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Studying the Strength of Prediction Using Indirect
Mixture Modeling: Nonlinear Latent Regression with

Heteroskedastic Residuals

Johanna M. de Kort,1 Conor V. Dolan, 1 Gitta H. Lubke,2 and Dylan Molenaar 3

1Vrije Universiteit Amsterdam
2Vrije Universiteit, Amsterdam, and University of Notre Dame

3University of Amsterdam

We present a latent regression model in which the regression function is possibly nonlinear,
and not necessarily smooth (e.g., a step function), and in which the residual variances are not
necessarily homoskedastic. Heteroskedasticity is modeled by making the conditional (on the
predictor) residual variance a (user-specified) function of the predictor. We use indirect
mixture modeling to estimate the parameters by marginal maximum likelihood estimation,
as proposed by Bock and Aitken (1981) in the context of item-response theory modeling and
Klein and Moosbrugger (2000) in the context of structural equation modeling. We present a
small simulation study to evaluate power and the consequences of model misspecification, and
an illustration concerning neuroticism and extroversion. The model can be used to evaluate
changes in the strength of the prediction as a function of the predictor.

Keywords: heteroskedasticity, indirect mixture, latent regression, marginal maximum like-
lihood, nonlinearity

In direct applications of finite mixture modeling, the aim is to
identify latent classes (mixture components), which are amen-
able to substantive interpretation (e.g., Dolan, Schmittmann,
Lubke, & Neale, 2005; Muthén, Khoo, Francis, & Boscardin,
2003; Schmittmann, Dolan, van der Maas, & Neale, 2005). In
indirect applications,mixturemodeling is used as a tool to obtain
a flexible, tractable form of analysis (e.g., Bauer, 2005; Kelava,
Nagengast, & Brandt, 2014; Moosbrugger, Schermelleh-Engel,
Kelava, & Klein, 2009). For instance, finite mixture factor

analysis has been used indirectly to accommodate nonnormality
(Wall, Gua, & Amemiya, 2012), and directly to identify inter-
pretable latent classes (Dolan & van de Maas, 1998; Lubke &
Muthén, 2005). In this article, we use indirect mixture modeling
to accommodate nonlinearity and heteroskedasticity in the latent
regression model.

We consider the combination of nonlinearity and hetero-
skedasticity to be of substantive interest to model changes in
the strength of prediction. For instance, consider the state-
ment “Social isolation (SI) causes depression (D),” which
can be formalized in terms of the linear regression of D on
SI. The psychological shorthand narrative is intuitively
appealing: the more isolated you are, the more likely you
are to be depressed (Cacioppo, Hawkley, & Thisted, 2010).
However, it is possible that at low, or even intermediate,
levels of depression, depression is less strongly associated
with social isolation. This variation in strength of the rela-
tionship might be due to heteroskedasticity (e.g., σ2 [D|SI
high] < σ2[D|SI low]), or due to variation in the value of the
regression coefficient, β (e.g., β|SI high > β|SI low). The
latter results in nonlinearity, whereas the former does not.
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However, both have a bearing on the strength of the regres-
sion relationship.

To accommodate nonlinearity, latent polynomial regression
is often used. Two main approaches are the (latent) product-
indicator approach and the distribution analytic approach
(Moosbrugger et al., 2009). Within the product indicator
approach latent nonlinearity is specified by including appro-
priate functions of the observed indicators (Bollen, 1995;
Jaccard & Wan, 1996; Jöreskog & Yang, 1996; Kenny &
Judd, 1984; Ping, 1996; Schumacker & Marcoulides, 1998).
The product-indicator approach requires nonlinear constraints
(but see Marsh, Wen, & Hau, 2004), and estimation suitable
for nonnormality, given the nonnormality arising from the
inclusion of product indicators. Within the distribution analytic
approach, the model is estimated by conditioning on latent
variables involved in the nonlinear regression terms. This can
either be done by formulating the model as an indirect mixture
(e.g., the latent moderated structural equation approach; Klein
& Moosbrugger, 2000) or by approximating the nonnormal
density function of the joint indicator vector (e.g., using quasi-
maximum likelihood estimation; Klein & Muthén, 2007). A
second indirect mixture approach to nonlinearity was devel-
oped by Bauer (2005; see also Pek, Sterba, Kok, & Bauer,
2009). Bauer proposed an exploratory regression model that
approximates the nonlinear regression function by means of a
weighted combination of linear regression models. This
method requires specification of the number of components
in the indirect mixture, not of the functional form of the non-
linear function (e.g., curvilinear, quadratic, exponential).

In the methods mentioned so far, heteroskedasticity, if any,
is not modeled and not of substantive interest. Generally, in
linear regression modeling, heteroskedasticity is viewed as an
obstacle to correct statistical inference concerning regression
coefficients, which can be addressed by iterated weighted least
squares (Greene, 2011; Hooper, 1993) or by a correction of the
standard errors (Huber, 1967; White, 1980). However, hetero-
skedasticity can be of theoretical interest in its own right. For
instance, heteroskedasticity is important in the study of ability
differentiation (Molenaar, Dolan, & van der Maas, 2011),
genotype by environment interaction (Molenaar et al., 2013;
van der Sluis, Dolan, Neale, Boomsma, & Posthuma, 2006),
and personality (i.e., schematicity hypothesis; Molenaar,
Dolan, & de Boeck, 2012). As mentioned earlier, here we
are interested in heteroskedasticity (in combination with pos-
sible nonlinearity), as it has a bearing on the precision of
prediction in the regression model.

