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1. Introduction 

Let # be a finite complex Borel measure supported on [-Tr, Tr], thus with Su = 
supp (/z) C [-Tr,?r] and f_~ dl l = tr < ~ ,  where is the total variation measure. 
The Herglotz-Riesz transform of # is 

f~_ e iO + z d#(O). (1.1) 
F~ (z) = ei0----~_ z 

7r 

We shall approximate (1.1) by rational functions with prescribed poles (multipoint 
Padfi-type approximants = MPTA). This gives rise to quadrature formulas of the form 
(2.1) below to estimate integrals on the unit circle of the form 

f Iu(f)  = f (eiO) dlz(O ). 
7r 

(1.2) 

For these formulas, it will be shown that they are exact for certain rational functions 
with given poles. Motivated by a paper of Nuttal and Wherry [17] (see also [12]), 
we treated a similar problem in [4] where the quadrature formulas integrated exactly 
Laurent polynomials and the approximants were restricted to two-point Pad6 approx- 
imants for (1.1). In section 2, we give the connection between quadrature formulas 
and MPTAs to (1.1). Estimations of the rate of convergence of MPTAs to Fu(z) are 
provided in section 3. This will also result in an estimate of the rate of convergence 
of the quadrature formulas when the integrand f is a holomorphic function in a neigh- 
borhood of Su. In section 4, we study the case when f is only continuous with a 
modulus of continuity that satisfies certain conditions. 

2. Preliminary results 

We use the following notation for the unit circle, its inside and its outside: "IF = {z C 
C: Iz[ = 1 } , D - =  {z C C: Iz] < 1} a n d E =  {z E C: Izl > 1}. C is the set of 
complex numbers and C = C U {oo)-. The space of polynomials of degree at most n is 
denoted as l-In and H is the space of all polynomials. For every pair of integers (p, q), 
p ~< q, we denote by Ap,q the linear space of all Laurent polynomials (L-polynomials) 
of the form L(z) = y~q cjzJ, cj E C. A is the space of all L-polynomials. Our 

3 = p  
quadrature formulas, approximating (1.2) will be of the form 

n 

In(f) : ~ A3,nf(xj,~), 
j= l  

Xj,n C 'Ii', Xi,n r zj,n for i r j. (2.1) 

For its construction we shall not use the L-polynomials as in [4] but we shall 
use rational functions with poles not on "11". For quadrature formulas based on rational 
functions with prescribed poles outside a finite interval of the real line, see, e.g., [8, 
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14, 22]. Let a = { a n :  n = 1 , 2 , . . . }  be an arbitrary sequence in D.  W e  introduce the 
Blaschke factors ffk(z) as 

~ k  Ctk --  z 
Ck(z) - lakl 1 - ~ k z '  k = 1 , 2 , . . . ,  (2.2) 

and the Blaschke products B0 = 1, and Bk = ~ l " "  ffk- These generate the spaces 
En = s p a n { B 0 , . . . ,  Bn} and Z; = U~ ~ s Introducing 7r0 = 1 and 

n 

7rn(z) : H ( 1 -  ~kz) ,  
k= l  

for n > 0, we can represent R E En as R = q/Trn, with q E Fin. The notation 

f , ( z )  = f ( 1 / 2 )  allows us to introduce the spaces s  = span{l ,  B l , , . . . ,  Bn,} and 
E ,  = U ~ / 2 n , -  If R E s then R = q/wn with q E Fin and where w0 = 1 and 

 n(z) = 1 - I ( z  - 
j=l  

for n > 0. Furthermore, let 

~p,q = s + s = {P/(r:qWp): P E Kip+q} 

and 7~ = / : ; + / 2 . .  Note that TC,.p,q = span{1/Bp, . . . ,  1/Bl,  1, B l , . . . ,  Bq} and "R0,n = 
s When all ak  = 0, then 7~p,q = A_p,q and s  = Fin. The spaces Ta,.p,q will play 
the same role in this paper as the L-polynomials in [4]. The following theorem is 
given in [1, addendum A.2, p. 244] when all the ai  are different. The adaptation of  
the proof  for the case when two or more points are allowed to coincide is trivial. 

T h e o r e m  2.1. The space 7~ is dense in the space C(~I') of  continuous functions on T 
if and only if ~ ( 1  - [ a k ] )  = oo. 

Let X = {xj,n: j = 1, . . .  ,n; n 6 N} be a triangular array of  points contained 
in "Ii" with xj,n :/: xk,n for j :/= k and let Fn be a rational function of  type (n, n) with 
poles at {xj,n}j~=l interpolating F~,(z) at O, a l , . . . ,  ap and at cx~, I / ~ l , . . . ,  I/-~q s u c h  

that p + q = n - 1, with p and q nonnegative integers. Setting Fn = Qn/Pn with 

pn( ) = l - l ( z -  
j=l 

if deg(Trq) = q then the polynomial Qn E Kin is uniquely defined by requiring that the 
function 

Vt,(z)Pn(z ) - Qn(z) (2.3) 
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is analytic in C - T (to see this, just count the number of interpolation conditions). 
If g = q - deg(Trq) > 0, then one needs g extra interpolation conditions at ec given 
by F~,(z) - Fn(z) = O ( z - e - l ) ,  z --+ ec. This F ,  is called all (n,n) MPTA to Ft, 
relative to the pair (c~, X);  we shall denote it by (n/n)u(z) .  Let 

Qn(z)  
Fn(z )  = (n /n ) , , ( z )  - Pn(z)  

n 

- -  - An + ~ A jn  x j ' '  + z 
j = l  ' X j , n  Z 

(2.4) 

Then from Fn(O) = P0, where #0 = FI~(0) = fZ~d#(0)  and Fn(oO) = Fu(cx~) = 
- P o ,  it follows that An = 0. It is also easily checked that 

1 Qn(xj,n) j = 1 , 2 , . . . , n .  (2.5) 
Aj,n - 2xj,n P~,(xj,n)' 

Note that this equality holds for any partial fraction expansion of a rational function 
of the form (2.4) with An = 0. 

In this section it will be shown that such an MPTA to F u leads to a quadrature 
formula which is exact in 7~p,q and conversely that any quadrature formula exact in 
7"~,q can be obtained in this way. 

