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Abstract 
We aim to develop a mathematical model of the human immune system for advanced individualized 
healthcare where medication plan is fine-tuned to fit a patient’s conditions through monitored 
biochemical processes. One of the challenges is calibrating model parameters to satisfy existing 
experimental data or prior knowledge about the system behavior. In this paper, we apply genetic 
algorithm to find model parameters reproducing the results of modeling human innate immune system 
by Pigozzo et al. 
 
Keywords: Innate Immune System Model, Mathematical Modeling, Reproducibility, Genetic Algorithm 

1 Introduction 
The human immune system is a complex, yet delicate network of highly specialized cells, tissues, 

and organs that work together to defend the human body from various insults that could potentially 
lead to serious diseases, and in some cases, even death. Hence, a deep and thorough understanding of 
the human immune system is only necessary. Mathematical and computational modeling, such as 
differential equations [1, 2], agent-based modeling [3] and cellular automata [4] provide ways to 
understand and analyze underlying biochemical processes and dynamics of key players in the immune 
system while concurrently being able to fine-tune immunological parameters along the way.  

Science advances by building on top of published results, hence corroboration is only necessary 
especially now that a mere 11% of published research is reproducible [5].  As an initial step towards 
modeling the human innate immune system, we look into a simplified model developed by Pigozzo et 
al. In a recent paper [6], we found that the work of [1] is not reproducible when parameters that are 
indicated in their paper are used. In the current work, we calibrate these parameter values using 
genetic algorithm by limiting these values within specific ranges that are biologically acceptable.  

The article is structured as follows: first, the differential equations used by [1] will be presented 
and explained in section 2. We present the numerical methods used in obtaining the authors’ results 
and implementation together with the validation of the genetic algorithm in section 3. This is followed 
by the presentation and discussion of our results in section 4. Finally, our conclusion will be presented 
in section 5.  
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2 A Reduced Model of the Immune System Using Partial 
Differential Equations by Pigozzo et al. 

Mathematical modeling of the human innate immune system through the use of partial differential 
equations provides a way to observe and analyze the spatial and temporal dynamics of players in the 
human innate immune system.  

The human innate immune system is a complex system that acts as a non-specific defense 
mechanism of the human body against infection, which commonly manifests in the form of an 
inflammation. Local inflammation is often triggered by lipopolysaccharides (LPS) – a bacterial toxin 
that behaves as a potent immunostimulant, which triggers an acute inflammatory response. This event 
subsequently activates the resting macrophages to activated macrophages. The activated macrophages 
then secrete cytokines that leads to the opening of the endothelial barrier. Neutrophils circulating in 
the bloodstream enter the tissue where they empty out their granules to resolve the inflammation. If 
the inflammation is clear, the neutrophils go into apoptosis, or programmed death. Activated 
macrophages then clear them out and go back to rest. This induces an anti-inflammatory effect, which 
shuts down the inflammation. In the case where the insult is not resolved, the neutrophils go into the 
necrotic state, which leads to a massive release of cellular content moieties. This triggers even more 
inflammation inducing more neutrophils to enter the tissue.  

Authors Pigozzo et al. focused on three key players in the human innate immune system namely: 
LPS, neutrophils, and cytokines. In order to model the spatial and temporal dynamics of LPS (A), 
neutrophils (N), and pro-inflammatory cytokines (CH), the authors utilized three partial differential 
equations shown in (1) to (3).  

Equation (1) models the behavior of LPS in one dimension. The term  represents the decay of 
LPS through time,  is for the phagocytosis, a biological term referring to the process of 
engulfing a solid substance, of LPS by neutrophils. An initial concentration of LPS designated by  
fills the space  from 0 to 1. Neumann boundary conditions are also utilized to represent zero flux of  
at the boundary ( ) of the domain ( ).  
 

 (1) 

The dynamics of neutrophils are modeled by equation (2) where initial concentration of 
neutrophils is set to . Neumann boundary condition is once again utilized to designate a zero flux of 

 at the boundary. The terms  and consequently  model how endothelium 
permeability depends on the local concentration of pro-inflammatory cytokines. The term  
represents apoptosis, a biological term, which means programmed cell death, of neutrophils,  is 
for the diffusion of neutrophils, and  is for chemotaxis, which models the neutrophil 
movement due to the chemical stimulus induced by the presence of pro-inflammatory cytokines.  
 

