## UvA-DARE (Digital Academic Repository)

# Orthogonal rational functions and modified approximants 

Bultheel, A.; Gonzalez-Vera, P.; Hendriksen, E.; Njastad, O.<br>DOI<br>10.1007/BF02142488<br>Publication date<br>1996<br>Published in<br>Numerical Algorithms

Link to publication

## Citation for published version (APA):

Bultheel, A., Gonzalez-Vera, P., Hendriksen, E., \& Njastad, O. (1996). Orthogonal rational functions and modified approximants. Numerical Algorithms, 11, 57-69.
https://doi.org/10.1007/BF02142488

## General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

## Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

# Orthogonal rational functions and modified approximants 

A. Bultheel<br>Department of Computer Science, K.U. Leuven, B-3001 Leuven, Belgium<br>P. González-Vera<br>Facultad de Matemáticas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain<br>\section*{E. Hendriksen}<br>University of Amsterdam, Department of Mathematics, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands<br>\section*{O. Njåstad}<br>Department of Mathematical Sciences, University of Trondheim-NTH, N-7034 Trondheim, Norway

Let $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ be a sequence in the open unit disk in the complex plane and let

$$
\mathbb{B}_{0}=1 \quad \text { and } \quad \mathbb{B}_{n}(z)=\prod_{k=0}^{n} \frac{\overline{\alpha_{k}}}{\left|\alpha_{k}\right|} \frac{\alpha_{k}-z}{1-\overline{\alpha_{k}}}, \quad n=1,2, \ldots,
$$

( $\overline{\alpha_{k}} /\left|\alpha_{k}\right|=-1$ when $\alpha_{k}=0$ ). Let $\mu$ be a positive Borel measure on the unit circle, and let $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ be the orthonormal sequence obtained by orthonormalization of the sequence $\left\{\mathbb{B}_{n}\right\}_{n=0}^{\infty}$ with respect to $\mu$. Let $\left\{\psi_{n}\right\}_{n=0}^{\infty}$ be the sequence of associated rational functions. Using the functions $\phi_{n}, \psi_{n}$ and certain conjugates of them, we obtain modified Padé-type approximants to the function

$$
F_{\mu}(z)=\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \mu(\theta), \quad\left(t=e^{i \theta}\right) .
$$

Keywords: Positive-definite, Hermitian inner product, orthogonal rational functions, associated functions, moment problem.

AMS subject classification: primary 30E05.

## 1. Introduction

The purpose of this paper is to give certain modified rational approximants to the function

$$
F_{\mu}(z)=\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \mu(\theta), \quad\left(t=e^{i \vartheta}\right)
$$

where $\mu$ is a positive Borel measure on the unit circle in the complex plane. Let

$$
T=\{z \in \mathbb{C}:|z|=1\}, \quad D=\{z \in \mathbb{C}:|z|<1\}, \quad E=\{z \in \mathbb{C}:|z|>1\}
$$

and let $\alpha_{n}, n=0,1,2, \ldots$ be given points in $D$ with $\alpha_{0}=0$. The Blaschke factors $\zeta_{n}$ are given by

$$
\zeta_{n}(z)=\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|} \cdot \frac{\alpha_{n}-z}{1-\overline{\alpha_{n} z}}, \quad n=0,1,2, \ldots,
$$

where by convention

$$
\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|}=-1 \quad \text { when } \quad \alpha_{n}=0 .
$$

The (finite) Blaschke products are

$$
\mathbb{B}_{n}(z)=\prod_{k=1}^{n} \zeta_{k}(z), \quad n=1,2, \ldots \quad \text { and } \quad \mathbb{B}_{0}(z)=1
$$

We define the linear spaces $\mathcal{L}_{n}, n=0,1,2, \ldots$ and $\mathcal{L}$ by

$$
\mathcal{L}_{n}=\operatorname{span}\left\{\mathbb{B}_{m}: m=0,1, \ldots, n\right\} \quad \text { and } \quad \mathcal{L}=\bigcup_{n=0}^{\infty} \mathcal{L}_{n} .
$$

Clearly $\mathcal{L}_{n}$ consists of the functions that may be written as

$$
\frac{p_{n}(z)}{\pi_{n}(z)},
$$

where

$$
\pi_{n}(z)=\prod_{k=1}^{n}\left(1-\overline{\alpha_{k}} z\right), \quad n=1,2, \ldots \quad \text { and } \quad \pi_{0}(z)=1
$$

and $p_{n}$ belongs to $\Pi_{n}$, the set of polynomials of degree at most $n$. The substar conjugate $f_{*}$ of a function $f$ is defined as

$$
f_{*}(z)=\overline{f(1 / \bar{z})}
$$

For $f \in \mathcal{L}_{n} \backslash \mathcal{L}_{n-1}$ the superstar conjugate $f^{*}$ will be

$$
f^{*}(z)=\mathbb{B}_{n}(z) f_{*}(z) .
$$

If $f \in \mathcal{L}_{0}$, then $f^{*}=f_{*}$.
The linear spaces $\mathcal{L}_{n *}, n=0,1,2, \ldots$, and $\mathcal{L}_{*}$ are defined as

$$
\mathcal{L}_{n *}=\left\{f_{*}: f \in \mathcal{L}_{n}\right\} \quad \text { and } \quad \mathcal{L}_{*}=\left\{f_{*}: f \in \mathcal{L}\right\} .
$$

