Let Y�j denote the scores on all variables
except Yj. MICE reduces the problem of finding one J-dimensional joint distribution PðY; hÞ to
finding J univariate conditional distributions PðY1jY�1; hÞ, . . . ,PðYJjY�J; hÞ.

12-14 Conditional
distribution PðYj jY�j; hÞ is used for imputation of Yj (j ¼ 1, . . . , J). Under certain conditions, a
draw from each of the J conditional distributions is equivalent to a single draw from the joint
distribution,14 but it is not guaranteed. Results from simulation studies13,34 suggest that the
problem is unlikely to be serious in practice.

MICE starts with replacing missing values of the variables by draws from their respective
marginal distributions. Next, in an iterative process, the imputed values are updated variable by
variable using the univariate conditional distributions. When Yj is imputed, the other variables act
as predictor. If the joint distribution that is defined by the J conditional distributions exists then this
iterative process is a Gibbs sampler14 and converges to the joint distribution of the J variables.
Often, as little as 10 to 20 iterations are required.

The imputation model describing the conditional probabilities PðY1jY�1; hÞ, . . . ,PðYJjY�J; hÞ can
be any appropriate regression model depending on the nature of the outcome variable35: linear
regression in combination with predictive mean matching, logistic regression, polytomous
regression, and nonlinear regression. We focused on two imputation models; the first one being
logistic regression (abbreviated MICE (LOG)) which is the default method in the R-package
MICE12 for dichotomous outcome variables (for Study 2, polytomous regression is used, which is
the extension of MICE (LOG) to variables with more than 2 categories; for details see, e.g. Van
Buuren et al.12). Let b denote the vector of parameters for the logistic regression model. MICE
(LOG) models conditional distribution PðYj jY�j; bÞ as

logit P Yj jY�j; b
� �� �

¼ �0 þ �1Y1 þ � � � þ �j�1Yj�1 þ �jþ1Yjþ1 þ � � � þ �JYJ

We also considered linear regression in combination with predictive mean matching (abbreviated
MICE (PMM)). The first step of MICE (PMM) is to obtain a predicted value by means of linear
regression in which all other variables serve as predictors. In the second step, the respondent that has
the most similar predicted value as well as an observed value on the variable that is being imputed is
selected as the nearest neighbor. Subsequently, the observed value of this nearest neighbor is used as
the imputation value for the respondent with a missing value.
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Parameter uncertainty is accounted for in a Bayesian framework; a new set of parameters is
drawn from its posterior distribution for the construction of each imputed data set. More
specifically, the MICE algorithm involves iteratively sampling parameter values b from their
posterior distribution and imputing the missing values Yj by drawing from the conditional
distribution PðYj jY�j; bÞ. This corresponds with a Gibbs sampling scheme if the joint distribution
of the variables can be constructed from their univariate conditional distributions and if the
distribution from which parameters are drawn can be constructed from the joint distribution of
the variables and an appropriate prior distribution.12 These two conditions are not fulfilled when
using MICE with categorical data, which means that the algorithm is not an exact Gibbs sampler.
MICE can be conducted using the R package MICE12 or the STATA36 package ICE.22,37

2.2.3 Other incomplete-data methods

We have three remarks on other incomplete-data methods. First, besides MLID and multiple
imputation, there are two other categories of incomplete-data methods: the fully Bayesian
method38 and weighted estimating equations.16 We did not consider these two approaches to limit
the scope of this paper. A full Bayesian analysis with for example WinBugs is in fact similar to both
MLID and multiple imputation; that is, the parameters of the substantive model are estimated using
the incomplete data using an algorithm containing a step in which the missing values are imputed.38

Results can be expected to be similar to MLID. Weighting is typically used to deal with completely
missing data and has limited practical use with partially missing data.39 It may moreover yield
instable estimates in the presence of influential weights.40

Second, a popular imputation model for multiple imputation is the multivariate normal
distribution.7 The method is robust against deviations from normality41 and may even perform
well for categorical data,42 although some studies reported serious bias.43,44 We did not consider
incomplete data-methods that were not designed for categorical data as these methods are not
suitable for nominal variables (e.g., blood type, eye color, surgical outcome).

Third, the best known ad-hoc method is probably complete-case analysis, in which only the
observations without any missing values are used to estimate the substantive model. In other
words, subjects who have at least one missing value are discarded from the analysis. Hence, in
contrast to MLID, complete-case analysis does not incorporate all available information.
Complete-case analysis reduces power and may yield biased parameter estimates for the
substantive model if the data are not missing completely at random (MCAR)5; this MCAR
assumption is considered to be unrealistic in most situations.7 Complete-case analysis is included
in Study 2 and the real-data example. For Study 2, the number of variables was too large for more
preferable benchmarks such as MILL and MLID.

2.3 Advantages, disadvantages, and unresolved issues of the

incomplete-data methods

2.3.1 Practical issues

For application of the incomplete-data methods, sample size, complexity of the association structure
in the data, and percentage of missingness are not restrictive for any of the methods. A limitation of
MILL is that it cannot handle large numbers of variables because the number of cells in the
contingency table that has to be evaluated in the loglinear model becomes too large. For
example, the number of cells that need be evaluated exceeds one million for 20 dichotomous
variables and one billion for 30 dichotomous variables, 19 trichotomous variables, or 13 variables
with five categories. In cases where the substantive model contains fewer variables than available
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in the data set, a possible solution is to consider only those variables that are used in the substantive
model. However, following Schafer’s notion on the number of variables, using only a small number
of variables for the imputation model may result in biased parameter estimates. For MILC and
MICE, large numbers of variables do not pose a problem. A potential problem for MLID is that it
usually requires specialized software, depending on the substantive model that one wants to
estimate, whereas standard data-analysis techniques can be applied after the imputation phase of
MILL, MILC and MICE. Moreover, MLID can only be used if the number of variables in
substantive model is not too large.

