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Abstract Depression in adults is heritable with about

40 % of the phenotypic variance due to additive genetic

effects and the remaining phenotypic variance due to

unique (unshared) environmental effects. Common envi-

ronmental effects shared by family members are rarely

found in adults. One possible explanation for this finding is

that there is an interaction between genes and the envi-

ronment which may mask effects of the common envi-

ronment. To test this hypothesis, we investigated genotype

by environment interaction in a large sample of female and

male adult twins aged 18–70 years. The anxious depression

subscale of the Adult Self Report from the Achenbach

System of Empirically Based Assessment (Achenbach and

Rescorla in Manual for the ASEBA adult: forms and pro-

files, 2003) was completed by 13,022 twins who participate

in longitudinal studies of the Netherlands Twin Register. In

a single group analysis, we found genotype by unique

environment interaction, but no genotype by common

environment interaction. However, when conditioning on

gender, we observed genotype by common environment

interaction in men, with larger common environmental

variance in men who are genetically less at risk to develop

depression. Although the effect size of the interaction is

characterized by large uncertainty, the results show that

there is at least some variance due to the common envi-

ronment in adult depression in men.

Keywords Adult depression � Common environment �
Genotype-by-environment interaction � Heritability �
Heterogeneity

The heritability of depression in adults is estimated at

around 40 % (Sullivan et al. 2000; Nivard et al. 2015).

Interestingly, in adults the remaining phenotypic variance

is consistently found to be solely due to the unique envi-

ronment. In adolescents, however, at age 12 years variation

in anxious depression is explained also by shared envi-

ronmental factors, while at ages 14 and 16 these shared

environmental effects were absent (Lamb et al. 2010). The

absence of evidence for common environmental influences

on depression after age 12 is remarkable, as it has been

argued that, theoretically, at least some phenotypic vari-

ance in depression is expected to be due to the familial

effects in childhood that persist into adulthood (Gatz et al.

1992). For instance, cognitive styles related to depression

may be learned in the family (Monroe and Simons 1991;

Mezulis et al. 2006; Ingram 2003), and familial traumatic

events in childhood, such as divorce, affect children simi-

larly (Bowlby 1977; Kessler et al. 1997; Silberg et al.

2001). Therefore, it has been argued that the recurring

finding of no common environmental effects on adult

depression may be spurious.

Duncan et al. (2014) hypothesized that the true effects of

the common environment underlying depression are

masked by non-linear effects. Specifically, the effects of

the common environment (C) may depend on the genotype
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of the subject (A) that is an A9C interaction. If not

explicitly modeled, such an interaction effect is included in

the estimate of the genetic variance (Molenaar et al. 1990).

The question arises whether common environmental

effects on adult depression can be revealed by taking into

account such non-linear effects.

Another question is why some individuals develop a

depression after an adverse environmental event and others

do not. Both linear and non-linear effects could explain this

phenomenon. Given the ongoing debate of the usefulness

of genetic variant by environment interaction studies,

either in a candidate gene study or in a genome-wide

association study, it is important to know whether non-

linear effects are present for unique environmental effects

(see e.g., Dick et al. 2015).

Therefore we investigated whether common and unique

environmental variance influencing the vulnerability for

adult depression can be detected by taking into account the

non-linear effects of genotype by environment interaction.

We also tested whether interaction effects differ between

males and females. Gender differences in the prevalence of

depression arise in adolescence and remain until older age

(Kessler et al. 1993). The exact mechanism underlying the

higher prevalence of depression in adult females is gener-

ally unknown (Piccinelli and Wilkinson 2000), although

studies have indicated that environmental factors associ-

ated with depression are different for males than for

females (Kendler et al. 2011; Klose and Jacobi 2004).

We analyzed data from a large sample of twins between

the ages of 18 and 70 years from the Adult Netherlands

Twin Register (Nivard et al. 2015). The twins completed

the anxious depression subscale of the Adult Self-Report

from the Achenbach System of Empirically Based

Assessment (Achenbach and Rescorla 2003). We tested for

unmeasured genotype by unmeasured environment inter-

action effects in these data using the heteroscedastic ACE

model (Jinks and Fulker 1970; Molenaar et al. 2012).

Using the item level data methodology (see Molenaar and

Dolan 2014; Schwabe and van den Berg 2014), we mod-

eled a latent depression factor as a function of additive

genetic (A), common environment (C), unique environ-

ment (E), and non-linear effects (A9E and A9C). In

addition, we extended the approach to enable tests on

gender differences in these interaction effects. In the

resulting model adopted here both the genetic and the

environment effects are treated as latent factors. By

studying the interaction at the level of the latent genetic

and environmental variance, we did not require measured

candidate genes and measured candidate environments. In

addition, the modeling approach is insensitive to the scale

properties of the data, which may otherwise result in spu-

rious non-additive effects (Eaves et al. 1977; Molenaar and

Dolan 2014; Schwabe and Van den Berg 2014).

Method

Participants and measures

The Netherlands Twin Register (NTR; see Nivard et al.

2015) includes the Young NTR (YNTR; van Beijsterveldt

et al. 2013) and the Adult NTR (ANTR; Willemsen et al.

2013). In the YNTR, twins have been registered at birth by

their parents since 1987 (Bartels et al. 2007). When twins

reach the age of 18, they are enrolled in the ANTR. The

ANTR originally included adolescent and adult twins who

were recruited through city councils or who volunteered

through the NTR website. Here we analyze the data from

all twins aged 18 years and older. The dataset comprises

6511 twin pairs (no missing: 5923) between the age of 18

and 70 with information on depression and zygosity. These

pairs consist of 3146 (no missing: 2895) are MZ twins and

3365 (no missing: 3028) are DZ twins.

