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Let {a.}~=0 be a sequence in the open unit disk in the complex plane and let 

~0 = 1 and B.(z) = n ~ Y-~ - z  ~l~kl 1 --~kZ' n = 1 ,2 , . . . ,  

(~/lakl = - 1  when ak = 0). Let # be a positive Borel measure on the unit circle, and let 
{q~n}.~__0 be the orthonormal sequence obtained by orthonormalization of  the sequence 
{~n}~=0 with respect to #. Let {~b.}~= 0 be the sequence of  associated rational functions. 
Using the functions q~n, ~bn and certain conjugates of them, we obtain modified Pad6-type 
approximants to the function 

F~(z) = d/z(0), (t = ei~ 
f f  

Keywords: Positive-definite, Hermitian inner product, orthogonal rational functions, asso- 
ciated functions, moment problem. 

AMS subject classification: primary 30E05. 

1. I n t r o d u c t i o n  

The purpose of this paper is to give certain modified rational approximants to 
the function 

F~,(z)  = fit+: ( t  = e i~ 

�9 J.C. Baltzer AG, Science Publishers 
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where # is a positive Borel measure on the unit circle in the complex plane. Let 

r = { z ~ C : l z l = l } ,  D = ( z ~ C : i z l < a } ,  g = { z ~ C : [ z l > l }  

and let a , ,  n = 0, 1 ,2 , . . .  be given points in D with So = 0. The Blaschke factors ~, 
are given by 

O~ n O~ n - -  Z 

r = I~ . l '  1 - ~--~,z' n = 0, 1 , 2 , . . . ,  

where by convention 
m 

a .  = - 1  when a n = O .  

The (finite) Blaschke products are 

B,(z) = I I f fk(z) '  n =  1 ,2 , . . .  and l~0(z)= 1. 
k = l  

We define the linear spaces/2,,  n = 0, 1 ,2 , . . .  and/2  by 

E , = s p a n { B , , : m = 0 , 1 , . . . , n )  and 1 2 = 0 / 2 " .  
" ~ 0  

Clearly/2,  consists of  the functions that may be written as 

p.(z)  
~.(z) ' 

where 
n 

~ , , ( z )  = ]-[(1-~z), n = 1 ,2 , . . .  and 7r0(z ) = 1 
k = l  

and p,  belongs to 1-I,, the set of polynomials of  degree at most n. The substar con- 
juga te f ,  of a f u n c t i o n f  is defined as 

f , (z)  =f(1/~ , ) .  

F o r f  E E, \ E,_l the superstar conjugate f* will be 

f*(z) = ~,(z)f,(z). 

I f f  c/20, then f* = f , .  
The linear spaces E, , ,  n = 0, 1 ,2 , . . . ,  and /2 ,  are defined as 

/ 2 , , = { f , : f c E , }  and s  

Then we have 

 n,--span{ :m=0 1 ,n} span{l:m_-0 1 n}, 
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where 
m 

w,,,(z) = I I ( z - a k ) ,  and Wo(Z ) = 1. 
k=l 

As in [1] we also put  

1 2 n ( a , ) = { f E E ~ : f ( a n ) = 0 } ,  n = l , 2 , . . .  

and similarly 

s  n =  1 , 2 , . . . .  

Fur thermore ,  we assume that  M is a linear functional  on 12 + E,  such that  for 
f E E we have 

M ( f , ) = M ( f ) ,  and M ( f f , ) > O  if f # 0 .  

Then  this also holds for f E 12 + 12,. The  functional  M induces an inner p roduc t  
(.,.) on s x s by 

( f  ,g) = M(fg,) ,  f ,g E C. 

Note  that  s = 12 + 12,, as can be seen by partial  fraction decomposi t ion.  Also for 
f ,g E 12, we may define ( f  ,g) = M(fg,). Then  we get 

( f ,g)  = (g, ,f , )  for f , g  E 12. 