2.3.2 Bias

We consider three possible causes of bias in the parameter estimates: First, non-ignorable
missingness in the data. Following Schafer’s notion on the number of variables, it is suggested
that the inclusion of many variables in the imputation model makes it more likely that violations
of ignorability are minor. The second possible cause of bias is misspecification of the imputation
model so that it is too parsimonious. The imputation model should be as general as possible; this
ensures that the imputed values behave as neutral as possible in subsequent analyses.6 Hence, the
main criterion of an adequate imputation model is whether it captures all the associations between
categorical variables that exist on the population level.6 The third possible cause of bias is
misspecification of the substantive model. However, this is unrelated to the incomplete-data
method being used and is not pursued further.

For MLID, no imputation model needs to be specified but a violation of the ignorability
assumption may result in biased parameter estimates. Statistical analyses that are based on
MLID only include those variables in the data that are substantively relevant, possibly excluding
many variables. When the number of variables in the substantive model is small, then, following
Schafer’s notion on the number of variables, the missingness mechanism in the reduced data is less
likely to be ignorable. Simulation studies showed that under ignorable missingness, MLID yields
unbiased parameter estimates.6

For MILL, the imputation model being too parsimonious is not an issue because the imputation
model is typically the saturated model. However, MILL can handle only a limited number of
categorical variables. As a result, following Schafer’s notation on the number of variables, the
missingness mechanism in the reduced data may not be treated as ignorable possibly resulting in
biased parameter estimates. Simulation studies showed that under ignorable missingness, MILL
yields unbiased parameter estimates.6

For MILC and MICE, the amount of non-ignorable missingness may be reduced if the data
contain many variables relevant for predicting the missing values (Schafer’s notion on the number of
variables) because both methods can handle a very large number of (auxiliary) variables. For MICE,
it is unknown which of the two variants yields the least bias, for MILC, it is expected that a large
number of latent classes, MILC (Large), produces less bias than a smaller number of latent classes,
MILC (AIC).

2.3.3 Stability

We consider three possible causes that influence the stability of parameter estimates in the presence
of incomplete data. A first possible cause is a too small effective sample. It is well known sample size
has a positive effect on stability.45 None of the incomplete-data methods under investigation unduly
reduce the effective sample size, in the way some ad hoc methods do (e.g., complete-case analysis,
pair-wise deletion). However, it is unknown whether the incomplete-data methods under
investigation yield the same stability of parameter estimates given a fixed sample size. A second
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possible cause is misspecification of the imputation model so that it is too complex. This is the well-
known tradeoff between bias and stability: If the imputation model is too parsimonious it may result
in biased outcomes, if it is too complex, it may result in less stable outcomes. For most researchers,
unbiased parameter estimates are more important than stable parameter estimates. The third
possible cause of instability is misspecification of the substantive model so that it is too complex.
However, this is unrelated to the incomplete-data method being used and is not pursued further.

Only for the second possible cause of instability, an overly complex imputation model, we have
expectations for the incomplete-data methods under investigation. MLID does not require an
imputation model, so no loss of stability can ensue from an overly complex imputation model.
For MILL, the imputation model is saturated meaning that it is expected to be overly complex in
most cases. Therefore, a certain loss of stability is expected for MILL in comparison to MLID.

For MILC, the two variants are expected to differ in stability because their respective imputation
models differ in complexity. MILC (Large) uses a relatively large number of latent classes which
means that its imputation model is expected to be able to capture every possible association. As is
the case with MILL, results produced by MILC (Large) are expected to lose a certain degree of
stability because its imputation model is expected to be overly complex. MILC (AIC) estimates the
required number of latent classes using AIC, which results in a relatively small number of latent
classes. Therefore, its imputation model is more parsimonious and its results are expected to be more
stable than MILC (Large).

For MICE, the two variants differ in the conditional imputation model that is used. The stability of
MICE depends on the degree to which higher order associations are included in the conditional
imputation model. The default setting of MICE (PMM) only includes main effects. However,
because predictive mean matching is used, all associations can be picked up for data sets with a small
number of variables. Therefore, we expect that the stability of the parameter estimates produced by
MICE (PMM) is similar to MILL and MILC (Large). The default setting of MICE (LOG) also only
includes main effects. Therefore, MICE (LOG) is expected to have relatively stable results.

2.3.4 Bias of the standard errors

It is unknown whether the six incomplete-data methods overestimate or underestimate the standard
errors of parameter estimates. Hence, we have no specific expectations with regard to the bias of the
standard errors.

3 Study 1: Bias, stability, and bias in standard errors produced by MILC,
MICE, MILL, and MLID for a small number of dichotomous variables

In Study 1, we compared incomplete-data methods MILC (AIC), MILC (Large), MICE (PMM),
and MICE (LOG) to MLID and MILL, on bias of the parameter estimates, stability of the
parameter estimates, and bias of the standard errors. Because MLID and MILL can handle only
a limited number of variables, the number of variables was kept small. The design of Study 1 was
motivated by the study of Kurian et al.,1 who studied several predictors of a single outcome variable
reduced ‘‘length of hospital stay’’ using logistic regression.