Within the context of factor models and item-response
theory (IRT) models, Molenaar and colleagues used marginal
maximum likelihood (MML) estimation to model nonlinearity
and heteroskedasticity (Molenaar et al., 2012; Molenaar et al.,
2011; Molenaar, Dolan, & Verhelst, 2010; Molenaar, Dolan,
Wicherts, & van der Maas, 2010). This approach is similar to
that of Klein and Moosbrugger (2000) as it also exploits the
fact that MML estimation in psychometric modeling can be
cast in terms of constrained finite mixture modeling (see later).

In this article, we use the indirect mixture modeling approach
to fit a nonlinear heteroskedastic latent regression model using
MML estimation. In the model, both the regression coefficient
and the latent residual variance are deterministic functions of the
latent predictor. We show that various forms of heteroskedasti-
city can be accommodated using smooth or step functions.
Similarly, various forms of nonlinearity can be considered
including, but not limited to, polynomial functions or smooth
functions. The outline of this article is as follows.Wefirst present
the formal indirect mixture model. Next, we discuss MML
estimation of the model parameters. Then, we present the results
of a simulation study to demonstrate the viability of themodel in
terms of parameter recovery, power, and the effect of misspeci-
fication. We apply the model to a real data set pertaining to
personality. Finally, we conclude the article with a brief
discussion.

THE INDIRECT MIXTURE MODEL TO TEST
NONLINEARITY AND HETEROSKEDASTICITY

The Linear and Homoskedastic Case

We consider two instances of the latent linear regression
model (see Figure 1). We assume that the normally distrib-
uted predictor variable (ηx) is latent with L indicators and
that the dependent variable (ηy) is either observed (Figure 1
bottom) or latent with K indicators (Figure 1 top). We
assume the dependent variable (ηy) to be normal conditional
on the predictor (ηy). The number of indicators is arbitrary
but assumed to be sufficient to avoid problems of identifica-
tion. In matrix notation, the model for the L-dimensional
vector of predictor indicators, denoted by x, is given by

x ¼ νx þ λxηx þ εx; (1)

where νx is the L-dimensional vector of intercepts, λx is an
L-dimensional vector of factor loadings, ηx is the 1 × 1
vector of the latent predictor (i.e., ηx = [ηx]), and εx is the
L-dimensional vector of residuals. Next, the model for the
K-dimensional vector of dependent latent variable indica-
tors, denoted by y, given K > 1, is given by

y ¼ νy þ λyηy þ εy; (2)

with the parameters defined analogously. The preceding
model reduces to y = νy + ηy if K = 1, as here the variable
y features as the observed dependent. In the standard linear
homoskedastic model, the latent dependent variable is
regressed on the latent predictor variable as follows:

ηy ¼ Bηx þ ζ; (3)

where B is a 1 × 1 matrix containing the regression coeffi-
cient β, and ζ is a 1 × 1 matrix containing the latent residual
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ζ with variance σζ
2. Homoskedasticity implies that the var-

iance of ζ is constant over the range of ηx.

The Nonlinear and Heteroskedastic Case

We generalize the latent linear regression model to accom-
modate nonlinearity and heteroskedasticity simultaneously
by making the regression coefficient β and the residual
variance σζ

2 a function of the predictor ηx:

β ¼ f βðηxÞ; (4)

and

σζ
2 ¼ f ζðηxÞ: (5)

The choice of the functions fβ(.) and fζ(.) is arbitrary, and not
limited to smooth functions. An obvious smooth function is
the r-degree polynomial regression:

β ¼ f βðηxÞ ¼ γ0 þ γ1ηx þ γ2ηx
2 þ . . . þ γrηx

r (6)

where the model reduces to standard linear regression if
γi = 0 (i = 1, …, r). As an example of a discrete function,
consider a three-step function:

β ¼ f β ðηxÞ ¼ k0þk1 if ηx �� c

k0 if � c < ηx< c

k0 þ k2 if ηx � c

(7)

where c is a chosen, fixed threshold value. To model hetero-
skedasticity of the latent residual, we could use an rth order
polynomial function:

σζ
2 ¼ f ζðηxÞ ¼ expðϕ0 þ ϕ1ηx þ ϕ2ηx

2 þ . . . þ ϕrηx
rÞ

(8)

or equivalently

logðσζ2Þ ¼ logðf ζ ðηxÞÞ ¼ ϕ0 þ ϕ1ηx þ ϕ2ηx
2 þ . . . þ ϕrηx

r;

(9)

where the intercept ϕ0 accounts for the latent residual, which is
independent of the predictor ηx. In addition, ϕs (s = 1,…, r) are
the heteroskedasticity parameters that account for the residual
variance as a function of the predictor ηx. As in the case of the
regression coefficient, other (discrete) functions can be chosen,
such as the step function; for example,

σζ2 ¼ f ζ ηxð Þ ¼ �0 þ �1 if ηx � �c;
�0 if � �c < ηx < c
�0 þ �2 if ηx � c:

(10)

The step function can be used in an exploratory analysis of
heteroskedasticity in the extreme of the ηx distribution,
where the choice of c is arbitrary (e.g., setting the threshold
c to equal 1 SD; see the illustration later).

Parameter Estimation

Equations 1 through 5 represent the extended nonlinear latent
regression model with heteroskedastic residuals. This model
can be fitted by means of MML estimation (Bock & Aitkin,
1981; Klein & Moosbrugger, 2000; Molenaar et al., 2010), in
which we condition on ηx and use Gauss–Hermite quadrature
(Stroud & Secrest, 1966) to approximate the integral in the
log-marginal likelihood.

