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Let {a,}.—o be a sequence in the open unit disk in the complex plane and let

By=1 and B,(z) = Hlal —Z
k

T—mz’ n=1,2,...,
(@/|ow| = —1 when o4 =0). Let y be a positive Borel measure on the unit circle, and let
{¢n}ney be the orthonormal sequence obtained by orthonormalization of the sequence
{B,}:2o with respect to p. Let {1} be the sequence of associated rational functions.
Using the functions ¢,, ¥, and certain conjugates of them, we obtain modified Padé-type
approximants to the function

R = [(Fdu), (=),

rl—2Z

Keywords: Positive-definite, Hermitian inner product, orthogonal rational functions, asso-
ciated functions, moment problem.

AMS subject classification: primary 30E05.

1. Introduction

The purpose of this paper is to give certain modified rational approximants to
the function

Fy(z) = /_ ”iﬁd @), (t=é"
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where p is a positive Borel measure on the unit circle in the complex plane. Let
T={zeC:|z|=1}, D={zeC:z|<1}, E={zeC:|z| > 1}
and let a,,n =0, 1,2,... be given points in D with oy = 0. The Blaschke factors ,
are given by
a, o, —2Z

= . = 2,...
Cn(z) |a"| I—E,,'Z, n Oala ) ’

where by convention

a,
A

The (finite) Blaschke products are

—1 when q,=0.

B,(z) = [[&(z), n=1,2,... and By(z)=1.
k=1
We define the linear spaces £,, n =0,1,2,... and L by
L,=span{B,:m=0,1,...,n} and L= UE,,.
n=0

Clearly £, consists of the functions that may be written as

where

n

m(z)=[[(1-3%z2), n=1,2,... and m(z)=1

k=1

and p, belongs to II,, the set of polynomials of degree at most n. The substar con-
jugate f, of a function f is defined as

fi(z) =f(1/2).
For f € L, \ £,_, the superstar conjugate /* will be
f(2) = B.(2)f.(2).

Iff e Ly, then f* =f,.
The linear spaces £,,, n =0,1,2,..., and L, are defined as

Lo={f:f €L} and L, ={f.:f €L}

Then we have

1
En*=span{ﬁ:m=0,l,...,n}=span{wi:m=0,l,...,n},

m m
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where

wy(z) = l—mI(z —a), and wy(z) =1.

k=1
As in [1] we also put
Lla,)={f€eL,:f(a) =0}, n=1,2,...
and similarly
Ln(1/@) ={f € Lo :f(1/T) =0}, n=12,....

Furthermore, we assume that M is a linear functional on £ + £, such that for
f € £ we have

M(f)=M(f), and M(ff,)>0 if f#0.
Then this also holds for f € £ + L£,. The functional M induces an inner product
(-,-) on L x L by
<f’g>=M(fg*)7 f,gEﬁ.

Note that LL, = L + L,, as can be seen by partial fraction decomposition. Also for
f,g € L, we may define (f,g) = M(fg,). Then we get

(f.8)={(g..f.) for f,geL.

As (g.f) =M(gf,) = M(fg,) = (f,g) for f,ge L and (f,f) = M(ff,) >0 for
f €L, f#0, the inner product is Hermitian and positive-definite on £ x L.
In this paper we assume that p is a solution to the following ‘“moment” problem:

Given the inner product (-,-) on £ x £ (or the linear functional M on £ + L,),
find a non-decreasing function p on [—=, 7| (or a positive Borel measure x on
(—m, m]) such that

(6= [ 1 e@dulo) for figec
(or M(f) = /_”f(e"”)du(e) for f€L+L.).

This moment problem always has a solution. Two non-decreasing functions which
are solutions of the moment problem such that their difference is a constant at all
the points at which it is continuous, are considered to be the same solution of the
moment problem. We will give modified rational approximants to the function F,
in terms of orthogonal rational functions and their associates. Besides, we obtain
some results about related quadrature formulas.