Let the points of the sequence c~ be contained in a compact subset of 113 (in what 
follows, we paraphrase this by saying that c~ is compactly included in ID) and let G be 
a region (open and connected) in C such that T C G, 0 E G, and G N (c~ U ~) = ~,  
where 8 = {1 /~k}~ .  Suppose that F, the boundary of G, is a finite union of Jordan 
curves, and suppose f is a function analytic in G. From Cauchy's theorem, it then 
follows that 

f(zo) = ~ zo - z 2z 

whenever z0 is in G. From (2.6) and Fubini's theorem it follows that 

I~ ( f )  = f ( e i~  F . ( z ) ( - f ( z ) ' ~ d z .  (2.7) 
. \ 

Now consider an arbitrary function R C J~.p,q with p + q = n - 1, then by taking into 

account that Fu - (n/n)u is analytic in C - T, it follows from Cauchy's theorem that 

Pn(z) ,] 2z ,] dz = O. (2.8) 

Thus, by (2.5)-(2.8) 

( ) I~(R) = ~ Fu(z ) 2z J dz = ~ i  ~ 2z 

n 

= Z Aj,nR(xj,n) = In(R). 
j=l 

(2.9) 
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Thus we obtained a quadrature formula (2.1) valid in J~,p,q, p+q = n -  1. Furthermore, 
for any function f analytic in G 

~ [ 1 frXJ'n+Z( f(z))dz ] In(f) = Aj,~f(xj,,~) = Aj,,~ ~ - z 2z 
j = 1 j = t xj,n 

I J~ [~--~Aj,nXj,n+__z] [ f ( z ) ] d z  
27ri j=l xj,n 2z J 

' F-flz>l 
= 27ri  (n /n) . ( z )[  2z J dz. (2.10) 

Remark 1. Starting from the table X, a formula (2.1) satisfying (2.9) for any R C "]~p,q, 
p + q = n -  1, can be constructed for any function f ,  defined on ql'. However, 
representation (2.10) is only valid for an analytic function. 

Remark 2. When all the ak = O, then Tgp,q = A_p,q and formula (2.9) coincides with 
those studied in [4, 13]. 

For the error of (2.9), we immediately obtain 

Lemma 2.2. Let f be analytic in G, a neighborhood of qi" such that G f-'l (a  m G) = 0 
and 0 ~ G. Then, for each n and any triangular table X C T such that Xj,n 7 ~ Xk,n 
for j r k, we have 

1 fr  ( - f ( z ) ~ d z ,  (2.11) En(f) = Iu(f) - I,~(f) = ~ (Fu(z) - (n/n).(z)) \ 2z J 

where F is the boundary of G. 

It trivially follows from (2.11) that 

1 If(x)l s IE,,(f)l <~ ~ m a x - -  I f . ( z )  - (n/n).(z)lldzl .  
�9 c a  I=1 

(2.12) 

So, we can say that a sequence {(n/n) .}  of MPTAs that converges to F~ uniformly 

on compact subsets of C_. -'li'. can provide "suitable" quadrature formulas. The weights 
of the quadrature have the following integral representation: 

Theorem 2.3. Let p and q be nonnegative integers such that p + q = n - 1 >~ 0. Let 
I,~(f) = ~ Aj,nf(xj,~) be a quadrature with distinct nodes Zj,n on 'II" that is exact 

in ~p,q. Then 

COp(Xj,n)Trq(Xj,n)i.( Pn(x) "~ = e i~ (2.13) Aj,n 
P "  - xj, ) / ' 

n 
where Pn(z) = I-Ij=,(z - xj,n). 
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Proof Let us consider  the function (with variable x and z a parameter) 

2z ( cov(z)rrq(z)P,,.(x ) 
P ~ ( ~ ) =  l + - -  i -  

x q- z 2z COp(Z)Trq(z)Pn(x) 
x -  z. x -  ZWp(x)rrq(x)Pn(z) (2.14) 

Clearly, this function belongs to 7~p,q. Since the quadrature formula is assumed to be 
exact in Ta,.p,q we obtain that It~(Rn ) = In(Rn).  Since P(xj,n) = 0, it follows that 

n 

iu(R,~ ) = ~ Aja Xj,,~ + z _ Qn(z) 
j = l  X.j, n - -  Z P n ( z ) '  

(2.15) 

where Q,. E 1-In is defined as the numerator polynomial of  the rational function above. 
Thus one has 

2z 
O , , ( z )  = P n ( z ) , , , ( P ~ )  = x,, p . ( z )  + - -  

X - - Z  

By using (2.5) and expression (2.16), for Qn we obtain (2.13). [] 

Remark 3. It can be easily verified that the Newton interpolation formula plus error 
term for the function (t + z ) / ( t  - z) is given by (see also [3, p. 41]) 

n 

t + z _ 1 + 2 ~ zwk- l ( z )  + 9 ZCOn(Z) (2.17) 
t - z k=~ ~ok(t) - ( t  - z > . ( t )  

for t E ']l" and z :fi t .  Similarly (e.g., by applying the substar conjugate) we get 

7]. 

t + z = -1  - 2 ~ tk~rk-l(z) 2zt(:+'Tr"(z) (2.18) 
t -  z k=~ z ~ ( t )  + - Z)~n( t )"  

Now a converse to (2.9) can be given. Indeed, let the quadrature (2.1) be exact 
in ~p,q, p + q = n -  1, and let Fn = Qn/Pn the rational function as defined in 
theorem 2.3. Assume that n > 1 (the case n = 1 is trivial) and take p > 0. Then, 
making use of  (2.17) one can write 

n 

F ~ ( z ) =  ~-~ Aj,~ xj'n + z 
j = 1 X j , n  Z 

= #0 + 2 ~ zwk- l (Z)Iu  + 2ZCOp(Z) 
k = l  

P Aj,n X-" 

S-'~ (~j ,~ - z)~o~(~j,~) 
(2.19) 
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and 

P ( & )  ( 1 ) ( t  - z)wp(t) F~,(z) = #o + 2 Z zwk- l ( z ) Iu  + 2zwp(z)I~ . (2.20) 
k=l 

Similarly, using (2.18) and supposing q > O, we can get 

F,(z )  = -#o  - 2 I 2rrq(z) Z - (2.21) 
zk " ~-70 + z~ ( , ~ > -  Z)~q(~j,n) k=~ j=i 

and 

Ft,(z) = -/~o - 2 ~ + 2 try(z)/~ (2.22) 
~=, zk g ,~(Tj,T) z~ ( t - 7 ) > ~ ( t ) )  

Thus, from (2.19)-(2.22), it can be easily deduced that Fn(z) is an MPTA to F u. 