As (g,f) = M(g/',) = M(fg,) = ( f  ,g) for f ,g E s and ( f  , f)  = M(ff,)  > 0 for 
f E 12, f #- 0, the inner p roduc t  is Hermi t ian  and positive-definite on 12 x 12. 

In this paper  we assume that  # is a solut ion to the following " m o m e n t "  problem: 

Given the inner p roduc t  (.,-) on 12 x 12 (or the linear funct ional  M on /2  + 12,), 
find a non-decreasing funct ion # on [-Tr, 7r] (or a positive Borel measure # on 
(-Tr, 7r]) such that  

( f  ,g) = for f ,g E 12 

(or f fIe'~ for f E 12 + 12,). 

This m o m e n t  problem always has a solution. Two non-decreasing functions which 
are solutions of  the m o m e n t  problem such that  their difference is a constant  at all 
the points  at which it is cont inuous ,  are considered to be the same solut ion of  the 
m o m e n t  problem. We will give modified rational approximants  to the funct ion Fu 
in terms of  o r thogona l  rat ional  functions and their associates. Besides, we obta in  
some results about  related quadra tu re  formulas.  

2. Orthogonal  rational funct ions  

In our approach orthogonal rational functions will play an important r61e. Let 
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the sequence {r in 12 be obtained by orthonormalization of the sequence 
{~,},~=0 with respect to the inner product (., .) on 12 • 12, i.e. 

r  and ( r 1 6 2  n = O ,  1,2, . . .  

and 

( f , r  for fEs  n = l , 2 ,  . . . .  

It follows easily that 

(f ,r  for fE12n(a , ) ,  n = l , 2 , . . . ,  

because N J .  E s for suchf .  Each r can be written as 

r = Z b(k")]~k(Z)" 
k=0 

Here the non-zero number b~ "/is called the leading coefficient of On- We assume that 
the r are chosen such that b(. ") > 0 and we write ~. = b~ "). It is easily shown that 

~,=r =r 

Using the uniqueness of the reproducing kernel 

~_, r 
k=O 

for the inner product space s  one can show (see for instance [1]) that the following 
Christoffel-Darboux formula holds 

. - 1  �9 ' , 

~)k(Z)q~k(W) = ~)n(Z)r  -- (~"(Z)(~n(W) ( 2 . 1 )  

k=O 1 -- (.(z)(.(w) ' 

and equivalently 

r  = r  - -  ~.(Z)~.(W)C.(z)C.(w) 
k=0 1 - (.(z)(.(w) 

The r and r satisfy the recurrence relations 

Z - -  O~ n_ 1 /';n 1 - -  Ot n_ 1Z /~n 
Cn (Z) ~- ~n C n - I  (Z) At- ~n 

1 - ~--~.z t%_ 1 1 - W . z  t%_ 1 
eLl(Z), 

and (superstar conjugation) 

G w. z-~._l  x_z. r ~-~ r; 
r  ~1 ~" i ->Tz ~._~ - 

1 - ~ n _ l  2 Nn 

(2.2) 

n =  1 , 2 , . . .  

(2.3) 

r  

n = 1,2, . . .  (2.4) 
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with r = r = no. Here 

Ot--"n I - -  O[.n_lOZ n r 

I%1 1 - Ic~.-112 mn 
(2.5) 

1 - otn_lOL"-- ~ Cn(o/ '_ l )  
= (2.6) 

6" 1 - la'_ll 2 t% 

It follows from the Christoffel-Darboux formula (2.1) with z = w = a,_l that 
e" # 0. A proof  of  (2.3) and (2.4) can be found in [1] or in [2], but (2.3) and (2.4) 
may also be derived from the superstar conjugates with respect to w and with 
repect to z and w of  the Christoffel-Darboux formula. We ment ion another  conse- 
quence of  the Christoffel-Darboux formula. Taking the superstar conjugate of  (2.1) 
with respect to z and w and writing 