3.1 Method

3.1.1 General set up

The set up of the simulation study was as follows. First, we sampled complete data sets from a
population model. Second, we created incomplete data sets by deleting variable scores according to
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an MAR missingness mechanism. Third, for each incomplete data set we constructed five completed
data sets using a missing-data method. Fourth, we used the completed data sets to estimate the
parameters of the regression part of the population model and we reported the bias and stability of
the parameter estimates.

The population model was defined for five dichotomous predictor variables Y1, . . . ,Y5, and one
dichotomous outcome variable Y6. The categories were coded 0 and 1 (dummy coding). Dummy
coding was used because it is the most commonly used coding scheme for logistic regression models.
The associations among the predictor variables Y1, . . . ,Y5 were described by loglinear model

logPðY1,Y2,Y3,Y4,Y5Þ ¼ �1:47þ
X5
j¼1

�2 � Yj þ
X4
j¼1

X5
k¼jþ1

1 � YjYk ð2Þ

Outcome variable Y6 was related to the predictor variables by logit model

logitðY6Þ ¼ �0 þ Y1 þ �2 � Y2 þ �3 � Y3 þ Y4 þ Y5 � �23 � Y2 � Y3, ð3Þ

which contains main effects of the predictor variables as well as the interaction effect of Y2 and Y3.
The strength of the interaction term, �23, was manipulated in the study. The coefficients �0,�2 and �3
are changed together with �23 so that the average logit and the average effects of Y2 and Y3 remain
constant across conditions. Complete data sets were created by sampling from PðY1,Y2,Y3,Y4,Y5Þ

(equation (2)) and PðY6jY1,Y2,Y3,Y4,Y5Þ (equation (3)).
Variables Y1 and Y2 had missing values that were MAR. Variables R1 and R2 indicated whether a

score was missing, Ri ¼ 0, or observed, Ri ¼ 1, for Y1 and Y2, respectively. Missing values in Y1

were created using logistic regression model

logitðR1Þ ¼ �1 þ 1:09 � Y3 þ 2:01 � Y4 � :79 � Y3Y4, ð4Þ

and missing values in Y2 were created using logistic regression model

logitðR2Þ ¼ �2 þ 1:04 � Y5 þ 1:94 � Y6 � :74 � Y5Y6 ð5Þ

The total percentage of missingness (one of the predictor variables in Study 1, to be discussed
later) was manipulated by changing the intercepts (�1 and �2) in equations (4) and (5). This approach
allows for varying the total percentage of missingness without altering the strength of associations
between the predictor variables and the missingness indicator variable in equations (4) and (5).

For each incomplete data set, five completed data sets were created using a multiple imputation
method and for each completed data set logistic regression model

logitðY6Þ ¼ �0 þ �1Y1 þ �2Y2 þ �3Y3 þ �4Y4 þ �5Y5 þ �23Y2Y3 ð6Þ

was estimated. Rubin’s23 rules were used to combine the five sets of regression parameter estimates.
It should be noted that m ¼ 5 completed data sets is usually considered to be sufficient to obtain
stable results.6 However, other researchers have argued that m should be based on the total
percentage of missingness; for example, m should equal the total percentage of missing data to
obtain a sufficient degree of stability in the results.22 In many cases, this would render m larger
than five. We note that this is especially important for a single analysis; in a simulation study the size
of m has much less influence because of the large number of replications.
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Three software packages were used for multiple imputation and parameter estimation. Data were
generated using software package LEM,20 methods MILC and MILL were conducted using the
software program Latent GOLD 4.5,29 and for MICE we used the R package MICE.12 After
multiple imputation, the substantive model, defined in equation (6), was estimated using Latent
GOLD 4.5. For MLID, the substantive model was estimated using LEM.

3.1.2 Predictor variables

Incomplete-data method was a within factor with six levels: MILC (AIC), MILC (Large), MICE
(PMM), MICE (LOG), MLID, and MILL. The incomplete-data methods determine the imputation
model and may thus affect both bias and stability.

Strength of the interaction term was a between factor with three levels that was manipulated by
varying parameter �23 in equation (3). The levels were no three-way association (�23 ¼ :00), medium
(�23 ¼ �:80), and strong (�23 ¼ �2:00). Strength of the three-way association sets requirements for
the complexity of the imputation model. If this effect increases, a more complex imputation model is
required to pick up the associations in the data. It is expected that strength of the three-variable
association affects both bias and stability.

Percentage of missingness was a between factor with three levels: moderate (10% missingness),
high (20% missingness), and extreme (40% missingness). The percentage of missingness was
manipulated by varying parameters �1 and �2 in equations (4) and (5), respectively. For 10%
missingness, �1 ¼ �2:46 and �2 ¼ �2:53, for 20% missingness, �1 ¼ �1:41 and �2 ¼ �1:44, and
for 40% missingness, �1 ¼ �:39 and �2 ¼ �:41. As the percentage of missingness increases, the
imputation model becomes more important. The condition with 40% of missingness is included
because the consequences of an inadequate imputation model are magnified by an increase in the
percentage of missingness.

Sample size was a between factor with two levels: Small (N¼ 200) and large (N¼ 1000). Sample
size is expected to predominantly affect stability. In particular, the aim was to examine how sample
size is related to the stability of the statistical results in the analysis of interest for each missing-data
method.