The twin pairs completed the anxious depression sub-

scale of the Adult Self Report (ASR), which is part of the

Achenbach System of Empirically Based Assessment

(Achenbach and Rescorla 2003). The twins were asked to

indicate to what degree various statements concerning

anxious depressive behavior and attitudes apply to them on

a 3-point scale (‘not true’, somewhat or sometimes true’,

‘very or often true’). The ASR anxious depression subscale

was included in 8 of the 11 surveys that have been col-

lected for the NTR since 1991 (respectively in 1991, 1995,

1997, 2000, 2002, 2009, 2011, and 2013). The different

surveys contained slightly different versions of the ASR, as

over the years, the ASR has changed. However, for anxious

depression there was a common set of 13 items included in

all surveys that was analyzed in this project (see Appendix

1). Cronbach’s alpha for these items on the various mea-

surement occasions and twin samples ranged between 0.83

and 0.90 which is an indication for good reliability. In

addition, the correlations between the sum scores based on

these 13 items and the sum scores based on all items at

each measurement occasion are between 0.95 and 0.98.

The validity of the ASR has been established by Achen-

bach and Rescorla (2003).

Not all twins participated at each measurement occasion

(see Table 1). For instance, 2131 twin-1 members have

Table 1 The number of twin pairs that have data available on none,

1, 2, …, or all measurement occasions

None 1 2 3 4 5 6 7 All

Twin 1 382 2131 1675 1334 491 444 242 158 41

Twin 2 374 2184 1642 1273 526 451 262 144 42

‘None’ means that only the co-twin has data available on 1 or more

measurement occasions
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data available at only one occasion and 1273 twin-2

members have data available at three occasions. We

selected the data vector from the first occasion that has the

least missing values for each twin. This data vector con-

tains missing values due to twins not completing all items

of the questionnaire. Here, we assumed that these missing

values are missing at random so that we can take all

missing values in the data into account in the model fitting

approach described below.

Analysis

Our main objective is to test for genotype by environment

interaction for males and females in the complete sample

of twin pairs. However, we first needed to establish that the

data are homogeneous with respect to measurement occa-

sion and age. Below we discuss a standard measurement

model and the biometric model. Next, within these models,

we discuss how we assessed homogeneity of the data with

respect to measurement occasion and age. Then, we

introduce the gender dependent genotype by environment

interactions in the biometric model.

Standard measurement and biometric model

As advocated by Van den Berg et al. (2007), we analyzed

the data at item level by separating between a measurement

model for the items and a biometric model for the genetic

and environmental variance. In the present study, the so-

called graded response measurement model for ordinal

item responses was used (Samejima 1969). Using this

model, we separated the measurement properties of the

item scores, Xi, from the underlying latent phenotypic

factor (anxious-depression), denoted h. Here, p = 1, …,

N is used to index the twin pairs, j = 1, 2 is used to index

the twin members, and i = 1, …, n is used to index the

items.

In the graded response measurement model, the

observed item scores, Xi, are regressed on the latent phe-

notypic factor, h (using a multinomial probit regression

function). The intercept and slope parameters in this

regression are respectively referred to by threshold and

discrimination parameters. These parameters are purported

to capture the measurement characteristics of the item

scores. In the present case, where we have a three point

scale, we have 2 threshold parameters, si1, and si2. These
parameters model the relative attractiveness of the answer

options, that is, the degree to which the subjects use the

different answer options. In an extreme depression item,

for instance ‘‘I often think of suicide’’, si1 will likely be

large, reflecting that the first answer option is attractive

(most subjects score in the first answer category indicating

that they do not think of suicide) and the second option is

not. As the item scores are assumed to be ordered, the

thresholds are also ordered, that is, si2 should always be

larger than si1.
The slope, or discrimination parameter ai, in the

regression of the item scores on the latent phenotypic

variable, models the degree to which the item scores can

distinguish between subjects with different levels of h. The
higher the value of ai, the better indicator the item is for h.
Besides the threshold and discrimination parameters,

measurement models for twin data often also include the

residual correlations between the item scores of the twin 1

and twin 2 members in the MZ sample (rMZ,i) and the DZ

sample(rDZ,i). Such a correlation may indicate shared item

specific genetic and/or environmental variance or it may

indicate measurement problems resulting from filling in the

questionnaire by two twins together. See Fig. 1 for a

graphical representation of the measurement model

including the parameters, and see Appendix 2 for a more

technical discussion of the measurement model.

As the measurement model above captures the mea-

surement properties of the item data in the ai, si1, si2, rMZi,

and rDZi parameters, the latent phenotypic factor, h, is

unaffected by the scale properties in principle.1 In the

standard phenotypic model, the phenotypic variable, h, is
decomposed into an additive genetic (A), common envi-

ronmental (C), and unique environmental (E) variance

component and an intercept, m, that is

hpj ¼ mþ Apj þ Cpj þ Epj

where COR(A1, A2) = 1 for MZ twins and COR(A1,

A2) = 0.5 for DZ twins. In addition, COR(C1, C2) = 1 and

Fig. 1 Graphical representation of the measurement model including

the parameters

1 Molenaar and Dolan (2014) show that even under severe measure-

ment problems (severe floor effects), AxE and AxC tests are relatively

unbiased. However, the power to detect an interaction is diminished.
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COR(E1, E2) = 0, and E(A) = E(C) = E(E) = 0 for all

twins. Under the assumption that the genetic and envi-

ronmental variance components are mutually uncorrelated,

the variance of h can be decomposed as follows:

VAR hð Þ ¼ VAR Að Þ þ VAR Cð Þ þ VAR Eð Þ

where the standardized estimate of VAR(A) is referred to

as the heritability, h2.

Homogeneity with respect to measurement occasion

To investigate whether the eight measurement occasions

differed in their biometric properties, we relied on esti-

mates of the variance components (A, C, and E) within

each occasion. We thus assumed that there are no impor-

tant differences between the measurement models at each

occasion. We fitted the measurement model measurement

model and the biometric model simultaneously to the data

of each occasion. Note that this was thus a standard ACE

model at the level of the latent depression factor (biometric

model). On basis of the 99 % highest posterior density

regions (HPD) of these variance components, we judged

whether the variance components differed importantly over

measurement occasion. If not, we concluded that the data

collected at the separate occasions were homogenous and

could be aggregated.

