
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Non-Linear Finite W-Symmetries and Applications in Elementary Systems

de Boer, J.; Harmsze, F.A.P.; Tjin A Tsoi, T.

Publication date
1996

Published in
Physics Reports

Link to publication

Citation for published version (APA):
de Boer, J., Harmsze, F. A. P., & Tjin A Tsoi, T. (1996). Non-Linear Finite W-Symmetries and
Applications in Elementary Systems. Physics Reports, 272, 139-214.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/nonlinear-finite-wsymmetries-and-applications-in-elementary-systems(43aab6b7-29f0-43f5-92e5-5f1ee99145d9).html


NON-LINEAR FINITE W-SYMMETRIES AND 
APPLICATIONS IN ELEMENTARY SYSTEMS 

Jan de BOER”, Frederique HARMSZEb, Tjark TJIN” 

a institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, 
NY I1 794-3840, USA 

b Institute for Theoretical Physics, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands 
’ Ko~inkI~ke~~he~l-~aboratori~m Amsterdam, P.O. Box 38000, 1030 BN Amsterdam, The Netherlands 

ELSEWIER 

AMSTERDAM - LAUSANNE - NEW YORK - OXFORD - SHANNON --- TOKYO 



PHYSICS REPORTS 

EISEVIER Physics Reports 272 (1996) 1399214 

Non-linear finite W-symmetries and applications in 
elementary systems 

Jan de Boer a, Frederique Harmszeb, Tjark Tjin’ 

a Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA. 
deboer@max.physics.sunysb.edu 

b Institute for Theoretical Physics, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands. harmsze@phys.uva.nl 

’ KoninklijkelShell-Laboratorium Amsterdam, P.O. Box 38000, 1030 BN Amsterdam, The Netherlands. tjinl@ksla.nl 

Received August 1995; editor: A. Schwimmer 

Contents 

1. Introduction 
2. Symmetries in simple physical systems 

2.1. Symmetry algebras 
2.2. Harmonic oscillators 
2.3. Coulomb potential 

3. Classical finite W-algebras 
3.1. Kirillov Poisson structures 
3.2. Poisson reduction of the Kirillov 

Poisson structure 
4. Quantum finite W-algebras 

4.1. BRST quantization of finite W-algebras 
4.2. Quantum finite W-algebras from 

slZ embeddings 

141 
144 
144 

146 
149 
150 
151 

152 
168 
169 

171 

4.3. Quantum finite W-algebras not from 
slZ embeddings 

5. The representation theory 
5.1. Real forms and unitary representations 
5.2. Highest weight representations 
5.3. Characters of finite W-algebras 

6. Constructing theories with finite 
W-symmetries 
6.1. Problems with finite W-symmetries 
6.2. Finite W-invariance in d = 1 

Appendix 
References 
Note added in proof 

175 

178 
179 

184 
189 

192 
192 
199 
207 
212 
214 

Abstract 

In this paper it is stressed that there is no physical reason for symmetries to be linear and that Lie group theory is 
therefore too restrictive. We illustrate this with some simple examples. Then the theory of finite W-algebras, which is an 
important class of non-linear symmetries, is reviewed. In particular, we discuss both the classical and quantum theory 
and elaborate on several aspects of their representation theory. Some new results are presented. These include finite 
W coadjoint orbits, real forms and unitary representation of finite W-algebras and PoincarbBirkhoff-Witt theorems for 
finite W-algebras. Also we present some new finite W-algebras that are not related to s/(2) embeddings. At the end of the 
paper we investigate how one could construct physical theories, for example gauge field theories, that are based on 
non-linear algebras. 
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1. Introduction 

The notion of symmetry is one of the most fundamental concepts in physics. Relativity theory for 
example is based on symmetry, namely Lorentz invariance. This symmetry is the mathematical 
expression of the postulate that physical laws are the same for all inertial observers. In particle 
physics the principles of symmetry provide a powerful overall framework. This allows successful 
classification and interpretation of an overwhelming amount of experimental data concerning the 
spectrum of elementary particles. Moreover, the interactions between elementary particles are 
completely determined through the principle of local gauge invariance, a central paradigm of 
modern particle theory. The highly successful standard model, unifying the electro-weak and 
strong interactions between elementary particles, is based on the local gauge group U(1) x SU(2) 
x SU(3). 

The mathematical theory concerning symmetry transformations in a physical system is group 
theory. It has been developed independently in different fields of mathematics. In the context of 
algebraic equations the idea of groups was used already by Lagrange in 1771, though the name 
‘group’ was only introduced in 1830 by Galois. The second area in which it appeared was number 
theory, with Euler (1761) and Gauss (1801) as the most important contributors. The concept found 
its place in geometry in the middle of the 19th century, when Klein proposed it as a tool to classify 
certain new geometrical structures that had been discovered at the time. At the end of the 19th 
century, it was realized that these three group concepts were the same and this insight led to the 
formation of modern abstract group theory by Lie (1870). The name of Lie has been associated to 
continuous linear groups, now called Lie groups. It was Cartan who subsequently almost fully 
developed this subject, though he was rather isolated for a period of about thirty years. 

The simplest symmetries are those in which the physical system is symmetric under a finite 
number of transformations or when it is invariant under displacement in a finite number of 
‘directions’. The natural mathematical structures describing such symmetries are discrete groups 
and finite-dimensional Lie groups respectively. 

Group theory has been introduced in physics in the 1920s mostly through the work of Weyl and 
Wigner. Apart from the obvious description of symmetries in crystals, they realized that group 
theory is of utmost importance in quantum physics. Weyl writes in [l] on group theory in quantum 
physics: “It reveals essential features which are not contingent on a special form of the dynamics 
laws nor on special assumptions concerning the forces involved. We may well expect that it is just 
this part of quantum physics which is most certain of a lasting place.” 

Lie groups and their Lie algebras have a wide range of applications in physics. In fact, most 
symmetry considerations of physical systems have up to recently been based on the application of 
the theory of Lie groups and algebras. This is true for the Lorentz group in the theory of special 
relativity, as well as for the groups underlying gauge theories of the fundamental interactions 
between the basic constituents of matter. It is worth noting that these theories, based on linear 
symmetries, in fact have highly non-linear dynamics. 

In mathematics, the development of the theory of Lie groups was continued with the work of 
Chevalley (1950), Serre (1966) and Dynkin. In 1967, Kac [2] and Moody independently generalized 
the theory of finite-dimensional Lie algebras to the infinite-dimensional case. These so-called 
affine Lie algebras have found remarkable applications in two-dimensional field theory and string 
theory [3]. 
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For a long time, all efforts to develop the theory of symmetry in physics were restricted to the 
linear case, i.e. Lie groups and Lie algebras. However, it was realized recently that the ‘Lie algebra’ 
might be too narrow a concept from the physical point of view. Unfortunately, the extensive 
machinery developed for the analysis of linear symmetries largely breaks down in the non-linear 
domain. Nevertheless, in the eighties, led by developments in string theory and solvable models, 
non-linear symmetries gained importance in physics. In fact, this may be seen as part of the boom 
in the field of non-linear science in mathematics and physics which started roughly in the middle of 
the nineteenth century. Non-linear symmetries seem a logical next step in this field which has led to 
the discovery of theories concerning for example solitary waves (solitons), chaos and turbulence, 
but also non-linear gauge theories. 

One type of non-linear algebra that has received much attention in recent years are the so called 
quantum groups. They are obtained from ordinary Lie algebras by deforming (quantizing) the 
co-Poisson structure present on any Lie algebra, or, equivalently, by deforming the space of 
functions on the group manifold. These algebras have some very interesting applications in 
conformal field theory but it is not this type that we will be concerned with in this paper. 

Surprisingly enough, when in 1985 Zamolodchikov [4] took up the subject of non-linear 
algebras, he considered injinite-dimensional W-algebras. In his work on conformal field theory, he 
generalized the well-known Virasoro algebra, which is the infinite-dimensional Lie algebra asso- 
ciated with the conformal symmetries in two-dimensional space-time. What he found were 
non-linear infinite-dimensional algebras, that were called W-algebras. Subsequently, W-algebras 
were studied in the context of string theory, the theory of integrable systems and the theory of 
two-dimensional critical phenomena. For more details we refer the reader to the reviews [S-7] on 
W-algebras in conformal field theory. 

One important question was and still is the classification of W-algebras, in other words, to make 
a complete list of all W-algebras. The most profitable approach to date is to apply the Drin- 
feld-Sokolov construction [8] to derive W-algebras starting from affine Lie algebras. It has been 
shown in [9] that this construction gives rise to a large class of W-algebras. This relation between 
W-algebras and affine Lie algebras in principle enables one to construct the W-algebra theory from 
the theory of affine Lie algebras. 

At this point, the question arose whether finite-dimensional analogues of the infinite-dimen- 
sional W-algebras exist as well. The relevance of this question is apparent if one considers that the 
theory of the infinite-dimensional so-called loop groups and algebras can be derived from the 
finite-dimensional Lie groups and algebras underlying them. Loop groups are special cases of 
infinite-dimensional groups of smooth maps from some space-time manifold X to a finite- 
dimensional Lie group G, namely for X = S’. The study of infinite-dimensional groups of smooth 
maps is a natural consequence of the combination of symmetry principles with locality or causality. 

The group multiplication in such a group is just pointwise multiplication, i.e. ifJ g E Mup(X, G) 
and a E G then (f. g)(u) =f(u)g(u). In quantum field theory, groups of the form Mup(X, G) and 
their Lie algebras Mup(X, g) (where 3 is the Lie algebra of G) arise essentially in two different ways: 
through the principle of local gauge invariance, which is at the heart of modern high energy physics, 
and through the theory of current groups and algebras. 

Unfortunately, for generic manifolds X, surprisingly little is known about the group Mup(X, G). 
Especially, the representation theory of these groups is still almost unexplored. This exception to 
this is the case X = S’ we mentioned above, where Mup(S’, G) and Mup(S’,g) are called ‘loop 
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groups’ and ‘loop algebras’. Loop groups and algebras arise in simplified models of quantum field 
theory in which space is taken to be one-dimensional and therefore also in string models of 
elementary particles. The study of loop groups and algebras is much simpler than when X is some, 
more complicated manifold. This is caused by the fact that they behave much like the ordinary 
finite-dimensional Lie groups and algebras that underlie them. This remarkable fact makes 
knowledge of the finite-dimensional theory essential for the study of the infinite-dimensional 
theory. 

For the infinite-dimensional W-algebras it was not entirely clear what the finite algebras 
underlying W-algebras were and whether there was a finite version of W-theory at all. Considering 
the way in which W-algebras were first introduced into physics, they really do not seem to have any 
relation to the theory of loop groups and algebras. Nevertheless, the theory of W-algebras does 
have a finite counterpart as has been shown in [lo, 111. In fact, the finite theory is remarkably rich, 
and as with loop algebras, contains already several of the essential features of infinite-dimensional 
W-algebra theory. 

The main objective of this paper is twofold. On the one hand, we wish to convey to the reader our 
view that non-linear symmetries are not only interesting in relation to theories that have a math- 
ematical sophistication comparable to that of string theory, but that they play an important role 
throughout physics. In fact, finitely generated non-linear symmetries already show up in very 
elementary and famous physical systems. 

Our second objective is to give a readable account of the classical and quantu:ii theory of finite 
W-algebras and to present some new results. 

The outline of the paper is as follows. After some general remarks on dynamical systems and 
symmetries, we illustrate by means of known examples, that many basic physical systems have 
non-linear symmetry algebras. In particular, the symmetry algebras of the two-dimensional aniso- 
tropic harmonic oscillator with frequency ratio 2: 1 and the Kepler problem are shown to be finite 
W-algebras. 