To facilitate parameter estimation, we reformulate themodels
in Figure 1 into an equivalent specification, which is displayed
in Figure 2. Specifically, given the model for the indicators of ηx
in Equation 1, the conditional mean vector of the x indicators is
given by μx|ηx = νx + λxηx, and the conditional covariance
matrix is given by Σx|ηx = Θx. When considering both nonli-
nearity and heteroskedasticity in the latent regression of ηy on ηx
the model for the indicator vector of ηy conditional on ηx, is
defined as y|ηx = νy + λy fβ(ηx) ηx + λy ζ + εy, where fβ(ηx) is
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FIGURE 1 Regression models with four predictor and four dependent
indicators (top) or one dependent (bottom).
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specified as discussed earlier. In the case of a second-order
polynomial, we have fβ(ηx) = γ0+ γ1ηx; that is,

yjηx ¼ νy þ λy ðγ0 þ γ1ηxÞηx þ λyζþ εy ¼
¼ νy þ λyðγ0ηx þ γ1ηx

2Þ þ λyζ þ εy;

which reveals the quadratic nature of the regression model.
The vector of the conditional means of the dependent

indicators is defined as μy|ηx = νy + λy fβ(ηx) ηx. The model-
implied conditional covariance structure depends on the fζ
(ηx), as follows: Σy|ηx = λy[fζ(ηx)]λy

t + Θy, where, for
instance, fζ(ηx) = exp (ϕ0 + ϕ1ηx). To formulize the MML
function we stack the indictor vectors of the predictor and
dependent latent variable, x and y, into the vector z. In
addition, the conditional mean vector of x and y is stacked
into μηx

and the conditional covariance matrix is the block
matrix

P
ηx
. Then, the conditional distribution of the data of

subject i, zi, is defined as

h zijηx; τð Þ ¼ 2πð Þ�M=2
X

ηx

��� ����1
2

exp � 1

2
zi � μηx

� �
0 X

ηx

h i�1
zi � μηx

� �� �
:

By integrating out ηx, we obtain the marginal density of the
observed variables for subject i

k zijτð Þ ¼
ð1
�1

h zijηx; τð Þ � φ ηxð Þ dηx;

where φ ηxð Þ is a standard normal density function.
Approximating the log of this density using Gauss–
Hermite quadratures, we obtain

logL τjzð Þ �PM
i¼1

log
PQ
q¼1

W �
q � h zijN�

q ; τ
� � !

; (11)

where M is the number of subjects and τ is the parameter
vector. In addition, N*q =

ffiffiffi
2

p
Nq and W*q = 1ffiffi

π
p Wq where Nq

and Wq are the Q nodes and weights (q = 1, …, Q),
respectively of the Gauss–Hermite quadrature approxima-

tion. Note that 0 < W*q < 1 and
PQ

q¼1W
�
q ¼ 1, so that the

log-marginal likelihood function,
PQ
q¼1

W �
q � h zijN �

q ; τ
� �

has

the form of a Q-component mixture distribution with the

weights featuring as mixing proportions, and h zijN�
q ; τ

� �
featuring as the qth mixture component distribution. The
model as defined earlier is implemented in OpenMx
(Boker et al., 2011) within the R program (R Development
Core Team, 2012).1

SIMULATION STUDY

We explored the viability of this model by means of a small
simulation study, in which we considered parameter recov-
ery, power, and the effects of misspecification. We limited
the simulation study to the second-order polynomial non-
linearity model and the second-order polynomial heteroske-
dasticity model, as defined in Equations 6 and 8. To make
the relevant comparisons, we considered four instances of
the model: the full model (i.e., the model with the regular
regression parameters γ0, ϕ0, and the nonlinearity parameter
γ1, and heteroskedasticity parameter ϕ1); the heteroskedasti-
city model (i.e., the model with parameters γ0, ϕ0, and ϕ1);
the nonlinearity model (i.e., the model with parameters γ0,
ϕ0, and γ1); and the basic model (i.e., the standard regression
model with only parameters γ0, ϕ0). We denote these models
as FULL, NON-L, HETERO, and BASIC, respectively.

Setting

We set the number of indicators of the latent predictor (ηx)
to equal L = 4, and the number of indicators of the latent
dependent variable (ηy) K = 4 or K = 1 (given K =1, ηy is
simply equal to the dependent y). To fit the models, we used
the following identifying (scaling) constraints; in each
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FIGURE 2 Regression models with four predictor and four dependent
indicators (top) or one dependent (bottom) in an equivalent (to Figure 1)
specification. Note that βk* = β × λyk where k = 1, …, K.

1 The OpenMx script is available at www.dylanmolenaar.nl.
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model the variance of ηx was fixed to 1. Additionally, given
K = 4, the first factor loading of ηy was fixed to 1. To
generate data, we set all 4 factor loadings associated with
ηx to equal .5 and the factor loadings associated with ηy to
equal 1. We fixed all latent variable means (i.e., E[ηx], E
[ηy]) to equal zero, consistent with the data generating
model. We set the variances of εx to equal .5 for all predictor
indicators, and the variances of εy to equal 1 (but zero in the
case of K = 1). Next, we set the baseline regression para-
meter (γ0) to equal .4, and the baseline residual term (ϕ0) to
equal (±) .29, depending on whether the residual variance
increased or decreased with the predictor.

