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Implicit versus explicit comparatives

Robert van Rooij∗

ILLC, University of Amsterdam

Abstract

It is natural to assume that the explicit comparative – John is taller
than Mary – can be true in cases the implicit comparative – John is
tall compared to Mary – is not. This is sometimes seen as a threat to
comparison-class based analyses of the comparative. In this paper it
is claimed that the distinction between explicit and implicit compar-
atives corresponds to the difference between (strict) weak orders and
semi-orders, and that both can be characterized naturally in terms of
constraints on the behavior of predicates among different comparison
classes.

1 Introduction

Consider the following figure, picturing the lengths of John and Mary.

John Mary

Chris Kennedy (this volume) observed that according to most people’s intu-
ition, this picture allows us to say (1-a). At the same time, most people would
say that (1-b) is false.

(1) a. John is taller than Mary.
b. Compared to Mary, John is tall, but compared to John, Mary is

not tall.

∗I would like to thank an anonymous reviewer and the editors (Paul Egre and Nathan
Klinedinst) for their useful comments on an earlier version of this paper. I would like Chris
Kennedy for stating the challenge and for pointing out the reference to Sapir.
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This observation is stated as a challenge to followers of Klein (1980). According
to Klein (1980), (1-a) is true if and only if there is a comparison class according
to which John is tall and Mary is not, i.e. (Klein). It is standardly assumed
(e.g. Von Stechow, 1984) that Klein’s actual analysis of (1-a) is equivalent with
the simpler analysis of van Benthem, (Benthem), which will be discussed in
section 2:

(Klein) (1-a) is true iff there is a comparison class such that John is
tall here and Mary is not.

(Benthem) (1-a) is true iff John is tall in comparison class {John, Mary},
but Mary is not.

But according to (Benthem), (1-a) and (1-b) have the same truth conditions,
and it is impossible to account for the contrast between them in truth con-
ditional terms. We will meet Kennedy’s challenge by making a distinction
between analyses (Klein) and (Benthem).

2 Comparatives and comparison classes

Although expressions of many lexical categories are vague, most research on
vagueness concentrates on adjectives like ‘tall’ and ‘bald’. In linguistics these
adjectives are known as gradable adjectives and should be distinguished from
non-gradable adjectives like ‘pregnant’ and ‘even’. The latter adjectives do not
give rise to (much) vagueness. There exist two major types of approaches to
the analysis of gradable adjectives: degree-based approaches and delineation
approaches. Degree-based approaches (e.g. Seuren, 1973; von Stechow, 1984;
Kennedy, 1999), analyze gradable adjectives as relations between individuals
and degrees, where these degrees are thought of as scales associated with the
dimension referred to by the adjective. Individuals can possess a property to a
certain measurable degree. The truth conditions of sentences involving these
adjectives are stated in terms of degrees. According to the most straightfor-
ward degree-based approach, a sentence like John is tall is true iff the degree to
which John is tall is (significantly) greater than a (contextually given) standard
of height. The comparative John is taller than Mary is true iff the (maximal)
degree to which John is tall is greater than the (maximal) degree to which
Mary is tall.1

Delineation approaches (Lewis, 1970; Kamp, 1975; Klein 1980, 1991) an-
alyze gradable adjectives like ‘tall’ as simple predicates, but assume that the

1More complex sentences suggest that this simple picture is naive, and there has been a
lot of discussion of how to improve on it. I will ignore this discussion in this paper.
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extension of these terms are crucially context-dependent. If one accounts for
comparatives in terms of supervaluation structures as Lewis and Kamp do, the
most obvious way to account for this context-dependence is very similar to the
one used in degree-based approaches: context just determines the cutoff-point.
But, of course, context-dependence is more fine-grained than that. For Jumbo
to be a small elephant, for instance, means that Jumbo is being small for an
elephant, but that does not mean that Jumbo is small. For instance, Jumbo
will be much bigger than any object that counts as a big mouse. One way to
make this explicit is to assume with Klein (1980) that every adjective should
be interpreted with respect to a comparison class, i.e. a set of individuals. The
truth of a sentence like John is tall depends on the contextually given com-
parison class: it is true in context (or comparison class) c iff John is counted
as tall in this class. Klein (1980) further proposes that the meaning of the
comparative John is taller than Mary is context-independent and the sentence
is true iff there is a context (henceforth we will use ‘context’ instead of the
more cumbersome ‘comparison class’) according to which John counts as tall,
while Mary does not. If there is any context in which this is the case, it will
also be the case in the context containing only John and Mary.

Klein (1980) favors the delineation approach towards comparatives for a
number of reasons. First, a degree-based approach only makes sense in case
the comparative gives rise to a total ordering. But for at least some cases
(e.g. more clever than) this does not seem to be true, because clever is a
multi-dimensional adjective. Second, the delineation account assumes that
the meaning of the comparative ‘taller than’ is a function of the meaning of
‘tall’. This is much in line with Frege’s principle of compositionality,2 and also
accounts for the fact that in a wide variety of languages the positive is formally
unmarked in relation to the comparative.

An analysis of comparatives in terms of comparison classes is sometimes
stated as if it presupposes that the domain of all individuals of any gradable
adjective has an inherent ordering imposed upon it, and that the ordering on
a comparison class must preserve the initial ordering on the domain of the
adjective in order to avoid undesirable entailments. Kennedy (1997) states
this in terms of the following consistency postulate.

For any context in which a is ϕ is true and b ≥ a with respect to
the original ordering on the domain of ϕ, then b is ϕ is also true,
and for any context in which a is ϕ is false, and a ≥ b, then b is ϕ
is also false.