Finite W-algebras can be constructed from finite Lie algebras by a procedure resembling the 
constraint formalism. Precisely how this works will be the subject of chapter 3. In this chapter, we 
construct and develop the classical theory of finite W-algebras. Also we show that many finite 
W-algebras contain known Lie algebras as subalgebras. The question, therefore, naturally arises 
whether there exist non-linear extensions of 43) x 42) x u(1). The answer to this question turns 
out to be affirmative. 

Having developed the classical theory, we turn to the quantum case and show how to quantize 
finite W-algebras using the BRST formalism. In some specific cases we explicitly construct the 
BRST cohomologies. Next, we consider the representation theory of quantum finite W-algebras. In 
order to define unitary highest weight representations for finite W-algebras it is necessary to 
consider real forms and Poincare-Birkhoff-Witt theorems for these algebras. Having developed 
this part of the theory we describe the results on Kac-determinants and character formulas that 
were recently conjectured in [12]. Finally, we present some ideas about possible constructions of 
theories with finite W-symmetries. In particular, we give some topological theories having finite 
non-linear W-symmetries including the one recently constructed in [13], and we show how finite 
W-algebras are realized in one-dimensional generalized Toda theories. We conclude with yet 
another simple quantum mechanical example, which has a finite W-algebra as a spectrum 
generating algebra. 
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Most of the material in this review is based on existing results. New are the results described in 
Sections 4.3, 5.1, the Poincare-Birkhoff-Witt theorem in Section 5.2, part of Section 6.1 and 
Sections 6.2.2 and 6.2.3. 

2. Symmetries in simple physical systems 

In this chapter we first briefly review some basic facts concerning algebras of conserved 
quantities in elementary mechanical systems. It is explicitly stressed that there is no reason, neither 
physical nor mathematical, why these algebras have to be linear. In fact, they are non-linear in 
general. We then illustrate this explicitly in some examples, namely, the harmonic oscillator and the 
Kepler problem. 

2. I. Symmetry algebras 

During the motion of a mechanical system, the generalized coordinates qi and the velocities $ 
vary in time. Nevertheless, there exist functions of these quantities whose values do not change but 
depend only on the initial conditions. Such functions are called ‘integrals of motion’. Integrals of 
motion which do not depend explicitly on time are called conserved quantities. From now on we 
will restrict ourselves to conserved quantities. 

Noether’s theorem states that conserved quantities are related to symmetries. Symmetry trans- 
formations leave the action invariant, i.e. 6s = 0. Therefore, the variation of the Lagrangian can 
only be equal to a total derivative 6L = (d/dt)A(q, t). Let us consider the symmetry transformation 
4’ = 4 + 6q. Then we find that 

if the Lagrangian only depends implicitly on time. Partial integration yields 

(2.1) 

(2.2) 

The right-hand side is equal to zero because of the Euler-Lagrange equations. Therefore, if 
q satisfies the equations of motion, then 

$ 
( 

A(q,t) - 8 6q = 0 . 
> 

(2.3) 

The expression between the brackets is a conserved quantity. This is Noether’s theorem. 
In the above we considered a general transformation q’(q). More particularly, this transforma- 

tion can consist of a set of independent transformations in different ‘directions’, labeled by 
a parameter 8,: 

6q’ = E&&q’. (2.4) 
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The conserved quantities Qa, also called ‘Noether charges’, that can be associated to all these 
symmetry transformations are defined as 

such that 

dQ, o 
-= 

dr ’ 

Now, classically, the time derivative of a quantity Q is given by 

g={H,Q}, 

where the Poisson bracket of the functionsf and g is defined by 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Conserved quantities are therefore characterized by the fact that they Poisson-commute with the 
Hamiltonian: 

(Q,H}=O. (2.9) 

Let {Qa} be a set of independent1 conserved quantities, i.e. {QO, H} = 0. It is clear that any 
polynomial P( { Qa}) in the conserved quantities is conserved as well. Also it follows from the Jacobi 
identity 

U&h)) + MU)) + V4f;g1) =O, (2.10) 

that 

W>{Q,>Qd =O. (2.11) 

This means that the Poisson bracket of two conserved quantities is conserved. We call the set { Qa ) 
of conserved quantities closed if 

{Qa,Qb) = Pab ? (2.12) 

where Pab is some function of the quantities (Qa>. If the Poisson bracket contains some conserved 
quantities which are not present in the set { Qa>, i.e. if this set is not closed, we can add these 
quantities to the set and thus make it closed. 

The Poisson algebra (2.12) of conserved quantities will from now on be called the classical 
symmetry algebra. The quantities (Qn> are called the generators of the algebra. If an algebra has 
a finite number of generators, it is said to be ‘finitely generated’. The transformations associated 

‘Two conserved quantities QI(q,p) and Qz(q,p) are called independent if the vectors (aQl/aq,aQ&~) and 
(aQz/aq,aQz/aq) are linearly independent. 
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with the Noether charge Qa of the coordinates qi and momenta pi are of course given by 

daq’= {qi, Qa} 2 Dali= {pi,Qa} . (2.13) 

In quantum mechanics, the equivalent of Eq. (2.7) is 

dQ 
-lCH,Q1, -z-h (2.14) 

where Q and H are now operators. As in the classical case, we define the symmetry algebra as the 
set of independent operators {Qa} which commute with the Hamiltonian and have the property 
that the commutation relations of Qa and Qb can again be expressed in terms of the operators { Qa}. 

As [Qa, H] = 0 for a conserved quantity, the operator Qa will transform eigenstates of H into 
(possibly different) eigenstates with equal energy. The Hilbert space of the system therefore 
decomposes into a direct sum of irreducible representations of the symmetry algebra generated by 

{Qa>. 
In the next section, we shall introduce linear and non-linear symmetries using some very simple 

and well-known physical systems. 

2.2. Harmonic oscillators 

Harmonic oscillators constitute a category of very basic systems in physics. They show up in 
virtually all problems with a finite or infinite number of degrees of freedom. The reason is that, 
upon linearizing a generic dynamical problem harmonic oscillators approximate any arbitrary 
potential in the neighbourhood of a stable equilibrium position, describing for example small 
vibrations of an atom in a crystalline lattice or a nucleon in a nucleus. On the other hand, the 
behavior of most continuous physical systems, such as the vibrations of an elastic medium or the 
electromagnetic field in a cavity, can be described as a superposition of an infinite number of 
harmonic oscillators. In this section, the idea of both linear and non-linear symmetries will be 
illustrated using these elementary systems. 

2.2.1. The isotropic case 
Let us consider a particle of mass M moving in a quadratic potential in the (x1, x2)-plane. The 

Hamiltonian of this system is given by 

H=~(P:+P:)+~MWZ(X:+X:), (2.15) 

where o is the angular frequency of the oscillator. In the usual quantum description of this system 
one introduces the so called ‘raising’ and ‘lowering’ operators 

(2.16) 
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where tt is Planck’s constant. From the canonical commutation relations between coordinates and 
momenta [xi,pj] = iA6ij, one can easily derive 

[a,a+] = [b,bi] = 1 ) (2.17) 

and all other commutators are zero. 
In terms of raising and lowering operators, the Hamiltonian reads H = (at a + h + h + 1)hw. The 

Hilbert space of the system is spanned by the states 

I&4) = (~+)“@+)“lQ> > (2.18) 

where p,q are non-negative integers and [G?) is the ‘ground state’ (which has the property that 
ala) = blQ) = 0). The energy of the eigenstate Ip,q) is E,,, = (p + q + l)tZ~. From this we see 
that the states Ip - r, r), where r = 0, 1, . . . ,p all have the same energy, i.e. the energy eigenvalue 
E,,, has a (p + q + 1)-fold degeneracy. This leads one to conjecture the existence of a symmetry 
supplying extra quantum numbers and transforming eigenstates with the same energy into each 
other. We shall now discuss this symmetry. For notational convenience we take from now on 
M=co=Zz=l. 

Consider the operators 

S, =ub+; S_ =u+b; &=b+b-u+u. (2.19) 

These quantities are conserved as is expressed by the equation 3,s; = [Si, H] = 0 for i = f , 0. The 
commutation relations between the operators Si themselves can be easily calculated using (2.17) 
and read 

CS,,S,l = f2S, ; [S+,S-I = &I. (2.20) 

Notice that the commutation relations of the operators Si are again expressions in terms of Si, so 
the algebra is closed. Furthermore, these expressions are linear, such that the algebra is linear. In 
fact, the commutator algebra (2.20) is nothing but su(2), the simplest example of a non-abelian 
simple Lie algebra. 

The theory of Lie algebras is well known and extensively described in the literature. Lie algebras 
can be related to symmetry groups, called Lie groups, by an exponential map. All elements g in the 
component connected to the unit element of a Lie group can be written as g = exp(a”t,), where 
t, are the generators of the Lie algebras. ra are numbers and summation over the index a is 
understood. 

The action of the generators S + and S_ of the 42) symmetry can be interpreted as follows. The 
state of the (quantum mechanical) particle in the plane is composed of oscillations in two 
directions. The operator S, decreases the oscillation in the x2 -direction and increases oscillation in 
the other one. It can continue this action, until the state of the particle consists only of oscillation in 
the x1 -direction. The operator S_ in its turn, squeezes the orbit of the particle towards oscillation 
in the x2 -direction. 

What we can conclude from this section, is that the isotropic oscillator in two dimensions has 
su(2j symmetry, which is larger than the obvious SO(~) rotation symmetry in the x-y plane. 
Similarly, it can be shown that the symmetry of an n-dimensional isotropic harmonic oscillator is 
the Lie algebra sufn) (or u(n), if one also views the Hamiltonian itself as part of the symmetry 
algebra). 
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2.2.2, The anisotropic case 
We will now consider a slightly more complicated case: the two-dimensional anisotropic 

harmonic oscillator. The Hamiltonian of the anisotropic oscillator is given by 

H = &p: + p;) + ;A4o;x: + :A4o;x; . (2.21) 

Again we will take M = a = 1. In order to have degeneracy in the energy levels of E, we take 
co1 = l/m and co2 = l/n, where m and n are positive integers. In terms of the raising and lowering 
operators, which satisfy the commutation relations (2.17), the Hamiltonian reads 

(2.22) 

If we consider the analogues of the operators (2.19) in this system, we find that the generators S, no 
longer commute with the Hamiltonian H. In other words, S, are not conserved. Therefore the 
algebra su(2) is not a symmetry algebra of the anisotropic oscillator. 

In order to arrive at the true symmetry algebra of the anisotropic oscillator, we consider, like 
[14,15-J, the following operators that do commute with H: 

j”+ = a”(bt)” ) jl = (at)“b” ) To = 1 btb + 1 n( 2)--+(ata+Jj). (2.23) 

These are the generators of the symmetry algebra of the anisotropic quantum harmonic oscillator 
with frequencies m and n positive integers, as was shown in [15]. 

For simplicity, let us consider the case that the frequencies have the fixed value m = 2 and n = 1. 
Calculation of the commutation relations of the generators (2.23) for these values of m and 
n produces: 

(2.24) 

with i = 0, f. After an invertible basis transformation, given by 

(2.25) 

we obtain 

CH,jil = 0, Ch,j+l = +2, , Cj+,j-1 =A? + C, (2.26) 

where C = $ - $H2. This commutator algebra is known in the literature as W:“’ [lo]. We 
conclude that the symmetry algebra of a two-dimensional anisotropic harmonic oscillator with 
a frequency ratio m : n = 2 : 1 is the non-linear finite W-algebra IV:“’ . We will return to this algebra 
later in the paper. More generally, if we take m and n arbitrary positive integers we find that the 
symmetry algebra is non-linear whenever m # n [15]. 