Then we have

$$
\mathcal{L}_{n *}=\operatorname{span}\left\{\frac{1}{\mathbb{B}_{m}}: m=0,1, \ldots, n\right\}=\operatorname{span}\left\{\frac{1}{\omega_{m}}: m=0,1, \ldots, n\right\}
$$

where

$$
\omega_{m}(z)=\prod_{k=1}^{m}\left(z-\alpha_{k}\right), \quad \text { and } \quad \omega_{0}(z)=1
$$

As in [1] we also put

$$
\mathcal{L}_{n}\left(\alpha_{n}\right)=\left\{f \in \mathcal{L}_{n}: f\left(\alpha_{n}\right)=0\right\}, \quad n=1,2, \ldots
$$

and similarly

$$
\mathcal{L}_{n *}\left(1 / \bar{\alpha}_{n}\right)=\left\{f \in \mathcal{L}_{n *}: f\left(1 / \overline{\alpha_{n}}\right)=0\right\}, \quad n=1,2, \ldots .
$$

Furthermore, we assume that $M$ is a linear functional on $\mathcal{L}+\mathcal{L}_{*}$ such that for $f \in \mathcal{L}$ we have

$$
M\left(f_{*}\right)=\overline{M(f)}, \quad \text { and } \quad M\left(f f_{*}\right)>0 \quad \text { if } f \neq 0
$$

Then this also holds for $f \in \mathcal{L}+\mathcal{L}_{*}$. The functional $M$ induces an inner product $\langle\cdot, \cdot\rangle$ on $\mathcal{L} \times \mathcal{L}$ by

$$
\langle f, g\rangle=M\left(f g_{*}\right), \quad f, g \in \mathcal{L}
$$

Note that $\mathcal{L} \mathcal{L}_{*}=\mathcal{L}+\mathcal{L}_{*}$, as can be seen by partial fraction decomposition. Also for $f, g \in \mathcal{L}_{*}$ we may define $\langle f, g\rangle=M\left(f g_{*}\right)$. Then we get

$$
\langle f, g\rangle=\left\langle g_{*}, f_{*}\right\rangle \text { for } f, g \in \mathcal{L}
$$

As $\overline{\langle g, f\rangle}=\overline{M\left(g f_{*}\right)}=M\left(f g_{*}\right)=\langle f, g\rangle$ for $f, g \in \mathcal{L}$ and $\langle f, f\rangle=M\left(f f_{*}\right)>0$ for $f \in \mathcal{L}, f \neq 0$, the inner product is Hermitian and positive-definite on $\mathcal{L} \times \mathcal{L}$.

In this paper we assume that $\mu$ is a solution to the following "moment" problem:
Given the inner product $\langle\cdot, \cdot\rangle$ on $\mathcal{L} \times \mathcal{L}$ (or the linear functional $M$ on $\mathcal{L}+\mathcal{L}_{*}$ ), find a non-decreasing function $\mu$ on $[-\pi, \pi]$ (or a positive Borel measure $\mu$ on $(-\pi, \pi])$ such that

$$
\begin{gathered}
\langle f, g\rangle=\int_{-\pi}^{\pi} f\left(e^{i \theta}\right) \overline{g\left(e^{i \theta}\right)} d \mu(\theta) \quad \text { for } \quad f, g \in \mathcal{L} \\
\left(\text { or } \quad M(f)=\int_{-\pi}^{\pi} f\left(e^{i \theta}\right) d \mu(\theta) \quad \text { for } \quad f \in \mathcal{L}+\mathcal{L}_{*}\right)
\end{gathered}
$$

This moment problem always has a solution. Two non-decreasing functions which are solutions of the moment problem such that their difference is a constant at all the points at which it is continuous, are considered to be the same solution of the moment problem. We will give modified rational approximants to the function $F_{\mu}$ in terms of orthogonal rational functions and their associates. Besides, we obtain some results about related quadrature formulas.

## 2. Orthogonal rational functions

In our approach orthogonal rational functions will play an important rôle. Let
the sequence $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ in $\mathcal{L}$ be obtained by orthonormalization of the sequence $\left\{\mathbb{B}_{n}\right\}_{n=0}^{\infty}$ with respect to the inner product $\langle\cdot, \cdot\rangle$ on $\mathcal{L} \times \mathcal{L}$, i.e.

$$
\phi_{n} \in \mathcal{L}_{n} \quad \text { and } \quad\left\langle\phi_{n}, \phi_{n}\right\rangle=1, \quad n=0,1,2, \ldots
$$

and

$$
\left\langle f, \phi_{n}\right\rangle=0 \quad \text { for } \quad f \in \mathcal{L}_{n-1}, \quad n=1,2, \ldots
$$

It follows easily that

$$
\left\langle f, \phi_{n}^{*}\right\rangle=0 \quad \text { for } \quad f \in \mathcal{L}_{n}\left(\alpha_{n}\right), \quad n=1,2, \ldots,
$$

because $\mathbb{B}_{n} f_{*} \in \mathcal{L}_{n-1}$ for such $f$. Each $\phi_{n}$ can be written as

$$
\phi_{n}(z)=\sum_{k=0}^{n} b_{k}^{(n)} \mathbb{B}_{k}(z) .
$$

Here the non-zero number $b_{n}^{(n)}$ is called the leading coefficient of $\phi_{n}$. We assume that the $\phi_{n}$ are chosen such that $b_{n}^{(n)}>0$ and we write $\kappa_{n}=b_{n}^{(n)}$. It is easily shown that

$$
\kappa_{n}=\overline{\phi_{n}^{*}\left(\alpha_{n}\right)}=\phi_{n}^{*}\left(\alpha_{n}\right) .
$$

