
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

On Commands and Executions
Tyrants, Spectres and Vagabonds
Gauthier, D.

Publication date
2017
Document Version
Final published version
Published in
Executing Practices
License
CC BY-NC-SA

Link to publication

Citation for published version (APA):
Gauthier, D. (2017). On Commands and Executions: Tyrants, Spectres and Vagabonds. In H.
Pritchard, E. Snodgrass, & M. Tyźlik-Carver (Eds.), Executing Practices (pp. 63-76). (DATA
browser; Vol. 06). Autonomedia. http://data-browser.net/06/

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/on-commands-and-executions(dc9374b0-1d5a-453f-a852-212b8a7d0020).html
http://data-browser.net/06/

DATA browser 06
EXECUTING PRACTICES

Geoff Cox
Olle Essvik
Jennifer Gabrys
Francisco Gallardo
David Gauthier
Linda Hilfling Ritasdatter
Brian House
Yuk Hui
Marie Louise Juul Søndergaard
Peggy Pierrot
Andy Prior
Helen Pritchard
Roel Roscam Abbing
Audrey Samson
Kasper Hedegård Schiølin
Susan Schuppli
Femke Snelting
Eric Snodgrass
Winnie Soon
Magdalena Tyżlik-Carver

DATA browser 06
EXECUTING PRACTICES

Edited by Helen Pritchard,
Eric Snodgrass and Magda Tyżlik-Carver

ISBN 9781570273216

2017 the authors

All texts are licensed under the
Creative Commons Attribution-
NonCommercial-ShareAlike 3.0

Unported License, unless otherwise
stated.

To view a copy, visit http://www.
creativecommons.org/licenses/
by-nc-sa/3.0/

DATA browser series published
by AUTONOMEDIA

P.O. Box 568
Williamsburgh Station
Brooklyn, NY 11211- 0568

http://www.autonomedia.org/

The DATA browser editorial group are
Geoff Cox, Joasia Krysa, Anya Lewin.

http://www.data-browser.net/

This volume produced by
Critical Software Thing with support
from Participatory IT Research Centre,
Aarhus University

DATA browser series template
designed by Stuart Bertolotti-Bailey.

Book layout and typesetting by
Esther Yarnold, Studio Fold.

The cover image is derived from Multi
by David Reinfurt, a software app that
updates the idea of the multiple from
industrial production to the dynamics
of the information age. Each cover
presents an iteration of a possible
1,728 arrangements, each a face built
from minimal typographic furniture,
and from the same source code.
www.o-r-g.com/apps/multi

63

On Commands and Executions:
Tyrants, Spectres and Vagabonds
David Gauthier

It is difficult to address the notion of command and execution without
addressing that of tyranny. The concept of execution is an eerie
construct that at once implies a prescription and a proscription in its
suggestion that a rule or command is imposed and enforced on an
indeterminate substrate (subjects, objects, matter or otherwise).
Thus, it also suggests a certain type of violence that is at once effected
and effaced, or, differently put, execution insinuates a despotic
foreclosure. In that sense, the problematics of execution are central
to the notion of control, which speaks both to the order of reason that
it imposes and by which it is assessed. It also points to moments and
milieux of erasure where a given order vanishes in indeterminacy —
intervals and gaps that the order itself creates and forbids, its
necessary residual exterior.
 While the software/hardware divide has been a recurrent topic
of conversation within the field of Software Studies, I argue that the
subject needs to be pushed forward to consider the under-theorised
notions of command/execution. Moving from a conception of soft-
ware as ideology to a conception of software as tyranny, this article
shows how the symbolic order of the law, which underpins notions
of command and instruction, leads to an impasse when confronted
with the question of execution. In turn, rather than seeking an under-
standing of execution from the despotic perspective of commands
and instructions, the current inquiry identifies the various loci
where such a perspective collapses and it petitions for a practice of
execution that conceives of it as an event in its own right rather than
a mere afterthought.