Remark 4. Let Rp,q E ~p,q, p + q = n -  l, be an interpolant for some function 
f defined on qr with interpolation points {xj,n} with xj,n 7 ~ xk,n for j r k and 
X ~ (c~ U G) = s Thus Hw,q(aCj,n ) = f(xj,=), j = 1, . . .  ,n. Integration of Pvp,q(e iO) 
with respect to d#(0) produces a quadrature formula In( f )  exact in "R.p,q. This fact 
enables us to obtain (2.13) in a different way. We have indeed (for further details, see 
[2, section 2]): 

where 

with 

Since 

n 

3=1 

1 - -Sq+fZ g~n(z) 
LP'n(z) = l -  -~q+,Xj,n (z - Xj,n)g2'n(Xj,n ) 

7"q,,q 

P.(z) 
n~(z) = oop(z)~q+~(z) ~ %,q+~ 

Aj,n = I~,(L~.,~) and n ' ( x j , n ) =  P'(Xj,n) 
COp(Xj,n)Trq+l(Xj,n) 

(2.23) 

and rrq+l (z) = 7rq(Z)(1 - ~ q + l Z ) ,  formula (2.13) easily follows. 

To conclude this section, we give an integral representation for the error of the 
MPTA. 

Lemma 2.4. Let a and X be as above. Then, setting x = e i0, we have 

Q~(~) 
FAz ) - (~/~).(z) = F. (z)  Pn(z) 

2ZWp(Z)rrq (z) / ~  Pn(x) d/*(O) (2.24) 
= e . ( z )  z )  

Proof. This follows from (1.1), remark 3 and (2.16). [] 
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3. Convergence for analytic functions 

In this section we shall give results about the rate of convergence for the MPTAs 
(n/n)t, to Fu. These will immediately imply an estimate for the rate of convergence 
of the quadrature formula I,,.(f) to the integral Iu( f)  when f is a function analytic in 
a neighborhood of T. 

As before, ct will denote a sequence of points compactly included in D and 
X a triangular array of points on 'II". We want to make appropriate selections of o~ 
and X to obtain good estimates of the MPTA (n/n)l , and deduce bounds for the 
rate of convergence of the corresponding quadrature formulas for some function f 
holomorphic in a neighborhood of T. 

With a polynomial Q E 1-In, we associate the normalized counting measure 
Un(Q) = ( l /n)~C2({)=0a{ where a{ is the Dirac measure supported at {. It assigns 
a point mass at the zeros of the polynomial Q, counting multiplicity. For Q = Wn, 
we denote this measure as u~. The logarithmic potential of a measure u is given by 
Vu(z) = - f log I z -  {I du({). It is obvious that we have Icon (z)[ l/n = exp{-Vu~ (z)}. 
Assume that there exists a measure u c~ such that u,~ converges to u c~ in the weak star 
topology of the space of measures. We shall denote this as 

/ " n  ;' 
n 

This convergence implies [23, lemma 1, p. 436] 

l i r a  = exp { - V , ~ ( z ) } ,  z E C - supp ( ~ ) ,  

and 

lim sup I  (z)l < exp { - v , ~  (z)}, 
n ---> o o  

z E C. (3.1) 

Convergence is uniform on each compact subset of the indicated regions. Set ~,~(z) = 
l-Iyn=l(z - -~ j )  (this equals znrrn(1/z) if z :fi 0). Let u c~ be the measure associated 
with the point set ~, just as u s was associated with oe. Then for any z such that 
1/z C (C - {0}) - supp (u ~) we have 

lim I n(z)l'/n=lzl lim I ~ ( 1 / z ) l ' / ~ = l z l e x p { - V ~ ( 1 / z ) } .  
n - - +  o o  n - - + o o  

(3.2) 

Furthermore, l i m n ~  I n(0)l = 1 and 

l imsuplrcn(z)[  '/n <<. [ z l exp{ -V ,~(1 / z ) } ,  z E C - { O } .  
7/,-"->O<) 

(3.3) 

As before, p and q are nonnegative integers such that p+q = n -  1 ~> 0. Since we shall 
now let n --+ oo, these p and q, which are functions of n, will be written explicitly as 
p(n) and q(n). Now suppose that l imn+~(p(n)/n)  = r and l imn_~(q(n) /n)  = s. 



A. Bultheel et al. / Convergence of multipoint Pad~-type approximants 329 

Since p(n) + q(n) = n - 1, we should have r + s = 1. Then, it follows from the 
above results that we have for z E (C - {0}) - supp (u ~) and 1 /z  ~ supp (u ~) 

lim Iwp(z)rrq(Z)l '/n = exp {-(rV~,o,(z) + sVs(1/z ) )  }]zl s, 
n - -~  o o  

(3.4) 

and for z :/= 0 

lira supl~op(z)~q(z)l '/~ <~ exp {-(rY~,~ (z)+ sV~,-a(I/z))}lzl ~. 
n,---+ o o  

(3.5) 

We shall now concentrate on the case limr~--+~ C~n = a. Without loss of  generality, 
we may assume a = 0. Hence  u c~ ---- ~o = u ~ and supp (u a) = {0}. Since V6o(z ) = 
- log Izl, we have by (3.4) 

~ i m  I~p(Z)~q(Z)l t/r~ = Izl ~, z ~ c - { 0 } ,  (3.6) 

where convergence is uniform on compact  subsets of C -  (0}. From (2.24) we deduce 

IF.(z) - (~/~)Az)l  
2[zl]Wp(z)Trq(Z)l maxz~-r IP,~(x)I I T  dl#l(O ) 

IPn(z)l min~ev lc%(x)rcq(X)l .]-, ]z - ei~ 

and, consequently,  taking limits for n -+ cx~, we have 

lim sup ]Fu(z)- (~ln).(z)] l/~ 

lim suplwp(z)Trq(z)l l/~ lim sup{maxzev IP~(x)I} 1In 
lim inflPn(z)[l/n lim inf{min:~e'rlwp(x)'rrq(x)l}t/n 

Izl T }~/'~ 
~< lim inflPT~.(z)] '/r~lim s u p {  ma~lPn(:r.)i (3.7) 

by (3.6). This shows that we have to investigate the nth root asymptotic behavior of  
the polynomial  P~(z), so that this upper bound is less than 1 on any compact  subset 

of  C - qF, and thus that geometric convergence results. An appropriate selection for 
the nodes X will correspond to the zeros of  the para-orthogonal polynomials.  We 

introduce these first. 
Let r be a finite positive Borel measure on ql" and let {p~} be the corresponding 

sequence of  monic Szeg6 polynomials.  The normalized polynomials are r  --- 

~npn(z), nn > 0. Thus (r Ct)~ = ~k,z, where 

i (f, 9)r = f(ei~ iO) d~b(0). 
71" 