Full homogeneity with respect to age

As the age range of our sample is wide (18–70), we also

established homogeneity of the data with respect to age. As

age is an important moderator in the literature, we wanted a

more explicit test on homogeneity than the one discussed

above. Here, we followed Nivard et al. (2015), and created

age subsamples. We used the following groups: 18–19,

20–21, 22–24, 25–34, and 35–70 years. A major

consideration in creating these subsamples was that the

sample sizes within each age group need to be large enough

to have sufficient power to detect heterogeneity. The

resulting number of twin pairs within each age category

that were in the analysis (i.e., twin pairs with a full or

incomplete data record) is given in Table 2. In the case that

the twin members have data in different age categories (due

to a twin completing the questionnaire at a different age

than his/her co-twin) we omitted their data from the present

analysis as it requires independent groups. However, we

included their data in the aggregated data analysis.

We tested if some age groups differed importantly from

other age groups (e.g., more variance in the phenotypic

factor due to heterogeneity). As the age groups are inde-

pendent (the members of a twin pair are always in the same

age group), we could conduct a multi-group analysis and

test for homogeneity of the measurement model (i.e.,

invariant ai, si1, si2, rMZ,i, rDZ,I; also referred to as mea-

surement invariance, see Millsap and Yun-Tein 2004) and

homogeneity of h across ages [i.e., invariant MEAN(h),
VAR(h), and COR(h1,h2)]. First, we tested for invariance

of the ai, si1, si2, rMZ,i, and rDZ,i parameters in the five age

groups. To this end we fitted the measurement model

without the ACE decomposition, but with a correlation

between h1 and h2, in the five age groups. We did this

separately for the MZ and DZ twins. We started with an

unconstrained model (step 0) in which all parameters were

free to vary over age groups. Next, step-by-step, we con-

strained ai (step 1a), rMZ,i, and rDZ,i (step 1b), and si1 and
si2 (step 1c) to be equal across groups. In step 1a we

allowed for differences in the variance of h between the age
groups (i.e., we allowed for the possibility that older sub-

jects have a higher/lower variance on the phenotypic

depression variable as compared to the younger subjects).

To do so, we constrained VAR(h) = 1 in group 1, and

estimated it freely in the remaining groups. In step 1c we

Table 2 The total number of

twin pairs within each age group

that has been selected for the

homogeneity analysis

Age MZ DZ Total

Males Females Males Females Opposite-

sex

MZ DZ

18–19 298 (262) 596 (552) 230 (204) 491 (431) 355 (325) 894 (814) 1076 (960)

20–21 219 (210) 392 (369) 160 (146) 371 (336) 238 (225) 611 (579) 769 (707)

22–24 92 (86) 173 (161) 49 (44) 123 (105) 104 (97) 265 (247) 276 (246)

25–34 77 (70) 248 (229) 46 (38) 108 (94) 114 (103) 325 (299) 268 (235)

35–70 178 (163) 512 (478) 74 (66) 174 (164) 195 (188) 690 (641) 443 (418)

Agg 981 (891) 2165 (2004) 645 (576) 1525 (1349) 1195 (1103) 3146 (2895) 3365 (3028)

The number of twin pairs with a full data record (i.e., with data available for all 13 items in both twins) are

in brackets

‘Agg’ denotes the data aggregated over age. If the twin members of the same pair have data in two separate

age categories, this pair is omitted from the age grouping to enable multi-group analysis (which requires

independent groups). However, this pair is not omitted from the interaction analysis in the aggregated data,

leading to data in 6511 pairs for interaction analyses
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allowed for a mean difference in h between the age groups

(i.e., we allowed for the possibility that older subjects have

on average higher/lower levels on the phenotypic depres-

sion variable as compared to the younger subjects). To do

so, we constrained m = 0 in group 1, and estimated it freely

in the remaining groups. If homogeneity with respect to the

measurement model is tenable (i.e., step 1c), we could

subsequently test for homogeneity of the population model

with respect to age. To this end we tested whether the mean

and variance of h (step 2a), and COR(h1,h2) were equal

across age groups (step 2b).

Measurement invariance with respect to gender

As we compared males and females in the interaction

models, we analyzed whether homogeneity of the mea-

surement model (measurement invariance) holds for males

and females. We did not need to establish homogeneity of

h as we explicitly took possible differences in h into

account in the interaction model. Thus, we assessed whe-

ther the parameters ai, sic, rMZi, and rDZi were invariant

over gender using the procedure from step 1a to 1c as

described above. For the MZ subsample this was thus a two

group analysis (males–females), and for the DZ subsample

this was a three group analysis (male, female, and opposite-

sex pairs).

Testing for interactions in a multi-group model

Recently, within the heteroscedastic ACE methodology

(Jinks and Fulker 1970; Molenaar et al. 2012) an approach

was presented to enable tests on genotype by environment

interactions using the model discussed above (Molenaar

and Dolan 2014; Schwabe and Van den Berg 2014).

Specifically, retaining the measurement model for h as

discussed above, the biometric model can also be formu-

lated as a conditional model. To this end, we condition h on
A, denoted h | A. This results in

hpj Apj ¼ mþ Cpj

�
�

�
�Apj þ EpjjApj

with

VAR hjAð Þ ¼ VAR CjAð Þ þ VAR EjAð Þ

for the variance decomposition. Now, a genotype by

environment interaction is operationalized as an AxC

interaction and an A9E interaction:

VAR hjAð Þ ¼ VAR CjAð Þ þ VAR EjAð Þ
¼ exp c0 þ c1Að Þ þ exp b0 þ b1Að Þ

that is, the variance of C and E are made a function of A.