To evaluate parameter recovery, power, and effects of
misspecification of the model, we simulated data under the
NON-L, HETERO, or FULL model, for both K = 4 and K =
1. Prior to the simulation study, we established the number
of quadrature points needed for accurate estimation, and
checked the Type I error rate. We found that 25 points
were sufficient and we established that the empirical Type
I error rate was equal to the nominal α (results available on
request). We varied the values of the parameters of interest

to be either small, medium, or large, and either positive or
negative (i.e., γ1 = ±.1; γ1 = ±.15; γ1 = ±.2, and ϕ1 ≈ ±.22; ϕ1
≈ ±.31; ϕ1 ≈ ±.40). Figure 3 depicts the effects. The upper
half shows the simulated nonlinearity effects and the lower
half shows the simulated heteroskedasticity effects. In the
simulation we used all possible combination of effects (i.e.,
one or two effects present, positive or negative). This
scheme led to 24 different parameter settings for both K =
4 and K = 1. We set the sample size to N = 300 and
conducted 1,000 replications per parameter setting.

RESULTS

Parameter Recovery

To check parameter recovery, we calculated the means and
the standard deviations of the parameter estimates obtained
under the true (data generating) model. Tables 1 through 3
show the means and standard deviations of the estimates
obtained using the three models. Generally, the parameter

FIGURE 3 Overview of simulated effects. Top left and top right: nonlinearity of the regression relationship (e.g., top left γ0 = .4, γ1 = .1, .15, or .20, where
β = g0 + g1*ηx and E[ηy|ηx] = β*ηx = γ0*ηx+ γ1*ηx

2; see Equation 6). Bottom left and bottom right: heteroskedastic residual variance as function of ηx (e.g.,
bottom right ϕ0 = .29, ϕ1 = .22, .31, or .40, where the residual variance σζ

2|ηx = exp[ϕ0 = ϕ1*ηx]; see Equation 8).
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TABLE 1
Mean and Standard Deviations of Parameter Estimates Given K = 1 and K = 4 Dependent Variable Indicators, Given Nonlinearity

K = 1 K = 4

Effect Direction γ0 ϕ0 γ1 γ0 ϕ0 γ1

Small .40 −.29 (–).10 .40 −.29 (–).10
γ1 < 0 .40(.06) −.30(.09) −.10(.05) .40(.07) −.31(.17) −.10(.05)
γ1 > 0 .40(.06) −.30(.09) .10(.05) .40(.07) −.32(.17) .10(.05)

Medium (–).15 (–).15
γ1 < 0 .40(.06) −.31(.09) −.15(.05) .40(.07) −.31(.17) −.15(.05)
γ1 > 0 .40(.06) −.30(.09) .15(.05) .40(.07) −.30(.17) .15(.05)

Large (–).20 (–).20
γ1 < 0 .40(.06) −.30(.09) −.20(.05) .40(.07) −.31(.17) −.20(.05)
γ1 > 0 .40(.06) −.30(.09) .20(.05) .40(.07) −.30(.17) .20(.05)

Note. The true model (denoted NON-L) was fitted. Results are based on 1,000 replications (n = 300 per replication).

TABLE 3
Mean and Standard Deviations of Parameter Estimates Given K = 1 and K = 4 Dependent Variables Indicators, Given Nonlinearity and

Heteroskedasticity

K = 1 K = 4

Effect Direction γ0 ϕ0 γ1 ϕ1 γ0 ϕ0 γ1 ϕ1

Small .40 −.29 (–).10 −.22 .40 −.29 (–).10 −.22
γ1 < 0 ϕ1 < 0 .40(.06) −.31(.10) −.10(.05) −.22(.10) .40(.07) −.32(.17) −.10(.05) −.22(.13)
γ1 > 0 ϕ1 < 0 .40(.06) −.31(.09) .10(.05) −.22(.10) .40(.07) −.32(.17) .10(.05) −.22(.13)

.29 (–).10 .22 .29 .22
γ1 > 0 ϕ1 > 0 .40(.08) .27(.09) .10(.06) .23(.10) .40(.09) .26(.14) .10(.06) .23(.11)
γ1 < 0 ϕ1 > 0 .40(.08) .27(.09) −.10(.06) .23(.10) .40(.09) .26(.14) −.10(.06) .23(.13)

Medium −.29 (–).15 −.31 −.29 (–).15 −.31
γ1 < 0 ϕ1 < 0 .40(.07) −.31(.10) −.15(.05) −.31(.10) .40(.07) −.32(.17) −.15(.05) −.31(.13)
γ1 > 0 ϕ1 < 0 .40(.07) −.31(.10) .15(.05) −.32(.05) .40(.08) −.32(.17) .15(.05) −.31(.13)

.29 (–).15 .31 .29 (–).15 .31
γ1 > 0 ϕ1 > 0 .40(.08) .27(.09) .15(.06) .31(.10) .41(.09) .26(.14) .15(.06) .31(.11)
γ1 < 0 ϕ1 > 0 .40(.08) .27(.09) −.15(.06) .31(.10) .40(.09) .26(.14) −.15(.06) .31(.12)

Large −.29 (–).20 −.41 −.29 (–).20 −.41
γ1 < 0 ϕ1 < 0 .40(.08) −.31(.17) −.20(.05) −.40(.10) .40(.08) −.32(.17) −.20(.06) −.41(.13)
γ1 > 0 ϕ1 < 0 .40(.07) −.31(.10) .20(.05) −.41(.12) .40(.08) −.31(.17) .20(.06) −.40(.14)

.29 (–).20 .41 .29 (–).20 .41
γ1 > 0 ϕ1 > 0 .40(.09) .27(.09) .20(.07) .40(.10) .40(.09) .26(.14) .20(.07) .41(.12)
γ1 < 0 ϕ1 > 0 .40(.08) .27(.09) −.20(.06) .40(.11) .40(.09) .26(.14) −.19(.07) .41(.12)

Note. The true model (denoted Full) was fitted. Results are based on 1,000 replications (n = 300 per replication).