2But see Von Stechow (1984) for an argument saying that also the degree-based approach
is in line with Frege’s principle.
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But if this were so, the delineation analysis of comparatives would be re-
duced to an initial comparison ordering, and thus the delineation approach
would not take the positive use of the adjective as basic. Fortunately, Van
Benthem (1982) has shown that what Kennedy calls the initial ordering can
be derived from how we positively use the adjective in certain contexts, plus
some additional constraints on how the meaning of the adjective can change
from context to context. This is done in terms of the notion of a context struc-
ture, M , being a triple 〈X,C, V 〉, where X is a non-empty set of individuals,
the set of contexts, C, consists of all finite subsets of X, and the valuation V
assigns to each context c ∈ C and each property T those individuals in c which
are to count as ‘being T in c’.

This definition leaves room for the most diverse behavior of individuals
across contexts. Based on intuition (for instance by visualizing sticks of vari-
ous lengths), however, the following plausible cross-contextual principles make
sense, which constrain the possible variation. Take two individuals x and y in
context c such that M, c |= T (x)∧¬T (y). We now constrain the set of contexts
C by the following three principles: No Reversal (NR), which forbids x and y
to change roles in other contexts:

(NR) ¬∃c′ ∈ C : M, c′ |= T (y) ∧ ¬T (x).

This constraint does not prevent x and y both to be tall in larger contexts
than c. However, once we look at such larger contexts, the Upward Difference
(UD) constraint demands that there should be at least one difference pair:

(UD) ∀c′ ∈ C[c ⊆ c′ → ∃z1, z2 : M, c′ |= T (z1) ∧ ¬T (z2)]

The final Downward Difference (DD) principle constrains in a very similar
way what is allowed if we look at subsets of c: if x and y are elements of this
subset, there still should be a difference pair:

(DD) ∀c′ ∈ C[(c′ ⊆ c & x, y ∈ c′)→ ∃z1, z2 : M, c′ |= T (z1) ∧ ¬T (z2)]

If we say that ‘John is taller than Mary’ is true if and only if there is a
context c such that M, c |= T (j) ∧ ¬T (m), Van Benthem shows that the com-
parative (given the above constraints on context strucures) as defined above
has exactly those properties which we intuitively want for most comparatives
(see below). Thus we have seen that on the basis of the initial idea of the
delineation approach we can derive the ordering relation that Kennedy (1997)
claims delineation approaches must already take for granted to begin with.

In the definition of a context structure we used above, context structures
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give rise to orderings for any context-dependent adjective. For convenience,
we will just limit ourselves to one adjective: P . If we do so, we can think of a
context structure as a triple 〈X,C, P 〉, where P can be though of as a choice
function, rather than a general valuation function.

Definition 1.
A context structure M is a triple 〈X,C, P 〉, where X is a non-empty set of
individuals, the set of contexts, C, consists of all finite subsets of X, and the
choice function P assigns to each context c ∈ C one of its subsets.

Notice that P (c) (with respect to context structure M) corresponds to the
set {x ∈ X : M, c |= P (x)} in our earlier formulation. To state the cross-
contextual constraints somewhat more compactly than we did above, we define
the notion of a difference pair: 〈x, y〉 ∈ DP (c) iffdef x ∈ P (c) and y ∈ (c−P (c)).
Now we can define the constraints as follows (where c2 abbreviates c× c, and
D−1
P (c) =def {〈y, x〉 : 〈x, y〉 ∈ DP (c)}):

(NR) ∀c, c′ ∈ C : DP (c) ∩D−1
P (c′) = ∅.

(UD) c ⊆ c′ and DP (c) 6= ∅, then DP (c′) 6= ∅.
(DD) c ⊆ c′ and DP (c′) ∩ c2 6= ∅, then DP (c) 6= ∅.

If we say that x >P y, iffdef x ∈ P ({x, y}) and y 6∈ P ({x, y}), van Benthem
(1982) shows that the ordering as defined above gives rise to a strict weak
order. A structure 〈X,R〉, with R a binary relation on X, is a strict weak
order just in case R is irrreflexive (IR), transitive (TR), and almost connected
(AC):

Definition 2.
A (strict) weak order is a structure 〈X,R〉, with R a binary relation on X that
satisfies the following conditions:
(IR) ∀x : ¬R(x, x).
(TR) ∀x, y, z : (R(x, y) ∧R(y, z))→ R(x, z).
(AC) ∀x, y, z : R(x, y)→ (R(x, z) ∨R(z, y)).

The constraint that R should be almost connected is in some circles better
known under its contrapositive guise as co-transitivity: ∀x, y, z : (¬R(x, z) ∧
¬R(z, y))→ ¬R(x, y). If we now define the indifference relation, ‘I’, or in our
case ‘≈P ’, as follows: x ≈P y iffdef neither x >P y nor y >P x, it is clear that
‘≈P ’ is an equivalence relation. It is well-known from measurement theory
(e.g. Krantz et al, 1971) that in case ‘>P ’ gives rise to a (strict) weak order, it
can be represented numerically by a real valued function fP such that for all
x, y ∈ X: x >P y iff fP (x) > fP (y), and x ≈P y iff fP (x) = fP (y).
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3 Explicit versus implicit comparison

Consider again the following figure, picturing the lengths of John and Mary.

John Mary

How can we account for the fact that the explicit comparative (1-a) is intu-
itively true, while the implicit comparative (1-b) is false?3

(1-a) John is taller than Mary.

(1-b) Compared to Mary, John is tall, but compared to John, Mary is not
tall.

It is clear that according to (Benthem) (1-a) and (1-b) have the same truth
conditions, and it is impossible to account for the contrast between them in
truth conditional terms.

(Benthem) (1-a) is true iff John is tall in comparison class {John, Mary},
but Mary is not.

Of course, Klein’s (1980) original analysis (Klein) was a bit different, so it
seems possible to account for the difference between (1-a) and (1-b) in terms
of the difference between (Klein) and (Benthem).

