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Photonic Band Structure of Atomic Lattices

D. V. van Coevordeh,R. Sprik? A. Tip,! and A. Lagendijk?
'FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
2yan der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, The Netherlands
(Received 27 March 1996

A calculation of the optical band structure of a three dimensional lattice of resonant two-level atoms
in the dipole approximation is presented. The formation of band gaps is exhibited and confirmed by
a calculation of the density of states. The band structure can be characterized by two dimensionless
parameters. We find a longitudinal polarization mode as well as a class of vacuum modes that are
unaltered by the interaction with matter. Numerical calculations are performed for a face centered
cubic lattice; other lattices can be evaluated as easily. [S0031-9007(96)01222-7]

PACS numbers: 32.80.Pj, 42.25.Bs

At present the study ophotonic crystals[l], i.e., The starting point is the set of Maxwell's equations
dielectric materials with a periodicity matching optical for a static isotropic dielectric medium [permeability
wavelengths, is a subject of active research. The perie(w,x) = 1 + 47 y(w, x)] without external charges and
odicity induces an optical band structure quite analogousurrents. Elimination of the magnetic field component
to the band structure in semiconductor physics. On botin favor of the electric fieldE gives, after Fourier
the theoretical (humerical) and experimental side, a seardinansformation with respect to time,
is going on for materials exhibiting a photorband gap % % _ 2@ 2
Such a gap can give rise to the suppression of spontaneou%X (O X B) = dmx(@,x)(@/co)]E = (@/co)E,
emission of interstitial atoms and has promising conse- 1)
quences for applications. Moreover, from a fundamentalyhere y (w, x) is the (linear) electric susceptibility ang
point of view such materials, after some randomization¢ne vacuum speed of light.
are interesting for the observation of the localization of the atoms that build up the medium are modeled in the
light, and also the quantum electrodynamics of photonig,int dinole approximation. Since the atomic dimensions
crystals merits a further study [2]. Various authors have,re gmal| relative to the wavelength of optical fields, this
reported systems exhibiting photonic band gaps, dependnakes good sense. The treatment of point dipoles within
ing on the type of unit cell, shape of the “atoms” [behaviory gcattering theory for electromagnetic waves was intro-
of electric permeability:(x) over a unit cell], and refrac-  q,ced by Wu [8]. Wu's basic observation is that in setting
tive index contrast [1,3—5]. o _ _ the currentJ(x, 1) in the Maxwell equatiord,E(x, 1) =

A similar band structure can arise @omic optical ; "» g(x ;) — J(x,) proportional t06(x — a)E(x, )
lattices  Atoms, cooled down to the microkelvin regime, \yherea is the position of a point dipole, naturally leads
can be trapped in their ac Stark shift potential wellsyy 5 point dipole interaction. In the present situation,
in a one, two, or three dimensional interference pattergynere we have a polarization curreptw, x) (w/co)E
created by a combination of laser beams. Consequentlye g the presence of an atom, a similar procedure can be
the lattice constant is essentially the wavelength of thgqowed: y(w,x) * 8(x — a)a(w) [9], where the reso-

trapping field. Already results on Bragg scattering have,ance structure enters througlfw):
been reported [6] showing long range periodic order.

3
The main difference with the photonic crystals is the a(w) = 3cpA 1 @
sharp resonant character of the scatterers (the atoms on wi Wi — w? — i2Aw3/w}

the lattice sites) near an optical resonance in the atonkqation (2) is the simplest classical representation of the
Furthermore_, in the limit of weak Ilght flelc_is an_d if recoil typical linear polarizability (with linewidth parameten)
effects are ignored, the propagation of light is coherent,. yo-level atoms and damped oscillators [10]. Note
[7] and without dissipation. As a consequence, in & WOyt atoms characterized by (2) scatter light elastically:
level approximation, atoms can be accurately described by, strength is fixed by the optical theorem [11].