Within this function, c0 and b0 are the intercept parameters

for log[VAR(C)] and log[VAR(E)] respectively which

model the size of VAR(C) and VAR(E) at A = 0. In

addition, c1 and b1 are the interaction parameters, which

model the increase or decrease of VAR(C) and

VAR(E) across A. The presence of A9C and/or A9E is

established by testing whether c1 and/or b1 depart from 0.

If so, the parameter estimates can be used to infer the

direction of the interaction effect. For instance, a b1[ 0

denotes that the unique environmental variance is larger for

subjects with a higher genetic predisposition, A. In addi-

tion, b1\ 0 denotes that the unique environmental vari-

ance is smaller for subjects with a higher genetic

predisposition, A. The same holds for the A9C parameter,

c1. This conceptualization of genotype by environment

interaction is inspired by Jinks and Fulker (1970), who

treated a genotype by environment interaction as an envi-

ronmental variance that is heteroscedastic across the

additive genetic factor. This conceptualization is somewhat

different from that of Purcell (2002), who models genotype

by environment interactions by making the variance of A a

function of a measured moderator (which is not necessarily

purely environmental). For a more technical discussion of

the biometric model, see Appendix 2.

Gender effects

As we wanted to allow for gender effects in the aggregated

data analysis, an extension of the model by Molenaar and

Dolan (2014) was necessary. To account for gender dif-

ferences in VAR(C|A), VAR(E|A), we used the following

parameterization

hpj Apj ¼ m� GENDERpj þ Cpj

�
�

�
�Apj þ EpjjApj

with

VAR Cj Að Þ ¼ expðc0;overall þ c0;female � GENDER

þ c1;overallA þ c1;femaleA� GENDERÞ
VAR Ej Að Þ ¼ expðb0;overall þ b0;female � GENDER

þ b1;overallA þ b1;femaleA� GENDERÞ

where GENDERpj is coded 0 if twin j from twin pair p is a

male and 1 if it is a female. In this way, the new parameters

c0,female and b0,female account for differences in the inter-

cept parameters c0,overall and b0,overall in the female group

as compared to the male group. Similarly, the new

parameters c1,female and b1,female account for differences in

the A9C and A9E parameters, c1,overall and b1,overall, in the
female group as compared to the male group. Thus, the

AxE parameter b1 in the male group is equal to b1,overall,
and the A9E parameter b1 in the female group is equal to

b1,overall ? b1,female. The same holds for the AxC parame-

ter. In the model above, the intercept parameter, m, captures
a possible mean difference in h between males and

females.
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To account for gender differences in VAR(A) we anal-

ogously defined:

VAR Að Þ ¼ expðx0;overall þ x0;female � GENDERÞ:

that is, exp(x0,overall) is the variance of A in the male group,

and exp(x0,overall ? xfemale) is the variance of A in the

female group.

Identification and estimation

To identify the model, traditional scale and location con-

straints were imposed on h (see Molenaar and Dolan 2014).

We identified the scale of h by fixing a1 = 1 for the MZ

and DZ twin samples. In single group applications, the

location of h was fixed by imposing m = 0. As discussed

above, in the multi-group model including gender, m was a

free parameter in the female group and fixed to 0 in the

male group.

We used a Bayesian approach to model fitting (Eaves

and Erkanli 2003). Specifically, we implemented the

model in the open-source OpenBUGS software package

(Lunn et al. 2009). To this end, we extended the

implementation by Molenaar and Dolan (2014) to include

the multi-group components as discussed above. The

adapted script is available from the website of the first

author. Using this script, one can draw samples from the

posterior distribution of the parameters using Markov

Chain Monte Carlo (MCMC) sampling. From these

samples one can determine the parameter means and

HPD regions which can be used for statistical inference.

The parameters of interest to be estimated were: ai, sic.
rMZi, rDZ,i b0,overall, b1,overall, c0,overall, c1,overall, and

x0,overall in the single group analysis. For the multi-group

gender analysis we additionally estimated x0,female,

b0,female, c0,female, b1,female, c1,female, and m. As we used a

Bayesian model fitting approach, we specified prior dis-

tributions for the parameters. Following Molenaar and

Dolan (2014), we used an uniform distribution between

-5 and 5 for all parameter except sic, rMZi, and rDZ,i. For

si1 we used a uniform distribution between -? and si2;
and for si2 we used an uniform distribution between si2
and ?. These priors were meant to ensure that si2 is

larger than si1 as discussed above. For rMZi and rDZi we

specified a uniform prior between 0 and 1 for
ffiffiffiffiffiffiffiffi
rMZi

p
and

ffiffiffiffiffiffiffiffi
rDZi

p
to prevent sign switching. Note that the

missing data in our dataset provide no problem for

parameter estimation: In the MCMC procedure these

values are considered parameters and are included in the

sampling routine. For more technical details concerning

the implementation of the model see Molenaar and Dolan

(2014).

Results

Homogeneity with respect to measurement occasion

Estimates for the contributions of heritability, common and

unique environment are given in Table 3. Note that these

estimates are based on data from the same that were

selected for the interaction analyses as described above.

Hence the number of participants in Table 3 is smaller than

the total number of twins who took part at each measure-

ment occasion. As can be seen, estimates for heritability

tend to be higher than the estimates of 0.4 that are com-

monly found. Also, there are no differences across mea-

surement occasion in the scaled contributions of the A, C,

and E factors to the latent phenotypic depression factor,

that is, all 99 % HPD regions overlap. We therefore

aggregated the data over the measurement occasions, to

obtain a sufficiently large sample size for the

heteroscedastic ACE model fitting.

Full homogeneity with respect to age

The RMSEA model fit statistic for the MZ and DZ twin

samples is depicted in Table 4 for the different models. As

can be seen, all RMSEA values were well below the 0.05

criterion of good model fit (Schermelleh-Engel et al. 2003).

Although in both the MZ and DZ twin samples the

invariance of si1 and si2 was associated with a small

deterioration of model fit by 0.002 RSMEA points, there

was no obvious source of misfit as indicated by the mod-

ification indices (the largest modification index was 11.68

for si1 of item 4 in the first age group). We therefore

concluded that measurement invariance is tenable.