Using the uniqueness of the reproducing kernel

$$
\sum_{k=0}^{n} \phi_{k}(z) \overline{\phi_{k}(w)}
$$

for the inner product space $\mathcal{L}_{n}$ one can show (see for instance [1]) that the following Christoffel-Darboux formula holds

$$
\begin{equation*}
\sum_{k=0}^{n-1} \phi_{k}(z) \overline{\phi_{k}(w)}=\frac{\phi_{n}^{*}(z) \overline{\phi_{n}^{*}(w)}-\phi_{n}(z) \overline{\phi_{n}(w)}}{1-\zeta_{n}(z) \overline{\zeta_{n}(w)}}, \tag{2.1}
\end{equation*}
$$

and equivalently

$$
\begin{equation*}
\sum_{k=0}^{n} \phi_{k}(z) \overline{\phi_{k}(w)}=\frac{\phi_{n}^{*}(z) \overline{\phi_{n}^{*}(w)}-\zeta_{n}(z) \overline{\zeta_{n}(w)} \phi_{n}(z) \overline{\phi_{n}(w)}}{1-\zeta_{n}(z) \overline{\zeta_{n}(w)}} \tag{2.2}
\end{equation*}
$$

The $\phi_{n}$ and $\phi_{n}^{*}$ satisfy the recurrence relations

$$
\begin{equation*}
\phi_{n}(z)=\epsilon_{n} \frac{z-\alpha_{n-1}}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \phi_{n-1}(z)+\delta_{n} \frac{1-\overline{\alpha_{n-1}} z}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \phi_{n-1}^{*}(z), \quad n=1,2, \ldots \tag{2.3}
\end{equation*}
$$

and (superstar conjugation)

$$
\begin{align*}
\phi_{n}^{*}(z) & =-\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|} \overline{\delta_{n}} \frac{z-\alpha_{n-1}}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \phi_{n-1}(z)-\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|} \overline{\epsilon_{n}} \frac{1-\overline{\alpha_{n-1}} z}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \phi_{n-1}^{*}(z), \\
n & =1,2, \ldots \tag{2.4}
\end{align*}
$$

with $\phi_{0}=\phi_{0}^{*}=\kappa_{0}$. Here

$$
\begin{gather*}
\epsilon_{n}=-\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|} \frac{1-\overline{\alpha_{n-1}} \alpha_{n}}{1-\left|\alpha_{n-1}\right|^{2}} \frac{\overline{\phi_{n}^{*}\left(\alpha_{n-1}\right)}}{\kappa_{n}}  \tag{2.5}\\
\delta_{n}=\frac{1-\alpha_{n-1} \overline{\alpha_{n}}}{1-\left|\alpha_{n-1}\right|^{2}} \frac{\phi_{n}\left(\alpha_{n-1}\right)}{\kappa_{n}} \tag{2.6}
\end{gather*}
$$

It follows from the Christoffel-Darboux formula (2.1) with $z=w=\alpha_{n-1}$ that $\epsilon_{n} \neq 0$. A proof of (2.3) and (2.4) can be found in [1] or in [2], but (2.3) and (2.4) may also be derived from the superstar conjugates with respect to $w$ and with repect to $z$ and $w$ of the Christoffel-Darboux formula. We mention another consequence of the Christoffel-Darboux formula. Taking the superstar conjugate of (2.1) with respect to $z$ and $w$ and writing

$$
\mathbb{B}_{n \backslash k}=\mathbb{B}_{n} / \mathbb{B}_{k}, \quad k=0,1, \ldots, n ; \quad n=0,1, \ldots
$$

we obtain

$$
\begin{equation*}
\frac{\phi_{n}^{*}(z) \overline{\phi_{n}^{*}(w)}-\phi_{n}(z) \overline{\phi_{n}(w)}}{1-\zeta_{n}(z) \overline{\zeta_{n}(w)}}=\sum_{k=0}^{n-1} \mathbb{B}_{(n-1) \backslash k}(z) \overline{\mathbb{B}_{(n-1) \backslash k}(w)} \phi_{k}^{*}(z) \overline{\phi_{k}^{*}(w)} \tag{2.7}
\end{equation*}
$$

For $z=w=\alpha_{n-1}$ this gives

$$
\begin{aligned}
\left|\phi_{n}^{*}\left(\alpha_{n-1}\right)\right|^{2}-\left|\phi_{n}\left(\alpha_{n-1}\right)\right|^{2} & =\left|\phi_{n-1}^{*}\left(\alpha_{n-1}\right)\right|^{2}\left[1-\left|\zeta_{n}\left(\alpha_{n-1}\right)\right|^{2}\right] \\
& =\kappa_{n-1}^{2} \frac{\left(1-\left|\alpha_{n}\right|^{2}\right)\left(1-\left|\alpha_{n-1}\right|^{2}\right)}{\left|1-\overline{\alpha_{n}} \alpha_{n-1}\right|^{2}}
\end{aligned}
$$

Together with (2.5) and (2.6) this leads to

$$
\begin{equation*}
\left|\epsilon_{n}\right|^{2}-\left|\delta_{n}\right|^{2}=\frac{\kappa_{n-1}^{2}}{\kappa_{n}^{2}} \frac{1-\left|\alpha_{n}\right|^{2}}{1-\left|\alpha_{n-1}\right|^{2}} \tag{2.8}
\end{equation*}
$$

In particular this implies

$$
\begin{equation*}
\left|\epsilon_{n}\right|>\left|\delta_{n}\right| . \tag{2.9}
\end{equation*}
$$

A different proof of (2.8) can be found in [4].