classical damped linear point dipole oscillators possessing \ye next turn to the lattice case wheypéw, x) becomes

a sharp resonance. Here we calculate the band—structu}ggriodic_ We decomposE in terms of the Bloch wave

properties of such a dipolar lattice. It leads to pointyectorsk in the first Brillouin zone and reciprocal lattice
interactions on the lattice sites which reduce the req”'re%ctorsg as follows [12]:

computational effort immensely. Therefore our method ‘
is promising to be applied to more complicated lattices Ex(x) = Z E(k — g)e'k 8x 3
as well. £
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Next the susceptibilityy is expanded in reciprocal lattice |
vectorsg: T i
igx |
x(@,%) = x(w,ge’®™. (4) )
g -~ [
_ . . g I
Substitution of Egs. (3) and (4) into Eqg. (1) then results in BT b n - P
w \? § I I I i
k= glAg — (2) 1| Bt - g H . o
Cco z I | | |
o\ . .
- 4w<—) 2 xlw.g —gEK-g)=0. (5  gos I L
co g’ - I I | |
wherel is the3 X 3 identity matrix andAy = I — egex i i i i
(ex = k/k). Now Eg. (1) has been separated into a set ! ! ! !
of independent equations: one for eakhin the first 00 L L ! L v .
Brillouin zone. wave vector Ikl

We are interested in the dispersion law(k) from FIG. 1. Photonic band structure for a fcc lattice of resonant

Eq. (_5) for the dipolar Iattice._ It can be obtaine_d bydipoles. The resonance wavelengih for this case equals
locating the poles of theé matrix for the whole lattice ), = 1.26a (P = 1.29 and 0 = 30 in Fig. 4). Horizontally,

[13,14] and turns out to be implicit in the followirgyX 3  we have parametrized a path along the symmetry points
determinantal condition: X,U,L,T',X,W,K in the Brillouin zone. The dot-dashed line
is a longitudinal polarization mode; the arrows indicate the

—0. (6 vacuum modes that is unaltered by the interaction (see text).

2
a(w)™! 6—02 I+ Z e ®RiGo(w,R)) ‘
® R, %0
which in our numerical work has been implemented in re-polarization degeneracy (for all modes but one) that is
ciprocal space. Her6€, denotes the free-space Green'sfrequently lifted. Only one mode, the relatively straight
function for the Helmholtz equation (1) [8,13]. Diago- dot-dashed line in the middle of Fig. 1 and upper part
nalization of the matrix in Eq. (6) physically representsOf Fig. 2, is not degenerate. Moreover, inspection of
summing over all light paths in the dipolar lattice. Its sim-its corresponding eigenfunction shows that it is mainly
plicity is due to the use of point interactions, their Fourierlongitudinal (parallel tdk). It can therefore be interpreted
transform being independent gf For our model Eq. (6) @s & coupling of light with theongitudinal polarization
coincides with the KKR condition used in band structurefield. It originates from the dispersion law associated
calculations in solid state physics [12,14]. with (2) which exhibits negative values of the dielectric

We now turn to the results. We have solvedk) function. A simple estimate for the approximate position
numerically from Eq. (6) for a face centered cubic (fcc)©f the line atk = 0 is given by the zero of the dielectric
lattice. We define two dimensionless parameters thafunction e(wiro) = 1 + 4mpa(wLo) = 0, from which
characterize the band-structure picture completely. The
first parameter isP = (wpz/wo)®, which we will call
here the “polariton parameter.” We introduegz/c, as
the radius of the largest inscribing sphere of the Brillouin
zone. It equals the modulus (in reciprocal space) ofithe
point, multiplied byco. Thus wgza/cy = 7+/3 = 5.44,
where a is the lattice constant, an@dgz relates to the
density of scatterers ap « (wgz/co)’. In terms of
lengths we can say thaP measures the ratio of the
wavelength at resonancg; = 2wco/wo and a. The
second parameter is the quality fac®@r= w,/2A giving
the sharpness of the resonance.