The four predictor variables were fully crossed producing a 6� 3� 3� 2 design, with 1000
replications for each of the 18 combinations of the between-subjects variables.

3.1.3 Outcome variables

The outcome variables were bias of parameter estimates, standard deviation of parameter estimates
across replications, and bias of the reported standard errors.7,45 Let �̂bj denote a parameter estimate
of the jth variable (equation (6)) in replication b (b¼ 1, . . . , 1000), then the bias over 1000
replications was computed as

bias ¼
1

1000

X1000
b¼1

�̂bj � �j

� �
:

Stability, denoted by sd ð�̂j Þ, was measured by the standard deviation of parameter estimates
across replications and was computed as

sdð�̂j Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

999

X1000
b¼1

�̂2bj

vuut :
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Let seð�̂bjÞ denote the estimated standard error of parameter estimate �̂bj: Bias of the reported
standard errors (BSE) was computed as

BSE ¼
1

1000

X1000
b¼1

se �̂bj

� �
� sd �̂j

� �h i
,

The bias and stability of parameter estimates and bias of the standard errors were only considered
for parameters �2 (a main effect that is influenced by the interaction effect �23), �4 (a main effect that
is not influenced by the interaction effect �23), and the interaction effect �23.

3.2 Results

3.2.1 Bias

Table 1 shows the most important results for bias for 40% missingness. For lower percentages of
missingness, the pattern of the bias was similar but the absolute values were smaller. This confirms
that for larger percentages of missingness, the imputation model becomes more important. The most
important result is that incomplete-data methods MLID, MILC (AIC), and MICE (LOG) produced

Table 1. Bias in the estimates of three logistic regression coefficients for six incomplete-data methods, three

different levels of strength of three-variable associations (�23 ¼ 0, �23 ¼ �:8, �23 ¼ �2), two sample sizes (200,

1000), and 40% missingness.a

Incomplete-data method

N �23 RC MLID MILL MILC (large) MILC (AIC) MICE (PMM) MICE (LOG)

200 0 �2 ¼ 1 .040 .076 .082 .025 .051 .073

�4 ¼ 1 .065 .067 .061 .041 .068 .061

�23 ¼ 0 .046 �.014 �.008 .031 .014 .009

�.8 �2 ¼ 1:4 .050 .094 .086 .040 .058 .058

�4 ¼ 1 .071 .057 .058 .042 .062 .057

�23 ¼ �:8 �.036 .010 .022 .258 .036 .310

�2 �2 ¼ 2 .091 .103 .057 �.241 .057 �.357

�4 ¼ 1 .058 .040 .036 .002 .055 .021

�23 ¼ �2 �.144 �.074 �.006 .541 �.025 .733

1000 0 �2 ¼ 1 �.005 .010 .009 �.003 .011 .008

�4 ¼ 1 .015 .013 .015 .012 .016 .014

�23 ¼ 0 �.019 �.004 �.006 �.001 �.006 �.004

�.8 �2 ¼ 1:4 .026 .036 .036 �.088 .036 �.136

�4 ¼ 1 .005 .003 .004 �.004 .003 �.002

�23 ¼ �:8 �.010 �.016 �.015 .205 �.014 .302

�2 �2 ¼ 2 .006 .033 .028 �.216 .031 �.410

�4 ¼ 1 .014 .011 .011 �.015 .012 �.013

�23 ¼ �2 �.036 �.046 �.041 .457 �.056 .765

Note: N: sample size; �23: strength of three-variable association; RC: regression coefficient. For MILC (AIC) the average number of

classes indicated by AIC ranged from 2.8 (N¼ 200, �23 ¼ �2) to 3.8 (N¼ 1000, �23 ¼ �2), for MILC (Large) a constant number

of 12 classes was used.
aRemarkable bias is printed in boldface.
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large bias in the estimates of �2 and �23 when there was an interaction effect in the data (�23 6¼ 0),
whereas estimates of �4, a parameter not influenced by an interaction effect, showed much less bias.
These results suggest that MILC (AIC) and MICE (LOG) have imputation models that are too
parsimonious to pick up the three-way association in the data. Furthermore, the results suggest that
MLID cannot handle very well the combination of a small sample size and a complex association.
Seemingly, the asymptotic property of unbiased parameter estimates is not fully established under
these circumstances. A second result is that MILL, which we used as a gold standard, produced
similar bias or sometimes more bias (e.g., for �2 in condition �23 ¼ �2, N ¼ 200) than MILC
(Large) and MICE (PMM). A third result is that the bias was slightly larger for N ¼ 200 than
for N ¼ 1000, which indicates that increased sampling variability may somewhat increase bias.