We introduce the notation r  = znCn,(z) .  If  r E 'r, then Xn(z,r) = Cn(z) + 
r r  is called the nth para-orthogonal polynomial [15, section 6]. It is orthogonal 
to s p a n { z , . . . ,  z '~-I }. For the convergence result to be given in theorem 3.4, we need 
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the nth root asymptotics for the para-orthogonal polynomials Xn. Such asymptotics 
can be obtained under rather weak conditions for the measure ~, (see [20, chapter 3]). 
However, since the measure ~b only plays an auxiliary role in the present paper (see 
theorem 3.4), it is not essential that we have the weakest possible condition on the 
measure ~b. It is sufficient to know that such a measure exists. So, we shall follow 
a paved road and assume that ~b t > 0 a.e., which is a sufficient condition to prove 
the ratio asymptotics for the Xn, which of course implies the nth root asymptotics we 
need. This will be done in theorem 3.3. For its proof we need the following lemmas: 

L e m m a  3.1. With the above notation and on condition that ~b~(0) > 0 almost every- 
where on [-Tr, 7r], we have 

 n+l(z) 
(i) lim - -  - z uniformly on qi" tJ E; 

(ii) lim ff*(z) _ 0 uniformly on compact subsets of E; 

qS* 
(iii) lira ~+1 (z..._~) 1 uniformly on T U D; 

(iv) lim • ( z )  _ 0 uniformly on compact subsets of D; 

(v) lim p n ( 0 ) =  0 and lira n~+l/t% = 1. 
n - - .+oo  n---). ~ 

Statements (i) and (iii) and the statements in (v) are equivalent (see [16, 
lemma 2.4] and the comments following it). Also (ii) and (iv) are equivalent and 
follow from (v) [18, lemma 6]. That ~b t > 0 a.e. implies (i) is given in [18, theorem 1, 
4 ~ p. 207] (see also [16, lemma 2.4]); that it implies (v) is given in [19, theorem on 
p. 206]. 

L e m m a  3.2 (see [24, section 7.4]). Let K be a compact subset of C and {Pn(z)} 
a sequence of monic polynomials so that for each n, the zeros of P~(z) lie in K. 
Let IIPnI[K = maxxE~r< IPn(z)[ denote the maximum norm in K,  let 9k(z; c~) be the 
Green's function for K with pole at cx~, and let Cap(K) be the logarithmic capacity 
of K. Then we have l i m n - ~  IPn(z)l = exp{g•(z; co)}Cap(K) uniformly on any 

compact subset of C - K if and only if l i m n ~  IIPnll  = Cap(K).  

Now we can formulate 

Theorem 3.3. Let {7-n}~ ~ be a sequence of complex numbers on ~. Set Xfn(z, 7-n) = 
Xn (z) -- Cn(Z)+ TnqS~ (Z) the para-orthogonal polynomials with respect to ~. Assume 
~ > 0 a.e. Then we have 

(i) lim I n(z)l = Izl uniformly on compact subsets of E; 
n--.+ o o  

(ii) lim IXn(Z)l 1/n = 1 uniformly on compact subsets of D; 
n - - + o o  
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( i i i )  l im M 1/n = 1, where M n  = I lxn l lv .  
n ~ . o o  

Proof (i) Take z C E, then 

Xn+l(Z) Cn+l(z)+~-n+lr r l+~-.+~r162 
Xn(Z) r + Tnr r 1 + Tnr162 

Thus by (i) and (ii) of iemma 3.1, it follows that limn-~ooXn+l(z)/Xn(Z) = z, and 
therefore also lim~--+oo [Xn+l (z)[ I/n = ]zl. 

(ii) As in (i) we have 

X~+l(z) r  Tn+l + r162 

x,,(~) Ct,(z) ~'n + r 1 6 2  

The second fraction goes to 1, i.e., 

lim lrn+~ +r162 I 
n-,oo ~-,~ + Cn(z) l r  

because for sufficiently large n 

1 -Ir162 
1 + ICn(~)/r 

= 1 (3.8) 

-,-,,+, + I ~< 
",-n + Cn(z ) / r  I 

1 + ICn+l (Z)/r (Z)[ 
~< (3.9) 

1-1r162 

so that (ii) follows by (iv) of lemma 3.1. 
(iii) Let An = t% + Then(O) = ~n(1 + Tnpn(O)) be the leading coefficient of 

Xn(Z). Thus 
An+l t~n+ 1 1 + Tn+lPn+l (0) 

An ~n 1 § TnPn(O) 

and because l i m n ~  pn(0) = 0 by (v) of lemma 3.1, we get that 

lim A n + l  lim t % + l _  1, 
7"/,--+OO )k n 7"1.-'+OO /~n  

so that 
lim IAn[ i/n = 1. (3.10) 

n-..+ oo  

The sequence {Xn(z) /An} of monic polynomials satisfies limn~oo IXn(z)/An[ l/~ = 
[z I. Using lemma 3.2 with K = D U T, we get 

1 =  l im  IIx~/Anll~ = l im  1 ii~/~ i1~/~ n-~oo n-~oo IAnll/n Ilxn = n~lim IlXn 

and this concludes the proof. [] 

We thus have 
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T h e o r e m  3.4. Let c~ = {an } be a sequence of points contained in D and lim,-+oo c~n = 
0. For each n, let {xj,n} be the zeros of the nth para-orthogonal polynomial Xn(Z; 7n), 
Tn E q?, associated with some positive Borel measure r on 7I" as described above. 
Furthermore, let Fn(z) = Qn(z)/P,,(z) = (n/n)u(z) be a MPTA for F,(z) with 
denominator P~(z) = I-[~(z - Xj,n). Assume ~'  > 0 a.e. Then we have 

lim sup ] F u ( z ) -  (n/n)•(z)l'/" <<. A(z) < 1, 
n ----~ o o  

where A(z) = Izl r if z E I13) and A(z) = Izl if z E E. This limit holds uniformly 

on compact subsets of C - ']I". 

Proof Make use of (3.7) and theorem 3.3. [] 

Corol lary 3.5. Let f be analytic in a neighborhood G of qr and 0 E G. Assume that o~ 
and X satisfy the conditions of theorem 3.4. Let In(f) denote the n-point quadrature 

�9 n formula with nodes {xj,n}l valid in ~p(n),q(n) with p(n) + q(n) = n - 1 and suppose 
l i m n ~ p ( n ) / n  = r, 0 < r < 1. Then, 

l im suplEn(f)l'/n= l im sup I Z , ( f  ) - Z (f)l '/n 3' < 1, 
n - - ~  0 , 0  n --)" C,O 

where 3' = max{3'1,3"2} with 

3 ' l=max{Iz l r :  z c r n D } ,  3 '2=max{lz l  r- l"  z E F • E }  

and F is the boundary of G. 

