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Abstract: The Haar functional on the quantum SU(2) group is the analogue of 
invariant integration on the group SU(2). I f  restricted to a subalgebra generated by 
a self-adjoint element the Haar functional can be expressed as an integral with a 
continuous measure or with a discrete measure or by a combination of both. These 
results by Woronowicz and Koornwinder have been proved by using the corepresen- 
tation theory of  the quantum SU(2) group and Schur's orthogonality relations for 
matrix elements of  irreducible unitary corepresentations. These results are proved 
here by using a spectral analysis of  the generator of the subalgebra. The spectral 
measures can be described in terms of the orthogonality measures of  orthogonal 
polynomials by using the theory of Jacobi matrices. 

1. Introduction 

The existence of the Haar measure for locally compact groups is a cornerstone in 
harmonic analysis. The situation for general quantum groups is not (yet) so nice, 
but for compact matrix quantum groups Woronowicz [22, Thm. 4.2] has proved that 
a suitable analogue of the Haar measure exists. This analogue of the Haar measure 
is a state on a C*-algebra. In particular, the analogue of the Haar measure on 
the deformed C*-algebra Aq(SU(2)) of continuous functions on the group SU(2) 
is explicitly known. This Haar functional plays an important role in the harrnonic 
analysis on the quantum SU(2) group. For instance, the corepresentations of the 
C*-algebra are similar to the representations of  the Lie group SU(2), and the matrix 
elements of  the corepresentations can be expressed in terms of the little q-Jacobi 
polynomials, cf. [14, I7,20], and the orthogonality relations for the little q-Jacobi 
polynomials are equivalent to the Schur orthogonality relations on the C*-algebra 
Aq(SU(2)) involving the Haar functional. This was the start of a fruitful connection 
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between q-special functions and the representation theory of quantum groups, see 
e.g. [12, 15, 18] for more information. 

The Haar functional can be restricted to a C*-subalgebra of Aq(SU(2)) generated 
by a self-adjoint element. It turns out that the Haar functional restricted to specific 
examples of such C*-subalgebras can be written as an infinite sum, as an integral 
with an absolutely continuous measure or as an integral with an absolutely contin- 
uous measure on I - I ,  1] and a finite number of discrete mass points off [ -1 ,  1]. 
These measures are orthogonality measures for subclasses of the little q-Jacobi poly- 
nomials, the big q-Jacobi polynomials and the Askey-Wilson polynomials. These 
formulas tbr the Haar functional have been proved in several cases by Woronowicz 
[22, App. A.1] and Koornwinder [16, Thm. 5.3], see also [15, Thm. 8.4], by using 
the representation theory of the quantum SU(2) group, i.e. the corepresentations 
of the C*-algebra Aq(SU(2)) equipped with a suitable comultiplication. See also 
Noumi and Mimachi [19, Thm. 4.1]. 

The proofs by Woronowicz and Koornwinder use the Schur orthogonality rela- 
tions for the matrix elements of irreducible unitary corepresentations of Aq(SU(2)). 
They determine a combination of such matrix elements of one irreducible unitary 
corepresentation as an orthogonal polynomial, say Pn, in a simple self-adjoint ele- 
ment, say p, of the C*-algebra Aq(SU(2)). Here the degree n of the polynomial Pn 
is directly related to the spin l of the irreducible unitary corepresentation. Hence, 
they conclude that the Haar functional on the C*-subalgebra generated by p is 
given by an integral with respect to the normalised orthogonality measure for the 
polynomials pn. The result by Noumi and Mimachi is closely related to a limiting 
case of Koornwinder's result, but the invariant functional lives on a quantum space 
on which the quantum SU(2) group acts. Their proof follows by checking that the 
moments agree. However, the invariant functional takes values in a commutative 
subalgebra of a non-commutative algebra. 

It is the purpose of the present paper to prove these results in an alternative 
way by only using the C*-algebra Aq(SU(2)). And in particular we study the spec- 
tral properties of the generator of the C*-subalgebra on which the Haar functional 
is given as a suitable measure. In order to do so we use the infinite dimensional 
irreducible representations of the C*-algebra. The infinite dimensional irreducible 
representations of the C*-algebra Aq(SU(2)) are parametrised by the unit circle, 
and the intersection of the kernels of these representations is trivial. So this set 
of representations of Aq(SU(2)) contains sufficiently many representations. We de- 
termine the spectral properties of the operators that correspond to the self-adjoint 
element which generates the C*-subalgebra on which the Haar functional is given 
by Woronowicz, Koomwinder and Noumi and Mimachi. An important property of 
the corresponding self-adjoint operators is that they can be given as Jacobi matrices, 
i.e. as tridiagonal matrices, in a suitable basis, and hence give rise to orthogonal 
polynomials. These orthogonal polynomials can be determined explicitly and can 
then be used to derive the explicit form of the Haar functional. 

The contents of this paper are as follows. In Sect. 2 we recall Woronowicz's 
quantum SU(2) group and the Haar functional on the corresponding C*-algebra. The 
spectral theory of the Jacobi matrices is briefly recalled in Sect. 3. Woronowicz's 
[22] expression for the Haar functional on the algebra of cocentral elements is 
then proved in Sect. 4 by use of the continuous q-Hermite polynomials and its 
Poisson kernel. In Sect. 5 we prove the statement of Noumi and Mimachi [19] 
and Koornwinder [16] that the Haar functional on a certain C*-subalgebra can be 
written as a q-integral. Here we use A1-Salam-Carlitz polynomials and q-Charlier 
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polynomials. Finally in Sect. 6 we give a proof of  Koornwinder's [16] result that the 
Haar functional on certain elements can be written in terms of an Askey-Wilson 
integral. Here we use the AI-Salam-Chihara polynomials and the corresponding 
Poisson kernel. It must be noted that the result of Sect. 5 can be obtained by a 
formal limit transition of  the result of  Sect. 6, cs [16, Rem. 6.6], but we think that 
the proof in Sect. 5 is of independent interest, since it is much simpler. Moreover, 
the basis of  the representation space introduced in Sect. 5 is essential in Sect. 6. 