(Klein) (1-a) is true iff there is a comparison class s.t. John is tall here
and Mary is not.

It can be easily shown, however, that in case Klein would have adopted
Van Benthem’s (1982) cross-contextual constraints, (Klein) is equivalent to
(Benthem). It is immediately clear that by Van Benthem’s definition of a
context structure and by adopting his constraints, analysis (Klein) follows
from analysis (Benthem). But it is important to see why also the reverse
holds. So suppose that (1-a) is true according to (Klein). That means that
there exists a comparison class c ∈ C containing John and Mary such that
j ∈ P (c) ∧ m 6∈ P (c). But this means that 〈j,m〉 is a difference pair in c,
and by (DD) it follows that 〈j,m〉 will be a difference pair in all c′ ∈ C that
are subsets of c containing both John and Mary. By the assumption that C

3According to Chris Kennedy (p.c.) the names ‘explicit’ versus ‘implicit’ comparatives
goes back to Sapir (1944).
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contains all finite subsets of X, it follows that 〈j,m〉 is also a difference pair
for comparison class {John, Mary}, which means that (1-a) is also predicted
to be true by (Benthem).

I would like to point out that the derivation of the truth of the compara-
tive according to (Benthem) from its truth according to (Klein) is based on (at
least) two assumptions. The first assumption is that we do not really make a
distinction between it not being the case that Mary is tall, and Mary’s being
not-tall, or, perhaps equivalently, Mary’s being short. A second crucial pre-
supposition on which the above derivation is based is the assumption that C
contains all finite subsets of X, in particular that {John, Mary} is an element
of C. The first assumption, however, was explicitly rejected by Klein (1980).
Klein (1980) explicitly proposed that an adjective gives rise to a three-way
partition of the comparison class c: some individuals in c are (definitely) tall,
some are (definitely) not-tall, and some are neither. Klein used a three-valued
logic, but the same intuition can be captured by inducing the three-way par-
tition by a set of contrary predicates: e.g., the adjective ‘tall’ and its antonym
‘short’. Although no individual in c is tall and short, it is possible that some
individuals are neither. Klein (1980) assumed that an adjective gives rise to a
three-way partition to account for vagueness. I will argue in the next section
that doing so is indeed natural to account for the Sorites paradox. In the next
section I will also argue that for the very same reason it is also natural to give
up van Benthem’s (1981) assumption that all finite subsets of X are appro-
priate comparison classes. In section 5 I will then show that if one gives up
either of these assumptions one can generate an ordering relation that properly
represents vagueness, and, or so I will argue, in terms of which one can give a
natural account of the distinction between (1-a) and (1-b).

4 The Sorites and semi-orders

4.1 Vagueness and Semi-orders

Consider a long series of people ordered in terms of their height. Of each
of them you are asked whether they are tall or not. We assume that the
variance between two subsequent persons is always indistinguishable. Now,
if you decide that the first individual presented to you, the tallest, is tall, it
seems only reasonable to judge the second individual to be tall as well, since
you cannot distinguish their heights. But, then, by the same token, the third
person must be tall as well, and so on indefinitely. In particular, this makes
also the last person tall, which is a counterintuitive conclusion, given that it
is in contradiction with our intuition that this last, and shortest individual, is
short, and thus not tall.
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This so-called Sorites reasoning is elementary, based only on our intuition
that the first individual is tall, the last short, and the following inductive
premise, which seems unobjectable:

[P] If you call one individual tall, and this individual is not visibly
taller than another individual, you have to call the other one tall
too.

Our above Sorites reasoning involved the predicate ‘tall’, but that was
obviously not essential. Take any predicate P that gives rise to a complete
ordering ‘as P than’. Let us assume that ‘∼P ’ is the indistinguishability, or
indifference, relation between individuals with respect to predicate P . Now we
can state the inductive premise somewhat more formally as follows:

[P] For any x, y ∈ X : (P (x) ∧ x ∼P y)→ P (y).

If we assume that it is possible that ∃x1, . . . , xn : x1 ∼P x2 ∧ · · · ∧ xn−1 ∼P
xn, but P (x1) and ¬P (xn), the paradox will arise. Recall that if P (x1) and
¬P (xn), it is required that x1 must be visibly or significantly P -er than xn,
denoted by x1 �P xn. In section 2 of this paper we have defined a relation
‘>P ’ in terms of the behavior of predicate P . The constraints discussed there,
however, did not allow for the possibility that ∃x1, . . . , xn : x1 ∼P x2 ∧ · · · ∧
xn−1 ∼P xn, but P (x1) and ¬P (xn), and the defined comparison relation could
not really be interpreted as meaning ‘being visibly/significantly P -er than’.
Fortunately, there is a well-known ordering that should be interpreted this
way: what Luce (1956) calls a semi-order. Following Scott & Suppes’ (1958)
(equivalent, but still) simpler definition, a structure 〈X,R〉, with R a binary
relation on X, is a semi-order just in case R is irreflexive (IR), satisfies the
interval-order (IO) condition, and is semi-transitive (STr).4

Definition 3.
A semi-order is a structure 〈X,R〉, with R a binary relation on X that satisfies
the following conditions:
(IR) ∀x : ¬R(x, x).
(IO) ∀x, y, v, w : (R(x, y) ∧R(v, w))→ (R(x,w) ∨R(v, y)).
(STr) ∀x, y, z, v : (R(x, y) ∧R(y, z))→ (R(x, v) ∨R(v, z)).