Proof See (2.11) and theorem 3.4. [] 

4. C o n v e r g e n c e  for c o n t i n u o u s  funct ions  

In this section, we shall prove similar convergence results when f is continuous on ~I', 
but not necessarily analytic. For simplicity, we shall only consider complex measures 
of the form d#(O) = w(O)dO where w is a complex-valued measurable function on 
[-zr, zr] such that 

' l w ( 0 ) l  < co. (4.1) dO 
7r  

Let h(O) be a weight function defined on [-Tr, 7r], i.e., h(O) > 0 a.e. and 

/ h ( O )  dO < oo. (4.2) 
71" 

Assume that 
f f  Iw(O)12 (4.3) h(O) dO = Cl < oo. 
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Let us consider a sequence oe = {an} compactly included in ll). From the inner 
product associated with h, i.e., 

F (f,.q) = f(ei~176 (4.4) 
7r  

we generate an orthonormal system of rational functions {r r = 1 and Ck E s - 
s  and r _1_ s  k = 1 , 2 , . . . .  We introduce the notation r = B~(z)Cn.(Z) 
with Bn the finite Blaschke product with zeros a l , . . . , a n .  The r are uniquely 
defined if we require that ~n = r  > 0. Thus if r n = }--]k=0 ak,nBk(z), then 
an,n = nn. In analogy with the polynomial case where all ak = 0, we call t~n the 
leading coefficient of Cn (with respect to the basis Bk). Also in analogy with the 
polynomial case we set for Tn E T 

= + �9 (4.5) 

Functions defined by (4.5) are called para-orthogonal rational functions. We have from 
[2, theorem 4] 

Theorem 4.1. For "rn C T, the para-orthogonal rational function fn(z,  "r~), given by 
(4.5), has n simple zeros which lie on T. 

For our purposes, it is convenient to recall a result about rational Szeg6 formulas. 
These are quadrature formulas approximating integrals of the form f~_,, f(ei~ dO. 
Their nodes are the zeros of the para-orthogonal functions fn for the weight h. This 
choice, together with an appropriate choice for the weights, ensures a maximal domain 
of validity [2, p. 108]. We denote them by Sn( f )  = ~jn_ i Aj,nf(xj,n) in order to 
distinguish them from the quadrature formulas I,~ in (2.1) which approximate integrals 
(1.2). We have 

Theorem 4.2 [2, theorem 6]. Consider a quadrature formula 

S~(f )  = ~ Aj,nf(Xj,n) 
j=l 

where xj, n 76 2Ok, n for j 76 k and Ixj,nl = 1. Then Sn is exact in 7"~,n_l,n_l, that is, 
S,~(I) = fE~ f(ei~ dO for all f E Ta,.n-,,n-1 if and only if (i) and (ii) hold: 

(i) In( f )  is exact in 7~p,q for any pair (p,q) of nonnegative integers satisfying 
p + q = n - 1 .  

(ii) There exist Tn E T such that the nodes Xj,n are the zeros of the para-orthogonal 
rational functions fn from (4.5). 
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Since Sn( f )  is exact for any f E 7"~p,q, where p + q = n - 1, we have for the 
weights 

Aj , , .=  Lfn(x)h(O)dO, x = e  i~ j = l , 2 , . . . , n ,  
71" 

where the L~, n are given by (2.23). Furthermore, para-orthogonality allows us to write 

/_ Tr P 2 ei0. 
~ j , , ,=  ILj,~(~)I h(O)dO, x =  (4.6) 

71" 

Thus, by (2.23) and (4.6) one has 

r 2 /~._ Pn(x) 2h(0) dO. 
(4.7) 

If we choose the table X = {xj,n} such that  {Xj,n}]= 1 are the zeros of the fn(Z; rn) 
given by (4.5), we can prove 

L e m m a  4.3. Assume that h and w satisfy conditions (4.1)-(4.3) and that oe is com- 
pactly included in D. Take X = {xj,n} such that {xj,n}j~__t are the zeros of the 
para-orthogonal rational functions (4.5). Then there exists an absolute constant C2 
such that 

n 

IAj,nl ~< C2x/-~, (4.8) 
j = l  

where the Aj,n are the coefficients in the n-point quadrature formula relative to the 
pair (c~, X).  

Proof Multiply and divide the integrand in (2.13) by V / ~ ,  and use the Cauchy-  
Schwarz inequality, (4.3), and (4.7) to get 

~op(xr ~ P~(x) 2h(O) 1 

[/~_Tr Iw(O)12dO] I/2 
• h(o) J = x/c,~j,.. 

1/2 

(4.9) 

Since 1 E "R.n-,,n-I for each n = 1,2, . . . .  we get ~r~,~j, n = f2rrh(O) dO = C3. 
Therefore, using (3.6) and the Cauchy-Schwarz inequality gives 

~-~[Aj,~l<~V/--Cll~-~V/-~j,n<~X/-~ln[~Aj,r~ 1 
j = l  j = l  j = l  

1/2 

= ClX/-~3n, 

which proves (4.8). [] 
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A similar result can be proved when the {xj,n} are the zeros of para-orthogonal 
polynomials with respect to certain rational modifications of a positive weight function. 
Indeed, set Tn-l(x) = %(X)Wp(X) E 1-In-1 (recall p + q = n - 1) and write 

h(O) 
ha(O) - iT,~_l(ei0)l 2 ) 0, 0 e [-zr, zr]. (4.10) 

Then we have f~_~ hn(O)dO < eo. Let Cn be the orthonormal polynomial of degree 
n with respect to the measure h~(O)dO (varying with n) and let Pn be the associated 
para-orthogonal polynomial, i.e., Pn(z) = r + T~r % E '11". As mentioned 
before, Pn has exactly n distinct zeros {Xj,n} on T. From the Szeg6 quadrature 
formula [15, section 7] we know that there exist n positive numbers 7j,n such that for 
all R E A_(n_l),n_l 

f k R(x)hn(O)dO= 7j,nR(Xj,n), x = e  i0, 
71" j = l  

(4.11) 

and 

1 y Pn(x) 2hn(O) d 0 
~ j , n -  t X 2 

1 f,r ]pn(x)12 h(O)dO 
p~ 2 J _  I . ( ~ j , . ) l  ~ I : r n - l ( ~ ) l  2 I~ - ~ j , . I  ~ 

Now, multiplying and dividing each term on the right-hand side of (4.11) by 
IT~_I (xj,n)l 2, we obtain 

f ]  R(x)h(O) ~--,_ R(xj,.) 
iTn_, (x)12 dO = 2_.., "/J,n lT~__i (-~j,n)12 rr j = l  

VR E A- (n - l ) ,n - l ,  (4.12) 

with 

rn_l(.Tj,n) 12 [ rr Pn!x) 2 h(O) dO, x = e  i~ 
 j,n= IJ-  i -x.i 2 

(4.13) 

Proceeding as in lemma 4.3, we see from (4.13) that there exists a positive constant 
C I such that 

C I ~  . IAj,nl <~ VU,(,/ j ,n . ( 4 . 1 4 )  

On the other hand, 

IT._,(x)12 = I p( >q(x)l 2 = 
_ ~p(x)~&)~,(x)~&) 

Xp+q 
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and since p +  q = n -  1, we have IT~_l(x)l 2 E A_(n_t),71._l. If we take R(x)  = 
ITn_l(z)l 2 in (4.12), it follows that 

h(O)dO = ,n. 
7r j = l  

(4.15) 

From (4.14) and (4.15), a result similar to lemma 4.3 can be proved. 