I+‘:“’ is an example of a non-linear algebra. The commutators cannot be written as linear 
combinations of the generators, but as linear combinations of products of generators. As it has 
a finite set of generators, it is finitely-generated. 
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In contrast to Lie algebras, one cannot associate a finite group to a non-linear algebra. The only 
group G which can be obtained with an exponential map from a non-linear algebra is generated not 
only by the generators of this algebra, but also by their polynomials and therefore is infinitely 
generated. Only then is the requirement met, that Vgi E Ggig, = g3, because of the Campbell- 
Baker-Hausdorff formula for the multiplication of exponential maps. While the elements of an 
algebra give rise to infinitesimal transformations, group elements correspond to finite symmetry 
transformations. Consequently, we cannot easily tell in the non-linear case how the transformation 
works globally, though we know the infinitesimal transformations on the local level. From the 
latter, one can, in principle, derive a differential equation whose solution for finite time corresponds 
to transformations of the ‘finite W-group’, but these differential equations are typically non-linear 
and very hard to solve explicitly. 

Though the problem we considered is an elementary and a linear one, meaning that the 
equations of motion are linear, its symmetry algebra turns out to be non-linear. Surprisingly 
enough the study of these non-linear symmetry algebras has been taken up only recently. Most 
attention has focused on non-linear extensions of su(2), see for example [16-241. 

2.3. Coulomb potential 

A large class of well-known dynamical systems have a Coulomb potential. Planetary motion and 
the motion of a charged particle in a Coulomb field are of this type. In this section, we will consider 
the symmetry algebra of this class of systems. 

The Hamiltonian is given by 

(2.27) 

where ,U is a fixed constant. Due to the spherical symmetry of the potential, this system is invariant 
under rotations in three dimensions. This invariance leads to the conservation of angular mo- 
mentum L. We start on the classical level by considering the Poisson brackets of the dynamical 
variables, which are functions on the phase space with coordinates (r,p). The algebra is given by 
{Li, Lj} = EijkLk and is called SO(~) (or su(2)). It is a simple Lie algebra. 

However, the angular momentum L is not the only conserved quantity in this system. Let us 
consider the vector R defined by 

R=Lxp+p;, (2.28) 

with p again the fixed constant, proportional to the central potential. Straightforward calculation 
shows that this, so-called ‘Runge-Lenz vector,’ also (Poisson) commutes with the Hamiltonian: 
{Li, H} = {Ri, H} = 0. Th is additional symmetry differs from the SO(~) symmetry, which is a geo- 
metric symmetry, i.e. which can be expressed as mappings of configuration space alone. The 
symmetry transformations associated to the RungeeLenz vector do not transform the coordinates 
and momenta separately. They act on the entire phase space. The term ‘dynamical symmetries’ is 
sometimes used for this type of symmetries. 
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In the example of planetary motion, the Runge-Lenz vector points along the major axis of the 
ellipsoid orbit of the planet and its magnitude is proportional to the eccentricity of the orbit. 

In an analogous quantum case, i.e. the hydrogen atom, which is discussed in detail in [25], the 
fact that the angular momentum is not the only conserved quantity is reflected by the degeneracy in 
the spectrum. While the states of the Hamiltonian depend on three quantum numbers, IZ, E and m, 
the energy depends only on n: E, - l/n2. The energy is independent of m because of the SO(~) 
symmetry, which corresponds to the conservation of angular momentum. The degeneracy with 
respect to this magnetic quantum number is present for any central potential. The absence of 
dependence on I suggests that there is another conserved quantity, which turns out to be the 
Runge-Lenz vector. This degeneracy occurs only if the potential is of the form l/r and is thereby 
particular to the Coulomb potential. 

Let us return to the classical symmetry algebra of Li and Ri. In the first place, the algebra is only 
closed if we include H in the set of generators. Secondly, we see that it is actually non-linear: 

{Li,Lj} = &ijkLk 9 {Ri, Rj) = -2EijkHLk ) 

{Ri,Lj} = Eijk& > {LiyH} = {R,,H) = 0. 
(2.29) 

Usually one linearizes (by a non-linear basis transformation) this algebra giving rise to the 
well-known hidden SO(~) symmetry in the hydrogen atom [25]. The algebra above describes the 
Kepler orbit in a three-dimensional Euclidean space. Now consider the same Kepler problem on 
a three-sphere S3. In [26,27] it is shown that the Poisson brackets between the components of the 
R vector become 

{Ri, Rj) = &ijk(-2H + u’)Lk , (2.30) 

where /z is the curvature of the sphere, which is equal to the inverse radius R of the sphere II = l/R. 
We will call this algebra the Runge-Lenz algebra. Later it will be shown that it is a finite W-algebra 
(which was first remarked in [28]). 

In the previous sections we have shown that even simple and well-known physical systems may 
have non-linear W-symmetries. In Section 6.2 we will see yet another example, namely Toda 
systems. It seems therefore to be justified to embark on a more systematic study of these algebras 
and their representation theory. This will lead us to the theory of finite W-algebras. 

3. Classical finite W-algebras 

As we have seen in the first chapter, algebras of conserved quantities are always closed, but not 
necessarily linear. This is not merely an abstract mathematical possibility; we have seen that some 
of the simplest and most fundamental systems in physics exhibit non-linear symmetries. When 
trying to analyze these symmetry algebras however, or perhaps to construct their irreducible 
representations, one inevitably runs into trouble due to the fact that they are non-linear. New 
methods are therefore needed. 

In this chapter, it will be shown that many non-linear algebras, including the ones we encoun- 
tered in the previous chapter, can in fact be seen as ‘reductions’ of Lie algebras. This result clearly 
opens up a new possibility of analyzing them since the theory of Lie algebras is well developed. In 
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the present chapter, we restrict ourselves to the classical case and leave quantization to the next 
chapter. 

The method we use in this chapter is to construct non-linear Poisson algebras from a canonical 
linear Poisson algebra associated to any Lie algebra, the Kirillov Poisson algebra. First we give 
a description in simple terms of the Kirillov Poisson algebra. Then we use a procedure very similar 
to the constraint formalism called ‘Poisson reduction’, to construct linear and non-linear algebras 
from this Poisson algebra. After that we discuss in detail a very interesting class of algebras which 
are derived using s/(2) embeddings. These algebras are in general non-linear but they may contain 
linear subalgebras which one can predict rather easily. Using this we discuss how to obtain 
non-linear extensions of SU(3) x SU(2) x U(1). 

3. I. Kirillov Poisson structures 

Consider a system with SO(3) rotation invariance. The conserved quantities associated to this 
symmetry are the three components of the angular momentum L. If one calculates the Poisson 
brackets between two components of L, one finds that they satisfy 

(3.1) 

Now, let {1,},3, 1 be the generators of SO(3), i.e. I, is the infinitesimal generator of rotations around 
the .ya-axis. The commutator between I, and Ib is given by 

(3.2) 

Note that even though (3.1) is a Poisson relation and (3.2) is a commutator algebra, the structure 
constants in (3.1) and (3.2) are the same. That is, the components of the angular momentum together 
generate a Poisson algebra which is isomorphic to the Lie algebra of SO(3). 

This example illustrates a general principle: if G is a symmetry group of some physical system, 
then the Poisson brackets between the (Noether) conserved quantities {Jn} have the same structure 
constants as the commutator brackets between the generators {ta} of G, i.e. if [Ita, t,,] =j$,tc, then 

(JaJb) =facbJc 2 (3.3) 

which is called the Kirillov-Poisson algebra. The generators {ta> span the so-called ‘Lie algebra’ 
%? of G. We conclude that any system with G symmetry contains the Kirillov Poisson structure as 
a subalgebra. 

For later use, we will now give a somewhat more formal definition of the Kirillov Poisson 
structure associated to 3. The reader may wish to skip this part at first reading. 

Let $9 be a Lie algebra, Y* its dual and C”“(g*) the set of smooth functions on ?I*. The 
Kirillov-Poisson bracket between F, G E C “(9*) is defined for all 5 E Y* by 

:EG)(5) = GLCgrad&vd~W, (3.4) 

where ( . , . ) denotes the usual contraction between 9* and $9 and grad< F is uniquely defined by 

(3.5) 
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for all 5’ E $*. Note that grad<F is therefore an element of 9, which means that [gradSF, grad<G] is 
well defined. 

We can recover formula (3.1) as follows. Let { ta> be the basis of 99 and J, the element of Coo (9*) 
given by J,(t) E (&t,), then these functions satisfy (3.1). 

3.2. Poisson reduction of the Kirillov Poisson structure 

Finite W-algebras are constructed by applying a procedure very similar to the Dirac constraint 
formalism, called ‘Poisson reduction’, to the Kirillov Poisson structure. Essentially, what one does 
is to impose a set of first class constraints on the system. As usual, these first class constraints will 
generate gauge invariances. One, therefore, looks for gauge invariant quantities. In general, the set 
of gauge invariant quantities will be generated by a certain finite subset. These are the generators of 
the finite W-algebra. Calculating the Poisson brackets between these generators we find that the 
algebra of gauge invariant quantities is in general non-linear, i.e. the Poisson brackets close on 
polynomials of the generators, not on linear combinations. This is then the finite IV-algebra. Let us 
now come to a more precise definition of finite W-algebras. 

Let again $9 be some Lie algebra, 9 c 9 some subalgebra and x: 9 + @ a one-dimensional 
representation2 of 9. Let (to> and {ta} be bases of 9 and 9 respectively, such that {tol} c (to>, and 
letJ,EC00(~*)bedefinedbyJ,(5)=(5,t,),~’5E~*.AgainletK(~)=(Cm(~*),(.,.})denote 
the Kirillov Poisson algebra associated to 9’. 

The first step is to constrain the functions J,, corresponding to the subalgebra 9, to constant 
values: 

& = J, - x(&) = 0 . (3.6) 

Denote the hyper-surface in +9* determined by 4(x = 0 for all a by C. The set of functions on C is 
equal to the set of functions on 9 * up to functions which are zero on C. Any function that is zero on 
all of C has the formf”&. Let us denote the set of all these ‘zero functions’ by I: 

(3.7) 

Since all elements of I are zero on all of C, there is no way somebody living on C can distinguish 
between the functions g and g +fiffis an element of I. Mathematically, this is expressed by the 
equality 

cm(c) = Y(9)/1. (3.8) 

This formula means that we are to identify all functions in C “(9*) that differ by an element of I. 
It is easy to show that the constraints (3.6) are all ‘first class’. It means that { 4,, 4@> E I, for all 

cc,/?. For this, remember that x is a one-dimensional representation of 9, which means that 
x( [tdl, ts]) = x(tol)x(tp) - am = 0. On the other hand, x( [tdl, tp]) =fki;x(t,). From this follows 
that {4,&) =.&&. 

’ One can in principle also consider higher dimensional representations of LZ in some auxiliary algebra, see Section 
4.3.4. Here, we will, for simplicity, restrict ourselves to the one-dimensional case. 
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Obviously, 1 is an ideal with respect to the (abelian) multiplication map in K(g), since h fad, = 
TX& E I for all h E C m (2?), where TE = hf”. 