## 3. Associated functions

Next to the orthogonal functions $\phi_{n}$ we consider the associated functions $\psi_{n}$ defined by

$$
\psi_{0}(z)=-\frac{1}{\kappa_{0}}, \quad\left(\psi_{0}(z)=-M\left(\phi_{0}\right)\right)
$$

and

$$
\psi_{n}(z)=M\left(D(t, z)\left[\phi_{n}(z)-\phi_{n}(t)\right]\right), \quad n=1,2, \ldots
$$

Here $M$ is acting on $t$ and

$$
D(t, z)=\frac{t+z}{t-z} .
$$

Obviously $\psi_{n} \in \mathcal{L}_{n}$ for $n=0,1,2, \ldots$. For $f \in \mathcal{L}_{(n-1) *}$ we may write

$$
f(t)=\frac{a(t)}{\omega_{n-1}(t)}
$$

with $a \in \Pi_{n-1}$, so, if $f \not \equiv 0$, then

$$
\begin{aligned}
D(t, z)\left[1-\frac{f(t)}{f(z)}\right] & =\frac{t+z}{t-z}\left[1-\frac{a(t)}{a(z)} \frac{\omega_{n-1}(z)}{\omega_{n-1}(t)}\right] \\
& =\frac{(t+z)\left[a(z) \omega_{n-1}(t)-a(t) \omega_{n-1}(z)\right]}{(t-z) a(z)} \frac{1}{\omega_{n-1}(t)}
\end{aligned}
$$

is in $\mathcal{L}_{(n-1) *}$. Hence

$$
M\left(D(t, z)\left[1-\frac{f(t)}{f(z)}\right] \phi_{n}(t)\right)=0 \quad \text { for } \quad f \in \mathcal{L}_{(n-1) *}, \quad f \not \equiv 0 .
$$

This gives immediately

$$
\begin{equation*}
\psi_{n}(z)=M\left(D(t, z)\left[\phi_{n}(z)-\frac{f(t)}{f(z)} \phi_{n}(t)\right]\right) \text { for } f \in \mathcal{L}_{(n-1)^{*}}, \quad f \not \equiv 0, \quad n=1,2, \ldots \tag{3.1}
\end{equation*}
$$

For the superstar conjugates of the $\psi_{n}$ we have

$$
\psi_{0}^{*}(z)=-\frac{1}{\kappa_{0}}
$$

and, since $\psi_{n} \in \mathcal{L}_{n}$,

$$
\begin{aligned}
\psi_{n}^{*}(z) & =\mathbb{B}_{n}(z) \overline{M\left(D(t, 1 / \bar{z})\left[\phi_{n}(1 / \bar{z})-\phi_{n}(t)\right]\right)} \\
& =\mathbb{B}_{n}(z) M\left(D(1 / t, 1 / z)\left[\overline{\phi_{n}(1 / \bar{z})}-\overline{\phi(1 / \bar{t}}\right]\right) \\
& =-\mathbb{B}_{n}(z) M\left(D(t, z)\left[\phi_{n *}(z)-\phi_{n *}(t)\right]\right) \\
& =M\left(D(t, z)\left[\frac{\mathbb{B}_{n}(z)}{\mathbb{B}_{n}(t)} \phi_{n}^{*}(t)-\phi_{n}^{*}(z)\right]\right), \quad n=1,2, \ldots,
\end{aligned}
$$

so

$$
\begin{equation*}
\psi_{n}^{*}(z)=M\left(D(t, z)\left[\frac{\mathbb{B}_{n}(z)}{\mathbb{B}_{n}(t)} \phi_{n}^{*}(t)-\phi_{n}^{*}(z)\right]\right), \quad n=1,2, \ldots \tag{3.2}
\end{equation*}
$$

If $f \in \mathcal{L}_{n *}\left(1 / \overline{\alpha_{n}}\right)$, we may write

$$
f(t)=\frac{\left(1-\overline{\alpha_{n}} t\right) b(t)}{\omega_{n}(t)} \quad \text { with } \quad b \in \Pi_{n-1} .
$$

So, for $f \not \equiv 0$,

$$
\begin{aligned}
& D(t, z)\left[\frac{\mathbb{B}_{n}(z)}{\mathbb{B}_{n}(t)}-\frac{f(t)}{f(z)}\right] \\
& =\frac{\omega_{n}(z)}{\pi_{n}(z)\left(1-\overline{\alpha_{n}} z\right) b(z)} \frac{(t+z)\left[\pi_{n}(t)\left(1-\overline{\alpha_{n}} z\right) b(z)-\pi_{n}(z)\left(1-\overline{\alpha_{n}} t\right) b(t)\right]}{t-z} \frac{1}{\omega_{n}(t)}
\end{aligned}
$$

belongs to $\mathcal{L}_{n *}\left(1 / \overline{\alpha_{n}}\right)$, and it follows that

$$
M\left(D(t, z)\left[\frac{\mathbb{B}_{n}(z)}{\mathbb{B}_{n}(t)}-\frac{f(t)}{f(z)}\right] \phi_{n}^{*}(t)\right)=0
$$

This gives

$$
\begin{equation*}
\psi_{n}^{*}(z)=M\left(D(t, z)\left[\frac{f(t)}{f(z)} \phi_{n}^{*}(t)-\phi_{n}^{*}(z)\right]\right) \text { for } f \in \mathcal{L}_{n *}\left(1 / \overline{\alpha_{n}}\right), f \not \equiv 0, n=1,2, \ldots \tag{3.3}
\end{equation*}
$$