L e m m a  4.4. Assume that h and w are as in lemma 4.3 and take X = {xj,n} such 
X n that { j,n} l are the zeros of the para-orthogonal polynomials of degree n with respect 

to the varying measure h(O)lwp(ei~176 -2, p + q = n - 1, then there exists an 
absolute constant C; such that 

71, 

IAj,nl ~< C;x/-~. 
j = l  

(4.16) 

Remark 5. From the point of view of the convergence of quadrature formulas for 
continuous functions, the meaning of lemmas 4.3 and 4.4 will become clear later. It 
follows that taking as nodes the zeros of the para-orthogonal rational functions with 
respect to a given positive measure h(O) dO is equivalent to taking nodes as zeros of 
para-orthogonal polynomials with respect to an appropriate rational modification of 
this measure. We illustrate this with an example. 

Example.  Let us consider the Lebesgue measure h(O) = 1/[27r], 0 e [ - %  7r]. The 
orthonormal rational functions are then given by (see [7, formula (1.2)], [5, p. 165]) 

r = V/1 -I~.12 zS~(~). (4.17) 
Z - -  O~ n 

Thus, the zeros {xj,n.} of fn(z)  = r + rnr ~-n E T are the roots of the 
equation 

0 = Pc(z) = ZCOn_~(z) + "rn~-n-I (z). (4.18) 

On the other hand, for a given polynomial h(z) of degree k of the form 

kt k2 

h(z )  = h, = II(  - aj)  II(  - zb;)  
l I 

such that laj[ < 1, Ibjl < 1, and hi + k2 = k, the nth Szeg6 polynomial with respect 
to the measure 

dO 

27rlh(ei~ 

can be expressed as 
pn(Z) ~ -  zn-kh l ( z )h~(z ) ,  n >1 k. (4.19) 
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The study of rational modifications of a measure has been introduced by Szeg6 in the 
case of the unit circle [21, section 11.2]. For further details, see [13, section 4] for 
the case of the Lebesgue measure on ~I" and also [9] where formulas are given for the 
sequence of monic orthogonal polynomials associated with a rational modification of 
a finite positive measure supported on Jordan curves. Let us now take hI (z) = wp(z) 
and h2(z) = rrq(Z), p + q = n - 1, then from (4.19) 

pn(Z) = zcop(Z)Wq(Z). (4.20) 

Hence, for 7-~ C "IF, the zeros of the nth corresponding para-orthogonal polynomial are 
the roots of the equation 

0 = Pn(z) = ZWp(Z)Wq(Z) + rnrrp(z)Trq(Z). (4.21) 

The nodes of lemma 4.3 are given by (4.18), while the nodes of lemma 4.4 are given 
by (4.21). 

Assume that {p(n)} and {q(n)} are two sequences of nonnegative integers such 
that p(n) + q(n) = n - 1 and l imn~c~p(n)/n = r < 1. Define for a continuous 
function f on qr 

7n-1 ( f )  = inf ]If - RIIv. (4.22) 
R E T Z n -  l , n -  1 

By theorem 2.1, one has that l imn~oo 'yn- t ( f )  = 0. However, it can be seen from 
lemma 4.3 (or 4.4) that this is not sufficient to assure the convergence of the sequence 
{Ir~(f)}. So, we need to give estimates of 7 ~ - l ( f )  in terms of n when f is a 
continuous function on qi'. Such estimates are known when f is approximated by 
Laurent polynomials. More precisely, it is proved in [4, theorem 5] by using Jackson's 
theorem III (see [6, chapter 4, section 6, p. 144]) that if f is a continuous function on 
'1I" then there exists some Rn- i  E A_(n_l),n_ I such that 

max I f ( x ) -  Rn-l(X)] ~< 2w(f,  Tr/n), (4.23) 
x E ' f  

where co(f, 3) = sup{lf(e is) - f(eit)]: It - s] < 3; -Tr ~< s, t ~< 7r} denotes the 
modulus of continuity of f on qr. If C~o :fi 0 is a fixed point in I3, then a bilinear 
transformation gives 

7 n - l ( f )  ~< K w ( f ,  Tr/n), 

where K is a constant and 

7 n _ l ( f )  = inf 
P6FI2n-2  f ( z )  - (z -- O~o)n-l(1 -- KOZ) n-1 "r" 

Thus, it seems natural to wonder if the same type of estimate for 7n-  l ( f )  holds when 
f is approximated by functions from 7~- l , n -1  (recall that 7~ - l , n -1  depends on the 
sequence c~ = {c~k} c I13). In this respect, a Jackson-type theorem was proved in 
[11, theorem 4] for a function continuous on [ -1 ,  1] that is approximated by rational 
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functions with prescribed poles outside [-1,1].  We shall prove a similar result. First 
some auxiliary results are required. Let 

P2n 
Ln(z) = zn E A-n,n, P2n C=_ 1-I2n , 

be a Laurent polynomial and Try(O) = Ln(e i~ a trigonometric polynomial of degree n. 
Then it is clear that ITn(O)] = ]Ln(z)l = IP2n(Z)] for z = e i~ E T. We also consider 

sA the trigonometric rational function Ra(0) = Tn(O)lwn(ei~ If tvaj j=i  C 
with Oj -7t: Ok for j :/- k and f is a periodic function on [-rr, rr], then P~(0) is uniquely 
defined by the interpolation conditions 

/ ~ . ( 0 j ) = f ( 0 j ) ,  j =  1 , 2 , . . . , 2 n + 1 ,  

because the system { 1, sin 0 , . . . ,  sin nO, cos 0 , . . . ,  cos nO} satisfies the Haar condition. 
We have 

P2n(e iO) P2n(e iO) 
Pun(0) =/3,.n(ei0) = einOIwn(eiO)12 = wn(eiO)rrn(eiO ) E "R.n,n. 