As an illustration we consider two characteristic
choices for the combined parameter & Q). For
parameter set 1 (Fig. 1), which represents the denser
case,w is well below wgz: P = 1.29 (corresponding
with Ap = 1.26a) and Q = 30. For parameter set 2 00 r
(Fig. 2): P =0.47 (g = 0.94) and Q = 21. In both wave vector Ikl

Figs. 1 and 2 we still see the linear dispersion lawriG. 2. As in Fig. 1, but now for the more dilute case that
around the originl' of the Brillouin zone. There is a Ay = 0.9a (P = 0.47 andQ = 21 in Fig. 4).
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follows wro = 5.05¢p/a [12]; from Fig. 1 we have (corresponding with a broad resonance), the lower bound
wro = 5.02¢o/a. Also in Fig. 1 the two branches on P decreases. Note, however, that for atoghs> 50.
in the lowest band level off at the boundary of theFor reasons of graphical representation we have chosen
Brillouin zone, where they stay below the resonance frelow values of Q since the width of the gaplw ~
quency. In this flat region the dispersion is material-like,Q0 ~'. From Fig. 3 we observe thdtw/wy = 0.85Q0 .
which indicates a polariton type of propagation in theThe absence of a gap fapy > wpz can be clarified
crystal [12]. by considering the lines in Fig. 1 that are indicated
At the pointsU, L, X, and W one observes the occur- by arrows. These lines are identically present for all
rence of avoided crossings; a phenomenon that in othemlues of P and Q and coincide with eigenvalues of
physical situations may coincide with the presence of dahe empty lattice Thus free eigenvalues in some bands
Kronig-Penney type of band gap [1,3-5]. A genuine bandemain eigenvalues of the perturbed system (which is not
gap, however, seems to exist only around the resonandmue for the associated eigenfunctions). This feature was
frequency in Fig. 1. Whether or not a band gap existobserved earlier in the Schrodinger case [16] (p. 189).
can be ascertained by considering every valuk of the  There it is shown thatv = ¢o(k — g) is an eigenvalue
Brillouin zone. This calls for a calculation of the density of multiplicity m = 1 if, and only if, there aren + 1

of states (DOSN(w) [15]: reciprocal lattice vectorgy, g, ..., g, such that
N) =20 Y 8(w® — 0?(K)). @) k —gol =1k —gil=---=1k —gul. (8)
nk

This is precisely what we find in our numerical work, both
Heren denotes a band index; all polarization modes havéor the scalar (see below) and Maxwell cases. Because of
a separate band index. In Fig.Nw) has been plotted (8), this type of eigenvalue occurs only latvalues of a
for both parameter sets, scaled by the vacuum DOSertain symmetry. The rigidity of these lines disturbs the
No(w). In the neighborhood of the resonance frequencyformation of a band gap whei, exceeds the minimum
we see the corresponding resonant enhancement of thaluewgy.
DOS. We see from Fig. 3 that for set 1 a gap is indeed Usually for photonic crystals the frequency gaps are
present, whereas for set 2 no gap is found, althougfound near or above the boundary of the Brillouin zone
a pronounced structure around the resonance frequen{¥—5] where the periodicity is nearly matched. Their
remains. formation is similar to that of the gaps found in the

We have investigated the possible presence of a gagronig-Penney model. It has therefore been argued that
for given values ofP and Q: The resulting “phase the fcc lattice is favorable for finding an isotropic band
diagram” is depicted in Fig. 4. Apparently a gap existsgap. Its Brillouin zone coming closest to a sphere implies
always for P = 1.0, independently ofQ. In terms of a maximum overlap for the gaps in all directions [3]. In
the resonant wavelength, this condition translateste=  contrast, our gap is a direct consequence of the nature of
1.15a. The line P = 1.0 constitutes for high values of the resonant interaction. It is fourzklowthe boundary
Q an asymptotic boundary for the left region, where noof the Brillouin zone; therefore the role of the geometry
gap is found. For smaller values @, say Q = 50  of the Brillouin zone (and corresponding Bravais lattice)

may be viewed as less critical.
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This statement is confirmed by the fact that the scalar[1] Photonic Band Gaps and Localizatioedited by C. M.
wave approximation is excellent in our case. The Soukoulis, NATO Advanced Study Institutes, Ser. B,
Helmholtz equation (1) is frequently approximated by the ~ Vol. 308 (Plenum Press, New York, 1993); topical issue,

scalar wave equation J. Opt. Soc. Am. BLO (1993).
[2] G. Kweon and N.M. Lawandy, Opt. Commutl18 388
~02W — Amx(0.X) (@/co’ ¥ = (w/c0)* ¥, (9) (1995).