~$'\k=B'/~k, k = 0 , 1 , . . . , n ;  n = 0 , 1 , . . . ,  

we obtain 

r162 - r162  "-i 
- y~(,_,)\k(Z)B(,,_,)\k(W)r162 ). (2.7) 

1 - ( . ( z ) r  k=0 

For  z = w = a'_~ this gives 

ir z - i r  ~ = lr 2 [i - lG(a '_ l ) l  2] 

"--1 

Together  with (2.5) and (2.6) this leads to 

/~2 
n-I 

I~'I 2 -16"12 - m2 

In particular this implies 

(1 - 1 ~ . 1 2 ) ( 1  -I~._~1 =) 
- -  12 11 - a ' % _ l  

1 -I~ '12  
1 - Io~ '_ l  [ 2 .  

(2.8) 

I~.1 > 16"1. (2.9) 

A different p roof  of  (2.8) can be found in [4]. 

3. A s s o c i a t e d  f u n c t i o n s  

Next to the orthogonal  functions r we consider the associated functions r  
defined by 

1 
Co(Z)-- t%' (r162 

and 

r  = M(D(t,z)[r r n = 1,2, . . . .  
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Here M is acting on t and 
t + z  

D ( t , z )  - 
t - - Z "  

Obviously %, E s for n = 0, 1,2, . . . .  F o r f  E s we may write 

a(t) 
f ( t )  -- - -  

with a E II,_l, so, i f f  ~ 0, then 

[ f ( , ) ]  t + z [  a(t) w,,_,(z)l 
D(t , z )  1 - f - - ~ ] - t - ~  1 a-~ co,,_,(t)] 

= (t + z)[a(z)~,_,( t )  - a(t)w,,_,(z)] 1 
(t - z)a(z) 

is in s Hence 

M D ( t , z ) 1 - f - - ~ j ~ b , , ( t )  = 0  for f E C ( n _ l ) , ,  f ~ O .  

This gives immediately 

~bn(z) = M(D(t , z )[4~, , ( z )  f ( t )  4~,,(t)] ) f o r f E s  --f-'~ 1),, 
f ~ 0 ,  n = 1 , 2 , . . . .  

For the superstar conjugates of the ~. we have 

1 
- 

/~0 

and, since ~bn E s 

~b*,(z) = ~ , ( z ) M ( D (  t, 1/~)[~b,(1/~) - ~b,(t)]) 

= I~, , (z)M(D(1/t ,  1/z)[c~,(1/~) - ~b(1/t--)]) 

= - ~ , ( z ) M ( D ( t ,  z) [q~,,, (z) - 4~,,,(t)]) 

SO 

I f f  E s  (1/~--~,), we may write 

f ( t )  = (1 - -~ . t )b ( t )  

n =  1 , 2 , . . . ,  

n =  1 , 2 , . . . .  

with b E IIn_~. 

(3.1) 

(3.2) 
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So, f o r f  ~ 0, 

:(')I 
LS.(t) f (z)J  

~,.(z) 
~-.(z)(1 - ~-~.z)b(z) 

belongs to 12.. (1/~7), and it follows that 

M (D(  t, z) [~"(z) - 
L~.(t) 

This gives 

(t + z)[Tr.(t)(1 - ~-~.z)b(z) - 7r.(z)(1 - "~-~.t)b(t)] 
t - z  

f ( t ) ]  (o*(t)) = 0 .  
f (z)J  

I f( t)  , , . .  _ qS~,(z)] C Z2..(1/~7), f ~ O, ~b~,(z) = M(D( t , z )~ f - -~cp . ( t )  ) f o r f  

The functions ~b,, and ~b~, satisfy the recurrences 

Z--OI'n-I Iq'n ~ ) n - I ( Z )  ~n 1 - - a . _ , z  ~. ~ b ~ _ l ( z )  ' ~. (z )  = ,,, 
1 - ~--~.z m . _ l  1 - ~Tz a,-1 

and (superstar conjugation) 

O~ n Z - -  O~ n_ 1 /'~n 

= g i - > 7  

n =  1,2, . . . .  

n = 1 ,2 , . . .  