Setting xj = e i~ j = 1 , 2 , . . . ,  2 n +  1, we have . ~ ( z j )  = g(xj),  where 9(e i~ = f(O). 
Let us assume that 9 is defined on a certain neighborhood G including qi" and let F 
be the boundary of G. Then, from Hermite's interpolation formula (see Walsh [24, 
chapter 8, theorem 2]), one has 

Rn(0) - f ( 0 ) = / ~ ( e  i0) - g ( e  i0) = Pt.a(Z)--9(Z), z = e  i0, 

f r ( z  -- X l ) ' ' '  (z -- x2n+l)CO,,.(t)rrn(t.) 9(t) 
= - ~ - ~  . ~ - - 2 z ~ 2 7 -  t d t  

= J r  [X~.n+l(Z)]/[wn(z)Tr..(z)] 9( t )  dr, (4.24) 
z -  t 

k z where Xk(Z) = 1-Ij=l( - zj) .  
Next we need to extend the Bernstein-Walsh formula (see Walsh [24, p. 77]) 

to trigonometric polynomials. We recall that, for ordinary polynomials, this formula 
says that if f is a continuous function on [a, b] and Qm is the best (in uniform norm) 
polynomial approximation of degree m, then for m sufficiently large 

* Z [Qm( )1 <~ 2[Ifllooexp{m9ta,bl(Z,~176 

where 9[a,bl(Z, oo) is Green's function for the region C -  [a, b] with singularity at 
infinity. The trigonometric generalization of this result is 

Lemma 4.5. Let f be a real 2rr-periodic continuous function and let 7'*(0) be the 
trigonometric polynomial of degree m of best approximation in the uniform norm. 
Then if L *  E A-m,m is the Laurent polynomial such that T~(O) = L'm, (ei0~j, for 
sufficiently large m we have 
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(i) Vz :/= 0, Izl 4 1: [L~(z)l <. 2]]f[[oo]Z] -m, 

(ii) Vz ~ C, Izl/> 1" IL~.(z)] ~< 2[]fll~olz] m. 

Proof Given P~% ~ 1-12m, put Lm(z ) = P~m(Z)/Z m. Since Pzm is analytic in D U T ,  
we have that 

IP~m(z)l ~< max [Pgm(Z)l = max IP~m(z)l = IIT&ll , z ~ b u y .  
Izl~<l zeqr 

Thus, if z ~ 0 and Izl -< 1 then 

er 
[L;,(z)[ = .< IIT ll [zl -m. (4.25) 

For z E C and Izl >/1 we consider the function z-2"~P~m(z), analytic in Izl >/1, so 
that 

= Z2 m ~-~ maxlzl>_.l ~ = maxzev IP2*m(z)l = IIg~ll~176 (4.26) 

By the Weierstrass theorem, we have limm-+oo 7"*(0) = f(O) uniformly on [-rr, ~-]. 
Thus for sufficiently large m 

IIT&lloo 2Itflloo. (4.27) 

By (4.25)-(4.27) the result now follows. [] 

Now we can prove a rational form of Jackson's theorem III. 

L e m m a  4.6. Let c~ = {c~k} be compactly included in D such that (3.4) and (3.5) hold 
for r = s = 1/2 and let f be a real 2rr-periodic continuous function. Then there exists 
a trigonometric rational function R.n (0) = Tn (0)loo(e~~ with Tn(O) a trigonometric 
polynomial such that for sufficiently large n there is a constant K2 with 

i i f - /~11oo <~ Kew(S, Tr/n + X). (4.28) 

Proof Let Tr~ be the best trigonometric polynomial approximation to f of degree m 
* OO and set T~(O) = L~n(ei~ Lm E A-m,m. Let X = {Xn}n=l with Xn = {xj,n: j = 

n 
1 , . . . ,  n} be a triangular table of points contained in T. Set Xn(Z) = I-Ij=l (z - xj,n) 
and, with the notation introduced above, assume that 

ux  * rT, 
n 

where u x  = u(Xn) and 7 is the equilibrium measure on T in the presence of the 
exterior field 

- V ( z )  --- - l  (v~,,~(z) + V~,-~(1/z) + V,~,,(z)) ; 



340 A. Bultheel et al. / Convergence of multipoint Pad~-type approximants 

here a0 is the Dirac measure supported at z = 0. Details about existence and con- 
stmction of table X can be found in [10, main theorem, p. 124]. Let Tr~ be the 
trigonometric polynomial of degree m that is the best approximation of f and sup- 
pose that T&(O) = L* (ei~ * . ' ,. rnt j, L m E A-m,m.  Set xj,n = e '~ j = I . . , n ,  and 
take Rn(0) = T,, (0)lwn(e i~ the trigonometric rational function of degree n which 
interpolates T~ at 0 = Oj2n+l, j = 1 , . . .  , 2 n +  1. By (4.24), for z = e i0 E ~" we have 

j/F(X2n+I(Z) / X2rt+l(t) ) Lm(t) dr. 
r ~ ( o )  - r ,*~(o) = \ o o n ~ T ( z ) / ~ ~ )  ~ - t (4.29) 

Suppose that r = I-', [...J F 2 where Fl = {z E C: Iz] = r < 1} and F2 = {z E C: ]z] = 
R > 1}. If G denotes the annulus centered at the origin with radii r and R, then, 
since c~ is compactly included in D, r and R can be chosen sufficiently close to 1 so 
that G 71 (c~ tO ~) = 2~. Setting p = log(max{R, 1/r}), by the preceding lemma, we 
obtain 

sup IL~,,(z)l ~< 2[]fl[oo exp{rn, p}. (4.30) 
z E F  

Replacing n by 2rt + 1 in (3.4) and (3.5) and setting p(2n + 1) = q(2n + 1) = rt, so 
that r = s = 1/2, for z E (C - {0}) - supp (u a) and I / z  ~ supp (u ~) one obtains 

lirnoo Iw,,(z)rr,~(z)l 1/(2'~+1) = e x p  {- �89  (Vz,~ (z) + V y ( l / z ) )  }lzl'/2 

= exp { - V ( z ) } ,  (4.31) 

and, for z r 0, 

l i m  sup[con(Z)'lrn(Z)] l/(2n+l) ~ e x p { - V ( z ) } .  
n -..-). oo 

(4.32) 

By (4.29) and (4.30) it follows that 

IP (o) - T&(0)I 

.<, l(supl ~2n+l(z) ]/ine] ) 
\z~w co,~(z)rcn(z) / t e r  wn(t)rcn(t) exp{mp}ll f[Ioo.  (4.33) 