To end this introduction we recall some definitions from the theory of basic 
hypergeometric series. In this we follow the excellent book [10, Ch. 1] by Gasper 
and Rahman. We always assume 0 < q < 1. The q-shifted factorial is defined by 

(a;q)k = I-[ (1 -- aqi), (al . . . .  ,ar;q)k = (ai;q)k 
i=0 i=1 

for k ~ Z+ U {e~}. The q-hypergeometric series is defined by 

I/al, . . . ,ar ~(Ps I ; q, z l  
\ bi , . . . ,bs J 

= ~(ps(al . . . . .  a~; bl . . . .  , bs; q,z) 

(al . . . .  ,a~;q)k ZkH 1-k k(k--1)/2,s+l--r 

Note that for ai = q-n, n E ~+, the series terminates, and we find a polynomial. 
We also need the q-integral; 

b b b a 

f f ( x )dqx  = (1 - q)b ~ f(bqk)q k, f f ( x )dqx  = f f ( x )dqx  - f f ( x ) d q x .  
0 k=O a 0 0 

For the very-well-poised 8(P7-series we use the abbreviation, cf. [10, Ch. 2], 

a, qx/_d,-qv/-a,b,c,d,e,f . ) 
8WT(a; b,c,d,e, f ; q,z) = 8(P7 x/-d, _x/~,qa/b, qa/c, qa/d, qa/e, qa / f , q , z  . (1.1) 

2. The Quantum SU(2) Group 

We recall in this section Woronowicz's first example of  a quantum group, namely 
the analogue of  the Lie group SU(2), cf. [21,22]. In the general theory of  compact 
matrix quantum groups Woronowicz has proved the existence of the analogue of a 
left and right invariant measure [22]. 

We first introduce the C*-algebra Aq(SU(2)). The C*-algebra Aq(SU(2)) is the 
unital C*-algebra generated by two elements e and 7 subject to the relations 

c~7 = q7 c~, ~7" = q7 *c~, 77* = 7*7, 

c~*c~ + 7*7 = 1 = ~c~* + q277", (2.1) 

where 0 < q < 1. Here q is a deformation parameter, and for q = 1 we can identify 
Aq(SU(2)) with the C*-algebra of  continuous function on SU(2), where ~ and 7 
are coordinate functions. The group multiplication is reflected in the comultipli- 
cation, i.e. a C*-homomorphism A : Aq(SU(2)) ---+ Aq(SU(2)) | Aq(SU(2)). (Since 
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Aq(SU(2)) is a type I C*-algebra, we can take any C*-tensor product on the right- 
hand side.) The Haar functional is then uniquely determined by the conditions 
h(1) = 1 and (id | h)A(a) = h(a)l  = (h | id)A(a) for all a E Aq(SU(2)). 

The irreducible representations of the C*-algebra Aq(SU(2)) have been com- 
pletely classified, cf. [20]. Apart from the one-dimensional representations ~ ~ e i~ 
7 H 0, we only have the infinite dimensional representations roe, q5 c [0,2zc), of 
Aq(SU(2)) acting in /2(7Z+). Denote by {enin E 2g+} the standard orthonormal 
basis of/2(7Z+), then zcr is given by 

~zr = V/1 - q2nen--1, rc4)(~)e n = ei4) qnen . (2.2) 

Here we follow the convention that e_p =- 0 for p E N. This is a complete list of 
the irreducible .-representations of Aq(SU(2)). Moreover, Ncker ~r is trivial, so that 
the spectral properties of a E Aq(SU(2)) are determined by the spectral properties 
of 7zr 

Woronowicz [22, App. A.1] has given an explicit formula for the Haar functional 
(not using corepresentations) in terms of an infinite dimensional faithful representa- 
tion of Aq(SU(2)). This can be rewritten in terms of the irreducible representations 
of Aq(SU(2)) as 

o~ q2p 2~ 
h(a) = (1 - q2) ~ ~ f (7.co(a)ep, ep ) dO , a E Aq(SU(2)) .  

p=0 0 

Observe that h(p(7*7)) = fd p(x)dqzx,  for any continuous p on {qZk ]k C 2g+}. 
This can be considered as a limit case of the results of Sect. 5, 6, cf. [16, Rein. 6.6]. 

Introduce the self-adjoint positive diagonal operator D: 12(2g+) ~ lZ(~+), ep 
q2Pep, then we can rewrite this in a basis independent way, cf. [20, Thin. 5.5]; 

(1 _ q 2 )  2~ 
h(a) - - -  f t r ( D ~ r  a EAq(SU(2) ) .  (2.3) 

2zc 0 

The trace operation in (2.3) is well-defined due to the appearance of D. Since 
D 1/2 is a Hilbert-Schmidt operator, so is ~zr 1/2. The trace of the product of 
two Hilbert-Schmidt operators is well-defined. Moreover, tr(D~r = tr(Tzr 
and it is independent of the choice of the basis. The trace can be estimated by 
the product of the Hilbert-Schmidt norms of D 1/2 and zcr V2 and then we get 
[tr(Dzcr __< [[ a [[Aq(SV(2))/(1 - q2), so that the function in (2.3) is integrable. 
See Dunford and Schwartz [9, Ch. XI, Sect. 6] for more details. 

3. Spectral Theory of Jacobi Matrices 

In this section we recall some of the results on the spectral theory of Jaeobi matrices 
and the relation with orthogonal polynomials. For more information we refer to 
Berezanskii [5, Ch. VII, Sect. 1] and Dombrowski [8]. 