Software as Ideology
In order to illustrate the problematic the notion of execution entails,
I will first focus on a particular debate about source code and
ideology that took place between Wendy Hui Kyong Chun (2005, 2008)
and Alexander R. Galloway (2006). This debate was partly prompted
by the nascent field of Software Studies which elected “software”
as the prime object of study of New Media discourse (Fuller 2006).
In her articles, Chun warns that in divorcing software from hardware
and in focusing on its discursive and semantic aspects, one effects
an epistemological and political move since “software perpetuates
certain notions of seeing as knowing ... creating an invisible system

64

EXECUTING PRACTICES

of visibility. The knowledge software offers is as obfuscatory as it is
revealing” (2005, 27). To further grasp the arguments of the debate,
it is worth highlighting how the advent of Computer Science, with its
emphasis on symbolic programming languages, drastically changed
the ways in which computing was conceived from the 1950s onwards.
Programming and coding practices, prior to the advent of computing
languages, were affairs of crafty local conventions and customs
that were highly tailored for individual machines across various
sites (Nofre et al. 2014, 49). With the growing commercialisation of
computing machinery, the concept of programming languages came
about as a means to standardise these local conventions and customs,
encapsulating them into syntactic and semantic forms that would
present traits of both mathematical notations and natural language:

The notion of a programming language, which is connected
to the idea of universality, became central to this exercise
of boundary work that sought to disengage the activity of
programming from local conventions, and to transform it into
a transcendent and universal body of knowledge. From this
endeavour, programming languages and algorithms emerged
as epistemic objects stripped of any marks that would associate
them with specific hardware. (Nofre et al. 2014, 66)

The consequence of the advent of “universal” languages was not
only that programming acquired a type of “machine independence”
(source code able to be built and executed on a variety of machines),
but more importantly, it brought about an amassing of linguistic
objects written in various “universal” programming languages, and
which, in turn, developed an epistemic and discursive life of their own.
Programming languages could thus carve out their own computing
invariant — a transcendent “island of semantic stability” (66) — by
rendering invisible the machine that was once literally in plain sight.
It is clear, then, that the universalisation of programming as language
produced a kind of stratification and disjunction of computing that
cut off the tacit and innate relationship programming had, and indeed
still has, with the material, processual and “crafty” aspects of hardware
which, consequently, became an invisible and illegible “black box”
(Brown and Carr qtd. in Nofre et al. 2014, 54).
 Speaking of this disjunction between the legible symbolic
programming language and the illegible “black box”, Chun posits that,
as a result, “software is a functional analog to ideology” (Chun 2005,
43). This analogy between software as an object in itself and as an
ideology stems from the fact that software instantiates a strict division
and upholds an illusory dialectical logic of cause and effects (input
and output) between infrastructure — the obscure and illegible
“black box”— and superstructure — manifest and legible programming

65

languages. This rupture speaks to the foreclosure of language over
the matter of computing, an operation that totalises the linguistic
regime of programming by concealing the totality of its material
substrate. Inevitably, then, questions of operations and meaning are
(re)claimed by this linguistic regime alone in that it is the only regime
capable of lending itself to “objective” interpretations and, in so doing,
legitimatises itself. By locating the birth of symbolic programming
languages at the grave of material hardware, Computer Science put
forth a type of “source” (code) reading of computer programs solely
based on human-readability, as opposed to machine-readability,
for instance. Addressing this divide, Chun concludes by noting that
“because of the histories and gazes [it] erase[s]; and because of the
future [it] points toward[s] … [s]oftware has become a commonsense
shorthand for culture and hardware a shorthand for nature” (46).
 To grasp the potency of Chun’s warning, it is important to turn
to Galloway’s intervention and show how his framings, according
to Chun, further highlight the illusory conflation of code (software)
and execution (hardware). In his article “Language Wants To Be
Overlooked”, Galloway (2006) acknowledges that code necessitates
a hardware infrastructure in order to function; he writes, “code exists
first and foremost as commands issued to a machine. Code essentially
has no other reason for being than instructing some machine how to
act” (326). We can clearly see how Galloway’s concept of code sustains
this split between infrastructure (the machine) and superstructure
(code as written commands issued to control the machine) when he
famously declares that “code is the only language that is executable”
(325). The paramount problem with this conception of command and
control, instruction and execution, code and machine is that, as Chun
rightly puts it, “[in making] the argument that code is automatically
executable, the process of execution itself must not only be erased,
but source code also must be conflated with its executable version”
(2008, 305). This erasure of execution, by conflating linguistic
commands and machine operations, has the corollary of reducing
notions of contingent computing events and processes solely to
written instructions which command them. In other words, in conflating
code and execution one conflates logos with action, explicitly erasing
all the problematics, discrepancies and variations action entails (303).
Going further with her analysis, as I will discuss in the next section,
Chun posits that symbolic code thus becomes law wherein executive,
legislative and juridical power coincide to establish a pure state of
exception—“code as law as police”, where the gap between word and
force, and logic and praxis is effectively effaced (2011, 101).
 Leaving aside Chun’s discussion of the law for now, I would like to
emphasise that Galloway’s concept of software as language or machine