Table 5 contains the estimated means and variances of h
in the different age groups in step 1c. As can be seen, only

the mean in the 25–34 age group of the DZ sample was

significantly different from zero at a 0.01 significance

level. For the variances, only the variance of h in the 20–21

age group of the MZ sample departed significantly from 1.

In addition, restricting the means of h in all age groups to

equal 0 and all variances of h to be equal to 1 (step 1d) did

not deteriorate the model fit, see Table 4. Finally, we tested

the latent phenotypic twin correlation, COR(h1, h2) to be

equal across age groups (step 1e). As can be seen from

Table 4, a model with equal latent phenotypic correlations

across age groups improved the RMSEA in both the MZ

and DZ twin samples. We therefore concluded that there

was no overall age effect detectable. That is, either there is

no age effect in the data or the age effect is very small. In

both cases we can safely conclude that age did not con-

found the analysis on the aggregated data as reported

below.
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Measurement invariance with respect to gender

We started with a baseline model (step 0) in which all

measurement model parameters ai, si1, si2, rMZ,i, and rDZ,I

were allowed to differ across males and females. Next, we

fitted the models from step 1a, 1b, and 1c to the data as

discussed above. The results are in Table 6. As can be seen

all models fitted well according to the 0.05 criterion.

However, in step 1c, the model fit deteriorated notable in

both the MZ and DZ twin samples. The modification

indices suggested that si1 of item 3 (‘I cry a lot’) accounts

for this misfit (the modification index equaled 112.20 in the

male MZ sample). Indeed, as can be seen from the table in

step 1c0, freeing this parameter improved the model fit.

Results showed that for both the MZ and DZ twins, the

threshold parameter si1 of item 3 was estimated to be much

larger for the males as compared to the females indicating

that the males tend to use the lower category too often as

compared to the females (or similarly, females use the

lower category too little as compared to the males). In the

final model (step 1c0), the mean difference on h between

males and females (i.e., parameter m) was estimated to be

0.47 (se 0.04) in the MZ sample and 0.47 (se 0.03) in the

DZ sample. In addition, the variance in the female group

was estimated to be 1.02 (se 0.03) in the MZ sample and

1.06 (se 0.03) in the DZ sample indicating that there was no

variance difference between males and females (the male

variance was fixed to 1).

This final model without si1 for item 3 fitted accept-

able as compared to the other models. In addition, there

was no obvious source of misfit as judged by the

Table 3 The proportion of

variance explained in the latent

depression phenotype by the

additive genetic factor

(heritability; h2), the unique

environment (e2), and the

common environment (c2) at

each occasion (year of data

collection)

Occasion MZ DZ h2 e2 c2

Twin 1 Twin 2 Twin 1 Twin 2

1991 290 297 456 450 0.52 (0.37; 0.61) 0.46 (0.38; 0.57) 0.03 (0.01; 0.15)

1995 300 306 426 432 0.62 (0.51; 0.70) 0.37 (0.29; 0.45) 0.02 (0.01; 0.14)

1997 342 335 334 343 0.63 (0.48; 0.71) 0.35 (0.28; 0.45) 0.04 (0.01; 0.21)

2000 472 457 409 420 0.52 (0.35; 0.61) 0.45 (0.38; 0.54) 0.04 (0.01; 0.20)

2002 221 227 178 170 0.51 (0.40; 0.59) 0.48 (0.40; 0.55) 0.03 (0.01; 0.15)

2009 891 896 874 835 0.51 (0.41; 0.58) 0.47 (0.42; 0.53) 0.02 (0.00; 0.11)

2011 144 149 171 172 0.52 (0.37; 0.60) 0.46 (0.40; 0.54) 0.04 (0.01; 0.21)

2013 486 479 517 543 0.50 (0.40; 0.57) 0.49 (0.43; 0.56) 0.02 (0.01; 0.10)

The 99 % Highest Posterior Density regions are in brackets for h2, e2, and c2

Table 4 RMSEA fit statistic for the multi-group models fit to test

measurement invariance across the age groups

Step MZ DZ

0 Baseline 0.027 0.022

1a Invariance of ai 0.027 0.021

1b ? Invariance of rMzi and rDZi 0.026 0.020

1c ? Invariance of sic 0.028 0.022

2a No differences in h 0.028 0.022

2b No differences in COR(h1,h2) 0.024 0.019

Table 5 Estimated means and variances of the latent phenotypic

factor, h, in the different age groups

Age MEAN(h) VAR(h)

Estimate se Estimate se

DZ

18–19 0a – 1a –

20–21 -0.06 0.04 0.92 0.03

22–24 0.14 0.06 0.95 0.04

25–34 0.13 0.06 1.05 0.04

35–70 0.02 0.05 1.01 0.03

MZ

18–19 0a – 1a –

20–21 0.045 0.053 1.013 0.037

22–24 0.095 0.074 1.118 0.054

25–34 0.217 0.066 1.076 0.046

35–70 -0.116 0.050 1.017 0.037

a These parameters are constrained for identification purposes

Table 6 RMSEA fit statistic for the multi-group models fit to test

measurement invariance across gender

Step MZ DZ

0 Baseline 0.022 0.018

1a Invariance of ai 0.023 0.020

1b ? Invariance of rMzi and rDZi 0.022 0.019

1c ? Invariance of sic 0.028 0.026

1c’ Free si1 for i = 3 0.024 0.021
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modification indices (the largest modification index

equaled 12.17 for si1 of item 4 in the male MZ sample). We

concluded that measurement invariance was tenable for all

items except item 3. As item 3 was not associated with the

same measurement properties for males and females, we

omitted this item from the remaining analysis to ensure a

meaningful comparison.