I is also a Poisson subalgebra of K(g). In order to see this, letf=f”+a and h = h,4, be elements 
of I. Then 

{J;s> = ~fzd+wbp + {fa>ddh% + {dd%-Vp +f”hP{dwbB} . (3.9) 

Obviously, the first three terms are again elements of I. That the last term is an element of I follows 
from the fact that the constraints {&} are all first class. 

Nevertheless, I is not an ideal with respect to the Poisson bracket. Consequently, the Poisson 
bracket is not preserved if we divide out I. That is, the Poisson bracket on Y does not induce one on 
C. Physically, this is equivalent to the statement that first class constraints induce non-physical 
gauge invariances, that have to be eliminated from the theory, Mathematically, one proceeds as 
follows. Define the maps 

x,: cm(Y*) + ca?(%*) (3.10) 

bY 

X&-) = {AZJ) . (3.11) 

In geometric terms the X, are the ‘Hamiltonian vector fields’ associated to the constraints { +Ix}, 
which can be interpreted as the derivative of some functionfE C “(‘S*) along the direction of the 
gauge invariance. 

Now let [f] denote the equivalence classf + I, i.e. [f] E Cm(C). Then 

XG+ 0 = {&> f> + {&,I} = X,(f) + 1, (3.12) 

where we used the fact that I is a Poisson subalgebra of K(g). Put differently, we therefore have 

XaCf1 = cxm1 > (3.13) 

which means that the maps X, descend to well defined maps 

X,:C”(C) -+ cm(c). (3.14) 

In geometric terms this is nothing but the statement that the Hamiltonian vector fields of the 
constraints are tangent to C. 

Now define the set of functions which are constant under the flow of X,, i.e. gauge invariant, as 

W=([f]ECOC(C)(X,[f]=O,foralla}. (3.15) 

The point now is that the Kirillov-Poisson structure on Ca(%*) induces naturally a Poisson 
structure { . , . } * on W. Let [f], [h] E W, then this Poisson structure is simply given by 

{CflA31~* = L-W4 . (3.16) 

Of course, one has to show that this Poisson structure is well defined. In order to do so we have to 
check two things: firstly, we have to check whether [{f, h}] E W whenever [f], [h] E W, and 
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secondly, we have to show that the definition does not depend on the choice of the representatives 
f and h. Both these checks are easily carried out and one finds that indeed the Poisson bracket 
{ . , . } * turns w into a Poisson algebra. The Poisson algebra found by reducing a Kirillov-Poisson 
algebra is called a finite W-algebra 

W(~?~,X) = OK{ .,.>*I. (3.17) 

In more physical terms, $Y is the set of gauge invariant quantities and the Poisson bracket between 
them is obtained by first calculating the Poisson bracket and then putting the constraints to zero. 

It is clear that the number of finite W-algebras is huge. However, it is by no means clear that all 
non-linear algebras are of this type. In fact, this is almost certainly not the case. However, as we 
shall see, several interesting non-linear symmetry algebras encountered in physics, including the 
ones described in the previous chapter, are finite W-algebras. Anyway, in this paper we restrict our 
attention to finite W-algebras. 

3.2.1. Examples 
Let us now consider some examples in order to clarify the construction. First take 9 = s1(2), the 

set of traceless 2 x 2 matrices. This Lie algebra can be described as follows. It is the (complex or real) 
span of three generators t + , t_ and t,-, with commutation relations [to, tJ = +2t, and [t+, t-1 

= to. The Kirillov-Poisson structure, therefore, reads 

{Jo,J*} = f2J, ; {J+,J-) = Jo . (3.18) 

The Lie algebra s/(2) has several subalgebras. The most obvious one is the so-called Cartan 
subalgebra spanned by to. If we take .Y to be the Cartan subalgebra and x = 0, then from Eq. (3.6) 
we find 4 = Jo. The ideal I (see (3.7)) consists of elements of the formf(Jo, J + , J _ ) 4, wherefis an 
arbitrary smooth function in three variables. Since dividing out I corresponds to putting the 
constraints to zero, we find that C”“(C) is isomorphic to the set of arbitrary smooth functions in 
J, and J- 

Cm(C) = {f(J+, J_) 1 fis smooth} . (3.19) 

The next step in the construction is to find the set w of all elements in C”(C) that Poisson 
commute with 4 (after imposing the constraint). As { 4, J, J_ > = J, {Jo, J_ } + J_ {Jo, J, } = 
-J- J+ + J- J+ = 0, we find that g consists of functions that depend only on the combination 

J+ J_ . However, as “1y- has only one generator, J + J_ , it turns out to be an abelian algebra. 
In fact this is what generically happens when we choose 9 = SE(~). If 54 is one of the so-called 

‘Bore1 subalgebras’ b, spanned by to and t,, then there are effectively no degrees of freedom left, 
that is YY = 0. If one chooses _Y to be the span of t + or t _ (and x = 0), then w will again be an 
abelian algebra with one generator, Jo. The situation does not change for x # 0, because the 
number of generators stay the same. We conclude that there are no interesting finite W-algebras 
that can be derived from s1(2). 

Let us therefore turn to Y = s1(3). This Lie algebra is spanned by eight elements 
{tl,t2,ta,,tar,,ta,,t-3Ll,t--a2,t--a)},whereol 1, a2 and o/3 denote the three positive root vectors of s1(3). 
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(3.20) 

The most obvious choice for the subalgebra 9 is the Cartan subalgebra spanned by tl and tz. 
Again take x = 0. According to (3.6), the constraints are then $i = J1 and & = J2. Reasoning as 
before C O” (C) is shown to consist of smooth functions in the variables JmI, J _ %,, J,*, J . x2, Jx3 and 
J-,,. In order to construct YY, we need to find functions of these variables that Poisson commute 
(after imposing the constraints) with 4r and &. In principle, slg has dimension eight. We have 
imposed two first class constraints, which brings the dimension of C down to six. As 41 and 42 are 
first class, they generate gauge invariances, or in other words, two of the six dimensions will 
correspond to gauge degrees of freedom. On eliminating these, which is essentially what construct- 
ing V amounts to, we are left with four dimensions. We now look for four independent elements of 
Cm(C) that commute with 4r and 42. It is easy to construct them. They read 

Al = J&q 3 AZ = J,,J-,, , A3 = J&x3, B =;(J&,,J-T2 - J-.,J,,J,,), 

C = i(J,,J-x,J-i(2 + J-.,J,,J,,) . 
(3.21) 

Note that there are tive invariant quantities. However, the relation 

c2 = ArA2A3 + B2 (3.22) 

between the generators in (3.21) brings the number of independent dimensions back to four. In fact 
this relation defines the four-dimensional surface in five-dimensional Euclidean space (with coordi- 
nates C, B, A 1, A2, A3) on which the finite W-algebra lives. 

The non-zero Poisson brackets between the generators (3.21) read 

(Ai,Ai+r)*=2B, {Ai,B)*=Ai(Ai+l -‘4-l), (3.23) 

where I’ is a cyclic index, i.e. i E { 1,2,3) and i + 3 = i. 

Another reduction of SE(~), and one that leads to a linear finite W-algebra, is the following. Take 
9 to be the span of tz2 and t,, and x = 0. The constraints read J,, = J,, = 0 and Cm(C) consists of 
functions of J,zI, JpTI, J1, J2, Jpa2 and JpTz. Again, a simple counting argument, similar to the one 
given above, leads us to look for four independent generators of -Iy-. It is easy to check that 
J,, , J_,, , J1 and J2 satisfy the requirement that they commute with the constraints. Now J,, , J-,, 
and J1 form an s/~ algebra 

{JI,J~I)* = f2J,,, , {Jq,J-x,}* = JI , (3.24) 

while s = J1 + 2J2 commutes with all the other generators and thus forms a u(1). Thus we have 
found that s1(2) @ u(1) IS a reduction ofsZ(3). As we shall see later, when we discuss real forms of 
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finite W-algebras this also means that su(2) 0 u(1) is a reduction of ~43): 

43) + X.42) @ U(1) . (3.25) 

This example is actually a special case of a more general class of reductions. Let 6 be an arbitrary 
element of the Cartan subalgebra of a (semi) simple Lie algebra 3. We can use 6 to define 
a so-called ‘grading’ on 3. Define g,, = (x E Y 1 [S, x] = ~1x1. It then follows that 

(3.26) 

Ifwenowtakey =@n,O %,, and x = 0, then all elements J, such that t, E 3,, will commute (after 
imposing the constraints) with all 4a E J,. This can be seen as follows. Let t, E ?I&,, then [ta, t,] E 2, 

as follows from (3.26). As all J, are constrained to zero, we find that { 4,, Jo} = {Ja, Ja} is a linear 
combination of J, which after imposing the constraints become zero. We conclude, therefore, that 
this type of reduction always leads to a finite W-algebra which is isomorphic to +&, . The ones, that 
are most closely related to the infinite-dimensional W-algebras of conformal field theory. 

The finite W-algebras considered in this section are associated to s1(2) embeddings into 3. 
A given s1(2) embedding fixes both _Y and x which means that there is one finite W-algebra for 
every s1(2) embedding. For sl(n) the number of inequivalent s1(2) embeddings is equal to the number 
of partitions of the number n and this is therefore the number of finite W-algebras of this type that 
one is able to extract from sl(n). 

3.2.2. s12-embeddings 

In this section, we always take 9 to be a simple Lie algebra. This implies that the inner product 
(x, y) = Tr(ad(x)ad(y)) (x, y E $), the so called Cartan-Killing form, is non-degenerate, i.e. there 
does not exist an element y E ?J such that (x, y) = 0 for all x E 3. Therefore, any elementfof g* can 
be written asf( . ) = (x, . ) f or some x E 9, or, in other words, we can identify 3 and $?*. Due to this 
fact we can define the Kirillov-Poisson structure on 3 instead of on Y* which makes life easier in 
some respects. Consider for this Cm(g) instead of Cm(+?*) and define the functions J” on 9 by 
Ja(tb) = ~3:. The Poisson algebra satisfied by these quantities is 

{J”, J”} =fcnb J” , 

where we have raised and lowered indices with the metric &b = Tr(t, tb). 
Now let there be given an s1(2) subalgebra {to, t+ , t_ } of 9, 

Cto,t,l = 2ti , Ct+,t-1 = to. 

If we define the spaces 

(3.27) 

(3.28) 

c??(n)= {XE9~[Cto,X] =nx}, (3.29) 

then 

3 = @ S@) . (3.30) 
n 

The decomposition (3.30) is again a ‘grading’ of 3, because 

[@(n) 7 &cm,] c g(n+m) (3.31) 
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In general, the numbers y1 can be integers or half integers, that is y1 E :Z. As in the infinite- 
dimensional case, we would like to take 

6p = g(+) E @ 3((n) (3.32) 
n>O 

together with x(t+) = 1 and all others zero. However, there is a slight problem with this choice, 
because the commutator of two elements of g(t) may contain t + , which is an element of Ce(‘). This 
means that x would no longer be a one-dimensional representation of %(+) and not all constraints 
would be first class. Classically, this need not be a problem, because one can eliminate second class 
constraints with the so-called Dirac bracket [29]. However, quantization becomes much more 
involved if not all constraints are first class. Fortunately, it is possible for many Lie algebras, 
among which all sl(n), to replace g(+) and x by a new algebra g+ and a new one-dimensional 
representation x : 3+ -+ @ which leads to the same finite W-algebra without having to resort to 
Dirac brackets. What one does is replace the ‘grading element’ to by a new one, 6, which is also an 
element of the Cartan subalgebra [30,29]. The element 6 defines a grading of ?? which is different 
from the one in (3.30) 

3=@%, (3.33) 
n 

where 9” = {X E 3 1 [S, x] = nx}. Essentially, 6 has the property that it splits $(*) and 9(-t, into 
two pieces: 

and that 

(3.34) 

(3.35) 

i.e. ‘half’ of (&) gets added to g(O), which becomes go and the other half gets added to g(* ‘), which 
becomes % + 1. Obviously, 

%+ @ &?’ = g(+) . (3.36) 

Furthermore, 6 is chosen such that the grading of ?J is integral, i.e. all y1 in (3.33) are integers. The 
one-dimensional representation x : CC?+ + @ is taken to be the same as before, i.e. x(t+) = 1 and zero 
everywhere else. What has been done here, effectively, is that the set of second class constraints 
(corresponding to 9”‘) has been split into two halves. The constraints in one half we still put to 
zero. One can choose 6 such that they will be first class. The constraints in the other half are kept 
free. However, the degrees of freedom they represent can be gauged away by the gauge invariance 
generated by the first class constraints in the first half. It is not possible to find an element 
6 satisfying the requirements for all Lie algebras [30]. For sl(n) however, there is no problem. 