ON COMMANDS AND EXECUTIONS

66

EXECUTING PRACTICES

(2006, 327) is solely concerned with the manipulation of symbols.
The symbolic order of the command, to put it this way, is put in a
prescriptive relationship with its physical “support”. The processual
and temporal gap existing between the issuing of a command and
the return of results is denied any agency whatsoever as the logic of
symbols and codes supersedes the one of their entropic medium,
a non-processual or eventless notion of execution that seems to be
symptomatic of some software oriented media theories. In this regard,
both Galloway’s and Lev Manovich’s (2001) notions of transcoding
are worth examining. For Manovich, “to ‘transcode’ something is to
translate it into another format” (47). Similarly, for Galloway, software
is a prime exemplar of “technical transcoding without figuration”
(2006, 319), where the various “lower level” layers composing the
subsystems of the machine (logic gates, registers, etc.) are put into a
relation of pure equivalence. As Galloway notes, “one of the outcomes
of this perspective is that each layer is technologically related, if not
entirely equivalent, to all the other layers” (327).1 We thus can clearly
see that for both theorists the temporal and material process by
which the machine codes and decodes is completely bracketed since
their concept of transcoding solely privileges the outcome of this
process, that is, the resulting written format or data structure (323).
For Galloway, “there is a privileged moment in which the written
becomes purely machinic and back again” (319), for which, then,
everything that is machinic ought to be equivalent. While Galloway
does not develop his notion of “machinic” further than simply alluding
to a complex aggregate of “‘lower’ symbolic interactions of voltages
through logic gates” (319), he does differentiate between conceiving
of software as language and conceiving of software as machine (327)
in positing that “code is machinic first and linguistic second”
(326). While it can be argued that software commands differ from
“illocutionary” commands and that software is dissimilar to “speech
acts”, the point of the current inquiry is to examine the notion of
command as such. It aims at problematising how this notion relies
on a given symbolic order (arithmetical, logical, algorithmic, legal,
machinic, etc.) that substitutes itself for the event that is execution,
which, I argue, has nothing to do with symbols alone but rather points
elsewhere.

Software as Tyranny
While arguments depicting software as being the “machinic turn”
of ideology, in the case of Chun’s earlier essays (2005, 2008), or
allegory, in the case of Galloway (2006), seem convincing, I intend
to look elsewhere to account for the tension between command and
execution, word and action. I find it peculiar, to say the least, that

67

the Church-Turing thesis in its physical form, which I believe lurks
underneath these discussions about symbolic algorithms and their
physical instantiation, is framed in terms of ideology or allegory.
Therefore, in what could be considered a bold move, I follow the
conviction that “ideology has no importance: what matters is not
ideology … but the organisation of power” (Guattari and Lotringer
2009, 37). Thus, rather than seeking inspiration from a critique of
ideology, as do Chun and Galloway, I turn to critiques of violence and
theories of law and authority that address how concepts of law are
enforced through rules, instructions and commands. While Chun’s
later essay (2011) does turn to a critique of violence, in which she
develops the notion of software as law, or code as law, she does not
address and focus on the intricacy of the tandem command-execution
in the manner I am suggesting here.2 To be clear, my aim is not to
reify a false idea that symbols are immaterial constructs and
thus unreal, or to reduce software to hard-ware, or to argue that
infrastructure supersedes superstructure, but rather to theoretically
look at how symbolic commands are made to operate in the first
place.
 According to the mathematical form of the Church-Turing thesis,
which is mainly concerned with effective procedures, executability
and reliability can be defined as such:

Executability: the procedure consists of a finite number
of deterministic instructions (i.e. instructions determining
a unique next step in the procedure), which have finite
and unambiguous specifications commanding the execution
of a finite number of primitive operations.
Reliability: when the procedure terminates, the procedure
generates the correct value of the function for each argument
after a finite number of primitive operations are performed.
(Piccinini 2011, 737)