The operator J acting on the standard orthonormal basis {en I n E 7Z.+) of 12(Z+) by 

Jen : an+len+l + bnen + anen-1, an > O, bn C IR , (3.1) 

is called a Jacobi matrix. This operator is symmetric, and its deficiency indices are 
(0,0) or (1, 1), cf. [5, Ch. VII, Sect. 1, Thin. 1.1]. In particular, if the coefficients 
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an and bn are bounded, J is a bounded operator on /2(7Z+) and thus self-adjoint. 
Then e0 is a cyclic vector for J ,  i.e. the span of  finite linear combinations of  the 
form JPeo, p E ;r is dense in /2(~+).  This is the case for all Jacobi matrices 
considered in this paper. 

Using the same coefficients a~, bn we can generate polynomials pn(x) of  degree 
n in x by the recurrence relation 

xp,(x) = a~+lpn+l(x) + bnpn(x) + anpn-l(x), p - l ( X )  = 0, po(x) = 1 . (3.2) 

By Favard 's  theorem, which states that polynomials satisfying a three-term recur- 
rence relation are orthogonal polynomials, cf. e.g. [7], there exists a positive measure 
m on the real line such that the polynomials pn(x) are orthonormal; 

f pn(x)pm(X) din(x) = 6n, m. 
N 

I f  the orthogonality measure m is uniquely determined, we speak of  a determined 
moment  problem. In this case the set o f  polynomials is dense in the weighted L2(rn)- 
space, and the polynomials {p,]n C Z+} form an orthonormal basis for L2(m). 
The boundedness of  an, bn implies that the moment  problem is determined. More 
generally, the moment  problem is determined if and only if the Jacobi matrix is a 
self-adjoint operator. 

So we now assume that the coefficients an, bn are bounded, so J is self-adjoint 
with cyclic vector eo and the corresponding moment  problem is determined. We 
can represent the operator J as a multiplication operator M on L2(m), where 

M: L2(m) ---, L2(m), (Mf ) (x )  = x f ( x ) .  

For this we define 

A: 12(~+) ---+ L2(m), (Aen)(x) = pn(x),  

then A is a unitary operator, since it maps an orthonormal basis onto an orthonormal 
basis. Note that we use here that the polynomials are dense in L2(m). From (3.1) 
and (3.2) it follows that 

A Jr = MA v, V v E 12(77+ ) ,  

so that A intertwines the Jacobi matrix J on 12(7Z+) with the multiplication operator 
M on LZ(m). Observe that NJII = IIMII, so that M is bounded and hence the support 
o f  the orthogonality measure m is compact. 

What we have described in the previous paragraph is essentially the spectral 
theorem for self-adjoint operators. The theorem states that there exists a projection 
valued measure E on IR, the spectral decomposition, such that 

J = f x dE(x) .  
IR 

The relation between the spectral decomposition E and the orthogonality measure 
m is given by re(B) = IIE(B)eoll, where B C IR is a Borel set and e0 is the cyclic 
vector for J .  More generally we have 

(E (a )~ ,  e,~) = f p~(x)pm(x) din(x). 
B 
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The point spectrum of J corresponds to discrete mass points of the measure m. Let 
us finally note that Favard's theorem can be proved from the spectral theorem for 
the Jacobi matrix J. 

4. The Haar Functional on Cocentral Elements 

Using the characters of the irreducible unitary corepresentations of the quantum 
SU(2) group Woronowicz [22, App. A.1] has proved an expression for the Haar 
functional on the C*-subalgebra generated by e + c~*. The set of characters is known 
as the set of cocentral elements and it is generated by the element e + ~*. The 
purpose of this section is to give a proof of this theorem based on the spectral 
analysis of the generator c~ + c~*. The method used in this section is also used in 
Sect. 6 in somewhat greater computational complexity. 

Theorem 4.1. The Haar functional on the C*-subalgebra generated by the self- 
adjoint element ~ + c~* is given by the integral 

1 
2 f p ( x ) V / 1  x2dx h(p((c~ + c~*)/2)) = ~ --1 

for any continuous function p E C([-1,  1]). 

In order to give an alternative proof of this theorem, we start with considering 

2=4((c~ + c~*)/2)en = V/1 -qZnen-1 + ~r -q2n+Zen+l. (4.i) 

So the operator 7t0((~ + e*)/2) is represented by a Jacobi matrix with respect to 
the standard basis of la(2g+). 

Recall Rogers's continuous q-Hermite polynomials H~(xlq ) defined by 

2xHn(xlq) = H~+l(xlq) + (1 - q~)H~-l(xlq),  H-a(x lq)  = O, Ho(xlq) = 1. 
(4.2) 

The continuous q-Hermite polynomials satisfy the orthogonality relations 

(~n m 2 7 z (q ;  q)n f H~(c~176176 , -(-~. q ~  , 
0 

(4.3) 

with w(cosOIq ) = (e2i~176 cf. [1]. The Poisson kernel for the continuous 
q-Hermite polynomials is given by, cf. [1,6], 

O<3 
Pt(cos 0, cos ~lq)  = ~ Hn(cos Olq)Hn(cos ~lq)t" 

. :o (q; q). 

(t2; q)*o 
= (teiO+i~b teiO_i~, te_iO+ir ' te_iO_i~,; q)~ (4.4) 

for Itl < 1. 
Compare (4.1) with the three-term recurrence relation (4.2) to see that (4.1) is 

solved by the orthonormal continuous q-Hermite polynomials H~(xlq2)/(v~;q2)~. 
Using the spectral theory of Jacobi matrices as in Sect. 3 we have obtained the 
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spectral decomposition of the self-adjoint operator n4~((a + a*)/2), which has spec- 
trum [-1,  1]. This link between e + a* and the continuous q-Hermite polynomials 
is already observed in [12, Sect. 11]. So the spectrum of ( a + a * ) / 2  E Aq(SU(2)) 
is [-1,  1] and by the tractional calculus p((e + c~*)/2) E Aq(SU(2)) for any con- 
tinuous function p on [-1,  1]. 