 (2) 

Finally, the dynamics of cytokines are represented by equation 3. Initial concentration of cytokines 
at  is zero. Neumann boundary conditions are also utilized to designate a zero flux of pro-
inflammatory cytokines at the boundary of the domain. The term  models the decay of , 

 refers to the production of cytokines by neutrophils, and  models the diffusion of 
cytokines in the tissue.  
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Ω
 (3) 

The authors’ numerical experiment was divided into five cases as described below: 
Case 1: Only LPS is present in the system. 
Case 2: LPS and Neutrophils are present in the system. The source term of Neutrophils is zero.  
Case 3: LPS and Neutrophils are present in the system. A source term is added but permeability is 

constant.  
Case 4: LPS, Neutrophils, and Pro-inflammatory Cytokines are present in the system. Chemotaxis 

is absent.  
Case 5: LPS, Neutrophils, and Pro-inflammatory Cytokines are present in the system. Chemotaxis 

is present.  

3 Implementation 
We used Python 3.5.1 on a 3.30 GHz Intel® Core™ i7-5820K CPU with 16.0 GB RAM in all our 

simulations.   
In order to get the numerical solution of the coupled partial differential equations in (1)-(3), we 

utilize finite difference approximation with numerical scheme of the second order of accuracy for 
spatial discretization and explicit numerical scheme of the first order for time evolution. We also used 

 and  in order to satisfy the Courant-Friedrichs-Lewy (CFL) condition. The partial 
differential equations were then evaluated for 51 data points through space and 24000 data points 
through time[6]. 

4 Genetic Algorithm 
Genetic algorithm (GA), one of the most basic forms of evolutionary algorithms, is a heuristic 

search algorithm that is adapted from the evolutionary ideas of natural selection and genetics [7–9].  
This simple evolutionary algorithm has been used in many researches for parameter optimization and 
calibrations [9–11].  

GA works by moving from one population of chromosomes to another through controlled selection 
based on a pre-defined fitness that is problem-specific. This is followed by crossover and then 
mutation; both of which are methods patterned from genetics. In essence, the fitter the chromosomes 
are, the more probable they are to reproduce. 

In the context of GA, chromosomes (e.g. a list of strings or integers) are composed of genes (e.g. 
strings or positive real numbers), where each gene is represented by an instance of a specific allele 
(e.g. a letter from the alphabet or positive real numbers within the range 0 to 10). Crossovers, much 
like in the biological recombination of two single-celled organisms, allow exchange of subparts 
between two chromosomes. Mutation, on the other hand, randomly changes the value of one or several 
alleles in the chromosome.  

Our adaptation of the genetic algorithm follows the classical structure of GA with solving PDEs as 
additional step prior to fitness evaluation. This will be discussed in detail in section 5.1. A summary of 
the steps taken for our implementation of GA are shown in the figure below: 
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Figure 1. Summary of the steps implemented in genetic algorithm. A population of size  is 

initialized. Fitness is calculated using equations (4)-(5), which becomes the basis for building a new population.  
A pair of parent chromosomes is randomly chosen from this population. Crossover between chromosomes is 
employed with probability . Each chromosome undergoes mutation with probability  where 
each allele is mutated with probability , given  is the length of chromosome . Once  chromosomes 
are created, the newly generated population replaces the current population. This process is repeated for  
generations 

5 Computational Experiments Setup 
5.1 Genetic Algorithm Computational Setup 

Our adaptation of GA starts with the initialization of a population of    chromosomes 
composed of one, all, or a combination of the following parameters:  and 

 depending on the cases and methods used. More of this will be explained in detail in the 
succeeding paragraphs. Parameter values are randomly chosen within their respective ranges and these 
are summarized in Table 1. 

Table 1. Summary of parameters and corresponding acceptable and calibration ranges used to reproduce the 
results of [1] through genetic algorithm. 

Parameter Unit Acceptable 
Range 

Calibration 
Range 

Pigozzo et 
al. 