From these informal descriptions, it is worth examining how
a command (instruction) is necessarily active in the sense that it is
prescriptive: it requests and constrains action to fulfil the promise
of its execution which, in turn, should shed expected effects. Yet the
command itself does not act per se, but rather prescribes an action
that it, in turn, assesses or judges (“correct value”). A distinction
must thus be made between what Jacques Derrida calls “performative”
and “constative” (1990, 969), where the former denotes the act of
execution and the latter the part of judgement that assesses the
effects of the former in light of its initial commanding. In short, the
constative, which both definitions of executability and reliability
speak to, forms a hermeneutic loop (interpretation, action/execution,
interpretation), where the central moment of action — the primitive

ON COMMANDS AND EXECUTIONS

68

EXECUTING PRACTICES

operation — is at once effected and effaced by interpretation itself.3
Hence, the constative always presumes the performative, “that is to
say [its] essential precipitation, which never proceeds without a certain
dissymmetry and some quality of violence” (969).
 According to the aforementioned definitions, to do justice to an
instruction, a primitive operation has to generate a correct output.
However, as Derrida points out, there is no justice of the performative
as such, but only just-ness, that is, performing according to prior
conventions, methods, or protocols; the performative, he writes,
“cannot be just, in the sense of justice ... it always maintains within
itself some irruptive violence, it no longer responds to the demands
of theoretical rationality” (969). The implicitness and precipitateness
of the performative buried within the constative hermeneutic loop
speaks, in more general terms, of the conflation of command and
execution as discussed in the previous section. What this conflation
does, I argue, is to veil the “irrational” violence of the performative
that still, necessarily, constitutes the core of the constative. While
there may be rules, methods and protocols prescribed by a given
command or instruction, the urgency and precipitateness of the
performative make it act, nonetheless, “in the night of non-knowledge
and non-rule” (967). What the notion of execution harbours then is an
act that is at once a “non-knowledge”, a “non-rule”, a “non-protocol”,
a “non-method”. In other words, the concept of execution points to
the reverse side of the law, that is, its necessary primitive exterior.
 The rapport between the interior and exterior of the law begs
further nuancing. For Derrida, “violence is not exterior to the order of
droit [law]. It threatens it from within” (989). Yet, as I argued above,
the violence of execution stands as a primitive outside to the symbolic
order of law; it operates in an inordinately different register as “non-
knowledge” and ultimately as “non-law” or “out-law”. The order of
law, the hermeneutic loop of the constative, as I discussed above, may
well comprise a certain placeholder for the moment of action/execu-
tion, but it nonetheless is articulated by a totally different language
(if actual language there is), which at once prompts execution as such
only to efface it after the fact by substituting it with an interpretation of
its deciphered effects: a correct instruction for a correct value. Yet the
moment of action/execution still remains illegible from the perspective
of the constative. The problematic of the symbolic order is its despotic
attempt to codify, and therefore foreclose everything by means of
substitution, giving it the grounds and monopoly to justify itself as a
righteous transcendental order capable of “decreeing to be violent,
this time in the sense of an outlaw, anyone who does not recognize it”
(987).

69

 There are thus two types of outlaws I want to unearth here: (1)
the heretic outlaw that has been judged as such for not recognising
the law’s order (not following conventions, method, protocol, etc.)
and consequently ruled “outside” by decree — an error or “miscom-
putation” (Piccinini 2007, 505) — and (2) the “autochthon” outlaw that
executes and hence founds the constative loop outright, and who
therefore stands “outside” the law by necessity — primitive operations.
Both vouch for, from the perspective of the law, a sense of legible
illegibility, or “foreignness”, since they both imply a passage to action
as a moment of non-law, a transgression of order.
 For Derrida, the moments of action/execution are, by themselves,
moments of “mystique”. He writes, “[these] moments supposing we
can isolate them, are terrifying moments … [They] are themselves,
and in their very violence, uninterpretable or indecipherable. That is
what I am calling ‘mystique’” (1990, 991). What Derrida points to with
“uninterpretable” and “indecipherable” is the limit of interpretation
as such. Derrida’s “mystique” speaks to the event that is execution
and how symbolic instructions feign “that of which is in progress”
during the event; he writes “[i]t is precisely in this ignorance that the
eventness of the event consists, what we naively call its presence”
(991). This ignorance [non-savoir] as a moment of deferring or drifting
of interpretation, as a suspension of the law, is paradoxically equated
to its own presence and fosters its own becoming. Law is a spectre
during the moment of execution, it is a presence in absence. As a
result, execution always exceeds its interpretation or interpretation
tout court: “[it] is the moment in which the foundation of law remains
suspended in the void or over the abyss, suspended by a pure
performative act that would not have to answer to or before anyone”
(991–3). Thus, the first aforementioned outlaw may well be condemned
as heretic — the position of the error or miscomputation — but it
nonetheless harbours an eccentricity that exceeds the law and its
instruction, an eccentricity that has to answer to or before no one.
 Unpacking the term heresy sheds light on what the becoming of
the law entails at the moment of action/execution. Etymologically,
heresy is derived from the greek αἱρετικός [hairetikos], which, accor-
ding to Thayer’s Greek-English lexicon, denotes at once “fitted or able
to take or choose” and “schismatic, factious, a follower of the false
doctrine”. The former sense of the term designates an action (taking
or choosing) that, as mentioned above, exceeds interpretation, while
the latter denotes an interpretation or judgement as such, which takes
place after the fact/action. Both senses thus speak to the becoming of
heresy from action to its judgment. As a result, at the moment of action/
execution, the becoming of the law coincides with the becoming
of heresy. In fact, Derrida tells us, these two becomings are exactly