We use the results of Sect. 3 here with pn(X)= H , ( x l q 2 ) / ~  as the 
orthonorrnal polynomials and dm(x[q 2) = (27c)-t (q2; q2)oow(xlq2 )( 1 - x 2 ) - 1 / 2 d x  as 
the (normalised) orthogonality measure, which is absolutely continuous in this case. 
With the unitary mapping A, intertwining ~((c~ + a*)/2) with the multiplication 
operator M on L2([-1, 1],dm(x[q2)) as in Sect. 3, we get in this particular case 

tr(D~4~(p((ce + c~*)/2))) = 
O(3 

q2~ (n4(p((a + ~.)/2)) e~, e,) 
r t = 0  

O O  

qZ" ( Arte( p( (c~ + o~* )/2 ) ) e,, Ae,) 
n = 0  

q2n ) p(x)I(Ae~)(x)[ 2 dm(xlq 2) 
n = 0  - -1  

q2. ) p(x) 
n = 0  - -  1 

(Hn(xlq2) )2 dm(xlq2) 
(q2; q2 ), 

1 

f p(x)Pq2 (x, x ]q2 ) dm(x ]q2 ) ,  (4.5) 
--I  

by (4.4). Interchanging summation and integration is justified by (4.3) and (4.4) 
and estimating p(x) by its supremum norm on [-1, 1]. 

From (4.4) we see that 
4(1 - x  2) 

w(xlq2)pqz(X'xIq2) = (1 - q2)(q2; q2)o c ' 

so that 
2 1 

t r (D~(p((~  + c~*)/2))) -- ~z(1 - q2) -fl P(x)v/1 - x2 dx. 

Since this is independent of the parameter q~ of the infinite dimensional representa- 
tion, we obtain Woronowicz's Theorem 4.1 from (2.3). 

5. The Haar Functional on Special Spherical Elements 

We start with introducing the self-adjoint element 

Pz, cc = iqZ(~*7 -- 7 *c~) -- (1 -- q2~)y* 7 C Aq(SU(2)). 

This element is a limiting case of the general spherical element considered in Sect. 6, 
and from that section the notation for this element is explained. The Haar functional 
on the C*-algebra generated by p~,oo can be written as a q-integral as proved by 
Koomwinder [16, Thin. 5.3, Rem. 6.6] and Noumi and Mimachi [19, Thm. 4.1] using 
the corepresentations of the quantum SU(2) group. 
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Theorem 5.1. The Haar functional on the C*-subalgebra generated by the self- 
adjoint element p~,~ is 9iven by the q-integral 

1 q2Z 
h(p(p~,o. )) c p( x ) dq2 x 1 + q2~ j~ 

for any continuous function p on {-qZklk E 7/+} t5 {q2~+2k[k E 2g+} t3 (0}. 

To prove this theorem from a spectral analysis of rc6(p~,o~) we have to recall 
the following result. It is shown in [11, Prop. 4.1, Cor. 4.2] that 12(7/+) has an 
orthogonal basis of eigenvectors of rc0(p~,~). The proof of that proposition only 
needs a minor adaptation to handle the general case 7z+(p~,~). In general we have 
the following proposition. 

Proposition 5.2. 12(7Z+) has an orthogonal basis of  eigenvectors v~, where 2 = 
_qZk, k E ;g+, and 2 = qZr+2k, k E ~+, for the eioenvalue 2 of  the self-adjoint 
operator ~4~(P~,~). The squared norm is 9iven by 

V4,, 1) 4,\ = = ;~ ;~/ q-2k(q2;q2)k(--q2-2~;q2)k(--q2Z;q2)~ , 2 _q21C, 

(v~, v~) = q-2k(q2; qZ)k(_q2+2~; qZ)k(_q-2~; q2)~, 2 = q2~+2k. 

Moreover, v~ = ~,~=0 i%i"+ P,(2 )e, with the polynomial p,(2)  defined by 

q-,,Tq�89 2(Pl(q -2n, qZV2; 0; q2; _q2),) 

(-1)"q"~q �89 -2. q2-Z~)~). 
= aPl(q , -1 /2 ;  O;q2; (5.1) 

Remark. 5.3, The polynomials in 2 in (5.1) are A1-Salam-Carlitz polynomials U} ~). 
The orthogonality relations obtained from (v~, v~) = 0 for 2 =## are the orthogonality 
relations for the q-Charlier polynomials, cf. [11, Cor. 4.2]. 

Remark. 5.4. The basis described in Proposition 5.2 induces an orthogonal decom- 
position of the representation space 12(2g+) = V~ | V[, where V1 ~ is the subspace 
with basis V~_q2k, k E 7Z+, and V2 ~ is the subspace with basis v22~+2~ , k C 7/+. 

In this section we use the basis described in Proposition 5.2 to calculate the 
trace. The spectrum of 7r~(p~,~) is independent of ~b, so the spectrum of p~,o~ E 
Aq(SU(2)) equals {-qZ~lk E 7/+} U {qZ~+Zklk E 7Z+} U {0}. Hence, for any function 
p continuous on the spectrum {-qZklk E 2g+} U {q~+Zklk C 7/+} U {0} we have 
p(p~,~) E Aq(SU(2)). This time we do not need the mapping A of Sect. 3, since 
we have a basis of eigenvectors. So we can calculate the trace with respect to the 
orthogonal basis of eigenvectors described in Proposition 5.2; 

tr(DTz~(p(p~,oo))) = 2_, P ( - q  ) ( T ~ ,  - ~ 

" D (o 4, 
+ ~ p(q2Z+2k) I Vq2Z+2k, Vq2z+2k) 

IV4, , V4, k=O \ q2z+2k q2"C+2k ) 
(5.2) 
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So it remains to calculate the matrix coefficients on the diagonal of the operator 
D with respect to this basis. We give all the matrix coefficients in the following 
lemma. 