The functions $\psi_{n}$ and $\psi_{n}^{*}$ satisfy the recurrences

$$
\begin{equation*}
\psi_{n}(z)=\epsilon_{n} \frac{z-\alpha_{n-1}}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \psi_{n-1}(z)-\delta_{n} \frac{1-\overline{\alpha_{n-1}} z}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \psi_{n-1}^{*}(z), \quad n=1,2, \ldots \tag{3.4}
\end{equation*}
$$

and (superstar conjugation)

$$
\begin{align*}
\psi_{n}^{*}(z) & =\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|} \overline{\delta_{n}} \frac{z-\alpha_{n-1}}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \psi_{n-1}(z)-\frac{\overline{\alpha_{n}}}{\left|\alpha_{n}\right|} \overline{\epsilon_{n}} \frac{1-\overline{\alpha_{n-1}} z}{1-\overline{\alpha_{n}} z} \frac{\kappa_{n}}{\kappa_{n-1}} \psi_{n-1}^{*}(z) \\
n & =1,2, \ldots \tag{3.5}
\end{align*}
$$

A proof of these recurrence formulas is given in [1], but they also follow easily from the above results. Indeed, writing

$$
A_{n}(z)=\frac{z-\alpha_{n-1}}{1-\overline{\alpha_{n}} z} \quad \text { and } \quad B_{n}(z)=\frac{1-\overline{\alpha_{n-1}} z}{1-\overline{\alpha_{n}} z}
$$

for $n \geq 2$ we have

$$
\begin{aligned}
& \psi_{n}(z)-\epsilon_{n} A_{n}(z) \frac{\kappa_{n}}{\kappa_{n-1}} \psi_{n-1}(z) \\
& =M\left(D(t, z)\left[\phi_{n}(z)-\frac{f(t)}{f(z)} \phi_{n}(t)\right]\right)-\epsilon_{n} A_{n}(z) \frac{\kappa_{n}}{\kappa_{n-1}} M\left(D(t, z)\left[\phi_{n-1}(z)-\phi_{n-1}(t)\right]\right)
\end{aligned}
$$

where $f \in \mathcal{L}_{(n-1) *}, f \not \equiv 0$ such that $f\left(1 / \overline{\alpha_{n}}\right)=0$, so

$$
f(t)=\frac{\left(1-\overline{\alpha_{n}} t\right) p(t)}{\omega_{n-1}(t)} \quad \text { with } \quad p \in \Pi_{n-2}
$$

Elementary calculations using (2.3) and (2.4) give

$$
\psi_{n}(z)-\epsilon_{n} A_{n}(z) \frac{\kappa_{n}}{\kappa_{n-1}} \psi_{n-1}(z)=I_{1}+I_{2}
$$

with

$$
\begin{aligned}
I_{1} & =\delta_{n} \frac{\kappa_{n}}{\kappa_{n-1}} B_{n}(z) M\left(D(t, z)\left[\phi_{n-1}^{*}(z)-\frac{f(t)}{f(z)} \frac{B_{n}(t)}{B_{n}(z)} \phi_{n-1}^{*}(t)\right]\right) \\
& =-\delta_{n} \frac{\kappa_{n}}{\kappa_{n-1}} B_{n}(z) \psi_{n-1}^{*}(z)
\end{aligned}
$$

since $f(t) B_{n}(t) \in \mathcal{L}_{(n-1) *}\left(1 / \overline{\alpha_{n-1}}\right)$, and

$$
I_{2}=\epsilon_{n} \frac{\kappa_{n}}{\kappa_{n-1}} A_{n}(z) M\left(D(t, z)\left[1-\frac{f(t)}{f(z)} \frac{A_{n}(t)}{A_{n}(z)}\right] \phi_{n-1}(t)\right)=0
$$

since

$$
f(t) A_{n}(t)=\frac{\left(1-\overline{\alpha_{n}} t\right) p(t)}{\omega_{n-1}(t)} \frac{t-\alpha_{n-1}}{1-\overline{\alpha_{n}} t}=\frac{p(t)}{\omega_{n-2}(t)} \in \mathcal{L}_{(n-2) *}
$$

Formula (3.5) follows by superstar conjugation. The case $n=1$ is easily verified. Thus the pair $\left(\psi_{n},-\psi_{n}^{*}\right)$ satisfies the same recurrence as the pair $\left(\phi_{n}, \phi_{n}^{*}\right)$. The initial values are $\left(\phi_{0}, \phi_{0}^{*}\right)=\kappa_{0}(1,1)$ and $\left(\psi_{0},-\psi_{0}^{*}\right)=\left(-1 / \kappa_{0}\right)(1,-1)$.

## 4. Para-orthogonal functions, quadrature formulas and modified approximants

It follows easily from the Christoffel-Darboux formula (2.1) that the zeros of $\phi_{n}$ are in $D$ and that the zeros of $\phi_{n}^{*}$ are in $E$. Moreover, we have $\left|\phi_{n}(z)\right|<\left|\phi_{n}^{*}(z)\right|$ for $z \in D$ and $\left|\phi_{n}(z)\right|>\left|\phi_{n}^{*}(z)\right|$ for $z \in E$. As we intend to give quadrature formulas with nodes in $T$ we consider the functions

$$
\begin{equation*}
Q_{n}(z, w)=\phi_{n}(z)+w \phi_{n}^{*}(z), \quad n=0,1,2, \ldots \tag{4.1}
\end{equation*}
$$

with $w \in T$ arbitrary. Clearly the zeros $z_{1}, \ldots, z_{n}$ of $Q_{n}(z, w)$ are all in $T$ and it is easy to show that they are simple. See [1]. Of course the zeros $z_{j}$ depend on $n$ and $w$. Since

$$
Q_{n}(z, w) \perp \mathcal{L}_{n-1} \cap \mathcal{L}_{n}\left(\alpha_{n}\right), \quad n=1,2, \ldots
$$