Results of the interaction model

We drew 20,000 samples from the posterior parameter

distribution of which we discarded the first 10,000 as burn-

in. From the Gelman and Rubin (1992) diagnostic (based

on two chains) and trace plots of the parameters this

number of samples appeared to be sufficient to ensure that

the chains converged to their stationary distribution. See

Fig. 2 for example trace plots of the interaction parameters,

b1,overall and c1,overall of the full interaction model including

gender.

We fitted a model without gender differences (i.e.,

model M1) and a model with gender differences (i.e.,

model M2, the full gender interaction model). The

parameter estimates of the measurement model parameters

for model M2 are in Table 7. As can be seen, these cor-

relations were notably smaller in the DZ twin group. This

indicates that some item specific genetic and/or shared

environmental variance may underlie the scores. By means

of the residual correlation, we accounted for this common

variance.

In Table 8, the parameter estimates of the interaction

parameters in model M1 and M2 are depicted. As can be

seen in model M1 without gender differences, b1 departed
from 0 and was positive indicating the presence of A9E

the variance of E increasing for increasing levels of A. In

addition, the c1 parameter did not depart from 0, indicating

the absence of A9C in the full sample.

As can be seen in Table 8, when gender differences

were taken into account (model M2), a different pattern of

results emerged. That is, for both males and females, A9E

was present with positive b1, but for males, there was

evidence for A9C as the HPD region of c1 did not include

0, while for females there was no evidence for A9C. The

mean difference between males and females in the latent

phenotypic factor, h, was hardly affected by taking the

A9E and A9E interactions into account. That is, m in the

female sample was estimated to be 0.51 (99 % HPD 0.45;

0.59) which was about equal to the estimate reported above

in the case of no interactions. It can also be seen from

Table 8 that the results from the females follow the results

from the entire sample (i.e., M1), while the results from the

males are different from the entire sample. We will return

to this point in the discussion.

Results in terms of the contributions of heritability,

common and unique environment are given in Table 9.

Note that these estimates are based on the marginal vari-

ance of C and E, as the conditional variance differs across

A. The marginal variance for C and E can be calculated

using exp(b0 ? 0.5 9 b1
2) and exp(c0 ? 0.5 9 c1

2)

respectively (see Hessen and Dolan 2009). As can be seen

from the Table by taking into account the gender differ-

ences in the interactions (M2) the heritability (h2) drops

from 0.54 in the full sample to 0.35 in the male group. In

addition, the contribution of the common environment

increases from 0.04 in the full sample to 0.22 in the male

group. It should be noted however that the uncertainty in

this estimate is relatively large, reflected by the wide 99 %

HPD region which runs from 0.09 to 0.37. But at least we

can conclude that there is some contribution of the com-

mon environment to depression for males.

From the results in Table 9 it can be calculated that

33 % of the heritability in males is due to genotype by

environment interaction (i.e., 1 - 0.35/0.52; see Molenaar

et al. in press). It is clear that this percentage is due to

A9C to a large extent, however the exact amount of

A9C variance in the male group is difficult to assess.

That is, theoretically, the distinction between the effects

of A9C and A9E interactions is clear: when not included

into the model, regular genetic covariance structure

analysis cannot distinguish between an additive genetic

factor A and an A9C interaction factor, or between an

environmental factor E and an A9E interaction factor

(Molenaar et al. 1990). In practical applications however,

the parameter estimates for A9C and A9E are correlated

which complicate quantification of the exact amount of

A9C and A9E variance in the data (see Molenaar et al.

2012).
Fig. 2 Trace plots of the interaction parameters b1 and c1 in the full

interaction model in age group 18–19
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Discussion

We studied whether an additive genetic by unique envi-

ronment interaction (A9E) and/or an additive genetic by

common environment interaction (A9C) play any role in

adult depression. In a measurement model for categorical

item scores, the depression phenotype was operationalized

as a latent variable. In a first set of analyses, omitting

interaction effects, we found heritability estimates of

around 0.5–0.6, which are somewhat larger than those

commonly found using an MDD diagnosis or symptom

count sum score (i.e., around 0.3–0.4; Sullivan et al. 2000;

Nivard et al. 2015). This discrepancy is both of interest and

expected, as latent variables always contain less measure-

ment error as compared to observed measures (see Van den

Berg et al. 2007).

The present undertaking was aimed at testing the

hypothesis that common environmental variance in

depression is masked by interaction effects (Duncan et al.

2014). In a single group analysis of the complete sample,

we found that the unique environmental variance is larger

for individuals with a higher predisposition to develop

depression (i.e., higher A factor score). However, we

obtained no evidence for A9C interaction in the single

Table 7 Item parameter

estimates (99 % HPD) in the

full gender interaction model

Item ai si1 si2 rDZ,i rMZ,i

1 1.00a 0.96 (0.89; 1.02) 3.10 (3.00; 3.21) 0.12 (0.01; 0.22) 0.22 (0.12; 0.32)

2 1.00 (0.94; 1.07) 1.69 (1.61; 1.78) 3.37 (3.24; 3.52) 0.04 (0.00; 0.16) 0.31 (0.19; 0.42)

3 – – – – –

4 0.71 (0.66; 0.76) 1.32 (1.25; 1.39) 2.85 (2.74; 2.96) 0.09 (0.01; 0.19) 0.26 (0.16; 0.35)

5 0.52 (0.49; 0.56) 0.09 (0.05; 0.14) 1.47 (1.42; 1.53) 0.12 (0.05; 0.18) 0.31 (0.25; 0.37)

6 0.89 (0.83; 0.96) 1.87 (1.78; 1.97) 3.35 (3.21; 3.50) 0.09 (0.00; 0.22) 0.35 (0.21; 0.48)

7 1.46 (1.36; 1.56) 2.08 (1.96; 2.20) 4.27 (4.06; 4.47) 0.12 (0.00; 0.31) 0.26 (0.12; 0.40)

8 1.00 (0.93; 1.06) 0.35 (0.29; 0.42) 2.68 (2.57; 2.78) 0.04 (0.00; 0.13) 0.26 (0.18; 0.35)