Lemma 5.5. The matrix coefficients of  the operator D with respect to the orthog- 
onal basis v 0 ;~ are 9iven by 

(OVq2,:+2k, 19q2,L+21 ) 

= (--q2Z+2;q2)c~(q2;q2)k(--q2-2Z;q2)l, k >= l ,  

= (_q2-2Z;q2)oc(q2 ;q2)k(_q2+2~ ;q2)l ' k >= l ,  

= (q2; qZ)ec(_q2-2"c; q2)k(_q2+2~; q2)i ' 

and all other cases follow from D bein 9 self-adjoint. 

Proof The proof is based on calculations involving the q-Charlier polynomials 
cn(x; a; q) = 2~ol(q-~,x; 0; q, -qn+l/a). Define a moment functional 5 ~ by 

2 e ( p )  = ~=0 ~(q - ' 
(5 .3 )  

for any polynomial p. Note that all moments, i.e. 50(x~), n E 2g+, exist. The ortho- 
gonality relations (VOq2k,_ V4q21)_ = 0 are rewritten as the orthogonality relations for 

the q-Charlier polynomials; 

50(ck(x; q2~; q2)cl(x; q2~; q2)) -2k 2 = 6k, lq (q , _q2-2r;  q2)k(_q2~; q2)c ~ , 

cf. [10, Ex. 7.13; 11, Cor. 4.2]. 
Using Proposition 5.2 and the definition of the self-adjoint operator D we see 

that 

(DV~q2k, V~q21) : ~Qf ( l ek(x; q2Z; q2)Cl(X; q2Z; q2) ) . 

Note that this expression is well-defined, since 0 is not an element of the support 
of the measure representing 50. Now use the orthogonality of the q-Charlier poly- 
nomials to see that for k _-> 1 this equals c1(0; q2~;q2)50(ck(x;q2Z; q2)/x)" Use the 
2~Ol-series representation for the q-Charlier polynomials and (5.3) to evaluate the 
moment functional on this particular function. We get 

2 l --2n. 2 k (q -Zk;q)  (_q2k+2+2~)l~ (q ,q )lqZn(~+l)qn(n-1) 
50(}ck(x;q2~; qa)) = Z 

1=0 (q2;q2)l n=l ~ ' 

where interchanging the summations is allowed as all sums are absolutely 
convergent. Replace the summation parameter n = m + l and use that (q-2(m+0; q2)1 / 
(q2;q2)m+l=(--1)tq-l(l+t+2m)/(q2;q2)m. Now the inner sum can be summed 
using o(Po(- ; - ;  q2,z) = (z; q2)o~, cf. [10, (1.3.16)]. The remaining finite sum can be 
summed using the terminating q-binomial formula l cpo(q-2n;-; q2, q2nx)= (x; q2)n, 
cf. [10, (1.3.14)], which can also be used to evaluate the q-Charlier polynomial at 
x = 0. This proves the first part of the lemma. The second part is proved in the 
same way, but with z replaced by - z .  
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For the last part of the lemma we use the same strategy, but now we have to 
use the moment functional Jd defined by 

(_  1)nqn( n-I ) 
~ ( p )  = 

n = 0  (qZ;q2)n p(q-Zn), 

for which we have dg(ck(x;qZ~;q2)cl(x;q-Z~;q2))= 0, cf. [11, Cor. 4.2]. [] 

Now use Lemma 5.5 and Proposition 5.2 in (5.2) to find 

l ( ~ p(--q2k)q2k + q2Z ~-~ p(q2Z+2k)q2k) . 
tr(Dn~(p(p~,~))) -- 1 + q2~ k=0 k=0 

This expression is independent of qS, so that we obtain from (2.3), 

l - - q 2  ( +  q2~ ) h( p(p~,~ ) ) - ~ p(_qZk )qZk + qZ~ ~ p( q2~ + 2k )qZk 
1 k = 0  k = 0  

which is precisely the statement of Theorem 5.1 using the definition of the q-integral 
given in Sect. 1. 

6. The Haar Functional on Spherical Elements 

In this section we give a proof of Koornwinder's theorem expressing the Haar 
functional on a C*-subalgebra of Aq(SU(2)) as an Askey-Wilson integral from the 
spectral analysis of the generator of the C*-subalgebra. 

We first introduce the self-adjoint element 

~--- I 2 p~,~ ~(~ + (c~*) 2 + q72 + q(7*) 2 + iq(q -~  - q~)(c~*7 - 7"~) 

- iq(q -~ - q~)(Tc~ - c~*?*) - q(q-~ - q~)(q-~ - q~)7*?) E Aq(SU(2)). 

Note that the element p~, ~ ,  as introduced in Sect. 5, is a limiting case of this general 
spherical element, namely 

p~,~ lim ~ o+~-1 = zq Pz,~ �9 
f t - + O ( ?  

The Haar functional on the C*-algebra generated by p~,o can be written as an 
integral with respect to the orthogonality measure for Askey-Wilson polynomials, 
as proved by Koomwinder [16, Thm. 5.3]. 

Theorem 6.1. The Haar functional on the C*-subalgebra generated by the seif- 
adjoint element p~,~ is given by 

h(p(p~,~)) = f p(x) dm(x; a, b, c, dlq 2) (6.1) 

for any continuous function p on the spectrum of  p .... which coincides with the 
support of  the orthogonality measure in (6.1). Here a = _qO+~+l, b = _q-~-~+a, 
c = q~-~+l, d = q-~+~+l and dm(x; a, b, c, d[q 2) denotes the normalised Askey-  
Wilson measure. 
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We recall that the normalised Askey-Wilson measure is given by, cf. Askey 
and Wilson [4, Thm. 2.1,2.5], 

1 
1 f p ( c o s O ) w ( c o s O ) d O +  ~ o ~ P ( X k ) W k .  (6.2) f p(x)dm(x;  a, b, c, d]q) - h02~z 0 k 

Here we use the notation w(cos 0) = w(cos O; a, b, c, d]q), ho = ho(a, b, c, d[q) and 

ho(a, b, c, dlq ) = (abcd; q)o~ 
(q, ab, ac, ad, be, bd, cd; q)o~ ' 