(3.4) 

(3.5) 

A proof  of these recurrence formulas is given in [1], but they also follow easily from 
the above results. Indeed, writing 

A.(z)  - Z - a"-I and B.(z)  - l - a"- tz  
1 - - f f~.z  1 - ~ -~ . z  ' 

for n > 2 we have 

/'~n ~.(z) - qA.(z)  ~ ~,,_, (z) 

f ( t )  t% 

w h e r e f  ~/2(._~). , f  ~ 0 such thatf(1/W~) = O, so 

f ( t )  = (1 - ~ t ) p ( t )  with p EI I ._>  
Wn-l(t)  

1 
~.(t) 

n = 1 , 2 ,  . . . .  

(3.3) 

~--; 1 - ~ . _ :  ~. ~*._t(z), 
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Elementary calculations using (2.3) and (2.4) give 

/~n 
~.(z)  - ~n~n(Z) - - ~ . - 1  (Z) 

with 

~ n -  1 

I1 = 6, ~ l  B,(z)M (D( t, z) [qb*_l (z) 

= - o , - -  n~z)w,-l(z) 
I~n- 1 

since f(t)B,(t) E/~(,-i),(1/~--~?-1), and 

- ( [ h = ~. A n ( z ) g  D( t , z )  l 
I~n- 1 

since 

= I i  + I2  

f(t) 
f(z) 

f(t) Bn(t) ]) 
f(z) Bn(z ) fb*"-l(t) 

an(t)] ) 
A----~j q~._, (t) = 0  

f(t)An(t) (1--~t)p(t) t - % _ , _  p(t___)_) 
= wn_l(t) 1 - ~ t  wn_2(t ) E s 

Formula  (3.5) follows by superstar conjugation. The case n = 1 is easily verified. 
Thus the pair (~b,, -~b~,) satisfies the same recurrence as the pair (q~n, q~,). The initial 
values are (4~0, 4~;) = ~;0(1, 1 ) and  (%,-~b;)  = ( -1 /~;0) (1 , -1) .  

4. Para-orthogonal functions, quadrature formulas and modified 
approximants 

It follows easily from the Christoffel-Darboux formula (2.1) that the zeros of  ~b n 
are in D and that the zeros of  ~b~, are in E. Moreover,  we have [4~n(z)[ < 14~,(z)[ for 
z E D and [~bn(z)[ > I~b~(z)l for z E E. As we intend to give quadrature formulas 
with nodes in T we consider the functions 

Qn(z, w) = ~b n(z) + w~b~(z), n = 0, 1 ,2 , . . .  (4.1) 

with w E T arbitrary. Clearly the zeros z l , . . .  ,zn of  Qn(z, w) are all in T and it is 
easy to show that they are simple. See [1]. Of course the zeros zj depend on n 
and w. Since 

and 

Q,(z,w) _1_ s163 n = 1 ,2 , . . .  

(Q,(z,w),l)50 and (Qn(z,w),]n(z))50, n=l ,2 , . . . ,  
where the inner product acts on z, the sequence is called para-orthogonal.  As 

a:(z, w) = WQn(z, w), 
superstar conjugation with respect to z, the Qn are called W-invariant. Notice 
that the above orthogonali ty remains valid if for each n we take for w a fixed wn 
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in T. If 

1 - ~--~.z a .  (z, w) 
A.,i(z) - 1 --ff~.zi (z - zi)Q~(zi, w)' i = 1 , . . . ,  n, (4.2) 

where the prime means differentiation with respect to z, then An,i E s and we 
have the quadrature formula (see [1]) 

n 

M(R) = ~)~. jR(z j )  for R E s + s (4.3) 
j = l  

with Anj = M(A.j)  > 0 fo r j  = 1 , . . . , n .  
Let us assume now that zj = e i~ j = 1 ,2 , . . . ,  n, with 

--Tr ~ 01 < 0 2 < . . .  < O n < 7r. 