It is important to see that if we interpret the relation ‘�P ’ as a semi-order,
it is irreflexive and transitive, but need not be almost connected. Perhaps the

4Any relation that is irreflexive and satisfies the interval-order condition is called an
interval order. All interval orders are also transitive, meaning that they are stronger than
strict partial orders.
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easiest way to grasp what it means to be a semi-order is to look at its (intended)
measure-theoretical interpretation. On the intended interpretation, ‘x �P y’ is
true iff the height of x is higher than the height of y plus some fixed (small) real
number ε, which can be thought of as a margin of error.5 Indeed, as already
suggested by Luce (1956) and rigorously proved by Scott & Suppes (1958), if
X is a finite set and ε a positive number, 〈X,�P 〉 is a semi-order if and only if
there is a real-valued function fP such that for all x, y ∈ X : x �P y iff fP (x) >
fP (y) + ε. This fact helps to explain the constraints. That the order should
be irreflexive is trivial, because there can be no x such that fP (x) > fP (x) + ε.
As for (IO), consider two cases: fP (x) ≥ fP (v) or fP (v) ≥ f(x). In the first
case we have fP (x) ≥ fP (v) > fP (w) + ε, and thus x � w. In the second case
we have fP (v) ≥ fP (x) > fP (y) + ε, and thus v � y. To see that (STr) holds,
suppose that x �P y and y �P z. Then fP (x) >ε fP (y) >ε fP (z) (with a >ε b
iff a > b + ε). But then fP (v) ≥ fP (y) implies v � z, and fP (v) ≤ fP (y)
implies x �P v.

In terms of ‘�P ’ we can define a similarity relation ‘∼P ’ as follows: x ∼P y
iff neither x �P y nor y �P x. The relation ‘∼P ’ is reflexive and symmetric,
but need not be transitive. Thus, ‘∼P ’ does not give rise to an equivalence
relation. One should think of this similarity relation as one of indifference or
indistinguishability. Measure theoretically ‘x ∼P y’ is true iff the difference in
height between x and y is less than ε.6 In case ε = 0, the semi-order is a weak
order.

4.2 Some proposed solutions to the Sorites

The standard reaction to the Sorites paradox taken by proponents of fuzzy logic
and/or supervaluation theory is to say that the argument is valid, but that
the inductive premise [P] (or one of its instantiations) is false. But why, then,
does it at least seem to us that the inductive premise is true? According to the
standard accounts of vagueness making use of fuzzy logic and supervaluation
theory, this is so because the instantiations of the inductive premise are almost
true (in fuzzy logic), or almost all instantiations are true in the complete
valuations (in supervaluation theory).

Linguists (e.g. Kamp, 1975; Klein, 1980; Pinkal, 1995) typically do not
like the fuzzy logic approach to vagueness, because that cannot account for

5One can think of Williamson’s (1990) epistemic analysis of vagueness based on semi-
orders as well.

6The fact that ‘∼P ’ is intransitive has the consequence that semi-orders cannot be given
a full measure-theoretic interpretation f in the sense that there is no set of transformations
such that f is unique up to this set of transformations. This fate it shares with, among
others, partial orders.
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what Fine (1975) called ‘penumbral’ connections. The treatment of vagueness
and the Sorites paradox in supervaluation theory is not unproblematic either,
however. The use of complete refinements in supervaluation theory assumes
that we can always make sharp cutoff-points: vagueness exists only because in
daily life we are too lazy to make them. But this assumption seems to be wrong:
vagueness exists, according to Dummett (1975), because we cannot make such
sharp cutoff-points even if we wanted to. In terms of what we discussed above,
this suggests that the relation ‘∼P ’ of indifference or indistinguishability should
be intransitive, just as it is for a semi-order. But because this relation is still
symmetric, it is very natural to claim that something like [P] is true.

For a while, the so-called ‘contextualist’ solution to the Sorites paradox
was quite popular (e.g. Kamp, 1981; Pinkal, 1984; Raffman, 1994, 1996).
Most proponents of the contextuallist solution follow Kamp (1981) in trying to
preserve (most of) [P] by giving up some standard logical assumptions, and/or
by making use of a mechanism of context change. But with Keefe (2007) we do
not believe that context change is essential to save natural language from the
Sorites paradox. We rather believe that any solution involves some notion of
partiality. We will briefly discuss two such proposed ‘solutions’ in this section
(without pretending to be complete or assuming that they are undoubtfully
successful), and use the motivations behind those ‘solutions’ in the following
sections to propose some new cross contextual constraints on the behavior of
predicates which generate semi-orders.

A first solution is closely related with recent work of Raffman (2005) and
Shapiro (2006) and makes use of partiality in a rather direct way:7 in terms
of three valued logic (Shapiro), or in terms of pairs of contrary antonymns
(Raffman). The idea – just as what Klein (1980) proposed earlier – is that
with respect to a comparison class c, predicate P and its antonym P do not
necessarily partition c, and there might be elements in c that neither (clearly)
have property P nor property P , but are somewhere ‘in the middle’. Once one
makes such a move it is very natural to assume that the inductive principle
[P] is not valid, but a weakened version of it, [Pw], is:

[Pw] If you call one individual tall in a particular context, and this
individual is not visibly/relevantly taller than another individual,
you will/should not call the other one short/not tall.
Thus, for any x, y ∈ I, c ∈ C : (P (x, c) ∧ x ∼P y)→ ¬P (y, c).

Of course, principle [Pw] can only be different from the original [P] if

7Shapiro (2006) argues that his solution is closely related to Waisman’s notion of ‘Open
Texture’. For what it is worth, I believe that Waisman’s notion is more related to what I
call the second ‘solution’ of the Sorites.
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¬P (y, c) does not come down to the same as P (y, c).8 Thus, a gap between
the sets of P - and P -individuals (with respect to c) is required. Notice that the
Sorites paradox can now be ‘solved’ in a familiar way: P (x1, c) and P (xn, c)
are true in context c, and modus ponens is valid, but the inductive hypothesis,
or (all) its instantiations, are not. However, because we adopt [Pw] as a valid
principle of language use, we can explain why inductive hypothesis [P] seems
so natural. To illustrate, if c = {x, y, z}, it might be that with respect to a
particular context structure P (c) = {x}, P (c) = {z}, and x ∼P y ∼P z. Notice
that such a context structure satisfies [Pw] but not [P].