We now proceed as before. Let again {to} = {ta} u (te> b e a basis of 3, where (to} is a basis of 
6p = %+ and (tl> is a basis of go 0 %_ . The constraints are given as usual by 4” = J” - x(fM). 

It is clear that elements of Cm(C) are smooth functions in the variables (J”}, as all the J” have 
been constrained to constants. The next step is to find %+‘“. For this we need to look for elements 
W of C 7c (C) such that 

{P,W)=O, (3.37) 
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after imposing the constraints. This will then be the W-algebra associated to the SE(~) embedding. 
In general, it is no easy task to find the complete set of elements W such that (3.37) holds. However, 
in the case of finite W-algebras derived from s1(2) embeddings there turns out to be an algorithmic 
procedure for doing so. For this we have to consider the gauge transformations generated by the 
first class constraints 4”. Let x = x’t, be an arbitrary element of 3. The gauge transformations 
generated by 4” then act as follows on x: 

6,x z (&JQ)(x)t, = &{@,Y}(X)& = &{J~,Ja}(X)t, 

= EfbnaJb(x)t, = &fb??d,bta = &fbaaxbta 

= &gaCfcQbXbta = [&gaCt,,xbtb] 

= [&P,X] . (3.38) 

Now, if t, E %+, then ta E Y_ , because $+ and %_ are non-degenerately paired by the Cartan- 
Killing form [29]. It therefore follows from (3.38) that the group of gauge transformations 
generated by the first class constraints is nothing but G_ = exp(%) and that this group acts on 
9 by group conjugation x + gxg- ‘, g E G_ . Now let x be an element of C. In general it has the 
form 

x = t+ + c XitB ) (3.39) 
z 

where x” are complex numbers. It can be shown [29] that the gauge freedom G_ can be completely 
fixed by bringing x to the form 

t+ + 1 W”t, ) (3.40) 
f, E ‘??,,& 

where $,,, = (x E %J 1 [t- ,x] = 01. Put differently, for every x of the form (3.39), there exists a unique 
g E G_ such that gxg-’ is of the form (3.40). Since the element (3.40) is the same for any element 
within a certain gauge orbit, the quantities W” must be gauge invariant. This means that they 
commute with the constraints { 4”, I$“} = 0. By construction, the quantities W” form a complete 
set of generators of the finite W-algebra in question. The only thing left is, therefore, to calculate the 
Poisson relations 

(IV, Wp}* = (IV, IV@) . (3.41) 

The equality in Eq. (3.41) can be understood as follows. In principle, the bracket { . , , } * is simply 
{ . , . } where it is understood that we take @ after we have calculated the Poisson bracket. However, 
as ‘%-, 0 % is a subalgebra of 9 and since the quantities IV” will be polynomials only in J’, as 
follows from (3.39), we find that the Poisson bracket of IV” and WB will not involve any J”. This 
justifies (3.41). It is now time for some examples. 

3.2.3. Examples 
As a simple example take 3 = s12. Also take as a basis of s1(2) the matrices tl, t2 and t3 such that 

,.t.=(;: -;12). (3.42) 
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The Kirillov-Poisson structure then reads 

(J2,J1} = -J1 ) {P,P} = .I3 ) {P,P} = -2J2 (3.43) 

Obviously, there is only one non-trivial s1(2) embedding into s1(2), namely the algebra itself. Now, 
s1(2) splits up into three subalgebras of grade + 1, 0 and - 1, 

s/(2) = g(+ l) 0 9?(O) @ 9(-l) (3.44) 

given by the span of t3, t2 and tl , respectively. Note that all grades are integral, which means that 
9a z 9@). The constraint becomes 4 = J’ - x(tl) = J’ - 1, since tl = t+. Cm(C) is given by the 
smooth functions of J2 and J3. Next we look for gauge invariant functions, i.e. functions which 
Poisson commute with the constraint (after imposing C$ = 0). We do this by the method outlined 
above. Let g be an arbitrary element of G-, i.e. 

4=ev(i :)=(a i). (3.45) 

We can find the gauge invariant function W by solving 

g(t+ + J2tz + J3t3)g-1 E t+ + Wt, 

for g and W. In matrix form, this equation reads 

(3.46) 

(: F)(Z -YJ2)(‘u iI)-(ii ii). (3.47) 

This equation is satisfied if a = J2. We then find that 

W-J3+J2J2. (3.48) 

Note that indeed (4, IV} = {J’, J3 + J2J2} = -2J2 + 2J1J2, such that after imposing 4 = 0 
we have { 4, IV} = 0. As w has only one generator, the obtained W-algebra is trivial. 

In order to illustrate the construction in a slightly less trivial case consider the so-called 
non-principal s12 embedding into ~1~. For sl, we choose the basis 

J”t, = J6 

I 

J4+;J5 J2 J’ 

-2J4 J3 . (3.49) 

J* 5’ J4-_:J5 

I 
The s1(2) embedding is given by to = t5, t + = tl and t _ = t8. $, is the span of tg, t7, t6 and to. 

The grading of s1(3) with respect to this s1(2) subalgebra is 

sQ3) = 3(-l) 0 @-+) @ @O) @ @+) @ $(1) ) (3.50) 

where 

?iel) = span{t,} , $?‘O’ = span{t4, t5} , @-+) = span{t6, tl) , 

Y(l) = spanit > , SC+) = span{t2, t3) . 
(3.5 1) 
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Obviously, this grading is not integral. The element 6 can be found in the appendix and reads in 
this case 6 = idiag(l, 1, -2). The grading with respect to 6 is 

9-r = span(W8) , go = wn(L4, b, W6) , 

Obviously, 

SQ) = span{tz} , C??~+’ = span{t3) . 

The one dimensional representation is given by 

x(t1) = 1 > X(h) = 0 * 

(3.52) 

g1 = span{t1,t3} . (3.53) 

(3.54) 

(3.55) 

According to the standard procedure, the constraints are 

$l’=J’-l=O, @=JLO. (3.56) 

Again we want to find the gauge invariant functions in the variables J2, J4, J ‘, . . . ,J8. The group of 
gauge transformations G- is given by 

As before, we solve the equation 

J4+;J5 J2 1 1 0 0 

J6 -2J4 0 0 1 0 

Js J7 J4-_J5 -a -b 1 

for a, b and W i. The result reads a = 4 J ‘, b = J2 and 

W4=J4, W7=J7+;J2J5-3J2J4, 

W6=J6, Ws=J8+;J5J5+J2J6, 

I = 
(3.57) 

w4 0 1 

W6 -2w4 0 

w* w7 w4 
1 

(3.58) 

all of which can easily be shown to be gauge invariant. These are now the generators of the finite 
W-algebra. 

Defining 

j+=W’, j_=$W6, jo=-4W4 

c=-+c2=-~(w*+3w4w4) 

(3.59) 

and calculating the Poisson brackets between these quantities we find 

(j0, j*>* = +2j, , {j,, j->* =jZ + C. (3.60) 

Note that this algebra is identical to the symmetry algebra of the two-dimensional anisotropic 
oscillator with frequency ratio 2 : 1. It is a quadratic extension of su(2). In fact, the Jacobi identities 



J de Boer et aLlPhysics Reports 272 (1996) 139-214 161 

arc still satisfied if one replacesji + C by an arbitrary function ofjo (see also the remark at the end 
of Section 2.2.2). It is not clear whether all these can be obtained from sl,-embeddings. If one 
considers the &-embedding in sl “+ 1 under which the fundamental representation n + 1 branches 
into i + 12, one finds { j+ , j_ }* = j: + other generators. This suggests that one can obtain all 
polynomial non-linear deformations of su(2) as a suitable quotient of finite W-algebras related to 
s12-embeddings, but we have no proof of this. 

We shall now consider another example which turns out to be of unexpected physical signifi- 
cance. Take 3 = s1(4) and choose the basis (to) such that 

/$J7+J8+J9 J5 + J6 J2+J3 

J” + J” 
J”t, = 

:J’ -J8-J9 J4 

J12 + J13 J 14 -+ 37 + 58 _ J9 

\ J15 J 12 _ 513 J’O _ J” - 

J’ 

J2-J3 

J5-J6 

+J’ -J8+J9 

The s1(2) embedding we consider is to = t ‘, t+ = t2, t- = t12. The grading is given by 

3 = $?-1) @ g(O) @ g(1) ) 

where 

c+ 1) = span(t12,t13,t14,t15)i ~‘“‘=Span(~,,t6,t7,t8,t9,t,0,~ll} i 

i!?(l) = span{t,, t2, t3, t4} , glw = gcel’ @ span{t5, tg, tlo} . 

I . (3.61) 

(3.62) 

(3.63) 

From (3.62) we see that the grading is integral, so there is no problem with second class constraints. 
The one-dimensional representation x : 23(l) + R is given by X(t2) = 1 and x(tl) = X(t3)= 
x(t4) = 0. The constraints therefore read J1 = J3 = J4 = 0 and J2 = 1. Performing the calculation 
of ?Y” as before, we find that the finite W-algebra associated to this s/(2) embedding can be written 
as 

(L”, Lb) =fca'L' , (L”,Rb) =f,abRC , 

1~0, R~} = (-2~ - c,)~~“~Lc, 
(3.64) 

where a = 1,2,3 andfcab are the structure constants of s1(2). Note that this algebra is essentially the 
Runge-Lenz algebra which is the symmetry algebra of a particle moving on S3 in a Coulomb 
potential, as we have seen in the previous chapter. 

3.2.4. Classical Miura transformation 
A careful examination of Eqs. (3.39) and (3.40) reveals that the gauge invariant generators W” in 

general have a very specific form. Let t, be a lowest weight vector, i.e. [t _ , ti] = 0, then 

IV=II?+w;, (3.65) 

where Wi contains all terms that only contain JB and tg E go, and W? is the sum of the remaining 
terms. Furthermore, it turns out that WE # 0. From this last fact we can derive a very important 
result. As the Poisson bracket of two elements of degree zero is again of degree zero, we find that we 
must have 

{IV?, WP}o = {IV%, IV;> ) (3.66) 
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where the subscript 0 in { . , . } means that we throw away everything except the grade zero piece of 
(whatever comes out of) the Poisson bracket. What this equation says is that the { Wz} form an 
algebra which is isomorphic to the algebra satisfied by the {IV”}. However, note that IV% only 
contains Jp of degree zero which means that what we have done is to embed the finite W-algebra 
into the Kirillov-Poisson algebra of the semi-simple Lie algebra 5%, (denoted by K(gO)). The map 

w -+ K(30) (3.67) 

is called the ‘classical (finite) Miura transformation’. 
Let us consider an example. In the case of s/(2) we have seen that W = J 3 + JoJo = W_ + IV,, 

where IV, = JoJo. This example was trivial due to the fact that it had only one generator. More 
generally, however, in the case of the so called ‘principal s1(2) embeddings’ into sZ(n) we get abelian 
finite W-algebras with y1 - 1 generators. The reason for this is that for principal embeddings, go is 
equal to the Cartan subalgebra, which is an abelian algebra. The W-algebra is therefore also 
abelian. The non-trivial cases arise for the non-principal embeddings. 