9 1.04 (0.98; 1.11) 1.40 (1.32; 1.49) 3.31 (3.17; 3.44) 0.03 (0.00; 0.13) 0.36 (0.26; 0.46)

10 0.88 (0.83; 0.94) 1.33 (1.26; 1.40) 3.03 (2.92; 3.16) 0.07 (0.00; 0.18) 0.22 (0.11; 0.32)

11 0.85 (0.80; 0.91) 0.57 (0.52; 0.63) 2.44 (2.36; 2.53) 0.14 (0.05; 0.22) 0.32 (0.25; 0.40)

12 1.35 (1.27; 1.45) 1.53 (1.43; 1.64) 4.02 (3.84; 4.22) 0.08 (0.00; 0.21) 0.20 (0.07; 0.33)

13 1.15 (1.09; 1.23) 0.18 (0.11; 0.25) 2.42 (2.31; 2.52) 0.09 (0.00; 0.17) 0.23 (0.14; 0.31)

a This parameter has been constrained for identification purposes. In addition, item 3 was omitted from the

analysis as it violated measurement invariance across gender

Table 8 Parameter estimates (99 % highest posterior density region) of the A9E and A9C parameters in the aggregated data analysis using a

model without (M1) and a model with (M2) gender differences in the parameters

Group VAR(A) b0 b1 c0 c1

M1 – 0.64 (0.53; 0.74) -0.68 (-0.81; -0.53) 0.34 (0.18; 0.53) -4.04 (-4.99; -2.43) -1.38 (-3.05; 1.61)

M2 Males 0.40 (0.25; 0.57) -0.87 (-1.07; -0.66) 0.91 (0.53; 1.41) -2.24 (-3.63; -1.45) -1.93 (-3.26; -0.61)

Females 0.64 (0.57; 0.73) -0.65 (-0.78; -0.51) 0.21 (0.003; 0.37) -5.60 (-7.85; -2.87) 0.54 (-2.90; 3.25)

VAR(A) is calculated as exp(x0,overall) for the males and as exp(x0,overall ? x0,female) for the females. Similar applies to b0, b1, c0, and c1, see the
paragraph on the parametrization of the gender effects

Table 9 The proportion of variance in the latent depression phenotype explained by the additive genetic factor (heritability; h2), unique

environment (e2) and common environment (c2) in the full genotype-by-environment interaction model

Group a2 e2 c2

M1 – 0.52 (0.43; 0.58) 0.43 (0.37; 0.48) 0.04 (0.01; 0.16)

M2 Males 0.35 (0.21; 0.49) 0.44 (0.33; 0.53) 0.22 (0.09; 0.37)

Females 0.54 (0.49; 0.59) 0.45 (0.41; 0.50) 0.01 (0.00; 0.06)

Here, c2 and e2 are the standardized variance of C and E marginally over A
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group analysis. Next, in a multi-group analysis, we took

gender differences into account. We found A9E in both

males and females similarly as in the single group analysis,

but additionally, there was A9C for the male group.

Specifically, in males, common environmental variance is

smaller in twins with a higher genetic predisposition to

develop depression. The marginal contribution of C

increased from 0.04 in the full sample to 0.22 for males by

taking gender differences in AxC into account. Although

the uncertainty in this estimate is large, it can be concluded

that in males, at least some common environment variance

is masked by non-linearity due to an A9C interaction.

As mentioned above, the results of the female sample

follow the results of the entire sample while the results of

the males are different from the results in the entire sample.

As interaction effects result in non-normality, the present

method detects specific departures from bivariate normality

in the latent phenotypic factor h that are due to A9C (see

Molenaar et al. 2012). In the entire sample (collapsing over

gender), the non-normality due to A9C in the male sample

is masked due to the females that score higher on h. The
distribution of h in the entire sample is thus approximately

normal. In the male sample, the distribution of h departs

from normality resulting in different estimates of the

parameters as compared to the entire sample. As there is no

A9C interaction in the female sample, the distribution of h
is approximately normal and the results follow the results

from the entire sample.

As we argued in this paper, using a measurement model

for the item data in testing for genotype by environment

interactions may solve the scaling issues commonly

encountered in genotype by environment interaction

research (Eaves 2006). However, some common limita-

tions of genotype by environment interaction research

remain (see Molenaar et al. in press). That is, the presence

of a non-linear genotype by environment correlation may

conflate the genotype-by-environment interaction. In

addition, a genotype-by-environment interaction may spu-

riously arise if the twin sample is unrepresentative of the

population (e.g., the higher phenotypes are underrepre-

sented). Note however that these shortcomings are not

unique to the item level approach used here, as they are

also problematic in, for instance, the popular genotype by

measured environment approach (Purcell 2002).

It would be of interest to model the complete longitu-

dinal dataset including all items at all measurement occa-

sions. That is, the measurement model approach adopted

here allows for so-called ‘item linking’ (Kolen and Bren-

nan 2004). In addition, extending the genotype by envi-

ronment model with a longitudinal component would allow

inclusion of the data from all measurement occasions into

the analysis, resulting in the largest power possible to

detect an interaction effect. However, such an analysis is

currently impossible as the required longitudinal genotype

by environment models are not yet developed and because

of the large sample size, the mathematically complex

model, and the tremendous number of missing data in the

complete dataset, a full longitudinal item linking approach

is numerically intractable.