A second ‘solution’ is more radically pragmatic in nature and seems very
much in line with Wittgenstein’s Philosofische Untersuchungen.9 In normal
discourse, we talk about relatively few objects, all of which are easily dis-
cernible from the others. In those circumstances, [P] will not give rise to
inconsistency, but serves its purpose quite well. Only in exceptional situations
i.e., when we are confronted with long sequences of pairwise indistinguishable
objects — do things go wrong. But in such situations, we should not be us-
ing vague predicates like ‘tall’ but precisely measurable predicates instead. A
weak version of this reaction can be formalized naturally in terms of compar-
ison classes. The idea is that it only makes sense to use a predicate P in a
context – i.e. with respect to a comparison class –, if it helps to clearly de-
marcate the set of individuals that have property P from those that do not.
Following Gaifman (1997),10 we will implement this idea by assuming that
any subset of X can only be an element of the set of pragmatically appropriate
comparison classes C just in case the gap between the last individual(s) that
have property P and the first that do(es) not must be between individuals x
and y such that x is clearly, or significantly, P -er than y. This is not the case if
the graph of the relation ‘∼P ’ is closed in c× c.11 Indeed, it is exactly in those
cases that the Sorites paradox arises. Notice that also this analysis makes use
of partiality, but this now consists in the idea that certain comparison classes
are not appropriate for the use of a particular predicate P .

8In this paper I don’t really distinguish thinking of the comparison class as part of the
context (as I did until now, or of thinking of it as an argument of an adjective. For present
purposes, this distinction is irrelevant.

9See in particular section 85-87: ‘A rule stands like a signpost ... The signpost in order in
in normal circumstances it fulfils its purpose.’ The observation that our pragmatic solution
is very much in line with Wittgenstein’s later philosophy, I owe to Frank Veltman.

10One might argue that Gaifman’s solution was already anticipated – though in a rather
different way – by Kamp (1981). A theory much more similar to Gaifman’s was proposed
by Pagin (this volume). The editors of this volume pointed out to me that Gomez-Torrente
(2008) argues for much the same idea.

11Notice that also in discrete cases the relation ‘∼P ’ can be closed in c×c. It just depends
on how ‘∼P ’ is defined.
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How does such a proposal deal with the Sorites paradox? Well, it claims
that in all contexts in which P can be used appropriately, [P] is true. If we
assume in addition that the first element x1 of a Sorites series is the absolute
most P -individual, and the last element xn the absolute least P -individual, it
also claims that in all contexts c in which it is appropriate to use predicate P
in combination with x1 and xn, ‘P (x1, c)’ is true and ‘P (xn, c)’ is false. Thus,
in all appropriate contexts, the premises of the Sorites argument are considered
to be true. Still, no contradiction can be derived, because using predicate P
when explicitly confronted with a set of objects that form a Sorites series is
inappropriate. Thus, in contrast to the original contextualist approaches of
Kamp (1981), Pinkal (1984), and others, the Sorites paradox is not avoided
by assuming that the meaning (or extension) of the predicate changes as the
discourse proceeds. Rather, the Sorites paradox is avoided by claiming that
the use of predicate P is inappropriate when confronted with a Sorites series
of objects.12

The above sketch of some proposed solutions was rather unsophisticated
and I do not want to claim in this paper that they, or their more sophisti-
cated variants, are completely successful. I also don’t want to go into their
relative pros and cons, or argue that they are (clearly) preferred to other pro-
posals (though I sympathize with them). I only sketched them because the
motivations behind those proposals clearly suggest some new cross contextual
constraints on the behavior of predicates which can be shown to generate (or
even characterize) semi-orders.

4.3 Semi-orders and semantic gaps

The first of the above ‘solutions’ to the Sorites paradox is in essence three-
valued. Either because a three-valued logic was used, or because we made use
of pairs of antonyms. Recall again that Klein (1980) already used a three-
valued logic: not all individuals in a particular comparison class need to be
either tall or not-tall (in fact, Klein used supervaluations to make up for this
‘deficiency’). In this section we will indicate that once we follow this line of
thought, it becomes easy to generate semi-orders, instead of weak orders. Our
derivation makes use of two choice functions. Let us say that P (c) selects the
elements of c that (clearly) have property P , while P (c) (e.g. ‘tall’) selects the

12Williamson (p.c.) and a reviewer of this paper ask what are the semantic consequences
of using a pragmatically inappropriate comparison class. The main answer is that if pushed
one can still choose between, for instance, an epistemic approach or a three valued approach.
Adopting this approach, the answer to this question should, I think, be of little theoretical
importance: I do not think we have very strong semantic intuitions about things that go
against what we ought to do and normally do.
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elements that (clearly) have property P ) (e.g. ‘short’). Now we can give the
following four constraints:13

(P∗) ∀c ∈ C : P (c) ∩ P (c) = ∅.
(NR∗) ∀c, c′ : DP (c) ∩D−1

P (c′) = ∅ and DP (c) ∩D−1

P
(c′) = ∅.

(UD∗) If c ⊆ c′ and DPP (c) 6= ∅, then DPP (c′) 6= ∅.
(DD∗) If c ⊆ c′ and DPP (c′) ∩ c2 6= ∅, then DPP (c) 6= ∅.