Values Used for 
Validation Reference 

      [12] 
      [13] 
       [12] 
    0.4  [14] 

     0.0144  [13] 
    0.55  [14] 
    0.55  [14] 

In order to obtain a good combination of parameters, we implement two methods that specify how 
these parameters are designated in a chromosome.  
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Method 1: Ladder-type Scheme 
We pattern Method 1 from the systematic progression of cases presented by [1] in their numerical 

experiment. This allows optimization of parameters in a ladder-type manner.  This is done by initially 
optimizing  through GA in Case 1. The chromosome for Case 1 only contains one parameter: . 
The calibrated value for  in Case 1 is then passed on and utilized in cases 2 and 3. Cases 2 and 3 
then proceed to calibrate , , and . The chromosome for cases 2 & 3 now contains two 
parameters:  and  where  and so on. The steps taken for Method 1 are summarized in 
Figure 2. 

 
Figure 2. Method 1: Ladder-type scheme. Case 1 calibrates . Cases 2 &3 calibrate , , and . 

Case 4 calibrates  and . Case 5 calibrates . 
Method 2: Altogether Scheme 

Method 2, on the other hand, deals with a fresh set of parameters for each case. This means that 
values of parameters that are previously calibrated will not be passed on to latter cases. Hence, GA is 
implemented to calibrate all the parameters in one go for a specific case.  

 
We evaluate the fitness of each chromosome by first solving for each player’s (either , or ) 

root mean square error ( ) calculated with respect to the data points from the plots of [1] 
( ) and our solution for equations (1)-(3) using GA ( ). The data points were extracted from 
the images of the plots on the authors’ paper using an online software called WebPlotDigitizer [15]. 
We then solve for each player’s normalized RMSE ( ) by dividing the with 
the mean of our solution in GA ( ). This is summarized in equation (4). 
 

 (4) 

where  is the total number of data points for each plot and the subscript  could either be , 
or . Finally, the overall fitness of the th chromosome ( ) in a population of size  is computed by 
summing all the  and is given by the following equation: 
 

 (5) 

Based on the fitness value  calculated through equations (4)-(5) a new population of 
chromosomes of size  is selected where the fitness objective is set at minimum. We also note 
that a chromosome can be selected more than once in our simulations. From this pool of fit 
chromosomes, a pair of parent chromosome is randomly chosen. This is followed by a crossover with 
probability  at two randomly chosen points in the chromosomes. Mutation is then implemented 
with probability  for each chromosome. Each gene (parameter) has probability  to 
mutate or change its value within the specified parameter range, where  is the length of the 
chromosome or the total number of parameters in the chromosome. This is repeated for all pairs of 
chromosomes in the parent population. The new population, which is composed of the newly 
generated offspring that are essentially fitter than their parents, then replaces the parent population. 
This process is repeated for  generations (i.e. reevaluation of fitness) generating a newer and 
fitter population each time. Note, however, that the choice for the parameters used in our 
implementation of GA is arbitrary. Exploring the sensitivity of these parameters will be one our goals 
for our future work. 
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5.2 Validation Experiment Setup 
In order to validate the genetic algorithm described in section 4, we utilize the same equations by 

[1] shown in equations (1)-(3). We set the values of the parameters as shown in Table 1 and solve the 
partial differential equations using the methods described in [16] namely: finite difference method and 
explicit time integration. The generated solution then serves as our reference data.  

We then proceed with parameter optimization using two methods in genetic algorithm as described 
in section 4 where parameters , , , , , , and  are to be calibrated within the 
ranges specified in Error! Reference source not found.. The goal here is to calibrate all the parameters to 
the exact values used in generating the reference data (see Error! Reference source not found.) by 
obtaining a minimum fitness value  or total  between the reference data and the solution 
generated using GA.  

6 Validation Results 
In order to validate the genetic algorithm, we utilize equations (1)-(3) to calibrate parameters , 
, , , , , and  using the two methods described in section 4 

Method 1 : Cases 1 to 5 
Method 1 is a ladder-type scheme that allows parameters to be calibrated one case at a time. The 
calibrated parameters in earlier cases are then used in latter cases. Using equations (1)-(3) as test 
equations for validating the GA, we are able to come obtain the  fitness values  or total 

  values for each player corresponding to cases 1-5 over 5000 iteration steps. We see here that 
the fitness values go as low as  in all 5 cases.  Note that the oscillations in this case are brought 
about by chromosome mutations.  