ON COMMANDS AND EXECUTIONS

70

EXECUTING PRACTICES

the same. The moment of conservation of the law, by which the
hermeneutic loop is instantiated and heretic positions are decreed as
such, is the same as the moment of the founding the law. Any position
before the law, such as the heretic position, calls for a potential
repetition of itself: “[a] position is already iterability, a call for self-
conserving repetition” (997). In other words, a position before the
law permits and promises, it defies and puts forward a vow to repeat
and iterate.
 Thus what I have termed the heretic outlaw above is in fact the
same conceptual personage as the autochthon outlaw. The figure
of the outlaw, then, “would no longer be before the law, rather [it]
would be before a law not yet determined, before the law as before
a law not existing yet, a law yet to come” (993). Put differently, law’s
transgression is before the law in the sense that it is an infringement
of an existing law yet, at the same time, it points to the potential
commencement of another: a proscription becoming prescription.
There is no pure founding position of the law as such, only iterations
of it, as “conservation in its turn refounds, so that it can conserve what
it claims to found” (997). Hence, the heretic position is at once a
position of commencement and commandment, a promise of a new
order; and “even if the promise is not kept in fact, iterability inscribes
the promise as guard in the most irruptive instant of foundation”
(997). In this way, the law threatens outlaws, always necessarily, as
much as outlaws threaten the law from within, always necessarily.
Besides, isn’t the heretic position a key position in that it allows for
a critique of violence and the law in the first place?
 What this amounts to, following Derrida’s notion that there is
no strict opposition between the conservation and foundation of the
law, no position before the law that does not necessarily imply its
own iteration, and vice versa, is that the position of the heretic is as
forcible as the one of the police, which, by decree, is supposed to
enforce the law. In fact, the terms heretic and police are metonyms
that refer to mere positions during the moment of action/execution.
As stated above, during this event, the whole order of the law is
suspended, interpretation deferred, and “that of which is in progress”
during this interval equates to a symbolic void, a moment of
“non-law”. There can only be symbolic substitutes for what amounts
to mere positional acts during execution. At this level of reality,
betrayal and enforcement are both in states of becoming, that is,
not yet individuated or, rather, judged as such. This is precisely
the paradox of law: the insurmountable distance it creates between
its prescriptive instructions and its actual “presence-in-action”,
or, rather, “absence-in-action”.

71

 In light of this, Chun’s insight of conceiving code as law can
be thought of anew. In equating code to law and law to police, thus
producing a triad of code as law as police, she writes, “[code] as
law as police, like the state of exception, makes executive, legislative
and juridical powers coincide. Code as law as police erases the gap
between force and writing … in a complementary fashion to the state
of exception” (2011, 101). I beg to differ from this perspective and
keep the moment of execution as a moment of suspension of the law,
a moment of “non-law”, a moment of “non-writing”, yet a moment
of force and intensity, as I argue in the next section. What Derrida
shows us, by equating law’s conservation and foundation, is that the
legislative and executive powers already coincide, albeit in a strange
way, and thus, that the state of exception is no exception after all.
Yet, the strangeness and clandestinity of the coinciding of the legal
and executive comes not from their coinciding as such but more
from the fact that law is always necessarily non-present at the moment
of action/execution. Derrida talks about the spectre of the law to
account for this non-presence, or absence. Thus, Chun’s motto of
code as law as police can be refactored as code as law as spectre.
A position of law is a promise at the moment of execution, a becoming
yet to shed the iteration that will “conserve what it claims to found”
(Derrida 1990, 997).