Constraint (P∗) assures that P and P behave as contraries, while (NR∗)
is the obvious generalization of van Benthem’s (1982) No Reversal constraint.
Constraints (UD∗) and (DD∗) are very similar to the earlier Upward and Down-
ward Difference constraints of van Benthem (1982), but still crucially different.
The difference is that in this case we look at contrary pairs, and not merely
at contradictory pairs. We define the ordering relation as follows: x �P y
iffdef x ∈ P ({x, y}) and y ∈ P ({x, y}). Then we can prove that this relation
is irreflexive and transitive, but it need not satisfy almost connectedness: If
x �P y, it is possible that neither x �P z nor z �P y, because (DD∗) does not
require either of them to hold if P ({x, y, z}) = {x} and P ({x, y, z}) = {y}.
Now we can prove the following theorem (see van Rooij, 2009):

Theorem 1. Any context structure 〈X,C, P, P 〉 with X and C as defined above
such that P and P obey axioms (P∗), (NR∗), (UD∗), and (DD∗), gives rise to
a semi-order 〈X,�P 〉, if we define x �P y as x ∈ P ({x, y}) and y ∈ P ({x, y}).

4.4 Semi-orders and pragmatic gaps

Recall that according to the ‘pragmatic solution’ of the Sorites paradox not
all subsets of X are assumed to be appropriate comparison classes. Whether
c is an appropriate comparison class/context set was defined in terms of the
relations ‘�p and ‘∼P ’: the relation ‘∼P ’ should not connect all elements in
c. In this section we want to turn that idea around: find some principles to
generate all and only all appropriate context sets and then derive the relations
‘�P ’ and ‘∼P ’ from that. The idea is that we just start with subsets of C
that consist of two distinguishable elements and close this set of subsets of
C under some closure conditions such that they will generate all and only all
appropriate contexts. That is, the idea is to find some closure conditions such
that we will generate just those subsets of X for which also vague predicates
can clearly partition the context without giving rise to the Sorites paradox.

13The formulation of the constraints is much simpler, though equivalent, to the formu-
lation I used in van Rooij (2009). I thank Frank Veltman for pointing out that my earlier
formulation was needlessly complex.
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In conjunction with this, we will assume the same cross-contextual constraints
on the behavior of P as van Benthem (1982) did, and define also x �P y as he
did: x �P y iffdef x ∈ P ({x, y}) and y 6∈ P ({x, y}).

The closure conditions that jointly do this job are the following:

(P1) ∀c ∈ C : ∀x ∈
⋃
C : c ∪ {x} ∈ GAP → c ∪ {x} ∈ C.

(OR) ∀c ∈ C, {x, y} ∈ C : c ∪ {x} ∈ C or c ∪ {y} ∈ C.
(P2) ∀c ∈ C, x ∈ X : c ∈ GAP2 → c ∪ {x} ∈ C.

In terms of these constraints we want to generate all appropriate com-
parison classes starting with a set of appropriate comparison classes of just
2 elements. These constraints mention ‘GAP ’ and GAP2’, which intuitively
stand for gaps. Still, it is important to realize that the formalization does
not make use of any predefined notion of a gap. The two notions ‘GAP ’ and
GAP2’ will be defined in terms of such sets of appropriate comparison classes.

Before we discuss these constraints, it is important to see that the clo-
sure conditions do not guarantee that C necessarily contains all finite sub-
sets of X (or better, not all subsets of X with cardinality 2 or 3). This
is essential, because otherwise we could conclude with van Benthem (1982)
that the resulting ordering relation would be a weak order and satisfies (AC)
∀x, y, z : x �P y → (x �P z ∨ z �P y). It suffices to observe that because
neither GAP nor GAP2 (both notions are defined below) is always satisfied, no
constraint formulated above forces us to assume that {x, y, z} ∈ C if x �P y,
which is all that we need.

Now we will discuss these constraints. Constraint (P1) says that to any
element c of C one can add any element x ∈ X (thus, also c ∪ {x} ∈ C)
that is in an ordering relation with respect to at least one other element, on
the condition that c ∪ {x} satisfies constraint GAP . To state this constraint,
suppose that c contains n elements (written by cn). Then the constraint says
that there must be at least n − 1 subsets c′ of c with cardinality n − 1 such
that all these c′ are also elements of C.

cn ∈ GAP iffdef ∃n−1c
′ ⊂ c : card(c′) = n− 1 ∧ c′ ∈ C.

The intuition behind this condition is that only those subsets of X satisfy
GAP if there is at least one gap in this subset with respect to the relevant
property. It is easy to show that this closure condition guarantees that the re-
sulting ordering relation will satisfy transitivity and will thus be a strict partial
order.14 Constraint (OR) guarantees that if {x, y} and {v, w} are in C, then

14For a proof of this result, and the others mentioned below, see van Rooij (to appear).
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either {x, y, v} or {x, y, w} belongs to C as well. We will see below that by
adopting this constraint the resulting ordering relation will satisfy the interval
ordering condition. Constraint (P2) implements the intuition that if c gives
rise to two gaps (again, only intuitively speaking), one can always add at least
one arbitrary element of the domain to it, without closing all gaps. Constraint
(P2) is defined in terms of predicate GAP2 which is defined as follows:

cn ∈ GAP2 iffdef ∃nc′ ⊂ c : card(c′) = n− 1 ∧ c′ ∈ C.