 
Figure 3. Method 1 Average  (NRMSE) with respect to iteration number simulated over twenty (20) trials. 
Gray lines correspond to the standard deviation. 

We see in Figure 4 that parameter values converge to specific values in as early as  iteration 
steps. By utilizing Method 1 in GA, we obtain the exact values for  and  as that shown in 
Table 1. 
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Figure 4. Method 1 Average concentrations of , , , , , , and with respect to iteration 
number simulated over twenty (20) trials. Gray lines correspond to the standard deviation. 

Method 2 : Case 5 Only 
Method 2 Case 5, on the other hand, deals with a set of five parameters that are calibrated at the same 
time. Averaging over 20 trials gives us the average NRMSEs and average concentrations of , , 

, , , , and  with respect to the iteration number as shown in Figure 5. 

 
Figure 5. Method 2 Average  (NRMSE) and average concentrations of  with respect to the 

iteration number over twenty (20) trials. Gray lines correspond to the standard deviation. 

Parameter values start to converge at around  iteration steps, which is much later than what is 
observed in Method 1. This, however, is expected since more parameters are being calibrated per 
iteration step. The average NRMSEs in this case go as low as . As opposed to that in Method 1,  
this time, however, we are only able to calibrate the values for , ,  , , and  but not 

 and . Method 2 using GA gave us  and  instead of exact values  
and . Looking at all the trials, we found that only 6 out of 20 trials were able to arrive at the 
exact values for all parameters. Moreover, we were able to obtain the minimum fitness value of  
in these combinations. This result tells us that our genetic algorithm using Method 2 does not go into 
global minimum majority of the time.  

We plot the solutions that we have obtained using the calibrated values from methods 1 (solid 
lines) and 2 (dashed lines) together with the reference data (markers) in Figure 6. Only the best set of 



Immune System Model Calibration by Genetic Algorithm Alva Presbitero et al.

168 

 

parameters in the 20 trials were used to plot the solutions for Methods 1 and 2. We see here that the 
solutions for both methods 1 and 2 seem to coincide perfectly with each other. This tells us that the 
slight deviation of  and  from the preferred values does not lead to a drastic change in plot 
configurations as shown below.  

 
Figure 6. Data (markers) and solutions for Method 1 (solid lines), and Method 2 (dashed lines) using parameters 
calibrated through genetic algorithm for Case 3. Only the best set of parameters in the 20 trials were used to plot 
the solutions for Methods 1 and 2. Solutions coincide with the data.  

With these results in mind, we now proceed with applying the GA to calibrate the sets of equations by 
[1] in the next section.  

7 Immune System Model Calibration 
Method 1 : Cases 1 to 5 

Method 1 is a ladder-type scheme that allows the calibration of parameters starting from Case 1 
and systematically moves to latter cases while incorporating parameters calibrated previously. Here 
we focus on Case 5, where  and  have been previously calibrated in cases 
1 to 4, and optimize the parameter . Figure 7 shows the average  (NRMSE) per iteration step 
simulated over twenty (20) trials. The average  (NRMSE) converge to minimum implying a 
decreasing point-to-point difference between the plots of [1] and our numerical solutions using the 
calibrated parameters in GA. 

 
Figure 7. Method 1 Average  (NRMSE) for each player with respect to the iteration number simulated 

over twenty (20) trials. Gray lines correspond to the standard deviation. 
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Average concentrations of  and  over a span of 20000 iterations for 20 
trials, on the other hand, are shown in Figure 8. We see here these concentrations converge to specific 
values in as early as 1000 iterations.  

 
Figure 8. Method 1 Average concentrations of  and  with respect to the iteration 

number over twenty (20) trials. Gray lines correspond to the standard deviation. 