2. Orthogonal rational functions

In our approach orthogonal rational functions will play an important réle. Let
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the sequence {¢,}neo in £ be obtained by orthonormalization of the sequence
{B,}r2, with respect to the inner product (-,-) on £ x L, i.e.

¢, €L, and (d,,¢.,) =1, n=0,1,2,...
and

(f,¢.)=0 for fel,,, n=12,....

It follows easily that

(fydn) =0 for fel,a,), n=12,...,

because B,f, € £,_, for such f. Each ¢, can be written as

=Y b'B(2).
k=0

Here the non-zero number 4" is called the leading coefficient of ¢,. We assume that
the ¢, are chosen such that 5 > 0 and we write x, = . It is easily shown that

Kn —¢n( n)_¢n( )

Using the uniqueness of the reproducing kernel

S 6u(2) B9
k=0

for the inner product space £, one can show (see for instance [1]) that the following
Christoffel-Darboux formula holds

L _ G0 — 0u2)e(W)
k=0 ¢k )¢ I_Cn( )Cn(w)

:

, (2.1)

and equivalently
- z T N — ¢:(Z)¢;(W) — Cn(Z)Cn(W)¢n(z)¢n(w) 2.2
S 6(2)Bw) e . (22)

The ¢, and ¢, satisfy the recurrence relations

Z— 0y 1 - Qp1Z Ky *
= by ——— = -
d)n(z) €n 1— a z Ii,, . ¢n l(z) + 1— a_,,z P d’n—l(z)’ h 1a2a
(2.3)
and (superstar conjugation)
o, —zZ—« K o, -,z K
* —_n 6 n—1 n _ n — n—1 n *

¢n(z) |an| n 1 —a_,,z PR ¢n—l(z) Ianl €n 1 —a_,,z P ¢n—1(z)s

n=1,2,... (2.4)
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with ¢y = ¢y = K,. Here

_ a_n l'_an—lan ¢;(an—~l)
lowl 1—lapl> &

€, =

: (2.5)

— 1 — an—la_n ¢n(an—l)
! 1 - Ia,,_llz Ky

(2.6)

It follows from the Christoffel-Darboux formula (2.1) with z = w = a,,_; that
€, # 0. A proof of (2.3) and (2.4) can be found in [1] or in [2], but (2.3) and (2.4)
may also be derived from the superstar conjugates with respect to w and with
repect to z and w of the Christoffel-Darboux formula. We mention another conse-
quence of the Christoffel-Darboux formula. Taking the superstar conjugate of (2.1)
with respect to z and w and writing

Bn\szn/]Bkv k=0,1,...,n; n=0,1,...,

we obtain

%(H?Zﬁg(;)%dh(w _ ZO:B(n_])\k(Z)B(n_l)\k(w)¢;(z)¢;(w). (2.7)

For z = w = ¢,_, this gives
|¢;(an—l),2 - |¢n(an—l)|2 = |¢;—1(an—l)|2 [1 - 'Cn(an—l)lz]
» (L=l loy )

= K._
" Il'_a_nan-ll2

Together with (2.5) and (2.6) this leads to

2 2

2 2 Ky 1—|ay
6" — 16,]° = . 2.8
e — 16 =T T (28)

In particular this implies
leal > 165]- (2.9)
A different proof of (2.8) can be found in [4].

