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Photonic Band Structure of Atomic Lattices

D. V. van Coevorden,1 R. Sprik,2 A. Tip,1 and A. Lagendijk1,2

1FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
2van der Waals-Zeeman Instituut, Universiteit van Amsterdam, Valckenierstraat 65-67, 1018 XE Amsterdam, The Ne

(Received 27 March 1996)

A calculation of the optical band structure of a three dimensional lattice of resonant two-level atoms
in the dipole approximation is presented. The formation of band gaps is exhibited and confirmed by
a calculation of the density of states. The band structure can be characterized by two dimensionless
parameters. We find a longitudinal polarization mode as well as a class of vacuum modes that are
unaltered by the interaction with matter. Numerical calculations are performed for a face centered
cubic lattice; other lattices can be evaluated as easily. [S0031-9007(96)01222-7]

PACS numbers: 32.80.Pj, 42.25.Bs
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At present the study ofphotonic crystals[1], i.e.,
dielectric materials with a periodicity matching optic
wavelengths, is a subject of active research. The p
odicity induces an optical band structure quite analog
to the band structure in semiconductor physics. On b
the theoretical (numerical) and experimental side, a se
is going on for materials exhibiting a photonicband gap.
Such a gap can give rise to the suppression of spontan
emission of interstitial atoms and has promising con
quences for applications. Moreover, from a fundame
point of view such materials, after some randomizati
are interesting for the observation of the localization
light, and also the quantum electrodynamics of photo
crystals merits a further study [2]. Various authors ha
reported systems exhibiting photonic band gaps, dep
ing on the type of unit cell, shape of the “atoms” [behav
of electric permeabilitý sxd over a unit cell], and refrac
tive index contrast [1,3–5].

A similar band structure can arise inatomic optical
lattices. Atoms, cooled down to the microkelvin regim
can be trapped in their ac Stark shift potential we
in a one, two, or three dimensional interference patt
created by a combination of laser beams. Conseque
the lattice constant is essentially the wavelength of
trapping field. Already results on Bragg scattering ha
been reported [6] showing long range periodic ord
The main difference with the photonic crystals is t
sharp resonant character of the scatterers (the atom
the lattice sites) near an optical resonance in the at
Furthermore, in the limit of weak light fields and if reco
effects are ignored, the propagation of light is coher
[7] and without dissipation. As a consequence, in a tw
level approximation, atoms can be accurately describe
classical damped linear point dipole oscillators posses
a sharp resonance. Here we calculate the band-stru
properties of such a dipolar lattice. It leads to po
interactions on the lattice sites which reduce the requ
computational effort immensely. Therefore our meth
is promising to be applied to more complicated lattic
as well.
412 0031-9007y96y77(12)y2412(4)$10.00
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The starting point is the set of Maxwell’s equation
for a static isotropic dielectric medium [permeabilit
´sv, xd ; 1 1 4pxsv, xd] without external charges and
currents. Elimination of the magnetic field compone
in favor of the electric fieldE gives, after Fourier
transformation with respect to time,

≠x 3 s≠x 3 Ed 2 4pxsv, xd svyc0d2E ­ svyc0d2E ,

(1)

wherexsv, xd is the (linear) electric susceptibility andc0

the vacuum speed of light.
The atoms that build up the medium are modeled in

point dipole approximation. Since the atomic dimensio
are small relative to the wavelength of optical fields, th
makes good sense. The treatment of point dipoles wit
a scattering theory for electromagnetic waves was int
duced by Wu [8]. Wu’s basic observation is that in setti
the currentJsx, td in the Maxwell equation≠tEsx, td ­
≠x 3 Hsx, td 2 Jsx, td proportional todsx 2 adEsx, td,
wherea is the position of a point dipole, naturally lead
to a point dipole interaction. In the present situatio
where we have a polarization currentxsv, xd svyc0dE,
due to the presence of an atom, a similar procedure ca
followed: xsv, xd ~ dsx 2 adasvd [9], where the reso-
nance structure enters throughasvd:

asvd ­
3c3

0D

v
2
0

1

v
2
0 2 v2 2 i2Dv3yv

2
0

. (2)

Equation (2) is the simplest classical representation of
typical linear polarizability (with linewidth parameter2D)
for two-level atoms and damped oscillators [10]. No
that atoms characterized by (2) scatter light elastica
Its strength is fixed by the optical theorem [11].