By (4.31), we have 

x2.+,(t) ] 
l ima  w---~ (~-r~-~) 

l / ( 2 n + l )  

= exp {v(0 - v:(t)} 

uniformly for t E F, and, by (4.32) 

limsup L  2n+l z' L n-~o~ ~On(Z>n(z) 

l / ( 2 n + l )  

<<, e x p { V ( z )  - V-~(z)} 
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uniformly on '11". Given E > 0, we obtain 

X2n+, (t) {(2n V;(t) e] 
con(t)rr~(t) ~> exp + 1 ) I v ( t ) -  - } 

for n >/no and t E F, and 

X2rt+[ (z) I COn(Z)rrn(Z) <" exp{(2r~+ l ) [ V ( z ) -  V ; ( z ) + e ] }  = e x p { ( 2 n + l ) ( K + e ) }  

for z E ql', where K is the constant value that V(z)  - V-d(z ) takes on ']I". From (4.33) 
and the last two centered formulas we can conclude that, for n >~ n0 and 0 E [-rr, rr], 

Ir (e) - 

<. K l l l f l l ooexp{mp}exp{ (2n  + 1)[K + 2 e - i n f  ( V ( t ) -  V;(t))] }. (4.34) tEF 
Take m = re(n)  = L(2n+ 1)//] with [.J the integer part and I an appropriately chosen 
positive constant. Then m ~< (2n + 1)/l and from (4.34) it follows 

_rft IIf[Ioo exp { (2r~ + 1)[p/l  + K + 2g - inf (V(t)  - V~(t))] }. tEF 
On the other hand, it is known that 

inf (V(t)  - V;(t)) > K. tEF 
Therefore, by taking e > 0 sufficiently small and I sufficiently large, we can ensure 
that 

p/l + K + 2 e -  inf (V(t)  - V;(t)) = - C  tEF 
with C a positive constant. Thus we have obtained that for all 0 E [-rr, rr] 

I t~z(O)-T*(O)I  <~ K t l l f [ Iooexp{ -C(2n  + 1)}. (4.35) 

Next we assume without loss of generality that f vanishes at least once at a point 
00 ~ (if not, it sumces to consider 9(0) = f(O) - f(Oo) and take into account 
that co(f, a) = co(g, a)). Under this condition 

I l f l l ~ <  max { f ( 0 ) } -  min { f (0)} .  (4.36) 
0e[-,~,,~] 0E[-,~,,d 

Let f(Ol) be the maximum and f(02) be the minimum. Suppose 01 < 02 (the other 
case is similar); then 

[ i(02-01) (01 (i+ 1)<02--01))11 
i=0 

2n+,[ ( i(09_01),  ~ ( (,/+ 1)(02_01)) 
i=0 

~ < ( 2 n + 2 ) w  f , ~  �9 
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Therefore 

II/11~o ~< (2n + 2)~o f '  ~77-i- ' 

From (4.35) and (4.37) we obtain 

IP~.(O)-T*(O)[ <~ Kiw f , -~ -~  exp{log(2n+ 2 ) -C(2n+  l)}. 

Now, using Jackson's theorem III [6, p. 144], for 2n + 1 >~ 1 we obtain 

[f(O)--T*(n)(O)l~2~ f ' m ( n ) + l  <<.2co f' [(2n+ l)/l] 

~<2co f ' 2 n + l  ~<2co f ' n + l ]  

(4.37) 

(4.38) 

<~ 2(21+ l ) w ( f , n - - ~ ) ,  (4.39) 

where we have used that Ln/lJ >~ n/(21) if n > z, that co(f, &) <~ co(f, a2) if 61 ~< 32 
and that w(f, A~5) <~ (1 + A)co(f, c5). A combination of (4.39) and (4.38) then gives 

I f ( o ) -  P~(O)[ ~< I f ( o ) -  TL(n)(O)I + [T,*(n)(O ) - Rn.(e) I 

~< [ 2 ( 2 / + l ) + K l e x p { l o g ( 2 n + 2 ) - C ( 2 n + l ) } ] w  f ' ~ - i -  " 

Hence, noting that l i m n ~  exp[log(2n + 2) - C(2n + 1)] = 0, the lemma follows. [] 

Finally we are ready to prove 

Theorem 4.'/. Let c~ = {ctk} be compacly included in D such that (3.4) and (3.5) hold 
for r = s = 1/2 and let f be a function continuous on T. Then there exists a constant 
C4 such that 

where %(f)  is as in (4.22) with n sufficiently large. 

Proof. Let us now consider a continuous function f on T; then we can set 

f ( e  i~ = fl(0) + if2(0), 0 E [-rr, lr], (4.40) 

where fl (0) = ~( / (e i~  and f2(0) = ~(f(e i~ are 2~--periodic functions on [-Tr, 7r]. 
Let P~,j(O), j = 1,2, be the trigonometric rational functions appearing in (4.28) and 
corresponding to fj(O), j = 1,2, that is, 

I I / j - ~ , j l l ~  <<. K2,j~o fJ'n+------i ' j =  1,2. (4.41) 
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Write R.n(Z) = / ~ . , l ( 0 ) +  i /~ ,2(0) ,  z = ei~ then clearly Rn E 7-r Furthermore,  
since I f j (s)  - fj(~)l <~ If(eis)  - f (e i t ) l ,  J = 1,2, it follows that co(fj ,a) <~ co(f, 6), 
j = 1,2. Thus,  by (4.28)-(4.41) it follows that 

"In(f) max I f ( z ) -  R- (z)l IIf,-  + Llf2-/ ,211oo z6T 

(K2,  + K 2) o f'-g-T-i " 

This concludes the proof. []  

It follows that if f is a continuous function on T with co(f, 6) = O(a p) and 
p > 1/2, then, by theorem 4.7 and lemma 4.3 or 4.4, there exist constants A and B 
independent  of  n such that for sufficiently large n one gets 

I I n ( f ) -  I,,(f)l 
A + Bv/-~ 

np 

This means that the fol lowing theorem is proved. 

T h e o r e m  4.'8. Let  f be a continuous function on 'II" with modulus of  continuity 

w ( f ,  6) = 0(,5 p) for some p > 1/2. Let  X = {xj ,n} be the triangular array of  
nodes as described in lemma 4.3 or 4.4. Then the sequence of  quadrature formulas 

with nodes {xj , , ,}  converges to I i , ( f  ). 

Remark 6. Note that theorem 4.8 holds for any function f satisfying a Lipschitz con- 

dition of  the form 

If(z,)- f ( z2 )  I ~ AIz ] - z21 p, p > 1/2; z t , z2  �9 v .  
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