Outlaws, Itinerants, and Vagabonds
So far, I have shown that the notion of execution from the perspective
of the law merely points to its primitive exterior. What if this perspec-
tive were to be reversed? What would a practice of execution then
entail, rather than producing a sequence of instructions? It is not
because the law loses its ground and becomes phantom-like that “that
of which is in progress” during the moment of execution amounts to
nothing, a pure void. There is nothing particularly profound in effecting
this reversal of perspective, taking the viewpoint of the heretic outlaw,
so to speak. In a sense, that is precisely what Gilbert Simondon’s
critique of hylomorphism is all about.
 To be rather brief at this point, the hylomorphic scheme
conceives of both organic or inorganic individuals as engendered
by the conjugate of form and matter. One of the classic examples
used to illustrate the form-matter dynamic is that of a brick. Simply
put, according to the hylomorphic scheme, the production of a
brick would be as follows: give a passive lump of clay (potential) a
parallelepiped form (actualisation). In other words, a pure form —
the parallelepiped — is applied to an indeterminate raw lump of
material — the clay — so the lump itself undergoes a transformation and
takes the shape of a parallelepiped and, in turn, sheds an individual

ON COMMANDS AND EXECUTIONS

72

EXECUTING PRACTICES

brick. In this scheme, the form itself is of prime importance since it
directs matter in its process of transformation from an undetermined
shape to a determined one; put differently, form actualises matter’s
latent potential. Form is thus the sole source of actualisation that
governs the transformation of the lump of raw clay — it determines the
indeterminate.
 Simondon acknowledges that there is a notion of a genesis, or
more precisely of an ontogenesis, involved in hylomorphism, yet it
is an “ontogenesis in reverse” (2013, 23).4 What Simondon does is to
reverse this reverse, so to speak, by devising concepts that allow for
“knowing the individual through individuation rather than [knowing]
individuation from the individual” (24). Instead of conceiving of
ontogenesis as a restricted and narrow concept denoting the genesis
of a given individual (as hylomorphism does), Simondon conceives
of it as a “partial and relative resolution manifesting itself in a system
containing potentials and involving a certain incompatibility in relation
to itself, incompatibility composed of forces and tension” (25). In a
sense, Simondon’s notion of individuation stands against the telos of
hylomorphism, that is, against erecting the Individual as a privileged
origin (form) and finality (brick). The individual he puts forth is
thus grasped as a relative reality, never fully realised, and the process
of individuation perpetual rather than transitive.
 The tension and contrasts between the form-matter couple of
hylomorphism are even more clearly and vividly exposed by the
discourse on the instruction-execution divide I have critiqued.
As argued earlier, positions before the law are always mere potentials
at the moment of action/execution, and thus the law itself is always
in a process of becoming rather than final, as it can never truly be
founded once and for all. Because of this problem of origin and
finality of the law — its incompatibility in relation to itself — a rapport
can be drawn here with Simondon’s critique of hylomorphism.
For Simondon, the technical operation that “imposes a form to a passive
and indeterminate material” is not only a phantom-like operation,
but more importantly is tyrannical. He writes:

[It] is not only an abstract operation considered by the
spectator that sees what comes in and out of the workshop
without knowing what the actual elaboration is. It is essentially
an operation commanded by a free man [of the Republic]
and executed by the slave … The true passivity of matter
is its abstract availability under the given order that others
will execute. (51)

Simondon’s image of the spectator (or should I say spectre) who
remains outside of the workshop is most evocative here: the work-
shop is hylomorphism’s own “outside”—“[t]he hylomorphic scheme

73

corresponds to the knowledge of a man who remains outside of the
workshop and only considers what comes in and what comes out of it”
(46). The same outside perspective could be said of a programmer who
considers digital execution solely from his computer’s command line.
His remark of the situation of the slave can be linked to the one of the
outlaws and the heretics depicted in the previous section. The hylomor-
phic scheme, like that of the law, is necessarily founded on primitive
external entities that it appropriates by despotic means. Yet, in his trea-
tise, Simondon argues that to truly grasp the process of form-taking,
such as the moulding of a brick, “it is not enough to enter the workshop
and work with the artisan: one should enter the mould itself to follow
the operation of form taking at different levels of magnitude of physical
reality” (2013, 46).
 Moving from question of law to questions of science, Gilles
Deleuze and Félix Guattari engage with notions of interiority and
exteriority of the law, and frame the aforementioned perspectival
reverses in these terms:

A distinction must be made between two types of science, or
scientific procedures: one consists in “reproducing,” the other
in “following.” The first involves reproduction, iteration and
reiteration; the other, involving itineration, is the sum of the
itinerant, ambulant sciences … following is not at all the same
thing as reproducing, and one never follows in order
to reproduce … Reproducing implies the permanence of a
fixed point of view that is external to what is reproduced:
watching the flow from the bank. But following is something
different from the ideal of reproduction. Not better, just
different. One is obliged to follow when one is in search of the
“singularities” of a matter, or rather of a material, and not out
to discover a form. (Deleuze and Guattari 1987, 372)

What thus becomes clear is how software as law institutes this tran-
scendental fixed point of view — the aforementioned constative
loop — by isolating, stratifying, discretising, categorising and fore-
closing the spatiotemporal continuum the process of execution
articulates. Computer Science, as the science that legislates, is thus
responsible for abstracting moments and locales from this continuum
and structuring logical concepts and categories out of these abstrac-
tions. Yet the theorematic coordinates such a science puts forth
are based on various spatiotemporal cuts and erasures; in other words,
from a spatiotemporal continuum a logical series is extracted that,
as a result, features as many forbidden zones or vanishing points as
there are terms in the series. The theorematic power of Computer
Science comes from its given authority in decreeing laws and concepts
that produce the sacrosanct apodictic apparatus of empty repetition

ON COMMANDS AND EXECUTIONS

74

EXECUTING PRACTICES

— that is, the repetition of the same and the similar. Without this
apodictic apparatus, Computer Science would be destined to follow
the progression of a given spatiotemporal phenomenon at ground
zero and thus lose its transcendental, and fixed, point of view.
 Execution asks to be followed, not iterated. Practices of execution
entice an itineration within the residual outside of software, that is,
an itineration at ground level where the theorematic coordinates
of software are projected on the ground. In order to account for
the spatiotemporal individuation of the event of execution proper,
one has to step out of Computer Science’s apodictic apparatus of
categorisation and traverse the zones of indeterminacy this apparatus
constructs. To follow is to cross the interstice’s in-between states,
in-between commands and in-between rules and laws. It is to traverse
these moments of non-law, non-knowledge, non-rule, non-protocol,
non-method; in short, to follow is to transgress the imposed dominant
order and, in so doing, to problematise the rationale behind its
disposition of minoring an outside. The reason I have, in the previous
section, focused on the notion of outlaw and positions of heresy
before the law is to call attention to power relations inherent in this
process of minoring. The problem of execution concerns the domain
of epistemology as well as that of work and labour, be it human
or non-human. Not only does the creation of a residual outside raise
questions of legibility and illegibility in terms of knowledge, but
further, it promulgates certain types of social practices and work
hierarchies that perpetuate types of despotism and tyranny based
on certain valuations of work and systems of visibility and invisibility
based on this very outside.5

 While one may be lured into looking for notions of execution
in Computer Science books or to practice execution from his/her
computer’s command line, I suggest one has to look elsewhere and
engage differently with code and circuitry to truly grasp and follow
the event that is execution. As short concluding remark, I would like
to suggest that luckily, another type of heretic “science” of execution,
or rather a practice, already exists that is not usually featured in
Computer Science literature per se but is, nonetheless, always and
necessarily performed when producing a piece of hardware or a piece
of software — that is the practice of debugging. True “occult science”,
debugging requires one to follow the thread of execution of a given
program, that is, to follow the itineration and vagabonding of signs
and signals within the architecture of a given machine at a given
time. A bug, error, failure, or miscomputation necessarily begs to be
followed. It is an event itself, or, rather, speaks to the individuation of
execution in and for itself. It requires that the illusory disjunction or
stratification of instruction and execution, signs and matter, and the