TABLE 2
Mean and Standard Deviations of Parameter Estimates Given K = 1 and K = 4 Dependent Variable Indicators, Given Heteroskedasticity

K = 1 K = 4

Effect Direction γ0 ϕ0 ϕ1 γ0 ϕ0 ϕ1

Small .40 (–).29 (–).22 .40 (–).29 (–).22
ϕ1 < 0 .40(.06) −.30(.09) −.22 (.10) .40(.07) −.32(.17) −.23(.13)
ϕ1 > 0 .40(.08) .27(.08) .23(.10) .40(.09) .27(.14) .23(.11)

Medium (–).31 (–).31
ϕ1 < 0 .40(.06) −.31(.09) −.31 (.10) .40(.07) −.31(.17) −.30(.13)
ϕ1 > 0 .40(.08) .27(.09) .31 (.10) .40(.09) .27(.14) .31(.11)

Large (–).41 (–).41
ϕ1 < 0 .40(.06) −.30(.09) −.41(.10) .40(.07) −.32(.18) −.40(.13)
ϕ1 > 0 .40(.08) .27(.09) .40(.10) .40(.09) .27(.14) .41(.12)

Note. The true model (denoted Hetero) was fitted. Results are based on 1,000 replications (n = 300 per replication).
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values are recovered correctly. The parameter estimates per-
taining to the residual variance (ϕ0, ϕ1) are slightly biased.
However, the differences are negligible in the light of the
standard deviations of the estimates. For instance, in Table 2,
given K = 1, the expected value of ϕ0 is .29 (in absolute
value) and the mean estimated values vary between .27 and
.31 (in absolute value), with a standard deviation of about
.09. The estimates of the parameter pertaining to the regres-
sion function are accurate.

Power

We evaluated the power of the likelihood ratio test to detect
various effects. Given either nonlinearity or heteroskedasticity,
we fitted the true data generating model (either NON-L or
HETERO) and the alternative BASIC model. The likelihood
ratio was based on minus twice the difference in likelihood
values (BASIC vs. NON-L or HETERO; i.e., 1 df test). Given
both effects, we fitted the true model (FULL) and the BASIC
model. The likelihood ratio was based on minus twice the
difference in likelihood values (BASIC vs. FULL; i.e., 2 df
test). Table 4 contains the empirical power estimates based on
1,000 replications. Given medium effect sizes (i.e., ϕ1 = ±.31
and γ1 = ±.15), the power (df = 2, α = .05) to detect both effects
simultaneously is good (power = .89 or better). The power to

detect heteroskedasticity (ϕ1 ≠ 0) or nonlinearity (γ1 ≠ 0) is
sufficient (i.e., 1 df tests) given median effect sizes with power
varying between .83 and .97 (γ1 = ±.15) and .69 and .90 (ϕ1 =
±.31). Given small effect sizes (i.e., ϕ1 = ±.22 and γ1 = ±.1) the
1 df tests are appreciably lower (ranging from .46–.68 to detect
heteroskedasticity, ranging from .54–.63 to detect heteroske-
dasticity). Similarly, power of the 2 df tests is insufficient given
small effects (ranging from .59–.87). Clearly N = 300 is too
small a sample size to detect these effects with adequate power.

The 2 df tests have lower power if the effects are opposite
effect (e.g., negative nonlinearity and positive heteroskedas-
ticity). For instance, given small effects and K = 1, the power
is .87 and .71 given consistent effects, and .79 and .66 given
opposite effects (see Table 4 rows 13–16). Interestingly, this
finding is consistent with the effects on the unconditional
distribution of the data. Specifically, heteroskedasticity and
nonlinearity consistently give rise to nonnormality, as evalu-
ated using the Shapiro–Wilks test (results available on
request). However, when both effects are present in opposite
directions, nonnormality is harder to detect, which suggests
that opposite effects on the distribution appear to cancel out.
This suggests that apparent normality per se does not rule out
the presence of heteroskedasticity in combination with oppo-
site-effect nonlinearity.

Misspecification

We considered misspecified models to gauge the effect of
the misspecification on the other parameters. We focused on
the effects of the misspecification (dropping a parameter) on
the other parameters as we wanted to establish the bias in
the other parameters that this causes. We do not consider the
effect on the goodness of fit per se as the results in Table 4
address this issue (in terms of power). We simulated data
using three data generating models with either one effect
(HETERO or NON-L), or both effects (FULL) present. We
fitted misspecified models, which excluded these effects, as
shown in Table 5. We simulated 1,000 data sets with the
medium effect sizes for both K = 4, and K = 1 with positive
heteroskedasticity and positive nonlinearity.

We limit our discussion to the K = 1 condition, as the K =
4 results are similar. First, we consider the results obtained
when the misspecified models were fit to data generated
using the HETERO model (i.e., ϕ1 ≠ 0, γ1 = 0). In the
BASIC model (i.e., fixing ϕ1 to zero), the variance para-
meter ϕ0 is somewhat biased (–.25 vs. –.29), as is to be
expected. The results of fitting the NON-L model (ϕ1 fixed
to 0, and γ1 estimated), demonstrates that γ1 is hardly
affected by the misspecification: –.03 (SD = .05) versus 0.
Considering data generated under the NON-L model (i.e.,
ϕ1 = 0, γ1 ≠ 0), we find that fitting the BASIC model (i.e., ϕ1
fixed to zero) results in a bias in the variance parameter ϕ0
(–.24 vs. –.29). Fitting the HETERO model (i.e., ϕ1 ≠ 0,
γ1 = 0) demonstrates that ϕ1 is hardly affected by the mis-
specification (estimate = .06; SD = .10), but that γ0 is