3. Associated functions

Next to the orthogonal functions ¢, we consider the associated functions 1,
defined by
1
Yo(z) = s (%o(z) = —M (o)),
and

Yu(2) = M(D(t,2)[pa(2) — $a(D)]), n=1,2,....
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Here M is acting on ¢ and
t+:z
t—z

Obviously ¢, € £, forn =0,1,2,.... For f € L,_,), we may write

D(t,z) =

with a € II,,_;, so, if f Z 0, then

_f(t) _ 1+z _ a(t) wn—l(Z)
b |17 = 722 |1 ]
— (t + Z)[a(z)wn—l(t) B a(t)wn—l(z)] 1
t—z)a(z) w1 (1)
isin L,_,),- Hence
M(D(t,z) [1 —%] qS,,(t)) =0 for feLlj,. [fZO.
This gives immediately
Ya(2) = M(D(t,z) [¢,,(z) —j;((% ¢,,(t)]) forfeLlyy., f#0, n=12,....
(3.1)
For the superstar conjugates of the 1, we have
YD) =
0
and, since ¢, € L,
¥n(z) = B,(2)M(D(1,1/2)[¢,(1/2) — ¢u(1)])
= B,(2)M(D(1/1,1/2)[.(1/2) — ¢(1/1)])
= _]Bn(Z)M(D(t’ Z)[¢n*(z) - d’n*(t)])
_ By() .0 1)
= M(D(t, z) 0 on(t) — ¢,,(~)- ), n=12...,
so
* _ -B,,(Z) * *( ] —
i) = M (D0,2) [ 0 - 62| ), m=12 (32)

If f € £,.(1/a,), we may write
f) = U;LE;))MO with bell,_,.



A. Bultheel et al. | Orthogonal rational functions 63
So, for f # 0,
D(1,2) [B"(Z) _ﬂ-’l]

B, (1) f(2)
_ w,(2) (t+ 2)[ma () (1 — &,2)b(2) — m,(2)(1 —@0)b(2)] 1
7T"(Z)(1 - Ez’,;z)b(z) Lt~z wn(t)

belongs to L,,(1/@,), and it follows that

(o) -

This gives

Wi(2) = M(D(r,z)[%@m —¢;<z>D for f € Lo (1/37), f£0, n=1,2,....

(3.3)
The functions 1, and v, satisfy the recurrences
= a, l-a,5z K, ,, _
¢n(2)—€n l—az P /lpn ( ) n 1—-(1-,12 P ¢n—l(z), h= 1a27"'
(3.4)
and (superstar conjugation)
a_ _— Z— Q,_ a, _ 1 - mz Kp *
¢n( ) lan[ —®@z K, 'lxbn I(Z) lanl —W P 'd)n—l(z)1
n=12.... (3.5)

A proof of these recurrence formulas is given in [1], but they also follow easily from
the above results. Indeed, writing

_ l—a—
Z7%1 and B,(z) = _a,,_lz’

A =
n(2) 1 —a,z 1 —a,z

for n > 2 we have

Du(2) — €4An(2) :—jlzp,,_l(z)

_ M(D(t, 2 [¢"<z> —@qs,,(t)]) ey (2) =MD, D)y (2) = s (),

f(Z) n—1
where f € L,_1)., f # 0 such that f(1/a,) =0, so
f(t) - (l —a_nt)p(t)

with cell,_
wn—l(t) P ?



64 A. Buitheel et al. | Orthogonal rational functions

Elementary calculations using (2.3) and (2.4) give

,i"
Yoor(2) =5 + I

":bn(z) - 6nAn(Z) K

n—1

with

1 =62 B0 (D(02) 01 - 15 2060

= —8, = B,()¥}-1(2)

n—1

since f(t)B,(t) € L_1).(1/a,;), and
i An(z)M<D(t,Z) [1 10 A"(t)]d%,_u(t)) =0

n—1

IZ=€n

since

U —mpl) =y i)
J A == O T ~ s ()

€ ‘C(n—2)*'

Formula (3.5) follows by superstar conjugation. The case n = 1 is easily verified.
Thus the pair (3, —;) satisfies the same recurrence as the pair (¢,, ¢;). The initial

values are (o, $o) = #o(1, 1) and (o, —9) = (—1/ro) (1, -1).