A summary of our results for Method 1 are shown in Table . Based on our results, it seems that the 
calibrated value for  is beyond the acceptable range by a factor of 10. These values tell us that 
neutrophils are more mobile than LPS, which in fact does not reflect their actual behavior. In the 
biological standpoint, these values do not make sense since neutrophils are expected to move slower 
than LPS. The chemotaxis coefficient  with calibrated value of 7.8, a rate almost 1.5 times the 
diffusion rate of pro-inflammatory chemokines, means that neutrophils respond to the gradient of 
chemokines at a rate faster than the diffusion of chemokines themselves – yet another behavior that is 
not biologically sound. However, the discrepancies in calibration may be contributed by the presence 
of chemotaxis in the modeled environment. Chemotaxis would have in turn affected the diffusion 
value of neutrophils especially in Case 5 where both diffusion and chemotaxis are taken into account. 

 
Table 2. Summary of parameters and their corresponding calibrated values. 

Parameter Unit Acceptable 
Range 

Calibration 
Range 

Pigozzo et 
al. 

Calibrated 
in Case(s) 

Calibrated 
Value 

Final  
Fitness 
Value 
(Mean) 

  1   
  2 & 3   
  2 & 3 0.45  
  2 & 3 0.45  
  4   
  4 0.33  

  5 7.8  
 

Method 2 : Case 5 Only 
Method 2 deals with a fresh set of parameters for each case. But just like in Method 1,  Method 2 also 
deals with a single parameter for Case 1: . Moving on to Cases 2 and 3 (the union of these two cases 
has been explained previously), the method now allows the calibration of four parameters: 

 and , where  is assumed equal to . Calibrations of parameters then proceed 
per case and are treated independent of each other.  
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Figure 9. Method 2 Average Log Fitness Value (NRMSE) and concentrations of  and 

 with respect to the iteration number over twenty (20) trials. Gray lines correspond to the standard deviation 

Here we focus on Case 5 where we calibrate parameters  and  using 
GA. Figure 9 shows the average (NRMSE) and average concentrations for  

 and  per iteration simulated over twenty (20) trials.  
Using method 2, we were able to calibrate all parameters with values similar to that in method 1 in 

5 out of 20 trials. Figure 10 plots the data (markers) extracted from the plots of [1] with our numerical 
solutions for Method 1 (solid lines) and Method 2 (dashed lines) of the PDEs in equations (1)-(3) by 
using the calibrated values for parameters  and  obtained through GA. 

 
Figure 10. Data (markers) and solutions for Method 1 (solid lines), and Method 2 (dashed lines) using parameters 

calibrated through genetic algorithm for Case 5. 
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8 Conclusion 
In this paper, we applied the genetic algorithm (GA) to calibrate parameters of the human innate 

immune system model by Pigozzo et al. We utilized two methods that vary the parameter composition 
of each chromosomes. The first method deals with a ladder-type scheme which makes use of 
previously calibrated parameters on subsequent cases. The second method, on the other hand, deals 
with a fresh set of parameters each time. We first tested the GA using Pigozzo et al.’s model by 
comparing a sample generated data, where parameters  and  are to be 
determined, with that of our solution. From this we were able to obtain the exact same parameters for 
Method 1 with fitness values (NRMSEs) approaching . We were able to calibrate all parameters 
in 5 out of 20 trials for Method 2. Plotting our test data and the solutions for methods 1 and 2 using 
GA gave similar configurations. 

We proceeded with calibrating the parameters from Pigozzo et al.’s model. We found that all 
calibrated parameters are the same for methods 1 and 2. But this is only true for 5 out of 20 trials in 
Method 2. Increasing the number of iterations by increasing the generation and population sizes could 
contribute to better parameter optimization in Method 2.  

GA provides a simple algorithm that allows us to do parameter optimization. However, it has its 
limitations. For instance, there is no guarantee that the simulation reaches an optimal solution due to 
factors including but not limited to mutation and crossover probabilities, initial population, choice of 
fitness function, and number of generations. Moving forward, we plan on exploring the sensitivity of 
the parameters used in our implementation of GA. We also intend to incorporate the concept of 
weights in our fitness evaluation to emphasize parts of the configurations that are important. For 
instance, we could implement multipliers as weights in solving fitness values at points  and 

. In this way, the endpoints are rendered more important than the rest of the configurations 
through space and time. 
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