The present approach provides what may be considered

an omnibus test of A9C and A9E, as the interactions are

modeled at the level of the latent variables A, C, and E. We

consider this an advantage as we do not need to include

measured moderators (candidate genes, environmental

variables). We emphasize that a failure to detect A9C or

A9E using the present method should be interpreted as a

result pertaining to A, C, and E. We do not consider the

absence of say A9C in females necessarily incompatible

with the presence of an interaction detected with a mea-

sured moderator, as the power to detect the effect of an

interaction with a measured moderator may be greater than

the power to detect A9C. The question of which mecha-

nisms underlie gender differences in depression is impor-

tant. With the present results we hope to have provided a

point of departure for further research into the etiology of

differences between males and females in the development

of depression. Most importantly, we found some empirical

evidence for the claim by Duncan et al. (2014) that effects

of the common environment underlying depression are

masked by non-linear effects. It is therefore advisable to

account for these non-linearity when studying the genetic

and environmental underpinning of depression.
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Appendix 1

The following 13 items of the anxious depression scale of

the ASR were overlapping in all surveys and used in pre-

sent analysis (translated from Dutch):

I feel lonely (‘Ik voel me eenzaam’),

I feel confused or in a fog (‘Ik voel me in de war of denk

wazig’),

I cry a lot (‘Ik huil veel’),

I am afraid I might think or do something bad (‘Ik ben

bang dat ik iets slechts zou kunnen doen of denken’),

I feel that I have to be perfect (‘Ik heb het gevoel dat ik

perfect moet zijn’),

I feel that no one loves me (‘Ik heb het gevoel dat

niemand van mij houdt’),

I feel worthless or inferior (‘Ik voel me waardeloos of

minderwaardig’),

I am nervous or tense (‘Ik ben nerveus of gespannen’),

I am too fearful or anxious (‘Ik ben te angstig of bang’),

I feel too guilty (‘Ik voel me erg schuldig’),

I am self-conscious or easily embarrassed (‘Ik schaam

me gauw of voel me niet op mijn gemak’),

I am unhappy, sad or depressed (‘Ik ben ongelukkig,

verdrietig of depressief’), and

I worry a lot (‘Ik maak me vaak zorgen’).

Appendix 2

Here we provide the technical details of the model. As

discussed, we distinguish between a measurement model

for the item scores Xi, and a biometric model for the latent

phenotypic factor, h. First, as a measurement model we use

the graded response model (Samejima, 1969). For the MZ

twins, the model is given by:

P Xpij ¼ cjhpj
� �

¼ U
aihpj þ r

1
2

MZidpi � sic
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rMZi

p

 !

� U
aihpj þ r

1
2

MZidpi � si cþ1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rMZi

p

 !

for c ¼ 0; . . .;Q

with si0 ¼ �1 and siC¼1

where U(.) is the cumulative normal distribution function,

Xpij denotes the score of twin member j = 1,2 of twin pair

p = 1, …, N on item i, and hpj denotes the latent

phenotypic factor. In addition, Q denotes the maximum

possible item score (here Q = 2, as we code the data 0, 1,

and 2). The parameter rMZi models the residual correlation

between the twin 1 and twin 2 scores on the same item. In

the DZ subsample this parameter is replaced by rDZi. As

discussed in Molenaar and Dolan (2014), di is a standard

normally distributed latent variable that is common to Xi1

and Xi2 (the scores of the twin 1 and twin 2 members of a

twin pair). The loadings of Xi1 on di and Xi2 on di are equal

to r
1
2

MZi in the MZ sample and to r
1
2

DZi in the DZ sample. As

the residual polychoric variance of Xi (i.e., the polychoric

variance of Xi conditional on h) is constrained to be equal

to 1 - rMZi for MZ and to 1 - rDZi for DZ twins (see the

equation above), the residual (polychoric) correlation

between Xi1 and Xi2 (i.e., the polychoric correlation

between Xi1 and Xi2 conditional on h1 and h2) is equal to
rMZi and rDZi respectively, see Molenaar and Dolan (2014).

In the biometric model, h is submitted to the ACE

decomposition, that is,

hpj ¼ mþ Apj þ Cpj þ Epj

where COR(A1, A2) = 1 for MZ twins and COR(A1,

A2) = 0.5 for DZ twins. In addition, COR(C1, C2) = 1 and

COR(E1, E2) = 0 for all twins. Under the assumption that

the genetic and environmental variance components are

mutually uncorrelated, the variance of h can be decom-

posed as follows

VAR hð Þ ¼ VAR Að Þ þ VAR Cð Þ þ VAR Eð Þ

As discussed in the main text, genotype by environment

interactions are operationalized by conditioning h on the

additive genetic factor A. The conditional variance is given

by

VAR hjAð Þ ¼ VAR Cj Að Þ þ VAR E j Að Þ

As the variance of C and E are now conditional on A, we

can make them a function of A, that is,

VAR hjAð Þ ¼ exp c0 þ c1Að Þ þ exp b0 þ b1Að Þ

The variance of C and E now depend on the level of A,

that is, the variance due to the environment depends on the

genotypic factor. Note that because COR(C1, C2) = 1 by

definition, imposing

VAR Cð Þ ¼ exp c0 þ c1Að Þ implies that COV C1; C2ð Þ
¼ exp c0 þ c1 :5A1 þ :5A2ð Þð Þ:

Thus, in the full model, the vector A = [A1, A2] is

distributed as

A�MVNðlA;RAÞ

with
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RA ¼ VARðAÞ q� VARðAÞ
q� VARðAÞ VARðAÞ

� �

and q = 1 for MZ twins and q = 0.5 for DZ twins.

By conditioning on A, the conditional distribution of the

vector h = [h1, h2] is given by

hjA�MVNðlh;RhÞ

with

lh ¼ A1 þ m A2 þ m½ �

Rh ¼
r21 r12
r12 r22

� �

with

r21 ¼ exp y0 þ c1A1ð Þ þ exp b0 þ b1A1ð Þ

r22 ¼ exp y0 þ c1A2ð Þ þ exp b0 þ b1A2ð Þ

and

r12 ¼ exp y0 þ c1
1
2
A1 þ 1

2
A2

� 	� �

.

Now we can condition on h and specify the distribution

of the observed data:

X� cat P Xpij ¼ 0jhpj
� �

; . . .;P Xpij ¼ Qjhpj
� �� 	

where the probabilities in the categorical distribution can

be determined using the graded response model above. See

Molenaar and Dolan (2014) for a discussion on how these

distributions are exactly implemented in OpenBUGS (Lunn

et al. 2009).
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