and

$$
\left\langle Q_{n}(z, w), 1\right\rangle \neq 0 \quad \text { and } \quad\left\langle Q_{n}(z, w), \mathbb{B}_{n}(z)\right\rangle \neq 0, \quad n=1,2, \ldots,
$$

where the inner product acts on $z$, the sequence is called para-orthogonal. As

$$
Q_{n}^{*}(z, w)=\bar{w} Q_{n}(z, w),
$$

superstar conjugation with respect to $z$, the $Q_{n}$ are called $\bar{w}$-invariant. Notice that the above orthogonality remains valid if for each $n$ we take for $w$ a fixed $w_{n}$
in $T$. If

$$
\begin{equation*}
\Lambda_{n, i}(z)=\frac{1-\overline{\alpha_{n}} z}{1-\overline{\alpha_{n}} z_{i}} \frac{Q_{n}(z, w)}{\left(z-z_{i}\right) Q_{n}^{\prime}\left(z_{i}, w\right)}, \quad i=1, \ldots, n \tag{4.2}
\end{equation*}
$$

where the prime means differentiation with respect to $z$, then $\Lambda_{n, i} \in \mathcal{L}_{n-1}$ and we have the quadrature formula (see [1])

$$
\begin{equation*}
M(R)=\sum_{j=1}^{n} \lambda_{n, j} R\left(z_{j}\right) \quad \text { for } \quad R \in \mathcal{L}_{(n-1) *}+\mathcal{L}_{n-1} \tag{4.3}
\end{equation*}
$$

with $\lambda_{n, j}=M\left(\Lambda_{n, j}\right)>0$ for $j=1, \ldots, n$.
Let us assume now that $z_{j}=e^{i \theta_{j}}, j=1,2, \ldots, n$, with

$$
-\pi \leq \theta_{1}<\theta_{2}<\ldots<\theta_{n}<\pi
$$

Then, using the functions $\mu_{n}$ given by

$$
\mu_{n}(\theta)=\left\{\begin{array}{lll}
0 & \text { if } & -\pi \leq \theta \leq \theta_{1} \\
\sum_{j=1}^{k} \lambda_{n, j} & \text { if } \quad \theta_{k}<\theta \leq \theta_{k+1}, \quad k=1, \ldots, n-1 \\
M(1) & \text { if } \quad \theta_{n}<\theta \leq \pi
\end{array}\right.
$$

(or using the measures $\mu_{n}=\sum_{j=1}^{n} \lambda_{n j} \delta_{\theta_{j}}$, where $\delta_{\theta_{j}}$ is the translated Dirac measure), it follows from Helly's theorems (or from the weak* compactness of the closed unit ball in the dual space of the Banach space $C(T)$ ), that the moment problem has a solution, say $\mu$. So there is a non-decreasing function (or a positive Borel measure) $\mu$ such that

$$
\begin{equation*}
M(R)=\int_{-\pi}^{\pi} R\left(e^{i \theta}\right) d \mu(\theta) \quad \text { for } \quad R \in \mathcal{L}_{*}+\mathcal{L} \tag{4.4}
\end{equation*}
$$

It follows from the fact that the inner product is positive definite that the solutions $\mu$ must have infinitely many points of increase (or must be measures with infinite support).

Now let

$$
\begin{equation*}
F_{\mu}(z)=\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \mu(\theta), \quad\left(t=e^{i \theta}\right) \tag{4.5}
\end{equation*}
$$

and

$$
R_{n}(z, w)=\int_{-\pi}^{\pi} \frac{t+z}{t-z} d \mu_{n}(\theta)=\sum_{j=1}^{n} \lambda_{n, j} \frac{z_{j}+z}{z_{j}-z}
$$

Then $R_{n}(z, w)$ can be written as

$$
R_{n}(z, w)=\frac{P_{n}(z, w)}{Q_{n}(z, w)} \quad \text { with } \quad P_{n}(z, w) \in \mathcal{L}_{n}
$$

We will show that

$$
\begin{equation*}
P_{n}(z, w)=\psi_{n}(z)-w \psi_{n}^{*}(z), \quad n=1,2, \ldots \tag{4.6}
\end{equation*}
$$

Indeed, for $n \geq 2$ we have by the results of section 3

$$
\begin{aligned}
\psi_{n}(z)-w \psi_{n}^{*}(z)= & M\left(D(t, z)\left[\phi_{n}(z)-\frac{f(t)}{f(z)} \phi_{n}(t)\right]\right) \\
& +w M\left(D(t, z)\left[\phi_{n}^{*}(z)-\frac{f(t)}{f(z)} \phi_{n}^{*}(t)\right]\right) \\
= & M\left(D(t, z)\left[\phi_{n}(z)+w \phi_{n}^{*}(z)-\frac{f(t)}{f(z)}\left(\phi_{n}(t)+w \phi_{n}^{*}(t)\right)\right]\right) \\
= & M\left(D(t, z)\left[Q_{n}(z, w)-\frac{f(t)}{f(z)} Q_{n}(t, w)\right]\right)
\end{aligned}
$$

for $f \in \mathcal{L}_{(n-1) *} \cap \mathcal{L}_{n *}\left(1 / \overline{\alpha_{n}}\right), f \not \equiv 0$. As

$$
D(t, z)\left[Q_{n}(z, w)-\frac{f(t)}{f(z)} Q_{n}(t, w)\right] \in \mathcal{L}_{(n-1) *}+\mathcal{L}_{n-1}
$$

for such $f$, we have

$$
\psi_{n}(z)-w \psi_{n}^{*}(z)=\sum_{j=1}^{n} \lambda_{n, j} \frac{z_{j}+z}{z_{j}-z} Q_{n}(z, w)=P_{n}(z, w)
$$

The case $n=1$ follows by direct verification, using $\lambda_{1,1}=M(1)=1 / \kappa_{0}^{2}$.
In [3] a formula like (4.6) could only be obtained in the "cyclic" situation, i.e. in the case of a finite number of points $\alpha_{n}$ repeated in cyclic order.