TABLE 4
Empirical Power to Detect Effects Given α = .05; 1 df Test (γ1 ≠ 0 or
ϕ1 ≠ 0) and 2 df Test (γ1 ≠ 0 and ϕ1 ≠ 0), Given K = 1 and K = 4

Dependent Variable Indicators

Effect size Direction K = 1 K = 4

Small γ1 < 0 .63 .55
γ1 > 0 .61 .54

Medium γ1 < 0 .89 .86
γ1 > 0 .83 .97

Large γ1 < 0 .98 .97
γ1 > 0 .99 .97

Small ϕ1 < 0 .67 .46
ϕ1 > 0 .68 .55

Medium ϕ1 < 0 .89 .69
ϕ1 > 0 .90 .82

Large ϕ1 < 0 .99 .91
ϕ1 > 0 .99 .95

Small γ1 < 0, ϕ1 < 0 .87 .75
γ1 > 0, ϕ1 < 0 .79 .69
γ1 > 0, ϕ1 > 0 .71 .63
γ1 < 0, ϕ1 > 0 .66 .59

Medium γ1 < 0, ϕ1 < 0 .99 .97
γ1 > 0, ϕ1 < 0 .97 .95
γ1 > 0, ϕ1 > 0 .95 .93
γ1 < 0, ϕ1 > 0 .91 .89

Large γ1 < 0, ϕ1 < 0 1 1
γ1 > 0, ϕ1 < 0 1 1
γ1 > 0, ϕ1 > 0 1 .99
γ1 < 0, ϕ1 > 0 .99 .98

Note. Results are based on 1,000 replications (n = 300 per replication).
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slightly biased (.38 vs. .40). Overall misspecification could
result in appreciable bias. However, the misspecification of
heteroskedasticity (ϕ0 = 0 and γ1 ≠ 0 rather than ϕ1 ≠ 0 and
γ1 = 0) produced little bias in the regression parameters (γ1
is estimated close to its true value of 0), and vice versa. This
suggests that the parameter sets {γ0, γ1} and {ϕ0, ϕ1} are
relatively independent.

ILLUSTRATION

Data

We fitted the model to a subset of items from the Big Five
Personality questionnaire 5PFT (Elshout & Akkerman, 1975).
The 5PFT consists of five scales, each including 14 items
measured with 7-point Likert scales. The data were obtained
from Smits, Dolan, Vorst, Wicherts, and Timmerman (2011),
and were collected in a sample of first-year psychology stu-
dents in the Netherlands between 1982 and 2007. Smits et al.
(2011) demonstrated that the 5PFT dimensions correspond to
the five dimensions of the NEO PI (Costa & McCrae, 1985).
We analyzed the data of the male students (N = 2,764) 18 to
25 years old. We created two subsamples of n = 1,382, a
discovery and a replication sample.

Based on item reliability, we selected a subset of four pre-
dictors and four observed outcome items from the Neuroticism
and the Extroversion scale. The reliabilities (Cronbach’s α) of
these small scales are .78 (Extroversion) and .84 (Neuroticism)
in the first sample, and .78 (Extroversion) and .85 (Neuroticism)
in the second sample. The means and the standard deviations in
the two samples are shown in Table 6.

Models

To illustrate the model, we used two different functions to
model heteroskedasticity and nonlinearity. First, we used the

first-order polynomial function using the regression para-
meters γ0, γ1, and heteroskedasticity parameters ϕ0, ϕ1.
Second, we used the step function using the parameters κ0,
κ1, κ2 (see Equation 7) for the stepwise regression, and step-
wise heteroskedasticity parameters ξ0, ξ1, ξ2 (see Equation 10).
For the step function, the cutoff points were set at −1 SD and
+1 SD of the item scores. We first fitted the full models in
which both effects were present (denoted either S-FULL or
L-FULL), and we then fitted the nonlinearity model (NON-L)
and the heteroskedasticitymodel (HETERO). Finally, we fitted
the standard latent regression model. In total, we fitted seven
different models: BASIC, L_HETERO, L_NON-L, L_FULL,
and S_HETERO, S_NON-L, S_FULL. In the polynomial and
the step function model, we applied the likelihood ratio test to
determine whether we could drop the heteroskedasticity, the
nonlinearity parameter, or both by making the following com-
parisons. For both the polynomial model and the step function
model we first compared the FULL model with the BASIC

TABLE 5
Parameter Estimates in Misspecified Models, Given K = 1 or K = 4 Dependent Variable Indicators

K = 1 K = 4

True Model
Fitted
Model γ0 ϕ0 γ1 ϕ1 γ0 ϕ0 γ1 ϕ1

HETERO .40 −.29 .00 −.31 .40 −.29 .00 −.31
BASIC .40(.06) −.25(.09) −.03(.05) .39(.07) −.26(.17) −.02(.05)
NON-L .40(.06) –.27(.09) .40(.07) –.27(.17)

NONL .40 −.29 .15 .00 .40 −.29 .15 .00
BASIC .40(.06) −.24(.09) .06(.10) .40(.07) −.25(.17) −.04(.12)
HETERO .38 (.06) –.25(.09) .389 (.07) –.25(.17)

FULL .40 −.29 .15 −.31 .40 −.29 .15 −.31
BASIC .40(.06) −.20(.09) .13(.05) −.23(.10) .40(.07) −.20(.17) .13(.05) −.26(.13)
HETERO .45(.06) –.24(.09) .45(.08) –.25(.17)
NON-L .39(.06) –.23(.09) .39(.07) –.25(.17)

Note. Results are based on 1,000 replications (n= 300 per replication).