Then, using the functions #n given by 

0 if - 7 r < 0 < 0 1 ,  

# . ( 0 ) =  ~ k l A n j  if Ok<O<_Ok+t, k = l , . . . , n - 1 ,  

M(1) if 0n<0_<r r  

(or using the measures lz. = }--'~)'=1 Anj6oj, where 6oj is the translated Dirac measure), 
it follows from Helly's theorems (or from the weak* compactness of the closed unit 
ball in the dual space of the Banach space C(T)), that the moment problem has a 
solution, say #. So there is a non-decreasing function (or a positive Borel measure) 
# such that 

M(R) = R(ei~ for R E 12, + s  (4.4) 

It follows from the fact that the inner product is positive definite that the solutions 
must have infinitely many points of increase (or must be measures with infinite 

support). 
Now let 

and 
f '~ t + z eiO) 

F.(z) = t--Z--~ d#(0), ( t =  
7T 

Rn(Z, W ) : 
. 

t+ du.(0/= 
t -  j=l 

with P.(z, w) E s 

Then R. (z, w) can be written as 

R.(z, w) _ P.(z, w) 
Q.(z, w) 

We will show that 

(4.5) 

P.(z, w) = r - wr n = 1,2, . . . .  (4.6) 
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Indeed,  for n > 2 we have by the results of  section 3 

r -wr =M(D(t,z)[r f(t) . ~t~] q) 
I ( t /  . . . .  I - f -~cp.( t )])  

=M(D(t,z)[r162 f ( t ) ( .  "t" 

f o r f  E s n s ~ O. As 

f(t) D(t ,z)[Q.(z ,w)-7~Q.( t ,w)]  6 f.(._,,. + f.._ , 

for such f ,  we have 

" zj + z Q, (z ,  w) = P , (z ,  w). r - wr = ~ ~ " J ~ -z  

The case n = 1 follows by direct verification, using A1,1 = M(1)  = l/ t% 2. 
In [3] a formula  like (4.6) could only be obta ined in the "cyclic" situation, i.e. in 

the case of  a finite number  of  points  c~. repeated in cyclic order. 
F r o m  the partial fraction decompos i t ion  

17 

R.(z, w) = Z ~.jzi + z 
j=l zj - z  

it follows that  

(z - zk)R.(z, w) : ~ ~.j (zj + z)(z - zk) 
j=l zj - z  
jr 

so the limit z ~ zk gives 

P.(z~, w) 
Q'.(zk, w) - --2ZkA.,k, 

Hence 

k =  1 , . . . , n .  

F r o m  the fact that  

-~.s(zk+z), 

1 P,(zk,  w) k = 1 , . . . , n .  
A.,k = 2zkQ'(Zk, W)' 

f ~ g ( e ' ~  u.)(o) = o for g E s +/3._1 

(4.7) 
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if # is a solut ion of  the m o m e n t  problem and #.  is a solution of  the " t runca ted"  
m o m e n t  problem as above, we get the general form of  some results which were 
obtained in [3], (p.63. formula  (3.43)), for the cyclic situation. 

I f g  C s + E._~, then g is of  the form 

p(t)  
g(t) = with 

co._l ( t)rr,,-I ( t) 

SO 

D(t,z)[g(t)  - g(z)] = 

is in s + s  and 

As 

p E I'[2n_2, 

(t + z)[w._, (z)Tr._, (z)p(t) - w._, (t)Tr._, (t)p(z)] 

(t - z )~ ._ ,  (z)~._~ (z) 

1 

W._l ( t )lr._, ( t) 

f ~  D(t ,z)[g(t)  - g(z)]d(# - #n)(O) = O, (t = ei~ 

r . ( z )  - R,,(z, w) = o ( , , z ) d ( . -  

it follows now that  

h(z) = D(t ,  z )g( t )d(#  - U.)(0) 