Notice the subtle difference between GAP2 and GAP : whereas the former
requires that there are at least n subsets of cn in C with cardinality n− 1, the
latter requires this only for n − 1 subsets. The intuition between this formal
difference is that whereas c satisfies GAP already if it contains at least one
gap, c can only satisfy GAP2 if it has at least two gaps. Consider subsets of
the natural numbers and assume that such a subset has a gap if at least one
number in the order is missing. Thus, {1, 2, 3, 4} has no gap, {1, 2, 3, 5} has 1,
but {1, 3, 4, 6} and {1, 3, 5, 7} have two or more gaps. The set {1, 2, 3, 5} has
the following subsets of 3 numbers with a gap: {1, 2, 5}, {1, 3, 5}, and {2, 3, 5}.
Thus it has 3 such subsets, which means that {1, 2, 3, 5} satisfies GAP , but
not GAP2. The set {1, 3, 4, 6}, on the other hand, has 4 four subsets of 3
elements with a gap: {1, 3, 4}, {1, 3, 6}, {1, 4, 6}, and {3, 4, 6} which means
that it satisfies both GAP and GAP2. The same holds for the set {1, 3, 5, 7}.
The idea behind constraint (P2) is that to the set {1, 3, 4, 6} we can always add
an arbitrary natural number and still have a gap (and thus be an appropriate
context), but that this doesn’t hold for {1, 2, 3, 5}: adding 4 would result in an
inappropriate context. Now we can state the desired theorem (see van Rooij,
2009):

Theorem 2. Any context structure 〈X,C, P 〉 with X a set of individuals,
where P obeys axioms (NR), (DD), (UD) of section 2, and where C is closed
under (P1), (OR), and (P2) gives rise to a semi-order 〈X,�P 〉, if we define
x �P y as x ∈ P ({x, y}) and y 6∈ P ({x, y}).

5 Comparisons revisited

Consider once more the following figure, picturing the lengths of John and
Mary.
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John Mary

How can we account for the intuition that this picture allows us to say that
the explicit comparative (1-a) is true while the implicit comparative (1-b) is
false?

(1-a) John is taller than Mary.

(1-b) Compared to Mary, John is tall, but compared to John, Mary is not
tall.

I would like to suggest that the difference between explicit and implicit com-
paratives is closely related with the difference between weak orders and semi-
orders. As already suggested in section 1, weak orders are very natural rep-
resentations of standard explicit comparatives like (1-a). I propose that the
semi-order relation significantly taller than, i.e. ‘�T ’, is what is relevant to
evaluate the truth of implicit comparatives like (1-b). Thus, (1-b) is true just
in case John is significantly taller than Mary. This immediately explains why
(1-a) can be inferred from (1-b), but not the other way around.

A weak order ‘>P ’ can be thought of as at least as informative, or refined,
as a corresponding semi-order ‘�P ’ in the sense that for all 〈x, y〉 ∈ X ×X, if
x �P y, then x >P y as well. There is, however, another sense in which it is
natural to think of the semi-order as the basic one, and derive a corresponding
weak order. Note, though, that for an arbitrary semi-order there might always
be several weak orders that are compatible with it. The following two weak
orders can, for instance, be derived from the semi-order ‘�P ’: ‘>1

P ’ defined
as x >1

P y iffdef ∃z : (x ∼P z ∧ z �P y) and ‘>2
P ’ defined as x >2

P y iffdef
∃z : (x �P z ∧ z ∼P y). Fortunatetely, for each semi-order there is also a
unique most refined weak order that can be derived from it. As already shown
by Luce (1956), this unique strict weak order ‘>P ’ can be defined as follows:
x >P y iffdef ∃z : (x ∼P z ∧ z �P y) ∨ (x �P z ∧ z ∼P y). The corresponding
relation ‘≈P ’ defined as x ≈ y iffdef x 6>P y and y 6>P x is an equivalence
relation, which could also be defined directly as x ≈ y iffdef ∀z ∈ I : x ∼P z iff
y ∼P z. What I would like to suggest is that if we start with the semi-order
‘�P ’ in terms of which we interpret implicit comparatives, it is the strongest
derived weak order ‘>P ’ that is relevant to interpret explicit comparatives.

Recall from section 3.1 that if ‘P ’ is ‘tall’, measure theoretically ‘x ∼P y’ is
true iff the difference in length between x and y is less than a fixed margin of
error ε. Suppose that John’s length is δ < ε higher than Mary’s length, which
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is δ < ε higher than Sue’s length, but that the difference between John’s and
Sue’s length is higher than ε. This situation can be pictured as follows:

John Mary Sue

In this situation, j ∼P m, m ∼P s, but j �P s. Given our claim that
implicit comparatives should be interpreted as ‘significantly taller than’ using
semi-orders, we correctly predict that (1-b) is false: j 6�P m. But given that
we interpret implicit comparatives in terms of the weak order ‘>P ’ defined in
terms of the semi-order, we also correctly predict that (1-a) comes out as being
true. The reason is that j >P m, because there is an s, i.e. Sue, such that
j �P s and s ∼P m. This is an encouraging result, and enough to ‘explain’
the difference between (1-a) and (1-b). But we wanted more: we wanted to
explain the difference between explicit and implicit comparatives in terms of
the behavior of adjectives in comparison classes. In the remainder of this
section I want to discuss (i) how we can do that, and (ii) whether the way we
suggested to interpret explicit comparatives is really strong enough.

An obvious way to account for the distinction between explicit and implicit
comparisons in terms of comparison classes is just to look at the differences
between the constraints on context structures in section 1 versus those in
sections 3.3 and 3.4. If we adopt the semantic model of section 3.3 we might say
that the distinction between explicit versus implicit comparatives corresponds
to whether we assume the equivalence of ‘It is not the case that Mary is tall
in c’ and ‘Mary is small in c’ or not. If we adopt the pragmatic model of
section 3.4, on the other hand, the distinction between explicit versus implicit
comparatives can be said to correspond with what we take to be appropriate
comparison classes: all subsets ofX, or only those in which there is a significant
gap.

But what if this freedom is not allowed? What if we cannot play with what
is an appropriate comparison class and assume the equivalence of ‘It is not the
case that Mary is tall in c’ and ‘Mary is small in c’? Even in that case, I claim,
we can make a distinction between explicit and implicit comparatives, because
adopting the analysis of section 3.3, we can make a difference between (Klein)
and (Benthem), as introduced in the beginning of this paper. Thus, I propose
the following interpretation rules:

(Klein) (1-a) is true iff there is a comparison class such that John is
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tall here and Mary is not: ∃c : M, c |= T (j) ∧ ¬T (m).
(Benthem) (1-b) is true iff John is tall in comparison class {John, Mary},

and Mary is not: M, {j,m} |= T (j) ∧ ¬T (m).