4. Para-orthogonal functions, quadrature formulas and modified
approximants

It follows easily from the Christoffel-Darboux formula (2.1) that the zeros of ¢,
are in D and that the zeros of ¢, are in E. Moreover, we have |¢,(z)| < |¢,(z)| for
z € D and |¢,(2)| > |¢n(2)| for z € E. As we intend to give quadrature formulas
with nodes in T we consider the functions

Q,,(Z, W) =¢n(z)+w¢;(z)1 n=0,1,2,... (41)

with w € T arbitrary. Clearly the zeros z;,...,z, of Q,(z,w) are all in T and it is
easy to show that they are simple. See [1]. Of course the zeros z; depend on n
and w. Since

Q.(z,w) L L, NLy(e,), n=1,2,...
and
(Qu(z,w), 1) #0 and (Qu(z,w),B,(2)) #0, n=1,2,...,
where the inner product acts on z, the sequence is called para-orthogonal. As
Qn(z,w) =WQ,(z,w),

superstar conjugation with respect to z, the Q, are called w-invariant. Notice
that the above orthogonality remains valid if for each n we take for w a fixed w,
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inT.If
1 - a_,,z Qn(za W)
1 —&z (z—2)0n(z;,w) ,

where the prime means differentiation with respect to z, then A,; € £,_; and we
have the quadrature formula (see [1])

A(2) = i=1,...,n, (4.2)

M(R)=> )\jR(z) for RE€ Ly .+ L,y (4.3)
=1
with A,; = M(A,;) >0forj=1,..
Let us assume now that z; = e'f ] = 1 2,...,n, with
—WS91<02 <9,,<7r

Then, using the functions u, given by
0 if —-r<6<84,,

() =4 Sy if 6,<8<6,,, k=1,...,n—1,
M) if 6,<6<m

(or using the measures p, = ) | A, ;65, Where by, is the translated Dirac measure),
it follows from Helly’s theorems (or from the weak” compactness of the closed unit
ball in the dual space of the Banach space C(T')), that the moment problem has a
solution, say y. So there is a non-decreasing function (or a positive Borel measure)
u such that

M(R) = /_ R(®)du(9) for ReL,+L. (4.4)

It follows from the fact that the inner product is positive definite that the solutions
1 must have infinitely many points of increase (or must be measures with infinite

support).
Now let
Tt+z ;
Fe) = [ FEdue), (1= (43)
and

t+z < Zi+z
Rn(sz) :‘/_ t_d n(o) Z)‘n‘i . :

j=1 Zj—z

Then R,(z,w) can be written as

R,(z,w) = g"(é’ :)) with P,(z,w) € L,.

We will show that
P,(z,w) =v,(z) —wii(2z), n=1,2,.... (4.6)
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Indeed, for n > 2 we have by the results of section 3

) = wii(e) = M (D(0,2) 8,0) D e )

+wM (D(t, z) [¢;(z) ",% ¢:(t)])
S

= (D(1,2)[,2) + w0 L 600 4w wii(0)] )

— M(D(t, z) |:Qn(z’ w) _% (8 W)D

fOI'f € E(n—-])* n ['n*(l/a_n)af ¢ 0. As

D(Z,Z) [Qn(z, W) _%Qn(tv W):| € ‘C(n—l)* +£n—l
for such f, we have
'l/) - an Z)‘n,/ _ n z, ) Pn(27 W)'

The case n = 1 follows by direct verification, using A;; = M(1) =1/ K.

In [3] a formula like (4.6) could only be obtained in the “cyclic” situation, i.e. in
the case of a finite number of points ¢, repeated in cyclic order.

From the partial fraction decomposition

"z

it follows that

(2 = z0)Ry(2,w) = lex ——— — dulze + 2),
Jk

so the limit z — z; gives

P, (Zk,W)

= =2z k=1,...,n

Q;I(Zki W) Konk
Hence

Mg = o BrlZe W) e (4.7)

2Zk Qn (Zk7 )
From the fact that

/_ g(e)d(i— u)(6) =0 for g€ Loyt Lo

T
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if u is a solution of the moment problem and p, is a solution of the “‘truncated”
moment problem as above, we get the general form of some results which were
obtained in [3], (p.63, formula (3.43)), for the cyclic situation.