(e 2i0, e-2io; q ) ~  
w(cos 0; a, b, c, d I q) = (aeiO, ae_iO, beiO ' be_iO, ceiO ' ce_iO, deiO ' de_iO; q ) ~  , (6.3) 

and we suppose a, b, c and d real and such that all pairwise products are less than 1. 
The sum in (6.2) is over the points xk of the form (eq k + e - l q - k ) / 2  with e any of 
the paramgters a, b, c or d whose absolute value is larger than one and such that 
leqkl > 1, k E ;g+. The corresponding mass wk is the residue o f z  ~ w(�89 + z - l ) )  
at z = eq k minus the residue at z = e - l q  -k. The value of wk in case e = a is given 
in [4, (2.10)], but (1 -aqZk)/(1 - - a )  has to be replaced by (1 -aZqZk)/(1 --a2). 
Explicitly, 

( a -2 ;  q)oo 
wk(a; b, c, dlq ) = 

(q, ab, b/a, ac, c/a, ad, d/a; q ) ~  

(1 - a2q 2k) (a2,ab, ac, ad; q)k {" k 
x (6.4) 

(1 - a 2) (q, aq/b, aq/c, aq/d; q)k \a-~cd } ' 

see [10, (6.6.12)]. 
We prove Theorem 6.1 from a spectral analysis of the self-adjoint operators 

zr~(p~,~). We realise rce(p,,~) as a Jacobi matrix in the basis o f / 2 (~+)  introduced 
in Sect. 5. 

Proposition 6.2. Let v~ be the orthogonal basis o f / 2 ( ~ + )  as in Proposition 5.2, 
then 

2 ~ ( p ~ , ~ ) v ~  = qe-2i4) V~2q 2 + q - l  eZi4)(1 - q-2T2)(1 q- ,~ )V~/q2 -}- 2ql -~(q  -G - qa )v~ , 

(6.5) 
where 2 = _q2k, k E 2~+, and 2 = q2~+2k, k E ~+ .  

Proo f  We use a factorisation of pz, a in elements, which are linear combinations in 
the generators of the C*-algebra Aq(SU(2)) .  Explicitly, 

2 r+~ q2~r- 1 q2~+1 (flz+l,oo q P~,~* - _ = 

where 

0~7:,0o = ql/20~ q- iq*+l/2y, 

2~,cc = _q~+l/2~ + iql/27, 

a--1 a - q  ~+a,~)(7~,~ + q ~ , ~ ) ,  (6.6) 

flz, oo = iql/27" + q~-1/2c~* , 

6~,c~ = -iq~+1/27 " + q-1/2c~* , (6.7) 

cf. [13, Prop. 3.3, (2.14), (2.2)]. Of course, (6.6) can also be checked directly from 
the commutation relations (2.l)  in Aq(SU(2)) .  As proved in [13, Prop. 3.8], the 
operators corresponding to the elements in (6.7) under the representation ~z0 act 
nicely in the basis v ~ The proof immediately generalises to the basis v~. Using the 
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notation v~(q ~) =-v~ to stress the dependence on q~, we get 

= )]./)~b ~ z-l. n6(~:,~)v~(q:) ei*iq�89 q- ) 2/q21,q ), 

n~(fl:, ~ )v~ (q r) = e-i4~iq�89 v~ (q~-: ) , 

n4(7z,~ )v~ (q ~) = ei~ iq�89 (q 2~ - ,~ )v:4~ (q~+l ), 

n~(6~,~)v~(q~)= o--i*;, .~l+'c.* /.qt"+ 1 ~ 

From this result and (6.6) the proposition follows. [] 

Proposition6.2 implies that n4,(p~,o ) respects the orthogonal decomposition 

I2(2g+) = V~ | V~, cf. Remark 5.4. We denote by w~, m E e+,  the orthonormal 

basis of V~ obtained by normalising V4)q2~,_ m E 77+, and by u~, m E 2g+, the 

orthonormal basis of V[ obtained by normalising V~Z~+2m, m E ~+. Then we get, 

using Proposition 5.2, 

0--2i4,7 ~ 4 bmw~m o2i~ . . . . .  = ~  ~m,~m+l -I- Jr-~ ~ m - l , ~ m _  1 , 

= V/(1 _ q2m+2)( 1 + q2m+2-2z), bm = q2m+l-r(qa _ q-a) ,  (6.8) 

27z~(p~,a)Wm ~ 

am 

and 

2rc+(p~.a)u~ -2i4~ 4~ b~u~ 2i~ = e amUm+ 1 -~ -~ e a m - l U r e _  1 

am = V/(1 -- qZm+2)(1 q- q2m+2+2z), bm = q2m+l+~(q-a _ qa). (6.9) 

In order to solve the corresponding three-term recurrence relations for the 
orthonormal polynomials, we recall the A1-Salam-Chihara polynomials pn(x)= 
p,(x;a, blq ). These polynomials are Askey-Wilson polynomials [4] with two 
parameters set to zero, so the orthogonality measure for these polynomials follows 
from (6.2). The A1-Salam-Chihara polynomials are defined by 

( q-n'aeiO'ae-iO ) 
p,(cosO;a, blq) = a-"(ab;q)n3q)2 \ ab, 0 ;q,q . (6.10) 

The A1-Salam-Chihara pol3naomials are symmetric in a and b and they satisfy the 
three-term recurrence relation 

2xp,(x) : pn+l(x) + (a + b)q"p,(x) + (1 - abq"-l)(1 - q")p,-:(x)  . 