Take for example again the case of S’ = s1(3) with the non-principal embedding. The generators 
W” of this algebra were given in (3.58). As ‘So was the span of t4, t5, t2 and t6 we find that the grade 0 
pieces of the generators are given by: 

w,” = J4, w,” = P , w,’ = ~J~P - 3J2J4, w,” = ;J~J~ + J~J~ . (3.68) 

Now, defining 

h=-$J4-$J5, e= J2, f= J6, s=;J4-+J5, 

which satisfy the Poisson relations of s1(2) @ u(l) 

(3.69) 

{h,e) =e, (h, f> = -A {e, f> = 2h , (3.70) 

we find, using Eq. (3.59), the following expressions of the generators j,, j+, j_ and C in terms of 
h,e, f and s: 

jo=2h-2s, j, =e(h-3s), j_ =ff, C=-G(h2+ef+3s2). (3.71) 

Using the relations (3.70), one can easily verify that these expressions indeed satisfy the algebra 
(3.60). Note that due to the fact that the expressions in the right-hand side of (3.71) are quadratic in 
the cases of j+ and C it is not possible to express h, e, fand s similarly in terms of j,, j,, C, i.e. to 
invert the Miura transformation. The reason for this is that the Miura transformation is-in general 
a homomorphism rather than an isomorphism. 

In the case of the Runge-Lenz algebra, which we constructed above as a reduction of s1(4), go is 
given by s1(2) 0 s2(2) 0 u(l). The explicit expressions of L” and R” in terms of the generators of 
go = s1(2) @ s1(2) 0 u(l) can be found in [6]. 

3.2.5. General form of sl(2) related finite W-algebras 
Consider the plane in Y made up of elements of the form 

x = t+ + c x”t,, 
t, E q, 

(3.72) 
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where X” are complex numbers. That is, we put all J” to zero except of course J+, corresponding to 
t + , which we put to 1 and J” with t, E gl,,,, which we leave unconstrained. It can be shown [29] that 
this set of constraints (which is larger than the set of constraints that lead to the constraint surface 
C) is completely second class, that is, none of the above mentioned constraints are first class. This 
means that the original Poisson bracket on %, the Kirillov-Poisson bracket, induces a ‘Dirac 
bracket’ on the set of elements of the form (3.72). Recall that for a set of second class constraints 4 i 
the Dirac bracket between two functionsf and g is defined by 

{.LS}D = {.LS> - {.L+i}dij{4j~S> 3 (3.73) 

where dij is the inverse of the matrix d ‘j = { d’,@j. 
Now, since the set of elements of the form (3.72) is nothing but C/Z-, i.e. C with all the gauge 

freedom removed we find that the Dirac bracket algebra of the functions Ji (for ti E $,,,) must be 
isomorphic to the finite W-algebra associated to the s1(2) embedding in question. 

It is possible [29] to derive an elegant general formula for the Dirac bracket algebra on gl,, and 
thus of the finite IV-algebra. Let w E ?&,, and let Q1 and Q2 be smooth functions on &,,. Define 
grad,Q E g,,,,, = {x E 9 1 [t+, x] = 0} by 

(w’,gr=LQ) = $ Q(w + WLO , (3.74) 

for all w E gl,,,. This uniquely defines grad,Q, since &,, and ?&,W are non-degenerately paired by the 
Cartan-Killing form ( . , .). The finite W-algebra associated to the s1(2) embedding in question is 
now (isomorphic to) 

{QI,Qz)W = (w,[gradwQl, 1 + ~oadwmad,P~]), (3.75) 

where ad,,,(. ) = [w, . 1. The operator L is essentially the inverse of ad,+. There is, nevertheless, 
a problem, since Ker(ad,+) # 0. It is, however, a l-l map from Im(ad,_) to the image of ad,+. One 
now takes L to be the inverse of ad,+ in this domain of definition and then extends it to all of G!? by 0. 

Note that formula (3.75) reduces to the ordinary Kirillov-Poisson bracket for the trivial s1(2) 
embedding to = t_ = t + = 0. For non-trivial s1(2) embeddings however (3.75) is a highly non- 
trivial and in general non-linear Poisson structure as we have seen. 

3.2.6. W-coadjoint orbits 
In this section, we are going to construct the coadjoint orbits of finite W-algebras associated to 

sl, embeddings. First, we briefly discuss some general aspects of symplectic and coadjoint orbits 
and then we show how one can construct finite W symplectic orbits from the coadjoint orbits of the 
Lie algebra to which they are associated. 

Suppose we are given a Poisson manifold, that is a manifold M together with a Poisson bracket 
( . , , } on the space of smooth functions on M. In general, such a Poisson structure is not associated 
to a symplectic form on M since the Poisson bracket can be degenerate, i.e. there may exist 
functions that Poisson commute with all other functions. The Poisson bracket { . , . > does however 
induce a symplectic form on certain submanifolds of M. In order to see this consider the set of 
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Hamiltonian vector fields 

XJ-(.) = {f,.} forfE Cm(M). (3.76) 

Note that the set of functions on M that Poisson commute with all other functions are in the kernel 
of the map f H X,. From this it follows that in every tangent space the span of all Hamiltonian 
vector fields is only a subspace of the whole tangent space. We say that a Poisson structure is 
regular, if the span of the set of Hamiltonian vector fields has the same dimension in every tangent 
space. Obviously, a regular Poisson structure defines a tangent system on the manifold M and from 
the well known relation 

(3.77) 

it then immediately follows that this system is integrable (in the sense of Frobenius). Therefore, 
M foliates into a disjoint union of integral manifolds of the Hamiltonian vector fields. Obviously, 
the restriction of the Poisson bracket to one of these integral manifolds is non-degenerate and 
therefore associated to a symplectic fom. They are therefore called symplectic leaves. 

The symplectic leaves play an important role in the representation theory of Poisson algebras. 
A representation of a Poisson algebra is a symplectic manifold S together with a map n: from the 
Poisson algebra to the space of smooth functions on S that is linear and preserves both the 
multiplicative and Poisson structure of the Poisson algebra. Also the Hamiltonian vector field 
associated to n(f) E Cm(S) must be complete (i.e. defined everywhere). A representation is called 
irreducible, if span of the set {X,&s) 1 J-6 Cm(M)} is equal to the tangent space of S in s for all s E S. 
The role of the symplectic leaves is clarified by the following theorem [31]. If a representation of 
the Poisson algebra Cm(M) is irreducible, then S is symplectomorphic to a covering space of 
a symplectic leaf of M. 

From the above it follows that it is rather important to construct the symplectic leaves 
associated to finite W-algebras. Looking at Eq. (3.75) it is clear that constructing these symplectic 
orbits from scratch could be rather difficult. Luckily, we can use the fact that the symplectic orbits 
of the Kirillov-Poisson structure are known (by the famous Kostant-Souriau theorem they are 
nothing but the coadjoint orbits and their covering spaces) to construct these. The answer turns out 
to be extremely simple and is given in the following theorem: 

Theorem. Let 6 be a coadjoint orbit of the Lie algebra g, then the intersection of 0 and gr,,, is 
a symplectic orbit of the jinite W-algebra W (g; to). 

Proof. Let again C = (x E g I+“(x) = 01. The Hamiltonian vector fields X” = (4”, . } form an 
involutive system tangent to C and therefore C foliates. gl,,, has one point in common with every leaf 
and denote the canonical projection from C to gl,,,, which projects an element x E C to the unique 
point x’ E glw, by rc. This map induces a map xn, from the tangent bundle TC of C to the tangent 
bundle Tg,, of glw. Let f be a ‘gauge invariant’ function on C, i.e. {f, da} Ic = 0 then obviously 
X, = {f, . } is a section of TC (i.e. as a vector field it is tangent to C in every point of C). It need not 
be an element of Tg,, however, but using the gauge invariance we can project it back onto the 
gauge slice. This projection of X, on to the gauge slice is given by x*(X,) E Tg,,. By construction, 
the Dirac bracket now has the property that {f, .}* = z*(Xf). What we now need to show is that 
z.+(X,) is tangent to the coadjoint orbit 0. Well, obviously we have 7c,(Xs) = X, + Y, where Y is 
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a tangent to the gauge orbit. Since the spaces tangent to the gauge orbits are spanned by the 
Hamiltonian vector fields X”, we find that Y is a tangent vector of 0. Because X, is by definition 
a tangent vector of 0 we see that x*(X,-) is also tangent to the coadjoint orbit G. What we can 
conclude is that the Hamiltonian vector fields on gl,,, w.r.t. the reduced Poisson bracket are all 
tangent to the coadjoint orbit and therefore the symplectic orbits are submanifolds of the coadjoint 
orbits. The theorem now follows immediately. 

Let us now recall some basic facts on coadjoint orbits of simple Lie algebras. Let ,f be an 
adinvariant function on g, i.e. f(axa- ‘) = ,f(x) for all a E G and x E y. Then we have 

0 = g .fV_W%=0 = $ BY + tCx,~l)L=~ 

= b-4 f, Cx, ~1) = (l&-ad, _L xl, Y) , 
which means that 

~C~ra~,,f,grad,hl,y) = {.0}(y) = 0. 

(3.78) 

(3.79) 

We conclude that any adinvariant function Poisson commutes with all other functions. Conversely, 
any function that Poisson commutes with all others is adinvariant, because {f, h} = 0 for all 
h implies that X,(S) = 0 for all h, where Xh is the Hamiltonian vector field associated to h, which 
means that the derivative offin all directions tangent to a symplectic orbit are zero. 

Consider now the Casimir functions {Ci}~E’~‘“’ of the Lie algebra g. Certainly, these Poisson 
commute with all other functions and it can in fact be shown that the (co)adjoint (since we have 
identified the Lie algebra with its dual the adjoint and coadjoint orbits coincide) orbits of maximal 
dimension of the Lie algebra are given by their constant sets 

C, = {.x E y 1 Ci(.X) = pi; pi E @; i = 1, . . . ,rank(g)} . 

Their dimension is therefore dim&) - rank(g). 