We next turn to the lattice case wherexsv, xd becomes
periodic. We decomposeE in terms of the Bloch wave
vectorsk in the first Brillouin zone and reciprocal lattic
vectorsg as follows [12]:

Eksxd ­
X
g

Esk 2 gdeisk2gd?x. (3)
© 1996 The American Physical Society
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Next the susceptibilityx is expanded in reciprocal lattic
vectorsg:

xsv, xd ­
X
g

xsv, gdeig?x. (4)

Substitution of Eqs. (3) and (4) into Eq. (1) then results"
jk 2 gj2Dk2g 2

µ
v

c0

∂2

I

#
? Esk 2 gd

2 4p

µ
v

c0

∂2 X
g0

xsv, g0 2 gdEsk 2 g0d ­ 0 , (5)

whereI is the3 3 3 identity matrix andDk ­ I 2 ekek
(ek ; kyk). Now Eq. (1) has been separated into a
of independent equations: one for eachk in the first
Brillouin zone.

We are interested in the dispersion lawvskd from
Eq. (5) for the dipolar lattice. It can be obtained
locating the poles of thet matrix for the whole lattice
[13,14] and turns out to be implicit in the following3 3 3
determinantal condition:á

asvd21 c2
0

v2 I 1
X

Rifi0
e2ik?Ri G0sv, Rid

á
­ 0 , (6)

which in our numerical work has been implemented in
ciprocal space. HereG0 denotes the free-space Green
function for the Helmholtz equation (1) [8,13]. Diag
nalization of the matrix in Eq. (6) physically represen
summing over all light paths in the dipolar lattice. Its sim
plicity is due to the use of point interactions, their Four
transform being independent ofg. For our model Eq. (6)
coincides with the KKR condition used in band structu
calculations in solid state physics [12,14].

We now turn to the results. We have solvedvskd
numerically from Eq. (6) for a face centered cubic (fc
lattice. We define two dimensionless parameters
characterize the band-structure picture completely.
first parameter isP ; svBZyv0d3, which we will call
here the “polariton parameter.” We introducevBZyc0 as
the radius of the largest inscribing sphere of the Brillo
zone. It equals the modulus (in reciprocal space) of thL
point, multiplied byc0. Thus vBZayc0 ; p

p
3 ø 5.44,

where a is the lattice constant, andvBZ relates to the
density of scatterers asr ~ svBZyc0d3. In terms of
lengths we can say thatP measures the ratio of th
wavelength at resonancel0 ; 2pc0yv0 and a. The
second parameter is the quality factorQ ; v0y2D giving
the sharpness of the resonance.

As an illustration we consider two characteris
choices for the combined parameter setsP, Qd. For
parameter set 1 (Fig. 1), which represents the de
case,v0 is well below vBZ: P ­ 1.29 (corresponding
with l0 ­ 1.26a) and Q ­ 30. For parameter set
(Fig. 2): P ­ 0.47 (l0 ­ 0.9a) and Q ­ 21. In both
Figs. 1 and 2 we still see the linear dispersion l
around the originG of the Brillouin zone. There is a
n

t

-

-
r

e

)
at

FIG. 1. Photonic band structure for a fcc lattice of reson
dipoles. The resonance wavelengthl0 for this case equals
l0 ­ 1.26a (P ­ 1.29 and Q ­ 30 in Fig. 4). Horizontally,
we have parametrized a path along the symmetry po
X, U, L, G, X, W , K in the Brillouin zone. The dot-dashed lin
is a longitudinal polarization mode; the arrows indicate t
vacuum modes that is unaltered by the interaction (see text

polarization degeneracy (for all modes but one) tha
frequently lifted. Only one mode, the relatively straig
dot-dashed line in the middle of Fig. 1 and upper p
of Fig. 2, is not degenerate. Moreover, inspection
its corresponding eigenfunction shows that it is main
longitudinal (parallel tok). It can therefore be interprete
as a coupling of light with thelongitudinal polarization
field. It originates from the dispersion law associat
with (2) which exhibits negative values of the dielectr
function. A simple estimate for the approximate positi
of the line atk 5 0 is given by the zero of the dielectri
function ´svLOd ­ 1 1 4prasvLOd ; 0, from which
n

er

FIG. 2. As in Fig. 1, but now for the more dilute case th
l0 ­ 0.9a (P ­ 0.47 andQ ­ 21 in Fig. 4).
2413
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follows vLO ­ 5.05c0ya [12]; from Fig. 1 we have
vLO ­ 5.02c0ya. Also in Fig. 1 the two branche
in the lowest band level off at the boundary of t
Brillouin zone, where they stay below the resonance
quency. In this flat region the dispersion is material-li
which indicates a polariton type of propagation in t
crystal [12].