From the partial fraction decomposition

$$
R_{n}(z, w)=\sum_{j=1}^{n} \lambda_{n, j} \frac{z_{j}+z}{z_{j}-z}
$$

it follows that

$$
\left(z-z_{k}\right) R_{n}(z, w)=\sum_{\substack{j=1 \\ j \neq k}}^{n} \lambda_{n, j} \frac{\left(z_{j}+z\right)\left(z-z_{k}\right)}{z_{j}-z}-\lambda_{n, k}\left(z_{k}+z\right)
$$

so the limit $z \rightarrow z_{k}$ gives

$$
\frac{P_{n}\left(z_{k}, w\right)}{Q_{n}^{\prime}\left(z_{k}, w\right)}=-2 z_{k} \lambda_{n, k}, \quad k=1, \ldots, n
$$

Hence

$$
\begin{equation*}
\lambda_{n, k}=-\frac{1}{2 z_{k}} \frac{P_{n}\left(z_{k}, w\right)}{Q_{n}^{\prime}\left(z_{k}, w\right)}, \quad k=1, \ldots, n \tag{4.7}
\end{equation*}
$$

From the fact that

$$
\int_{-\pi}^{\pi} g\left(e^{i \theta}\right) d\left(\mu-\mu_{n}\right)(\theta)=0 \quad \text { for } \quad g \in \mathcal{L}_{(n-1) *}+\mathcal{L}_{n-1}
$$

if $\mu$ is a solution of the moment problem and $\mu_{n}$ is a solution of the "truncated" moment problem as above, we get the general form of some results which were obtained in [3], (p.63, formula (3.43)), for the cyclic situation.

If $g \in \mathcal{L}_{(n-1) *}+\mathcal{L}_{n-1}$, then $g$ is of the form

$$
g(t)=\frac{p(t)}{\omega_{n-1}(t) \pi_{n-1}(t)} \quad \text { with } \quad p \in \Pi_{2 n-2}
$$

so

$$
\begin{aligned}
D(t, z)[g(t)-g(z)]= & \frac{(t+z)\left[\omega_{n-1}(z) \pi_{n-1}(z) p(t)-\omega_{n-1}(t) \pi_{n-1}(t) p(z)\right]}{(t-z) \omega_{n-1}(z) \pi_{n-1}(z)} \\
& \cdot \frac{1}{\omega_{n-1}(t) \pi_{n-1}(t)}
\end{aligned}
$$

is in $\mathcal{L}_{(n-1) *}+\mathcal{L}_{n-1}$, and

$$
\int_{-\pi}^{\pi} D(t, z)[g(t)-g(z)] d\left(\mu-\mu_{n}\right)(\theta)=0, \quad\left(t=e^{i \theta}\right)
$$

As

$$
F_{\mu}(z)-R_{n}(z, w)=\int_{-\pi}^{\pi} D(t, z) d\left(\mu-\mu_{n}\right)(\theta)
$$

it follows now that

$$
\begin{aligned}
h(z) & =\int_{-\pi}^{\pi} D(t, z) g(t) d\left(\mu-\mu_{n}\right)(\theta) \\
& =g(z) \int_{-\pi}^{\pi} D(t, z) d\left(\mu-\mu_{n}\right)(\theta)=g(z)\left(F_{\mu}(z)-R_{n}(z, w)\right)
\end{aligned}
$$

Clearly, $h$ is analytic in $D$ and in $E$ and $h(0)=0$ and $h(\infty)=\lim _{z \rightarrow \infty} h(z)=0$. For $g(z)=\mathbb{B}_{n-1}(z)$ we get

$$
F_{\mu}(z)-R_{n}(z, w)=\frac{1}{\mathbb{B}_{n-1}(z)} h_{\infty}(z)
$$

where $h_{\infty}$ is analytic in $D \cup E$ and $h_{\infty}(\infty)=0$ and for $g(z)=1 / \mathbb{B}_{n-1}(z)$ we obtain

$$
F_{\mu}(z)-R_{n}(z, w)=\mathbb{B}_{n-1}(z) h_{0}(z)
$$

where $h_{0}$ is analytic in $D \cup E$ and $h_{0}(0)=0$. Thus $R_{n}(z, w)$ is a "modified" Padétype approximant to $F_{\mu}$. Notice that the functions $h, h_{0}, h_{\infty}$ depend on the parameter $w$. Because the approximants $R_{n}(z, w)$ have the same structure relative to the orthogonal sequence $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ and the sequence of the associated functions $\left\{\psi_{n}\right\}_{n=0}^{\infty}$ as in the case of so called modified approximants to HPC (=Hermitian Perron-Carathéodory) continued fractions (see [6]), the $R_{n}(z, w)$ are also called modified approximants in the present situation.