[3] E. Yablonovitch, J. Mod. Opt41, 173 (1994).
which is known to be inadequate in general. There [4] H.S. Sozuer and J.W. Haus, J. Opt. Soc. Am1@® 296
are cases where band gaps show up in the scalar wave (1993).
approximation which are absent in a vector picture [5] K.M. Ho, C.T. Chan, and C.M. Soukoulis, Phys. Rev.
and vice versa0 [1,3-5]. In our case, however, the Lett. 65, 3152 (1990). . . _
difference in eigenvalues is uniformly less than 1%. The [6] M. Weidemdiller, A. Hemmerich, A. Gorlitz, T. Esslinger,
longitudinal mode is absent here as it should be for scalar ~@nd T.W. Hansch, Phys. Rev. Leffs, 4583 (1995);
waves. G. Birkl, M. Gatzke, I.H. Deutsch, S.L. Rolston, and

In conclusion, we have solved the optical band struc- W. D. Phillips, Phys. Rev. Let#5, 2823 (1995); J. N. Tan,
L . . J.J. Bollinger, B. Jelenkovic, and D.J. Wineland, Phys.

ture and d(_ens,lty of states for a lattice of resonant classical  gq,,. Lett. 75, 4198 (1995).

d|pole oscillators. We infer that the band structure (and (7] p. Meystre and M. Sargent lliElements of Quantum

existence of a gap) is determined entirely by two dimen- ~ optics(Springer, Berlin, 1991), 2nd ed.

sionless parameters, which measure the scattering strengtf@] T.T. Wu, in Resonances-Models and Phenomesxited

and the width of the atomic resonance, respectively. For by S. Albeverio, L.S. Ferreira, and L. Streit (Springer-

today’s experimentally realizable optical lattices two re- Verlag, Berlin, 1984).

marks are in order. First, oscillatory motion of the atoms [9] Here a differential operatofa/or)’r® must be included

around the equilibrium position has been neglected in our ~ Which regularizes the free-space Green’s function in

model. In a more elaborate treatment this could be ac- 7 = 0- This is similar to the Fermi potential in the

counted for by means of the Debye-Waller (DW) factor Schrodinger case, cf. Refs. [8,1_6]. Alternatively this op-

[12], as was done in an observation of Bragg scattering erator can be used to regularize theperator for the

’ . . . . whole lattice, at once leading to Eq. (6) below.
from atomic lattices in Ref. [6]. The overall effect is a [10]

N - ) - R. Loudon, The Quantum Theory of LightClarendon,
diminishing of the Bragg-scattered intensity. One finds Oxford, 1983), 2nd ed.

typically for a temperature o5 uK a DW factor of  [11] The correspondingt operator for a scatterer irx,,
0.76. The Bragg beam still has an intensity which ex- Hw,x;) = —|x ) (X |4ma(w) (w/cp)? [where (x|x,) =
ceeds the incoherently scattered background by orders of §(x — x,)], obeys theoptical theoremgf. Ref. [13].
magnitude. Note that this complication does not affec{12] N.W. Ashcroft and N.D. MerminSolid State Physics
the symmetry and diagonalization procedure as outlined (Saunders, Philadelphia, 1976).

above. Second, these lattices are still relatively dilute (fill{13] R-G. Newton,Scattering Theory of Waves and Particles
ing fractions of<10%). This implies a nonperiodic and (McGraw-Hill Company, New York, 1966).

even time-dependent susceptibiliy due to hopping of 4 J-M. Ziman, Proc. Phys. So86, 337 (1965).

atoms from site to site. Therefore tpartial long-range [15] It can be shown that the coefficient for spontaneous emis-
’ 9 9 sion of an atom placed in a dielectric is proportional to

order (which has been measured in [6]) will accordingly only apart of the DOS: R. Sprik, A. Lagendijk, and B. A.

distort the band structure picture. . van Tiggelen, inPhotonic Band Gap Materialedited by
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