(3.80) 

Coadjoint orbits are very important to the representation theory of (semi)simple Lie groups. In 
order to see why let us recall the Borel-Weil-Bott (BWB) theorem [32]. Let G be a compact 
semisimple Lie group with maximal torus T and let R be a finite-dimensional irreducible 
representation of G. The space of highest weight vectors of R is one-dimensional (call it V) and 
furnishes a representation of T. The product space G x I/ is a trivial line bundle over G and its 
quotient by the action of T (where (a, v) - (at, t-’ v) for a E G and t E T) is a holomorphic line 
bundle over G/T (which is a complex manifold). Now, L admits a G action (a, V) -+ (a’a, u), where 
a, a’ E G and 0 E I/, so the space of holomorphic sections of L is naturally a G representation. The 
BWB theorem now states that this representation is isomorphic to R. The BWB construction has, 
however, the restriction that it applies only to compact groups. There does exist however 
a generalization of the BWB construction called the coadjoint method of Kirillov. In this method 
one generalizes G/T to certain homogeneous spaces G/H which can be realized as coadjont orbits. 
As we have mentioned above, a coadjoint orbit carries a natural (G invariant) symplectic form 
o inherited from the Kirillov-Poisson structure and can therefore be seen as a phase space of some 
classical mechanical system. One then attempts to quantize this symplectic manifold using the 
methods of geometric quantization [33]. For this one is supposed to construct a holomorphic line 
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bundle L over the coadjoint orbit such that the first Chern class of L is equal to the (cohomology 
class of) o. If such a line bundle exists the coadjoint orbit is called quantizable. For a quantizable 
orbit the bundle L can then be shown to admit a hermitian metric whose curvature is equal to co. 
The space of sections of L thus obtains a Hilbert space structure and is interpreted as the physical 
Hilbert space of the quantum system associated to the coadjoint orbit. It carries a unitary 
representation of the group G and in fact one attempts to construct all unitary representations in 
this way. Obviously this construction is a generalization of the BWB method. Note: the fact that 
generic groups have unitary irreducible representations only for a discrete set of highest weights is 
translated into the fact that only a discrete set of orbits is quantizable. 

From the above it is clear that the symplectic (or W-coadjoint) orbits of finite W-algebras are 
extremely important especially in the study of global aspects of W-algebras. In order to see this, 
note that coadjoint orbits are homogeneous spaces of the Lie group G in question, and it is 
therefore tempting to interpret the symplectic orbits of W-algebras as W-homogeneous spaces. 
These naturally carry much information on the global aspects of W-transformations. In the 
notation used above the symplectic orbits of the finite W-algebra W(g; to) are given by 

(3.81) 

which are therefore (generically) of dimension dimc(gl,) - rank(g). 
Let us give some examples. As we have seen, the finite W-algebras associated to principal slz 

embeddings are trivial in the sense that they are Poisson abelian. This means that all Hamiltonian 
vector fields are zero and that all symplectic orbits are points. Again the simplest non-trivial case is 
the algebra IV?‘. The two independent Casimir functions of slg are 

Ci = iTr(J2) and C2 = iTr(J3), (3.82) 

where J = J”t,. The spaces 0, can be constructed by taking for J the constrained and gauge fixed 
matrix 

(3.83) 

One then easily finds 

Ci = 3j2 + T , C2=-2j3+G+G-+2jT. (3.84) 

Obviously dim(g,,) = 4 and introducing the variables z1 = j; z2 = G, ; z3 = G_ ; z4 = T we find 
that 

%.PZ = (z~C~l3z~+z~=~~and2z,z~+z~z~--2z~=~~). (3.85) 

The topological nature of these symplectic orbits becomes clearer if we insert z4 = p1 - 3zt into 
the second equation. We find that topologically Oy,,p, is equivalent to the two-dimensional surface 
in C3 determined by the equation 

~2~3 =,LL~ - ~/.LIz~ + 82:. (3.86) 
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Compare this to the coadjoint orbits of s1(2,@) which are given by [34] 

Z2Z3 =Z: + jl. (3.87) 

It is well known that the coadjoint orbits of s1(2, [w) and su(2), which are real forms of s1(2, C), can be 
found by considering the intersection of these complex coadjoint orbits with the appropriate real 
subspaces of s1(2, Cc). 

In this section we have seen that it is easy to find the coadjoint orbits of finite W-algebras by 
using the fact that they are reductions of Lie algebras. Constructing these orbits would have been 
much more complicated, if not practically impossible, if this information had not been used. 

3.2.7. Semi-simple subalgebras of jnite W-algebras 

As we have seen, most finite W-algebras are non-linear, i.e. the commutation relations (Poisson 
brackets) close on polynomials, not just linear combinations, of the generators. It is, however, not 
uncommon for a finite W-algebra to have a linear subalgebra. We have actually already seen an 
example of this in the case of the Runge-Lenz algebra which was a reduction of sI(4). The 
generators L” in this algebra formed an s1(2) subalgebra of the Runge-Lenz algebra (which as 
a whole was non-linear). In this section, we will discuss how linear subalgebras arise and how one 
can predict them. 

For this we need some basic facts on the theory of s1(2) embeddings. As is well known [35] s/(2) 
embeddings into d(n) are completely characterized by the way the fundamental (or defining) 
representation of d(n) branches into irreducible s1(2) representations. Furthermore, all conceivable 
branchings are possible. So the fundamental (n-dimensional) representation of s/(n) can branch into 
a direct sum of nl,n2,n3, . . . dimensional s1(2) representations as long as we have y1 = n, + n2 + 
n3-t .... The number of inequivalent s1(2) embeddings is therefore equal to the number of 
partitions of the number n. Conversely, any partition determines an s1(2) embedding up to inner 
automorphisms. 

We are now ready to explain when semi-simple subalgebras of finite W-algebras arise [29]. 
Suppose a certain s/(2) representation occurs m times in the branching of the fundamental 
representation of sl(n) then there will be an d(m) subalgebra in the resulting finite W-algebra. For 
example, in the case of the Runge-Lenz algebra one can easily check, using the explicit form of the 
generators to, t+ and t- , that the four-dimensional fundamental representation of u1(4) decom- 
poses into a direct sum of two two-dimensional representations of s1(2). The partition of 4 corres- 
ponding to this branching is 4 = 2 + 2. The fact that the same representation occurs twice 
immediately leads us to expect that there will be an s1(2) subalgebra in the resulting finite 
W-algebra. Indeed, we know this to be the case. Another, rather trivial example is the case of the 
trivial s1(2) embedding to = t, = 0. This case corresponds to the partition n = 1 + 1 + ... + 1, i.e. 
the singlet of s1(2) is n-fold degenerate. We, therefore, expect an d(n) subalgebra. This is of course 
the original Lie algebra itself. 

A much more interesting question is whether there exist non-linear extensions of the gauge group 
SU(3) x SU(2) x U(1) of the standard model, i.e. finite W-algebras that contain its Lie algebra as 
a subalgebra. The answer turns out to be affirmative. The smallest W-algebra that contains such 
a subalgebra must be a reduction of at least s1(7) because we need in the branching of the 
fundamental representation at least a double and a triple degeneracy. The smallest n for which it is 
possible to do this is 7. The branching that does the trick is 7 = 1 + 1 + 1 + 2 + 2. Due to the fact 



168 J. de Boer et aLlPhysics Reports 272 (1996) 139-214 

that the singlet ‘1’ has a threefold degeneracy and the doublet ‘2’ a double degeneracy we conclude 
that the finite W-algebra will contain an sE(3) and an s1(2) subalgebra. The u(l) subalgebra will be 
there automatically due to the fact that the second order Casimir descends to the finite W-algebra 
and becomes a generator of it. The step from sl(n) to su(n) is then made by taking the appropriate 
real form of the W-algebra, but we will come back to this later. 

We conclude that it is not difficult to construct non-linear extensions of the gauge group of the 
standard model. The next step would of course be to construct an actual gauge theory with this 
non-linear gauge algebra. In doing so one might be helped by the fact that it is a reduction of, and 
can be embedded into (by the Miura transformation), a Lie algebra. An obvious procedure would 
therefore be to ‘break’ the symmetry of the linear theory to a non-linear subsymmetry by adding 
terms to the action which are only invariant under the transformations generated by the non-linear 
gauge algebra. This is the principle on which for example Toda theories base their non-linear 
W-symmetry (we will come back to this later). 

The W-algebra associated to the branching 7 = 2 + 2 + 1 + 1 + 1 can be embedded into (the 
universal enveloping algebra of) su(5) @ su(2). One method of writing down a gauge theory based 
on this W-algebra would therefore be to first consider an su(5) @ su(2) gauge theory and then to 
add to its action terms invariant under the transformations generated by the W-algebra only. 
A further discussion of finite W gauge theories will be postponed until Chapter 6. 

4. Quantum finite W-algebras 

In principle, a complete quantum description of finite W-algebras involves two things: First we 
need to quantize the classical algebras constructed in the previous chapter by associating to them 
appropriate non-commutative associative algebras. We come to this in a moment. The second step 
is to construct the irreducible unitary representations of these quantum algebras on Hilbert spaces. 

Unfortunately, the general problem of quantizing finite W-algebras is not solved. However, in 
certain special cases, like the W-algebras associated to s1(2) embeddings, the quantization is known 
[29]. In this chapter we discuss these results and add some new ones on finite W-algebras that are 
obtained by reduction w.r.t. Cartan subalgebras. In the next chapter we discuss unitary highest 
weight representations of finite W-algebras and describe some conjectures on Kac determinants 
and character formulas. 

In quantum mechanics, quantization amounts to replacing Poisson brackets by commutators, 
sometimes denoted by 

(4.1) 

In a mathematically more sophisticated language, this amounts to replacing a Poisson algebra, 
which is commutative and associative, (do, { . , . }) by an associative but non-commutative algebra 
& depending on a parameter A, such that 

l if 71 denotes the natural map n: d + d/hd N do, then 

{~(X),7c(Y)} = 7c((XY - YX)/ti) . (4.2) 
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The first condition simply expresses the fact that in the limit /I -+ 0 the original algebra is recovered 
from the new one, while the second one tells you how to extract the Poisson brackets of the old 
algebra from the commutators of the new algebra. 

In most cases one has a set of generators for &‘,,, and .d is completely fixed by giving the 
commutation relations of these generators. 

For example, let do be the Kirillov-Poisson algebra K(9) associated to 59, then a quantization 
of this Poisson algebra is the algebra AZZ generated by J” and k, subject to the commutation 
relations [J”, J”] = hfcab J’ (note that here the J” are no longer functions on $9 but the quantum 
objects associated to them). Obviously, the Jacobi identities are satisfied. Specializing to h = 1, this 
algebra is precisely the universal enveloping algebra ‘2’9 of 9. 

To find quantizations of finite W-algebras, one can first reduce the sl, Kirillov-Poisson algebra, 
and then try to quantize the resulting algebras that we studied in the previous sections. On the 
other hand, one can also first quantize and then constrain. We will follow the latter approach, and 
thus study the reductions of the quantum Kirillov algebra 

[J”, J”] = hf;.“‘Jc . (4.3) 

We want to impose the same constraints on this algebra as we imposed previously on the 
Kirillov-Poisson algebra, to obtain the quantum versions of the finite W-algebras (<‘,Y,x). 
Imposing constraints on quantum algebras can be done using the BRST formalism [36], which is 
what we will use in the next sections. It is important to realize that we do by no means prove 
uniqueness of the quantization of the finite W-algebra. There may exist other, non-equivalent 
quantizations. The one that one finds by applying the BRST formalism starts with a specific 
quantization of the Kirillov algebra, namely (4.3), and leads to one specific quantization of the finite 
W-algebra. Clearly, this is the most natural one from the Lie-algebraic point of view, but it is an 
interesting open problem to find out whether or not other quantizations of finite W-algebras exist. 
One might, for example, examine what happens when one starts with a quantum group rather than 
the quantum-kirillov algebra. This might lead to q-deformations of finite W-algebras, which can 
~ if they exist - be seen as two-parameter quantizations of classical finite W-algebras. 

4.1. BRST quantization of jinite W-algebras 

Recall that the constraints we want to impose read 

J” - x(J”) = 0. (4.4) 

To make this into good quantum constraints, 31 must be promoted to a representation of the Lie 
algebra 9 into some associative algebra, which is a quantization of the Poisson algebra in which 
2 was represented classically by means of x. This associative algebra will be denoted by “ax. In the 
cases where 2 = 0 or x is a one-dimensional character, this is trivial. For all other cases we will 
simply assume this has been accomplished in some way or the other. Furthermore, we will take 
h = 1 for simplicity; the explicit h dependence can be determined afterwards. 