3.2.2 Stability

Table 2 shows the most important results for stability for 40% missingness. The most important
result is that stability does not change dramatically across incomplete-data methods. MILC (AIC)
was slightly more stable than MILC (Large), and MICE (LOG) is slightly more stable than MICE
(PMM). This was expected because MILC (AIC) and MICE (LOG) are more parsimonious than
MILC (Large) and MICE (PMM), respectively. The expected result that MILL would be less stable
than MLID was not demonstrated. As expected, sample size had a positive effect on stability. For
small samples (N¼ 200), the stability could be considered low, resulting in low power. For example,

Table 2. Stability of the estimates of three logistic regression coefficients for six incomplete-data methods, three

different levels of strength of three-variable associations (�23 ¼ 0, �23 ¼ �:8, �23 ¼ �2), two sample sizes (200,

1000), and 40% missingness

Incomplete-data method

N �23 RC MLID MILL MILC (large) MILC (AIC) MICE (PMM) MICE (LOG)

200 0 �2 ¼ 1 .862 .845 .858 .600 .951 .738

�4 ¼ 1 .500 .496 .502 .445 .518 .501

�23 ¼ 0 1.19 1.17 1.17 .840 1.23 .729

�.8 �2 ¼ 1:4 .938 .931 .924 .679 1.01 .780

�4 ¼ 1 .505 .506 .510 .448 .533 .508

�23 ¼ �:8 1.21 1.22 1.20 .862 1.26 .737

�2 �2 ¼ 2 .916 .956 .948 .748 1.02 .806

�4 ¼ 1 .494 .510 .515 .449 .537 .501

�23 ¼ �2 1.24 1.25 1.25 .917 1.29 .771

1000 0 �2 ¼ 1 .344 .373 .370 .264 .380 .301

�4 ¼ 1 .203 .206 .206 .188 .206 .205

�23 ¼ 0 .479 .515 .509 .362 .522 .306

�.8 �2 ¼ 1:4 .365 .389 .384 .291 .392 .313

�4 ¼ 1 .205 .207 .208 .188 .207 .204

�23 ¼ �:8 .470 .507 .494 .376 .501 .310

�2 �2 ¼ 2 .377 .407 .404 .342 .402 .306

�4 ¼ 1 .200 .205 .205 .185 .205 .197

�23 ¼ �2 .482 .526 .517 .451 .514 .298

Note: N: sample size; �23: strength of three-variable association; RC: regression coefficient.
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the population value of �4 was equal to 1, but in case sdð�̂4Þ ¼ :501 (MILL, medium three-variable
association), which is even one of the smaller standard deviations we found, one may expect to
find estimates of �4 between .02 and 1.98 (95% confidence interval). For large samples (N¼ 1000),
the stability is much better. Percentage of missingness also had a negative effect on the stability.
This can be expected because a larger percentage of missingness in fact means a reduction of the
sample size.

3.2.3 Bias of the standard errors

Table 3 shows the most important results for bias of the standard errors for 20% missingness. Bias
of the standard errors was smaller for N¼ 1000 than for N¼ 200. Bias of the standard errors was
largest for the parameters associated with the three-variable association (�2 and �23) For N¼ 200,
MILL and MILC (Large) had the smallest bias, whereas MILC (AIC) and MICE (LOG)
overestimated the standard errors and MLID and MICE (PMM) underestimated the standard
errors. For N¼ 1000, MILL, MILC (AIC), MILC (Large), and MICE (PMM) had the smallest
bias, whereas MLID underestimated and MICE (LOG) overestimated the standard errors. This
renders MILC (Large) as the most favorable incomplete-data method with respect to bias in
standard errors.

Table 3. Bias in the standard errors of the estimates of three logistic regression coefficients for six incomplete-data

methods, three different levels of strength of three-variable associations (�23 ¼ 0, �23 ¼ �:8, �23 ¼ �2), two sample

sizes (200, 1000), and 40% missingness.a

Incomplete-data method

N �23 RC MLID MILL MILC (large) MILC (AIC) MICE (PMM) MICE (LOG)

200 0 �2 ¼ 1 �.040 �.044 �.044 .151 �.202 .072

�4 ¼ 1 �.025 �.021 �.022 .015 �.052 �.021

�23 ¼ 0 �.092 �.108 �.077 .174 �.219 .296

�.8 �2 ¼ 1:4 �.086 �.077 �.064 .116 �.214 .073

�4 ¼ 1 �.027 �.017 �.018 .022 �.054 �.018

�23 ¼ �:8 �.092 �.077 �.062 .194 �.209 .315

�2 �2 ¼ 2 �.032 �.065 �.045 .080 �.199 .065

�4 ¼ 1 �.010 �.015 �.017 .024 �.052 �.012

�23 ¼ �2 �.074 �.064 �.054 .164 �.193 .292

1000 0 �2 ¼ 1 �.001 �.015 �.011 .065 �.060 .038

�4 ¼ 1 �.006 �.005 �.005 .008 �.010 �.005

�23 ¼ 0 �.015 �.030 �.025 .088 �.086 .130

�.8 �2 ¼ 1:4 �.017 �.023 �.021 .041 �.067 .029

�4 ¼ 1 �.007 �.006 �.007 .009 �.011 �.004

�23 ¼ �:8 �.005 �.015 �.005 .070 �.059 .126

�2 �2 ¼ 2 �.012 .040 �.036 .080 �.074 .032

�4 ¼ 1 .002 �.002 �.000 .024 �.006 .001

�23 ¼ �2 .002 .028 �.028 .164 �.068 .133

Note: N¼ sample size; �23¼ strength of three-variable association; RC¼ regression coefficient.
aRemarkable bias is printed in boldface.
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4 Study 2: bias, stability, and bias in standard errors produced by MILC,
MICE and complete-case analysis for a larger number of trichotomous
variables

In Study 2, we compared incomplete-data methods MILC (AIC), MILC (Large, K¼ 33), MICE
(PMM), and MICE (LOG) to complete-case analysis, on bias of the parameter estimates, stability of
the parameter estimates, and bias of the standard errors. Benchmarks MLID and MILL could no
longer be used because the number of variables (11) was too large. The main question for Study 2
was whether MILC and MICE would also work for polytomous categorical data and for large
numbers of possible response patterns. In Study 1, the number of possible response patterns was
26¼ 64, whereas in Study 2, the number of possible response patterns was increased to 311¼ 177,147.
The main objective for the design of Study 2 is that the associations among the variables need to be
complex, to test whether the incomplete-data methods can pick up the associations correctly.