If g € L,_1). + L4y, then g is of the form

(1)

— 2 with pell,,,
wn—l(t)ﬂ-n—l(t) P -2

g(t) =

SO

D(1,2)[g(1) — g(2)] = (t+2) [wn-l(Z()tﬂ:_;gz)p_(lt()z):rui,,l_(.z()t)vr,,_1(z)p(z)]
S S
wn—l(t)ﬂln—l(t)
is in E(,,_l)* +L,_,, and

[ Dt 2)ls(0) - s@Nalu - m)®) =0, (¢ =€

F,(2) - Ry(z,w) = / D)0 - 1)(0)

it follows now that

W) = [ Dt (0l = ) 6)

= ¢(2) / " D(1,2)d(i ~ 1) (6) = 8(2) (Fu(2) — Rz, w)-

™

Clearly, A is analytic in D and in E and A(0) = 0 and h(c0) = lim,_, A(z) = 0. For
g(Z) = ]Bn—l(z) we get

L
Bn—l (Z)

where A, is analytic in D U E and A (co) = 0 and for g(z) = 1/B,_,(z) we obtain
F#(Z) - Rn(Zv W) = Bn—l(z)hO(z)v

F, (Z) - Rn(zi W) = hoo(z)a

where h is analytic in DU E and hy(0) = 0. Thus R,(z,w) is a “modified” Padé-
type approximant to F,. Notice that the functions A, h, 4., depend on the para-
meter w. Because the approximants R,(z, w) have the same structure relative to
the orthogonal sequence {¢,},—y and the sequence of the associated functions
{%,}neo as in the case of so called modified approximants to HPC (=Hermitian
Perron-Carathéodory) continued fractions (see [6]), the R,(z,w) are also called
modified approximants in the present situation.
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Since

P = M (D12 | @i 1B 0,6m) )
for f € Ly_1ye N L (1/a), f # 0, it follows that for the error F,(z) — R,(z,w) we
also have (with ¢ = )

m

Fu(2) = Rlzw) = [ D(t,2)au®)

T

1 140) ]
S D t,2)|Q,(z,w t,w)ldu(@
5 [ P62 | 0utew) £ 040 )] i)
.
=————— [ D(t,2) f(t) Q,(t,w) du().
oo | PR 1) 0l w) du(®
See [5].

We conclude the paper with a remark on the quadrature weights. Recall that
7y,...,2, are the zeros of @, and that |zj) =1, j=1,...,n. For z=z; we have
$a(2;) + won(z;) = 0 and (,(z;) = 1/¢,(z), so by the Chrlstoﬁel Darboux formula

0n(z
(o) ley) 2 L) U e
zi—t k=0
Using
Crlt(zj) _ 1 - |anl2

G(z) (- o)1 —a@z)’
the limit ¢ — z; yields
/ 1 |Oﬁ I 2
Wz W) = =——
0o = 55 et
Using (2.8) and the recurrence relations (2.3), (2.4), (3.4), (3.5) it follows that the
functions ¢, and ), and their superstar conjugates satisfy a determinant formula

B1(2)%a(2) + Ga(2)W(2) = 11—_ lol® =278, (2)

a,z z—a,

As ¢,(z;) + we,(z;) = 0, this gives
1 —22B,(z)(1 = a[’)
on(z) (zi—a)(1—z)

Pn(zj7 W) =

Using (4.7), we get

1 Pn(zj’ W) _ ¢n(zj) IBn(zj)

A= —— =
25 Qu(zw)  én(z) Suth ez
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Since |z;| = 1, we have

¢;(Zj) = ]Bn(zj)¢n(zj)
and we obtain
1

=————— j=1,...,m neN
YT ) ’
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