Since

$$
P_{n}(z, w)=M\left(D(t, z)\left[Q_{n}(z, w)-\frac{f(t)}{f(z)} Q_{n}(t, w)\right]\right)
$$

for $f \in \mathcal{L}_{(n-1) *} \cap \mathcal{L}_{n *}\left(1 / \overline{\alpha_{n}}\right), f \not \equiv 0$, it follows that for the error $F_{\mu}(z)-R_{n}(z, w)$ we also have (with $t=e^{i \theta}$ )

$$
\begin{aligned}
F_{\mu}(z)-R_{n}(z, w)= & \int_{-\pi}^{\pi} D(t, z) d \mu(\theta) \\
& -\frac{1}{Q_{n}(z, w)} \int_{-\pi}^{\pi} D(t, z)\left[Q_{n}(z, w)-\frac{f(t)}{f(z)} Q_{n}(t, w)\right] d \mu(\theta) \\
= & \frac{1}{f(z) Q_{n}(z, w)} \int_{-\pi}^{\pi} D(t, z) f(t) Q_{n}(t, w) d \mu(\theta)
\end{aligned}
$$

See [5].
We conclude the paper with a remark on the quadrature weights. Recall that $z_{1}, \ldots, z_{n}$ are the zeros of $Q_{n}$ and that $\left|z_{j}\right|=1, j=1, \ldots, n$. For $z=z_{j}$ we have $\phi_{n}\left(z_{j}\right)+w \phi_{n}^{*}\left(z_{j}\right)=0$ and $\overline{\zeta_{n}\left(z_{j}\right)}=1 / \zeta_{n}\left(z_{j}\right)$, so by the Christoffel-Darboux formula

$$
\zeta_{n}\left(z_{j}\right) \overline{\phi_{n}\left(z_{j}\right)} \frac{Q_{n}\left(z_{j}, w\right)-Q_{n}(t, w)}{z_{j}-t}=\frac{\zeta_{n}\left(z_{j}\right)-\zeta_{n}(t)}{z_{j}-t} \sum_{k=0}^{n-1} \overline{\phi_{k}\left(z_{j}\right)} \phi_{k}(t)
$$

Using

$$
\frac{\zeta_{n}^{\prime}\left(z_{j}\right)}{\zeta_{n}\left(z_{j}\right)}=\frac{1-\left|\alpha_{n}\right|^{2}}{\left(z_{j}-\alpha_{n}\right)\left(1-\overline{\alpha_{n}} z_{j}\right)}
$$

the limit $t \rightarrow z_{j}$ yields

$$
Q_{n}^{\prime}\left(z_{j}, w\right)=\frac{1}{\overline{\phi_{n}\left(z_{j}\right)}} \frac{1-\left|\alpha_{n}\right|^{2}}{\left(z_{j}-\alpha_{n}\right)\left(1-\overline{\alpha_{n}} z_{j}\right)} \sum_{k=0}^{n-1}\left|\phi_{k}\left(z_{j}\right)\right|^{2}
$$

Using (2.8) and the recurrence relations (2.3), (2.4), (3.4), (3.5) it follows that the functions $\phi_{n}$ and $\psi_{n}$ and their superstar conjugates satisfy a determinant formula

$$
\phi_{n}^{*}(z) \psi_{n}(z)+\phi_{n}(z) \psi_{n}^{*}(z)=\frac{1-\left|\alpha_{n}\right|^{2}}{1-\overline{\alpha_{n}} z} \frac{-2 z \mathbb{B}_{n}(z)}{z-\alpha_{n}}
$$

As $\phi_{n}\left(z_{j}\right)+w \phi_{n}^{*}\left(z_{j}\right)=0$, this gives

$$
P_{n}\left(z_{j}, w\right)=\frac{1}{\phi_{n}^{*}\left(z_{j}\right)} \frac{-2 z_{j} \mathbb{B}_{n}\left(z_{j}\right)\left(1-\left|\alpha_{n}\right|^{2}\right)}{\left(z_{j}-\alpha_{n}\right)\left(1-\overline{\alpha_{n}} z_{j}\right)}
$$

Using (4.7), we get

$$
\lambda_{n, j}=-\frac{1}{2 z_{j}} \frac{P_{n}\left(z_{j}, w\right)}{Q_{n}^{\prime}\left(z_{j}, w\right)}=\frac{\overline{\phi_{n}\left(z_{j}\right)}}{\phi_{n}^{*}\left(z_{j}\right)} \frac{\mathbb{B}_{n}\left(z_{j}\right)}{\sum_{k=0}^{n-1}\left|\phi_{k}\left(z_{j}\right)\right|^{2}}
$$

Since $\left|z_{j}\right|=1$, we have

$$
\phi_{n}^{*}\left(z_{j}\right)=\mathbb{B}_{n}\left(z_{j}\right) \overline{\phi_{n}\left(z_{j}\right)}
$$

and we obtain

$$
\lambda_{n, j}=\frac{1}{\sum_{k=0}^{n-1}\left|\phi_{k}\left(z_{j}\right)\right|^{2}}, \quad j=1, \ldots, n ; \quad n \in \mathbb{N} .
$$

## References

[1] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, A Szegő theory for rational functions, Report TW 131, Department of Computer Science, K.U. Leuven (May 1990).
[2] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Recurrence relations for orthogonal functions, in: Continued Fractions and Orthogonal Functions, eds S.C. Cooper and W.B. Thron, Lecture Notes in Mathematics 154 (Marcel Dekker, New York, 1993) pp. 23-46.
[3] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Moment problems and orthogonal functions, J. Comp. Appl. Math. 48 (1993) 49-68.
[4] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Asymptotics for orthogonal rational functions, Trans. Amer. Math. Soc. 346 (1994) 331-340.
[5] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Quadrature formulas on the unit circle based on rational functions, J. Comp. Appl. Math. 50 (1994) 159-170.
[6] W.B. Jones, O. Njåstad and W.J. Thron, Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc. 21 (1989) 113-152.