4.1 Method

4.1.1 General set-up

In Study 2, the population model from which the complete data sets were sampled contained eight
trichotomous predictor variables (Y1, . . . ,Y8) and three trichotomous outcome variables (Y9,Y10,
and Y11). The categories were coded �1, 0, and 1. The associations among the 11 are described by a
path model for categorical data46 containing one-, two-, and three-way associations (see Figure 1 for
a graphical representation and Appendix A for the chosen parameter values).

Variables Y1,Y3,Y4, and Y11 had missing values; the other variables were completely observed.
The missingness mechanism was MAR, and rather complex. For Y1 and Y3, the missingness
depended on Y2 and Y9. Let R indicate whether (score 1) or not (score 0) a score is observed.
Both for Y1 and Y3, the logit of R was logitðRÞ ¼ �5:06þ�2 � Y9 þ 3 � Y2, resulting in
approximately 20% missing values for each variable. Similarly, for Y4 and Y11, the missingness
depended on Y7 and Y9. Both for Y4 and Y11, logitðRÞ ¼ �5:50þ 3 � Y9 � 1:5 � Y7, also resulting in
approximately 20% missing values for each variable. This procedure kept the total percentage of
missingness constant at 4=11 � 20%þ 7=11 � 0% ¼ 7:27%.

For each incomplete data set, the multiple imputation methods created m¼ 5 completed data sets.
For complete-case analysis, a complete data set was obtained by simply deleting every row that
contained at least one missing value.

The substantive model was an adjacent category ordinal logit model35 for outcome variable Y9

containing Y1,Y3,Y4, and Y11 as predictors. The logit equation has the form

logitðY9 ¼ j jY9 ¼ j� 1 or Y9 ¼ j Þ ¼ �0j þ �1Y1 þ �2Y2 þ �3Y3 þ �4Y4 þ �12Y1Y2,

for j¼ 1, 2. Note that the substantive model is part of the population model (Figure 1) and includes
the main effects of the predictors of Y9, and the interaction effect of Y1 and Y2. The latter implies a
three-variable association among Y1,Y2, and Y9.

Three software packages were used for data generation, incomplete-data handling, and estimating
the substantive model. Complete and incomplete data were generated by LEM.20 The imputation
phase of MILC (Large) and MICE (PMM) was performed using Latent GOLD and the
R package MICE, respectively. Latent GOLD was used to estimate the substantive model for by
MILC (Large) and MICE (PMM), using the completed datasets, and for MLID and complete-case
analysis.
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4.1.2 Design

We only varied sample size and incomplete-data method. Sample size had two levels: medium
(N¼ 500) and large (N¼ 1000); incomplete-data method had five levels: MILC (AIC), MILC
(Large), MICE (LOG), MICE (PMM), and complete-case analysis. This yields a 5� 2 design.
The outcome variables were equivalent to those in Study 1 (bias, stability, and bias of standard
errors).

4.2 Results

4.2.1 Bias

Table 4 shows the bias for �2, the main effect of a predictor that is also involved in the interaction
effect; �3, the main effect of a predictor not involved in the interaction effect; and �12, the interaction
effect itself. The most important result is that MICE (PMM) and MICE (LOG) produced relatively
large bias in the estimates of �3 and �12, suggesting that the imputation models of MICE (LOG) and
MICE (PMM) do not correctly pick up the three-way association in the data. Furthermore,
complete-case analysis produced very large bias in the estimates of �2 and �12, confirming that

Y1

Y3

Y2

Y4

Y5

Y6

Y7

Y8

Y9

Y10

Y11

Figure 1. Population model of the second simulation study. The model contains 11 trichotomous variables: Y1

through Y8 are predictor variables and Y9 through Y11 are outcome variables.
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complete-case analysis leads to biased results when the data are MAR. MILC (AIC) and MILC
(Large) had a similar performance in terms of bias.

4.2.2 Stability

Table 5 shows the stability of �2, �3, and �12. The most important result is that (almost) unbiased
parameter estimates (see Table 4) showed similar stability across methods, whereas biased parameter
estimates tended to be either more stable or more unstable. This effect was clearer for N¼ 500 than
for N¼ 1000. For example, for the estimate of �2, MILC (Large), MILC (AIC), MICE (PMM), and
MICE (LOG) show similar bias and similar stability of parameter estimates. However, complete-
case analysis overestimated �2 and this estimate was too stable, whereas MICE (PMM) and MICE
(LOG) overestimated �3 and this estimate was too unstable.

4.2.3 Bias of the standard errors

Table 6 shows the bias of the standard errors of �2, �3, and �12. Bias of the standard errors was
smaller for N¼ 1000 than for N¼ 500. The multiple imputation methods yielded similar upward bias
in their standard errors, whereas complete-cases analysis tended to yield a larger overestimation of
the standard errors. Bias was largest for the standard error of the interaction effect (�12).