Let us first note that in the semantic model of section 3.3, it is now at
least possible that (1-a) is true, but (1-b) is false. It is very natural to assume
that in the comparison class {John, Mary, Sue}, we count John as tall, Sue as
short, and Mary as neither tall nor short. But this is enough for the explicit
comparative (1-a) to be true in the above situation. Moreover, it is natural to
assume that in the comparison class {John, Mary}, we count John as tall if
and only if Mary is counted as tall, which means that the implicit comparative
(1-b) is correctly predicted to be false. Unfortunately, the constraints given in
section 3.3 do not rule out the possibility that given the above situation, John
is counted as tall in comparison class {John, Mary} but Mary is not. But in
that situation (1-b) is falsely predicted to be true, just as (1-a). A situation
like this is ruled out if we adopt the natural constraint that for all comparison
classes c, P (c) = ∅ iff P (c) = ∅. Adopting this constraint, it can only be the
case that John is counted as tall in comparison class {John, Mary} but Mary
not if Mary is counted as short in this comparison class, and thus that John
is significantly taller than Mary. But this is in contradiction with what we
assumed.

How does this proposal relate with our earlier suggestion to interpret ex-
plicit comparatives in terms of the unique strongest weak order derived from
a semi-order? We can prove that it comes down to the same thing. Suppose
an explicit comparative ‘x is P -er than y’ is true according to (Klein) because
there is a comparison class c such that x ∈ P (c) and y ∈ c−P (c). If c = {x, y}
then x �P y holds. Because �P⊆>P it follows that x >P y, so that is ok.
But now suppose that it is not the case that x ∈ P ({x, y}) and y 6∈ P ({x, y}).
Then there must be a superset c of {x, y} for which x ∈ P (c) and y 6∈ P (c)
holds. Adopting constraint (DD∗) we have already ruled out the possibility
that y ∈ P (c). So it must be that y ∈ c but y 6∈ P (c) and y 6∈ P (c). Let
c for instance be {x, y, z}. By our constraint that for all comparison classes
c, P (c) = ∅ iff P (c) = ∅ it follows that z ∈ P (c). By (DD∗) it follows that
x ∈ P ({x, z}) and z ∈ P ({x, z}), and thus that x �P z. What we have to
show is that z ∼P y. Because z ∈ P (c), y 6∈ P (c) and y 6∈ P (c), it follows
by (NR∗) that it is not the case that z ∈ P ({y, z}) and y ∈ P ({y, z}), which
means that z 6�P y. But that means that y �P z. If y 6�P z we are done, so
suppose y �P z. In that case it is natural to assume that there is another (i.e.
taller) z′ such that x ∈ P ({x, y, z′}), z′ ∈ P ({x, y, z′}), y 6∈ P ({x, y, z′}) and
y 6∈ P ({x, y, z′}) and for which y 6�P z′. But this means that y ∼P z′ which is
what we wanted.
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The one but last sentence indicated something important that, in fact,
appeared already much earlier: if we want to guarantee that John is counted
as taller than Mary if their relative lengths are pictured as below,

John Mary

we have to assume that we have enough other individuals John and Mary
can be compared with. There either has to be somebody like Sue who is
significantly shorter than John but similar to Mary, or another individual who
is significantly taller than Mary but similar to John. A very natural way to
guarantee these kind of witnesses to exist is to adopt the following constraints
on models: for all individuals y with at most two exceptions (the tallest and
shortest individuals, if they exist), ∃x, z : x �P z∧x ∼P y ∼P z. For the other
two individuals v, if they exist, it just hold that ∃w : w 6= v ∧ v ∼P w. Thus,
we demand that with at most two exceptions, any object is ‘indistinguishable’
from at least two others. If we take semi-orders to be primitive, this constraint
has a direct effect. Otherwise, the constraint should be reformulated in terms
of context structures. In whatever way we do this, it is clear that it has the
desired effect: any small difference in length between John and Mary is enough
to make the explicit comparative true.

Adopting the above type of witness constraint is costly, but how costly is it
really? Degree-based theories of comparatives make use of witness constraints
as well. If we look at the algebraic structures that are faithfully represented
by means of the measure functions (see Krantz et al., 1971) we see that in
case the numbers are really crucial (as is the case in so-called ‘interval scales’
and ‘ratio scales’) it has to be assumed that there exists a witness for every
possible degree required for the homomorphic function. It is clear that our
witness constraint is much less involved, i.e., we did not secretly presuppose
degrees after all.

6 Conclusion

I claimed in this paper that the distinction between explicit and implicit com-
paratives corresponds to the difference between (strict) weak orders and semi-
orders. Moreover, I showed that both can be characterized naturally in terms
of constraints on the behavior of predicates among different comparison classes,
and thereby meeting the challenge Kennedy and others have posed upon com-
parison class-based approaches of comparative statements. How can degree-
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based approaches account for the difference between explicit and implicit com-
paratives? The most natural way for them to make a distinction between (1-a)
and (1-b) would be to claim that for the latter there must be a specific number
ε > 0 such that the length of John minus ε is more than the length of Mary.
But if we think of ε as the threshold, degree-based approaches must make a
distinction between explicit and implicit comparatives very much like we did
involving weak and semi-orders.

An interesting question that arises is whether we really want the threshold
to be the same for any pair of individuals. This was assumed in this paper (by
making use of semi-orders), but should perhaps be rejected in general. In De
Jaegher and van Rooij (to appear) it is shown that Prospect Theory can be
used to account for the intuition that the threshold depends on the individuals
involved. It would take us too far to investigate this issue here.
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