The A1-Salam-Chihara polynomials are orthogonal with respect to a positive mea- 
sure for ab < 1. Then the orthogonality measure is given by dm(x;a,b,O, OIq), el. 
(6.2). We use the following orthonormal A1-Salam-Chihara polynomials; 

1 (x  t � 8 9  
h,(x;s, tlq ) = v/~q,_qs_Z;q)s ;q�89 ' - q  -~ �9 

Now the corresponding three-term recurrence relations (6.8), respectively (6.9), are 
solved by e2im4)hm(x; q~, q~ l q2), respectively eeim~hm(x; q-~, q-~ Iq2). So we see that 
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z~(pz,~) preserves the orthogonal decomposition 12(2~+)= V~ | V[ of the repre- 
sentation space and that this operator is represented by a Jacobi matrix on each of 
the components. 

The operator D : /2(~+) ._.+/2(~+) introduced in Sect. 2 does not preserve the 
orthogonal decomposition /2(~+) = V1 r | V2 r as follows from Lemma 5.5. Let 

O = ( ol~'l oI~'2 

~k 2,1 D2 ,2 /  

be the corresponding decomposition of D, then 

tr(D~4~(p(p~,~) ) ) = trv~(D~l~c~(p(pz,~) ) ) + trV~z (DCz27C(o(p(p,,a) ) ) , 

since ~(p(p~,~)) does preserve 
Sect. 3, we define 

AI: V1 ~ ---+ L2(dml), 

A2 : V? --~ LZ(dm2), 

where 

(6.11) 

the orthogonal decomposition. Moreover, as in 

w~ ~-+ e2im4~hm(x; qt, qO [q2), 

U~m w-+ e2imC#hm(x; q-t,q Olq2), 

dml(x) = dm(x; ql+~-~, _ql-~-~,  0, 0]q2) , 

dm2(x) = dm(x; ql-~+~, _ql+~+t 0, 0[q 2) 

are the corresponding normalised orthogonality measures. Then, by using the spectral 
theory of Jacobi matrices as described in Sect. 3 in a similar way as in the derivation 
of (4.5), we get 

tr v~ ( D~u ~e;( P(Pt, o ) ) ) 

= f p(x) ~ ~ (Dw~,wCm)h~(x; qt, q~IqZ)hm(x; qr176 dml(x), (6.12) 
IR n=O m--O 

and similarly 

) ) ) 

= f p(x) k ~ (Du~, U~m >h.(x; q-t ,  q-O Iq2)hm(x; q-L q-~ Iq 2 ) e2i(m-n)d) drn2(x). 
IR n--0 m=0 

(6.13) 

The double sum in both (6.12) and (6.13) is absolutely convergent, uniformly in q5 
and uniformly in x on the support of the corresponding orthogonality measure. To 
see this we observe that Proposition 5.2 and Lemma 5.5 imply 

i(Dw~, WCm)] < qn+m(_q2, _q2-22; qZ)oo/(q2; q2)o~ , 

so that for some constant C 

(Dwf, w~)(hnhm)(X;q~,q~ < C q"th,(x;qt, q~ 2 . 
11, 0 n=0 
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Now we use the asymptotic behaviour of the Al-Salam-Chihara polynomials on 
[-1,  1], cf. Askey and Ismail [2, Sect. 3.1], and, if (aq k + a- lq-k) /2  is a discrete 
mass point of the orthogonality measure of the Al-Salam-Chihara polynomials we 
have pn((aq k + a-lq-k)/2;a,  blq) ~ a-nq -nk as n --+ 0% cf. (6.10), to find our as- 
sertion. The other double sum is treated analogously. 

Now that we have established (6.11), (6.12) and (6.13), we have an explicit 
expression for the Haar functional on the C*-subalgebra of Aq(SU(2)) generated 
by p~,~. Integrate (6.12) and (6.13) with respect to ~b over [0,2~], cf. (2.3), and 
interchange summations, which is justified by the previous remark. Since the inner 
products in (6.12) and (6.13) are independent of q~ by Lemma5.5, the integration 
over q5 reduces the double sum to a single sum. Now use (2.3), Lemma 5.5 and 
Proposition 5.2 to prove the following proposition. 

Proposition 6.3. For any continuous function p on the spectrum of  p~,o EAq(SU 
(2)), i.e. the union of  the supports of  the measures dml and dm2, we have the 
followin9 expression for the Haar functional: 

h(p(p~,~)) - 1 - q2_ f p(x)Pq2(X,X; ql+O-~, _q,-~-~lq2)dml(x) 
1 + q2~ 

1 - qZ e . . . .  x x" 1-~+~ dm2(x) (6.14) ~- 1 ~_-q~-2z J p(x)t 'q2( , , q ,-ql+a+~lq2) , 

where 
O O  

Pt(x, y; a, b]q) = ~ t k pk(x; a, blq)pk(y; a, blq ) (6.15) 
~:0 ( q, ab; q )k 

is the Poisson kernel for the Al-Salam-Chihara polynomials (6.10). 

Remark. 6.4. For all values needed the Poisson kernel in (6.14) is absolutely conver- 
gent for t = q2 by the asymptotic behaviour of the A1-Salam-Chihara polynomials, 
el. the remarks following (6.12) and (6.13). 

In order to tie (6.14) to Theorem 6.1 we have to use the explicit expression for 
the Poisson kernel of the A1-Salam-Chihara polynomials given by Askey, Rahman 
and Suslov [3, (14.8)]. It is given in terms of a very-well-poised 8qoT-series, cf. the 
notation (1.1), 

(ate iO, ate -i0, bte i4~, bte -i~~ t; q )~ 
Pt(cos 0, cos t); a, b l q ) = ( teiO+ir teiO_iql ' tei~_io, te_i~_io ' abt; q )oo 

x s w T ( a ~ - ; t ,  bei~176 (6.16) 

where we also used the transformation formula [10, (2.10.1)]. Askey, Rahman and 
Suslov [3] are not very specific about the validity of (6.16), but from [3, Sect. 1] we 
may deduce that it is valid for lal < 1, Ibl < 1 and It I < 1. We first observe that 
(6.16) also holds for ab < 1 and It[ < 1, for which (6.15) is absolutely convergent. 
To see this we show that the simple poles of the infinite product on the fight-hand 
side (6.16) at lit = abq ~, l E ;g+, are cancelled by a zero of the very-well-poised 
8~o7-series at lit = abq l, i.e. 