= glzl fi l"z  l -  .llol =glzl(  l l- ..lz, wll 

Clearly, h is analytic in D and in E and h(0) = 0 and h ( ~ )  = lim~_oo h(z) = 0. For  
g(z) = ~,,-1 (z) we get 

1 
r•(z) - R . (z ,  w) = ~ ._ , ( z )  hoo(z), 

where h~ is analytic in D tO E and h ~ ( ~ )  = 0 and for g(z) = 1/l~._l(Z) we obtain 

ru(z  ) - R . (z ,  w) = B._I (z)ho(z), 

where h0 is analytic in D tO E and h0(0) = 0. Thus  R.(z ,  w) is a "modi f ied"  Pad& 
type approximant  to F u. Notice that  the funct ions h, h0, hoo depend on the para- 
meter  w. Because the approximants  R.(z ,  w) have the same structure relative to 
the or thogonal  sequence {q~,,}~=0 and the sequence of  the associated functions 
{~b.}.%0 as in the case of  so called modified approx imants  to H P C  ( = H e r m i t i a n  
Perron-Cara th6odory)  cont inued  fractions (see [6]), the R.(z ,  w) are also called 
modified approx imants  in the present  si tuation. 
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Since 

f ( t )  ,~ "t '4) 
f o r f  E E(.-I).  Cl En . (1 /W~) , f  ~ 0, it fol lows tha t  for  the e r ror  F . (z)  - Rn(z, w) we 
also have (with t = e ;~ 

Fu(z ) - Rn(z, w ) =  f ~  D( t, z)dlz( O) 

_ f ( t )  t3 (t l '~ [Qn(z,w) 7 ~ , ~ n , , w ) ] d p ( O  ) 
Qn(z, w) f 

_ 1 f ~  D(t ,z ) f ( t )  Q n ( t ,  w) d#(O). 
f ( z )Qn(z ,w)  

See [5]. 
We conc lude  the paper  with a r e m a r k  on  the quad ra tu r e  weights.  Recall  tha t  

z l , . . . ,  z, are the zeros o f  Q, and  tha t  Izjl = 1, j = 1 , . . . ,  n. F o r  z = zj we have  
ffn(zj) + wO*(zj) = 0 and  ~n(zj) = 1/~n(zj), so by the Chr i s tof fe l -Darboux fo rmula  

- -  Qn(zj, w) - Qn(t, w) ~n(zj) __ Cn( t  ) n - I  
= ~ ' P k ( O 4 ' k ( t ) .  

zj - t zj t k=0 
Cn(Zj)~n(O 

Using 

the limit t ~ zj yields 

(n(zj) _ 1 - I ~ n l  z 

(n(zj) (zj - an)(1 - - ~ z j ) '  

Q'n(z:, w) 1 1 - I~nl 2 n-i 
~.(zj) (zj --J~O Z ~zj) ~--~l~k(zJ)12~=0 

Using (2.8) and  the recur rence  relat ions (2.3), (2.4), (3.4), (3.5) it follows tha t  the 
funct ions  0,  and  ~bn and  their  supers tar  conjugates  satisfy a de t e rminan t  fo rmula  

1 -[an[ z -2zBn(z)  
O*(z)~bn(z) + qSn(z)~b*(z) - 1 - -ff~,z z - an 

As q~n(zj) + wc~*(zj) = 0, this gives 

1 -2zjBn(zj)(1 -I~.12) 
en(zj, w ) -- _ _  ~;(zj) (zj - ~n)(1 - w.zj) 

Using  (4.7), we get 

Anj - 
1 e.(zj, w) _ ~.(zj) ~.(zj) 

2zj Q" (zj, w) c~(zj) .-1 ~k=0 I~k(zj)l 2 
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Since Izjl = 1, we have  

and  we ob ta in  

1 
A n j =  n-l j = l ,  ,n; n E N .  

Ek=0 i k(zj)l 2, - ' -  
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