75

discretised dynamics this disjunction puts forth be suspended and
problematised. What the practice of debugging highlights is the fragile
conjunction of signs and signals in focusing on the technical operations
that mediates them in time and space. To debug is to open bare the
foreclosure of the aforementioned symbolic order of the law and
enter Simondon’s mould, so to speak: to observe and intervene during
the event that links the two technological half-chains of the sign and
the signals, the opcode and the dipole.
 Debugging, as liminal and vagabond science, as well as an effec-
tive practice of execution, is potent in problematising and debunking
the tyrannic minoring of an outside some Computer Science concepts
necessarily produce, and, in turn, that some Software Studies
discourses reproduce. After all, debugging is about problems and
problematisation, may it be of a piece of machinery or a piece of
theory. In fact, problematics is its only mode of operation. There are no
software stacks nor interfaces along the path of the vagabond outlaw,
only curious spectres.

ON COMMANDS AND EXECUTIONS

Notes
 1. The same emphasis on the

symbolic outcome of an execution can
be said of Galloway’s equating two
quadratic equations written in a “high-
level” and “low-level” programming
languages (2006, 319). Surely both
equations, expressed differently, shed
the same numerical solution, yet their
respective technical unfolding during
execution are nothing but equal, as Chun
points out (2008, 306–7).

2. See the present collection’s
contribution “RuntimeException() —
Critique of Software Violence” by
Geoff Cox, who also discusses software
in terms of violence, in a different,
albeit complementary, way to this
chapter.

3. The notion of interpretation here
does not necessarily denotes a semantic
interpretation as a comprehension of the
meaning of a command or result
in a mathematical or linguistic sense.
The loop structure I am describing here
holds for purely mechanistic conceptions
of computing such as the one put forth
by Piccinini (2008, 2007). Interpretation,
in this case, thus relates to notions of
internal semantics rather than external
ones (Piccinini 2008, 214–5).

4. All citations from Simondon are my
translations.

5. See Linda Hilfling Ritasdatter’s
contribution “BUGS IN THE WAR ROOM
— Economies and /of Execution” in the
present collection, where she addresses
on question software maintenance
and labour in terms of neo-colonial
hegemony.

References
Chun, Wendy Hui Kyong. 2005. “On

Software, or the Persistence of Visual
Knowledge.” Grey Room 18: 26–51.

——. 2008. “On ‘Sourcery,’ or Code as
Fetish.” Configurations 16 (3): 299–324.

——. 2011. “Crisis, Crisis, Crisis, or
Sovereignty and Networks.” Theory,
Culture & Society 28 (6): 91–112.

Deleuze, Gilles, and Félix Guattari. 1987.
A Thousand Plateaus: Capitalism and
Schizophrenia. Minneapolis: University
of Minnesota Press.

Derrida, Jacques. 1989. “Force De Loi:
Le Fondement Mystique De L’Autorité
/ Deconstruction and the Possibility
of Justice.” Cardozo Law Review 11:
920–1046.

Fuller, Matthew. 2006. “Software Studies
Workshop.” Piet Zwart Institute —
Software Studies Workshop.

76

EXECUTING PRACTICES

 http://web.archive.org/
web/20100327185154/http://pzwart.
wdka.hro.nl/mdr/Seminars2/
softstudworkshop.

Galloway, Alexander R. 2006. “Language
Wants To Be Overlooked: On Software
and Ideology.” Journal of Visual Culture
5 (3): 315–31.

Guattari, Félix, and Sylvère Lotringer.
2009. Chaosophy: Texts and Interviews
1972-1977. Semiotext(e) Foreign
Agents Series. Los Angeles, CA:
Semiotext(e).

Manovich, Lev. 2002. The Language of
New Media. MIT Press ed. Leonardo.
Cambridge, MA: MIT Press.

Nofre, David, Mark Priestley, and Gerard
Alberts. 2014. “When Technology
Became Language: The Origins of the
Linguistic Conception of Computer
Programming, 1950–1960.”
Technology and Culture 55 (1): 40–75.

Piccinini, Gualtiero. 2007. “Computing
Mechanisms.” Philosophy of Science
74 (4): 501–26.

——. 2008. “Computation without
Representation.” Philosophical Studies
137 (2): 205–41.

——. 2011. “The Physical Church —
Turing Thesis: Modest or Bold?”
The British Journal for the Philosophy
of Science 62 (4): 733–69.

Simondon, Gilbert. 2005. L’individuation
à la lumière des notions de forme et
d’information. Krisis. Grenoble: Millon.