TABLE 6
Overview of Means and Standard Deviations in the Two Samples

Used in the Illustration

Sample 1
(n = 1,382)

Sample 2
(n = 1,382)

M SD M SD

Age 20.59 1.87 20.6 1.88
yE1 4.44 1.52 4.46 1.52
yE2 4.10 1.59 4.15 1.57
yE3 4.33 1.53 4.42 1.48
yE4 4.56 1.48 4.59 1.48
yN1 3.36 1.42 3.33 1.39
yN2 3.18 1.62 3.12 1.62
yN3 3.70 1.51 3.63 1.51
yN4 3.10 1.56 3.00 1.50

Note. yE1 to yE4 are the indicators of extraversion; yN1 to yN4 are the
indicators for neuroticism.
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model using an omnibus test (both effects). Second, we com-
pared the FULL model with the HETERO and NON-L model.
Finally, we compare the HETERO and NON-L model with the
BASIC model. Given the exploratory nature of these analyses,
we adopted an α of .05 and used the replication sample to
replicate results obtained in the discovery sample. To deter-
mine which model best fit the data, we compared the overall fit
of the models using Akaike’s information criteria (AIC). All
models were fitted to the Neuroticism and Extroversion data
(discovery sample and the replication sample) in OpenMx
(Boker et al., 2011) by maximizing the likelihood function
given in Equation 11.

RESULTS

Results Using the Polynomial Model

Table 7 gives an overview of the fit measures and likelihood
ratio tests obtained in fitting the models to the two data sets.
We found that in the polynomial model the omnibus test of
both effects (nonlinearity and heteroskedasticity) was sig-
nificant in the discovery sample and replicated in the repli-
cation sample: comparison of L_FULL with BASIC,
discovery sample, χ2(2) = 11.73, p = .0028; replication
sample, χ2(2) = 15.69, p = .0004. Additional comparisons
showed that the nonlinearity parameter γ1 was not signifi-
cant: L_FULL versus L_HETERO model, discovery sample
1, χ2(1) = .35, p = .55; replication sample, χ2(1) = 1.21, p =
.27; whereas the heteroskedasticity parameter ϕ1 was sig-
nificant: L_FULL versus L_NONL model, discovery sam-
ple, χ2(1) = 8.34, p = .004; replication sample, χ2(1) = 7.37,
p = .007. Given these tests, we considered L_HETERO the
model of choice. Further comparison of the L_HETERO
model with the BASIC model also showed that the hetero-
skedasticity parameter ϕ1 was significant: L_HETERO to
BASIC, discovery sample, χ2(1) = 11.38, p =.0007; replica-
tion sample 2, χ2(1) = 14.47, p = .0001. We concluded that
the L_HETERO model gives the best account of the data. It
is important to note that the comparison of the L_NON-L
model with the BASIC model (i.e., the test of nonlinearity
without taking into account heteroskedasticity) suggests that
nonlinearity is present in the second sample: discovery
sample, L_NON-L to BASIC, χ2(1) = 3.39, p = .065;
replication sample, χ2(1) = 8.31, p = .004. This demon-
strates the importance of considering simultaneously hetero-
skedasticity and nonlinearity.

Results Using the Step Function Model

In the step function model, the omnibus tests of both effects
were significant: comparison of S_FULL with BASIC, dis-
covery sample, χ2(4) = 62.78, p < .0001, replication sample,
χ2(4) = 35.64, p < .0001. Additional comparisons showed
that the step regression parameters, κ1 and κ2, and the step

heteroskedasticity parameters, ζ1 and ζ2 (see Equation 10),
were significant: S_FULL versus S_HETERO, discovery
sample, χ2(2) = 29.03, p < .0001; replication sample, χ2

(2) = 17.48, p = .001; S_FULL versus S_NON_L, discov-
ery sample, χ2(2) = 55.15, p < .0001; replication sample, χ2

(2) = 26.06, p < .0001. Using the step function model, the
FULL model provided the best account of the data.

Comparing the AIC of the two models of choice (L-
HETERO and S-FULL) showed that the S-FULL fitted the
data best (discovery sample: AIC L_HETERO = 14657.03,
AIC S_FULL = 14611.63; replication sample: AIC
L_HETERO = 14522.87, AIC S_FULL = 14507.70).
Comparing the parameter estimates of the two models
(Table 8), the difference in the implied regression relation
and residual variance are apparent. We plotted the regres-
sion relation and residual variance of the BASIC model, the
L_HETERO, and the S_FULL model in Figure 4. Based on
the parameters of L_HETERO model, the regression rela-
tion of the polynomial function is equal to the regression
relation of the basic model. However, the residual variance
is larger at the lower region of extroversion than in the
higher region of extroversion (i.e., σ2[neuroticism | low
extroversion] > σ2 [neuroticism | high extroversion]). This
implies a stronger relation between neuroticism and extro-
version in the high regions of extroversion . For the
S_FULL model, we note that the regression relation is
only present at the lower and higher regions of extroversion
(SD < –1 or SD > 1), whereas in the midrange (between –1
SD and +1 SD), there seems to be no relation between the
two constructs. Additionally, we note that the residual var-
iance is largest in the midrange, and smallest at the high tail
of the distribution, which implies a stronger relation
between neuroticism and extroversion in the high regions
of extroversion.

DISCUSSION

In this article, we used the indirect mixture modeling
approach to model latent heteroskedasticity and nonlinearity
in latent regression using MML estimation. The approach is
based on the MML estimation as presented by Bock and
Aitkin (1981) in the context of IRT modeling, and by Klein
and Moosbrugger (2000) in the context of structural equation
modeling (see also Moosbrugger et al., 2009). Molenaar,
Dolan, and de Boeck (2012; see also Molenaar, Dolan, &
Verhelst, 2010) used this approach to model heteroskedasti-
city and nonlinearity in IRT and factor models.