Table 4. Bias in the estimates of three logistic regression coefficients for five incomplete-data methods, two sample

sizes (500, 1000), and 20% missingness on four variables.a

Incomplete-data method

N RC CC MILC (large) MILC (AIC) MICE (PMM) MICE (LOG)

500 �2 ¼ �:45 .504 �.033 �.028 �.035 �.036

�3 ¼ :5 .017 .001 �.002 .054 .051

�12 ¼ :45 �.110 �.068 �.066 �.114 �.113

1000 �2 ¼ �:45 .501 �.027 �.025 �.033 �.035

�3 ¼ :5 .019 .001 �.003 .053 .046

�12 ¼ :45 �.113 �.061 �.061 �.116 �.114

Note: N: sample size; RC: regression coefficient; CC: complete-case analysis.
a Remarkable bias is printed in boldface.

Table 5. Stability of the estimates of three logistic regression coefficients for five incomplete-data methods, two

sample sizes (500, 1000), and 20% missingness on four variables

Incomplete-data method

N RC CC MILC (large) MILC (AIC) MICE (PMM) MICE (LOG)

500 �2 ¼ �:45 .101 .290 .288 .293 .292

�3 ¼ :5 .215 .218 .215 .240 .240

�12 ¼ :45 .146 .159 .157 .127 .130

1000 �2 ¼ �:45 .069 .272 .271 .275 .275

�3 ¼ :5 .224 .222 .220 .247 .246

�12 ¼ :45 .134 .162 .161 .134 .137

Note: N: sample size; RC: regression coefficient; CC: complete-case analysis.
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5 Real-data example

We applied the most promising variants of MILC and MICE (i.e., MILC (Large, K¼ 12) and MICE
(PMM)), complete-case analysis, and MLID to data from the Investigators of Projective Services
Project for Older Persons,47 which have been discussed and analyzed earlier by Fuchs48 to illustrate
the MLID approach. The data set contains the scores of 164 patients on six dichotomous variables
(Table 7). One patient had a missing value on the physical status, 33 had a missing value for mental
status, and 29 respondents had a missing value on both physical and mental status. The question of
interest is whether the unexpected negative association between treatment and survival disappears
when controlling for age, gender, physical status, and mental status.

The substantive model predicts survival by the main effects of all variables, plus the interaction
effect of mental status, Y1, and physical status, Y2. We defined the following regression model,

logitðY6Þ ¼ �0 þ �1Y1 þ �2Y2 þ �3Y3 þ �4Y4 þ �5Y5 þ �12Y1Y2: ð7Þ

Contrary to Fuchs, we chose to include the interaction between mental status and physical status
because we were interested in whether the imputation methods yielded similar results to MLID in a
model containing a higher-order association. Once the data had been imputed using MILC (Large)

Table 6. Bias in the standard errors of the estimates of three logistic regression coefficients for five incomplete-data

methods, two sample sizes (500, 1000), and 20% missingness on four variablesa

Incomplete-data method

N RC CC MILC (large) MILC (AIC) MICE (PMM) MICE (LOG)

500 �2 ¼ �:45 .126 .080 .080 .082 .081

�3 ¼ :5 .120 .081 .083 .088 .084

�12 ¼ :45 .156 .100 .102 .106 .102

1000 �2 ¼ �:45 .089 .058 .058 .058 .057

�3 ¼ :5 .086 .061 .062 .062 .059

�12 ¼ :45 .111 .076 .077 .075 .072

Note: N: sample size; RC: regression coefficient; CC: complete-case analysis.
aRemarkable bias is printed in boldface.

Table 7. Information on the variables of the Projective Services Project for

older persons.47

Variable Levels Code

Mental status Poor, good Y1

Physical status Poor, good Y2

Age less than 75, over 75 Y3

Group membership experiment, control Y4

Sex male, female Y5

Survival status Deceased, survived Y6
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and MICE (PMM), the substantive model defined in equation (7) was estimated. We also estimated
the logistic regression model using MLID (as a benchmark) and complete-case analysis. Schafer’s
notion on the number of variables is of no concern in this analysis because the substantive model
and the imputation model are identical; both models include all available variables. Therefore, the
performance of MILC (Large), MICE (PMM), and complete-case analysis was assessed by
comparing them to MLID (Table 8).

For all incomplete-data methods, only age (�3, negative effect) had a significant effect on survival
status. The fact that all other effects were not statistically significant may be due to the small sample
size. Nevertheless, it remains interesting to compare the parameter estimates across incomplete-data
methods. Table 8 shows that the estimates yielded by MILC (Large) were very similar to MLID, for
all parameters. MICE (PMM) produced estimates of �3,�4 and �5 that were very similar to MLID,
but yielded relatively large differences for parameters �1,�2, and �12. Complete-case analysis
produced rather large differences for the estimates of �2,�4,�5 and �12. MLID, MILC (Large),
and MICE (PMM) did not have large differences in the estimated standard errors. However,
complete-case analysis yielded relatively large standard errors for parameters �3,�4, and �5,
compared to MLID.