8W7 q - l - l ;  _~,beiO, be-iO,aei~,ae-iO;q,__ ~ = 0, l E 7Z,+ . 
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This follows by writing the very-well-poised 8r as a sum of two bal- 
anced 4(P3-series by [10, (2.10.10)], in which case both 4~o3-series have a factor 
(q-l; q)~ = 0 in front. 

We also need the Poisson kernel evaluated in possible discrete mass points 
of the corresponding orthogonality measure. For x in a bounded set, containing the 
support of the orthogonality measure, we see that for Itl small enough P~(x,x; a, blq ) 
defined by (6.15) is absolutely convergent and uniformly in x, and by analytic 
continuation in x we see that (6.16) is valid for It] small enough. Now assume that 
lal > 1 and that xk = (aq k + a- lq-k) /2  is a discrete mass point of the orthogonality 
measure of the A1-Salam-Chihara polynomials, then the radius of convergence of 
Pt(xk,xk;a, blq) in (6.15) is a2q 2k, so the radius of convergence is greater than 1, 
cf. (6.2). For this choice of the arguments the right-hand side of (6.16) can be 
expressed in terms of a terminating very-well-poised 8q~7-series; 

(a2qkt, tq-k; q)k (~b~, ~ q ~  ~(abtqk,btq-k/a;q)~ 8W 7 ( ~ _ ; t ,  abqk, bq-k/a,q-ka2qk;q, t )  

(6.17) 

This expression has no poles in the disc [t[ < a2q 2k, and coincides with the Poisson 
kernel (6.15). So we have shown that (6.16) for t = q with x = cos0 = cos~b is 
valid for ab < 1 and x in the support of the corresponding orthogonality measure. 

After these considerations on the Poisson kernel for the A1-Salam-Chihara poly- 
nomials, we can use Bailey's summation formula, cf. [10, (2.11.7)], in the following 
form; 

1 1 
sWy(a; b,c,d,e, f ; q,q) + - -  

(b/a; q)o~ (a/b; q)~ 

(aq, c, d, e, f ,  bq/c, bq/d, bq/e, bq / f  ; q)o~ 
• 

( aq/c, aq/d, aq/e, aq / f , bc/a, bd /a, be~a, b f /a ,  b2q/a; q )~ 

• 8 W7 ( ~ ; b' bc' bd be b~fa --a ' --'a ; q' q 

(aq, aq/(cd), aq/(ce), aq/(c f ) ,  aq/(de), aq/(d f ) ,  aq/(e f ) ;  q)oo 
( aq/c, aq/d, aq /e, aq/ f , bc / a, bd / a, be/a, b f /a; q )oc 

Use Bailey's formula with q replaced by q2 and parameters a = _q2-2z, /7 ~-q2 
c = _ql-~ ~eiO d = -qI-a-~e-i~ e = ql+a-Zei~ and f = ql+~-Ze-i~ and multiply 
the resulting identity by 

(1 - q2)(1 - e2i~ - e -2i~ (q2, _q2+2~, _q2 2~; q2)~ 

(1 - ql+'~-~ei~ - ql+~-~e-i~ + qI-~-~ei~ + ql-'~-~e-i~ 

to find, using the notation of (6.3), 

(1 _2~p 'x x'-~ q-~-~+l - -~ l  ) q2l , ,t- 1 , - -  Iq2)w(x;q~-~+l,-ql-~-r,O, Olq 2) 
(1 + q2~)ho(qG-~+l, _ql-~-~, O, OIq 2) 

9 /9 q-a+~+l, q ~ + z + l  q~-C~+l,_ql+a+T,O ' (1 - q-) qZ(X,X; - t q 2 ) w ( x ;  01q 2) 
+ 

(1 - q-Z~)ho(qZ-~+l , _ql+~+~, 0, 01q 2) 

w(x; q~-r _q~+~+~, qO-~+l, _q l -~- r  ]q2) 

ho(q~-o+l, _ql+~+~,qa-~+l, _ql-O-~[q2) (6.18) 
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for x C [--1, 1], the absolutely continuous part of  dml and dm~. This proves the 
absolutely continuous part o f  the Askey-Wilson integral in Theorem 6.1. 

In order to deal with the possible discrete mass points in the orthogonality mea- 
sures on the right-hand side of  (6.14), we first observe that the discrete mass points 
o f  din1 do not occur as discrete mass points o f  dm2 and vice versa. Furthermore, 
note that for t = q the expression in (6.17) reduces to 

(abq k, bq/a; q)~ 
Pk(a; b]q) = (ab, a-2q 1-2k; q)~ (q-k, bq-k /a, a2 qk ; q)kqk . 

This can be seen directly from (6.17), since only the last term in the 8q~7-series 
survives, or by applying Jackson's summation formula [10, (2.6.2)]. Now a straight- 
forward calculation using this formula and the explicit values for the weights given 
in (6.4) proves 

1 - q Pk(a;blq)wk(a;b,O, OIq ) wk(a;b,q/a,q/b[q) 
1 - q/(ab) ho(a,b,O, Olq) ho(a,b,q/a,q/blq ) " 

This proves that the discrete mass points in (6.14) lead to the discrete mass points 
in Theorem 6.1. This proves Theorem 6.1 from the spectral analysis of  zc~(p,,~). 

Remark. 6.5. It is not allowed to take residues in (6.18) to prove the statement 
concerning the discrete mass points. For this we have to know that (6.18) also 
holds in a neighbourhood of  the discrete mass point xk, but the explicit expression 
for the Poisson kernel in (6.16) leading to (6.18) may fail to hold. 

Acknowledgement. We thank Mizan Rahman and Sergei Suslov for sending the preprint [3] con- 
taining the Poisson kernel for the A1-Salam-Chihara polynomials. Thanks are also due to Mourad 
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