The possibility to model nonlinearity and heteroskedas-
ticity simultaneously is interesting for both statistical and
theoretical reasons. As shown in the simulation study, ignor-
ing heteroskedasticity in presence of nonlinearity leads to
biased estimation of the nonlinearity in the regression rela-
tion. In the illustration, we showed the consequence of
ignoring heteroskedasticity. Failing to model simultaneously
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heteroskedasticity and nonlinearity, we would have con-
cluded that the relationship between extroversion and neu-
roticism was nonlinear, but we would not have been able to
assess the effect of heteroskedasticity. As shown in the real
data example, fitting the polynomial function would have
led to a different conclusion.

We consider the flexibility in specifying the function to
model nonlinearity and heteroskedasticity a useful feature of
this approach. In the illustration, we demonstrated that using
different functions to model the latent regression and latent
residual provided greater insight into the underlying regres-
sion relation. Using the polynomial function, it appeared
that the residual variance decreased with extroversion, and
that the regression relation was constant over the range of
extroversion. However, using the step function, we found
that the residual variance was larger in the midrange of
extroversion and smaller in the tails. Additionally, we
showed that the regression relation was strong in the tails
and absent in the midrange of extroversion. This observa-
tion underscores the importance of flexibility in the specifi-
cation of the function with which heteroskedasticity and
nonlinearity are modeled.

To establish the viability of the model, we investigated
the performance of the model in a small-scale simulation
study. We established that parameter recovery is accurate
and that given reasonable sample sizes, power is acceptable.
We observed lower power given opposite effects of nonli-
nearity and heteroskedasticity. This can be explained in
terms of the detection of nonnormality in the data with
regular tests such as the Shapiro–Wilks test. When the

effects of nonlinearity and heteroskedasticity are in opposite
directions, their effects on the distribution cancel out. The
simulation study also showed that misspecification of the
model does not lead to incorrect statistical inferences when
estimating a parameter known to be zero. Given these
results, we consider the model to be viable. However, we
note that ignoring either heteroskedasticity or nonlinearity
when both effects are known to be present in data does lead
to biased estimation of the strength of the regression
relation.

This study has the following limitations. First, we only
considered a limited number of indicators of both the pre-
dictor and the dependent, although many psychological
phenomena are measured with more indicators (e.g., items
in the questionnaire). The addition of indicators is relatively
straightforward. Second, we also considered a limited num-
ber of factors, although psychological theories often concern
numerous constructs. Generalization of the model to multi-
ple factors might be accomplished via the use of multi-
variate Gauss–Hermite quadratures. Within the MML
framework, extension of the model might only be feasible
for a small number of factors (up to five; see Wood et al.,
2002). For larger models, a Bayesian estimation procedure
is a viable option (e.g., Arminger & Muthén, 1998;
Molenaar & Dolan, 2014). Third, we limited the simulation
study to the first-order heteroskedasticity and first-order
nonlinearity model. As discussed in Molenaar et al.
(2010), and demonstrated in our example, the model can
be extended to polynomial functions, other nonlinear func-
tions, and step functions. As such, a variety of nonlinear

TABLE 8
Parameter Estimates for the Two Data Sets Used in the Illustration of the Model

Parameter estimates

Non-linearity Heteroskedasticity

Data Function Model γ0 γ1 (log)ϕ0 (log)ϕ1

Data 1 Polynomial BASIC −.49(.03) — .68(.08) —
HETERO −.49(.03) —.05(.03) .66(.08) .81(.06) *
NON-L –.48(.03) –.02(.03) .68(.08) .82(.07)
FULL –.50(.03) .66(.08)

κ0 κ1 κ2 ξ0 ξ1 ξ2
Step BASIC −.49(.03) — — .68(.08) — —

HETERO −.52(.02) —.40(.15) —.25(.15) .77(.07) .08(.07) −.41(.04) *
NON-L –.21(.13) –.62(.14) –.66(.12) .67(.05) .11(.07) –.42(.04)
FULL –.01(.12) .73(.06)

γ0 γ1 (log)ϕ0 (log)ϕ1
Data 2 Polynomial BASIC −.45(.03) — — .77(.08)

HETERO −.45(.03) —.08(.03) — .75(.08) .81(.06) *
NON-L –.43(.03) –.03(.03) .76(.08) .84(.07)
FULL –.45(.03) .76(.08)

κ0 κ1 κ2 ξ0 ξ1 ξ2
Step BASIC −.45(.03) .77(.08)

HETERO −.52(.02) −.38(.15) −.15(.16) .80(.00) −.18(.08) −.39(.00) *
NON-L −.22(.12) −.61(.15) −.75(.13) .76(.08) −.15(.09) −.41(.04)
FULL −.06(.12) .72(.06)
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relations can be considered and tested in practice. This
method requires the specification of functions to accommo-
date nonlinearity and heteroskedasticity. For a more explora-
tory approach to nonlinearity of the regression function
based on indirect mixture modeling, we refer to Bauer
(2005; Pek et al., 2009), and for a recent exploratory data
mining approach that can handle nonlinearity, we refer to
Miller, Lubke, McArtor, and Bergeman (in press). Finally,
we have assumed that the predictor and conditional depen-
dent variable (i.e., conditional on the predictor) are normally

distributed. Kelava et al. (2014) presented a nonlinear latent
regression model with nonnormal predictors.
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