At the pointsU, L, X, and W one observes the occu
rence of avoided crossings; a phenomenon that in o
physical situations may coincide with the presence o
Kronig-Penney type of band gap [1,3–5]. A genuine b
gap, however, seems to exist only around the reson
frequency in Fig. 1. Whether or not a band gap ex
can be ascertained by considering every value ofk in the
Brillouin zone. This calls for a calculation of the dens
of states (DOS)Nsvd [15]:

Nsvd ­ 2v
X
n,k

dsssv2 2 v2
nskdddd . (7)

Heren denotes a band index; all polarization modes h
a separate band index. In Fig. 3Nsvd has been plotted
for both parameter sets, scaled by the vacuum D
N0svd. In the neighborhood of the resonance frequen
we see the corresponding resonant enhancement o
DOS. We see from Fig. 3 that for set 1 a gap is ind
present, whereas for set 2 no gap is found, altho
a pronounced structure around the resonance frequ
remains.

We have investigated the possible presence of a
for given values ofP and Q: The resulting “phase
diagram” is depicted in Fig. 4. Apparently a gap exi
always for P $ 1.0, independently ofQ. In terms of
the resonant wavelength, this condition translates tol0 $

1.15a. The line P ­ 1.0 constitutes for high values o
Q an asymptotic boundary for the left region, where
gap is found. For smaller values ofQ, say Q & 50
s o
FIG. 3. Scaled density of states for the two special case
Figs. 1 and 2.
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(corresponding with a broad resonance), the lower bo
on P decreases. Note, however, that for atomsQ ¿ 50.
For reasons of graphical representation we have ch
low values of Q since the width of the gapDv ,
Q21. From Fig. 3 we observe thatDvyv0 ø 0.85Q21.
The absence of a gap forv0 . vBZ can be clarified
by considering the lines in Fig. 1 that are indica
by arrows. These lines are identically present for
values of P and Q and coincide with eigenvalues
the empty lattice. Thus free eigenvalues in some ban
remain eigenvalues of the perturbed system (which is
true for the associated eigenfunctions). This feature
observed earlier in the Schrödinger case [16] (p. 1
There it is shown thatv ­ c0sk 2 gd is an eigenvalue
of multiplicity m $ 1 if, and only if, there arem 1 1
reciprocal lattice vectorsg0, g1, . . . , gm such that

jk 2 g0j ­ jk 2 g1j ­ · · · ­ jk 2 gmj . (8)

This is precisely what we find in our numerical work, bo
for the scalar (see below) and Maxwell cases. Becau
(8), this type of eigenvalue occurs only atk values of a
certain symmetry. The rigidity of these lines disturbs
formation of a band gap whenv0 exceeds the minimum
valuevBZ.

Usually for photonic crystals the frequency gaps
found near or above the boundary of the Brillouin zo
[3–5] where the periodicity is nearly matched. Th
formation is similar to that of the gaps found in t
Kronig-Penney model. It has therefore been argued
the fcc lattice is favorable for finding an isotropic ba
gap. Its Brillouin zone coming closest to a sphere imp
a maximum overlap for the gaps in all directions [3].
contrast, our gap is a direct consequence of the natu
the resonant interaction. It is foundbelow the boundary
of the Brillouin zone; therefore the role of the geome
of the Brillouin zone (and corresponding Bravais latti
may be viewed as less critical.
f
FIG. 4. P, Q “phase diagram.”
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This statement is confirmed by the fact that the sca
wave approximation is excellent in our case. T
Helmholtz equation (1) is frequently approximated by t
scalar wave equation

2≠2
xC 2 4pxsv, xd svyc0d2C ­ svyc0d2C , (9)

which is known to be inadequate in general. The
are cases where band gaps show up in the scalar w
approximation which are absent in a vector pictu
and vice versa50 [1,3–5]. In our case, however, th
difference in eigenvalues is uniformly less than 1%. T
longitudinal mode is absent here as it should be for sc
waves.

In conclusion, we have solved the optical band str
ture and density of states for a lattice of resonant class
dipole oscillators. We infer that the band structure (a
existence of a gap) is determined entirely by two dime
sionless parameters, which measure the scattering stre
and the width of the atomic resonance, respectively.
today’s experimentally realizable optical lattices two r
marks are in order. First, oscillatory motion of the atom
around the equilibrium position has been neglected in
model. In a more elaborate treatment this could be
counted for by means of the Debye-Waller (DW) fact
[12], as was done in an observation of Bragg scatter
from atomic lattices in Ref. [6]. The overall effect is
diminishing of the Bragg-scattered intensity. One fin
typically for a temperature of15 mK a DW factor of
0.76. The Bragg beam still has an intensity which e
ceeds the incoherently scattered background by order
magnitude. Note that this complication does not aff
the symmetry and diagonalization procedure as outli
above. Second, these lattices are still relatively dilute (
ing fractions of#10%). This implies a nonperiodic and
even time-dependent susceptibilityx, due to hopping of
atoms from site to site. Therefore thepartial long-range
order (which has been measured in [6]) will according
distort the band structure picture.
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