6 Discussion

The aim of this paper was to investigate which incomplete-data method for categorical data should
be recommended to practitioners. We assessed the performance of MILC and MICE with regard to
three criteria, relative to MLID, MILL, and complete-case analysis. Based on the theoretical
discussion, Study 1, and Study 2, MILC (Large) appears to be the incomplete-data method that
meets the three criteria to the greatest extent. The other incomplete-data methods have one or more
features that make them suboptimal. MILL cannot handle more than a few variables, MLID does
not allow for the use of small substantive model as it can affect the MAR assumption, and may yield
biased parameter estimates for a complex association in case of a small sample size. While in Study 1
MICE (PMM) performed rather well, Study 2 showed that MICE (PMM) may yield biased
parameter estimates when the number of possible data pattern is large, especially when the
sample size is small. MILC (AIC) and MICE (LOG) may fail to capture higher-order
associations in the data, which yields parameter estimates with an unacceptably high bias.

Table 8. Estimated logistic regression coefficients using MLID, MILC (Large), and MICE (PMM)a

Incomplete-data method

RC
MLID Complete-case MILC (Large) MICE (PMM)

Est. SE Est. SE Est. SE Est. SE

�1 3.175 2.188 2.844 2.070 3.777 1.984 2.271 1.815

�2 2.614 2.240 1.816 2.180 3.162 2.102 1.439 1.979

�3 �1.417 .431 �1.568 .526 �1.380 .422 �1.426 .434

�4 .459 .394 .176 .481 .496 .392 .475 .384

�5 �.506 .417 �.281 .525 �.420 .437 �.583 .410

�12 �1.017 1.269 �.629 1.217 �1.283 1.168 �.382 1.090

Note: RC: regression coefficient; Est: estimate; SE: standard error.
aRemarkable bias is printed in boldface
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In Study 2 it was demonstrated that complete-case analysis yields very large bias in the parameter
estimates and a loss of power due to inflated standard errors. The findings in the real-data example
were consistent with these results.

A remaining issue with MILC is that there is not yet a guideline indicating the minimum number
of required latent classes. The simulation study showed that over fit does not seem to be a problem,
which was also argued by Vermunt et al.,10 so one can always resort to estimating a latent class
model with many classes. However, having a minimum of required latent classes would greatly
facilitate the use of MILC because estimating latent class models with 40, 50, or 60 latent classes
can be very time consuming. We showed that in case of a small table AIC is not a good criterion
because the number of classes is too low; for a large table MILC (AIC) yielded good results.
A heuristic rule may be to use as many classes as there are categories in the data. For example,
for a data set consisting of 10 variables with three response categories and 5 dichotomous variables,
the number of latent classes would be 10� 3þ 5� 2 ¼ 40 latent classes. Whether this heuristic rule
is reasonable should be investigated in future research.

An additional comment should be made for MICE (LOG), as it may have been presented too
negatively. The problem of MICE (LOG) is that in the default setting, interaction effects are not
included in the conditional models. As a result, the imputation model may be too parsimonious
yielding biased parameter estimates. Further research would be required to investigate whether this
method is able to produce unbiased results if the conditional model included higher-order interactions.

Lastly, we note that each incomplete-data method had to be applied using a different software
package, as there is no package available that applies all of the methods. Further research is
warranted to investigate the potential differences between implementations of MILC and MICE
across software packages.
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Appendix A

Tables A1, A2, and A3 show the parameter values describing the population model in Study 2
(Figure 1). All variables had three nominal response categories. Because dummy coding was used,
the effect of the first category was zero (not displayed). For all two-way and three-way interactions
only a single value is shown because the associations were defined to be ordinal (linear-by-linear).
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Table A1 shows the log linear parameters describing PðY1,Y2,Y3,Y4,Y5Þ, Table A2 shows the log
linear parameters describing PðY6,Y7,Y8Þ, and Table A3 shows the logistic regression parameters
relating predictor variables Y1,Y2,Y3,Y4,Y5,Y6,Y7, and Y8 to outcome variables Y9,Y10, and Y11:

Table A1. Loglinear parameters describing P(Y1,Y2,Y3,Y4,Y5)

Y1 ¼ :15,:0ð Þ Y1Y2 ¼ :3 Y2Y4 ¼ :55 Y1Y4Y5 ¼ �:35

Y2 ¼ :25,:05ð Þ Y1Y3 ¼ �:4 Y2Y5 ¼ �:36 Y2Y4Y5 ¼ �:25

Y3 ¼ �:15,� :15ð Þ Y1Y4 ¼ �:2 Y3Y4 ¼ �:15 Y1Y2Y3 ¼ :55

Y4 ¼ :05,:25ð Þ Y1Y5 ¼ :5 Y3Y5 ¼ �:05

Y5 ¼ �:25,� :05ð Þ Y2Y3 ¼ �:3 Y4Y5 ¼ :3

Table A3. Logistic regression parameters

Y9jY1 ¼ �:3 Y10jY4 ¼ :22 Y11jY10 ¼ �:15

Y9jY2 ¼ �:45 Y10jY5 ¼ :32 Y11jY6 ¼ �:3
Y9jY3 ¼ :5 Y10jY6 ¼ :42 Y11jY7 ¼ :35

Y9jY1Y2 ¼ :45 Y10jY7 ¼ �:38 Y11jY8 ¼ :1
Y9jY11 ¼ :35 Y10jY8 ¼ :34 Y11jY6Y7 ¼ :4

Y10jY6Y7 ¼ �:14

Table A2. Loglinear parameters describing P(Y6,Y7,Y8)

Y6 ¼ :15,:75ð Þ Y6Y7 ¼ :32

Y7 ¼ :25,1:25ð Þ Y6Y8 ¼ �:4
Y8 ¼ :1,:5ð Þ Y7Y8 ¼ :24

Y6Y7Y8 ¼ :4
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