To set up the BRST framework we need to introduce anticommuting ghosts and antighosts 
c, and h”, associated to the constraints that we want to impose [36]. They satisfy h”c,, + cLjb” = Sl; 
and generate the Clifford algebra Cl(9 @ _Y *). The quantum-Kirillov algebra is just the universal 
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enveloping algebra 9&Y, and the total space on which the BRST operator acts is Sz = %$Y @ aZ @ 
C1(9 0 Y*). A Z grading on n is defined by deg(J”) = deg(al) = 0, deg(c,) = + 1 and 
deg(b”) = - 1, and we can decompose fi = Ok Ok accordingly. The BRST differential on Sz is 
given by d(X) = [Q,X], where Q is the BRST charge 

Q = (J” - x(JIx))cb - + fi”bYc,cp , 

and [. , .] denotes the graded commutator (as it always will from now on) 

[A, B] = AB -( _ l)d%&%o,jjA . (4.6) 

Note that deg(Q) = 1. First-class constraints generate gauge transformations, and Q acts on 
generators precisely as gauge transformations, with the parameters replaced by the anticommuting 
ghosts c,. Roughly, the antighosts b” are needed to impose the first class constraints, whereas the 
ghosts c, are needed to perform the gauge fixing on the constrained phase space. 

The standard BRST complex associated to the first-class constraints is 

Of interest are the cohomology groups of this complex, Hk(SZ;d), defined by 

(4.7) 

(4.8) 

By definition, the zeroth cohomology group is the quantization of the finite W-algebra. It is 
straightforward to verify that the zeroth cohomology is indeed a closed, associative algebra. To 
show that it is a quantization of the classical finite W-algebra is less straightforward, but can also 
be done. If the gauge group fi generated by the first class constraints acts properly on the 
constrained phase space C, one expects th_at all higher cohomologies vanish, as they are generically 
related to singularities in the quotient C/H. In particular, if 2 is a one-dimensional character related 
to an sZZ embedding, the higher cohomologies will vanish, but if it is zero, they will not. Later on we 
will see examples of this phenomenon. In the mathematics literature, the cohomology of the BRST 
complex is called the Hecke algebra 2(9,9, x) associated to (‘9,2’, x). General Hecke algebras 
have not been computed, apart from those where x is the one-dimensional character related to the 
principal s12 embedding in 9. In that case it was shown by Kostant [37] that the only non- 
vanishing cohomology is H’(L?;d) and that it is isomorphic to the center of the universal 
enveloping algebra. Recall that the center of the ?2% is generated by the set of independent Casimirs 
of ‘9. This set is closely related to the generators of standard infinite W,,-algebras; in that case there 
is one W-field for each Casimir which form a highly non-trivial algebra [38]. We see that for finite 
W-algebras the same generators survive, but that they form a trivial abelian algebra. 

Since in the cases where x is a character related to an s12 embedding the BRST cohomology can 
be completely calculated, we will first restrict our attention to this situation. In particular, we will 
verify Kostants result, but also see that for non-principal slZ embeddings quantum finite W- 
algebras are non-trivial. Later we will come back to the more general situation, in particular to 
x = 0. Here, th e general answer is not known, and related to some interesting and difficult open 
problems in mathematics. Therefore, we will restrict our attention to a few examples to sketch the 
general idea. But before that we first consider the cases related to s12 embeddings. 



J. de Boer et al./Physics Reports 272 (1996) 139.-214 171 

4.2. Quantum jnite W-algebras from s12 embeddings 

As said previously, we want to compute the cohomology of (G?;d). Unfortunately, this is 
a difficult problem to approach directly. We therefore use a well known trick of cohomology 
theory, namely we split the complex (52; d) into a double complex and calculate the cohomology via 
a spectral sequence argument. We will just sketch the idea, a more detailed treatment can be found 
in [ll]. Crucial is that the operator d can be decomposed into two anti-commuting pieces. Write 
Q = Q. + Qr, with 

Q1 = PC, - ;J;.r’%“c,c,~ , Q. = -x(J”)cz , (4.9) 

and define d,(X) = [Qo, X], dI (X) = [Q1, X]. Then one can verify by explicit computation that 
di = dodl = dldo = df = 0. Associated to this decomposition is a bigrading of n = @k,l nk,’ 
defined by 

deg(J”)=(-i&k), ift,Egk 

deg(c,) = (k, 1 - k) , if t, E & (4.10) 

deg(b”) = (-k, k - 1) , if & E & , 

with respect to which d,, has degree (1,0) and dI has degree (0,l). Thus (.C?k”;dO; d,) has the 
structure of a double complex. Explicitly, the action of do and dI is given by 

d,(J”) =rJbc, , d,(c,) = -:f$qc, , d,(b”) = J” +f,“BbYcp, 

d,(J”) = do@,) = 0, d,(b*) = -_x(J”) . (4.11) 

To simplify the algebra, it is advantageous to introduce 

J^’ = J” +,fi.““b~q . (4.12) 

Our motivation is to introduce these new elements fa is twofold: first, similar expressions were 
encountered in a study of the effective action for IV, gravity [39], where it turned out that the 
BRST cohomology for the infinite W, algebra case could conveniently be expressed in terms of j’s; 
second, such expressions were introduced for the JO’s that live on the Cartan subalgebra of 9 in 
[40], and simplified their analysis considerably. In terms of J^ we have 

d,(f”) =~??c,, d,(c,) = -+$j%pcy, d,(P) = J^‘, 

d,(j”) = -~FBx(J7)cp , dO(c,) = 0 , (4.13) 

d,(b”) = -x(J”) . (4.14) 

Now that we have a double complex, we can apply the techniques of spectral sequences [41] to it, 
in order to compute the cohomology of (G; d). The idea behind spectral sequences is to find a series 
of complexes (Qj; Dj), j 2 0, such that 00 = Sz, such that Oj+ 1 = H*(Qj,Dj) and such that 
Sz, = H * (Sz; d). In practice this is only a convenient technique if the spectral sequence degenerates 
at some point, which means that Oj does not change anymore forj larger than somej,. If a complex 
is actually a double complex, like in our case, two natural spectral sequences exist. One of these has 
Do = d,, and D, = dl, the other one has Do = dI and D1 = do. 



172 J. de Boer et al. JPhysics Reports 272 (1996) 139-214 

The first people to propose using the theory of spectral sequences in the setting of W-algebras 
were Feigin and Frenkel [40]. In fact, in this way they computed the BRST cohomology in the 
infinite-dimensional case but only for the special example of the principal slZ embedding (which are 
known to lead to the IV, algebras). However, their calculation has the drawback that it is very 
difficult to generalize it to arbitrary embeddings and that it constructs the cohomology in an 
indirect way (via commutants of screening operators). Their spectral sequence was based on 
a double complex, within the notation introduced above, Do = d1 and D1 = do. In [29] it was first 
proposed to calculate the BRST cohomology using the other spectral sequence with D,, = d,, and 
D1 = dI. As it turns out this has drastic simplifying consequences for the calculation of the 
cohomology. 

4.2.1. The BRST cohomology 
The following theorem [29] gives the BRST cohomology on the level of vector spaces. 

Theorem. As before let ‘2&, c $9 be the kernel of the map ad,_ : $9 + 3. Then the BRST cohomology is 
given by the following isomorphisms of vector spaces 

Hk(@ d) = (~%w)&,O . (4.15) 

The computation of the BRST cohomology is simplified considerably due to the introduction of 
the new set of generators J^‘. The simplification arises due to the fact that H*(Q; d) N H*(Qred; d), 
where 0 red is the subalgebra of Sz generated by .?’ and c,. We will not prove this here, but note that 
it is nothing but the statement that the antighosts ba impose the constraints. The subalgebra Qed is 
a quantum version of the constraint phase space we have seen previously. The reduced complex 
(fired; d) is described by the following set of relations: 

At this stage we apply the spectral sequence technique. The inconvenient choice D,, = dI and 
D1 = d,, would lead us to compute the cohomology of d1 on C&. This turns out to be very hard, 
and in addition the spectral sequence will not degenerate ever. In other words, we would have to 
compute cohomologies infinitely many times in order to find the final answer. The choice Do = do 
and D1 = dI is much more convenient, it turns out that the spectral sequence already degenerates 
after the first step, i.e. after taking the Do cohomology, so that 0, = fil. Therefore, all that remains 
is to compute the do cohomology of Qred. To get an idea of the do cohomology, we rewrite d,(j”) as 

d,(f’) = -Tr([X(J’)t,,t”]t”cp) = -Tr([t+,t”]tflcp) . (4.17) 

From this it is clear that d,(j”) = 0 for t” E c?&+,. Furthermore, since ta E c?&, @ 9% and 
dim(?&,) = dim($!&,), it follows that for each p there is a linear combination a(/?@” with 
do(a(P),l”) = cg. This can be used to prove that 
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Because the spectral sequence stops here, the total cohomology of (a; d) is the same as (4.18) and 
this proves theorem. We see that the ghosts c, have been ‘used’ to keep only the generators in ?&,,. 
This is the quantum counterpart of the gauge fixing procedure we saw previously. 

As expected, there is only cohomology of degree zero, and furthermore, the elements of gl, are in 
one-to-one correspondence with the components of 3 that made up the lowest weight gauge in 
Chapter 1. Therefore, H*(Q;d) really is a quantization of the finite W-algebra. What remains to be 
done is to compute the algebraic structure of H*(G?;d). What we have computed in the previous 
theorem is an isomorphism of vector spaces rather than an isomorphism of algebras. The only 
thing that (4.15) tells us is that the product of two elements a and b of bidegree ( - p, p) and ( - q, q) is 
given by the product structure of ?&&,,, modulo terms of bidegree (-r, r) with r < p + 4. To find 
these lower terms we need explicit representatives of the generators of H’(SZ;d) in Q. Such 
representatives can be constructed using the so-called tic-tat-toe construction [41], another 
important ingredient of the theory of spectral sequences: take some 4. E gl,, of bidegree (-p, p). 
Then d,(+,) is of bidegree (1 - p,p). Since d1 d,( $o) = -d,d,( 40) = 0, and there is no d1 co- 
homology of bidegree (1 - p, p), do(4,) = dI (cjl) f or some #i of bidegree (1 - p, p - 1). Now 
repeat the same steps for 4i, giving a 42 of bidegree (2 - p, p - 2) such that do( +1) = di ( c#I~). Note 
that d,d,($,) = -d,d,($,) = -d:(4) = 0. In this way, we find a sequence of elements 41 of 
bidegree (1 - p,p - 1). The process stops at 1 = p. Let 

W(4) = i: (-l)%. (4.19) 
l=O 

Then dW(4) = 0, and W(4) is a representative of 4. in H’(Q;d). The algebraic structure of 
H’(SZ; d) is then determined by calculating the commutation relations of W( 4) in Sz, where 4. runs 
over a basis of G$+,. This is the quantum finite W-algebra. The non-linearity comes from the fact 
that the & are polynomials of order I + 1 in the hatted generators .?. 

Let us now give an example of the construction described above. 

4.2.2. Example 
Consider again the non-principal s12 embedding into s13 associated to the following partition of 

the number 3: 3 = 2 + 1. We constructed the classical W-algebra associated to this embedding 
earlier. We shall now quantize this Poisson algebra by the methods developed above. Take the 
following basis of ~1~: 

rat, = r6 
r4 

3 r3 (4.20) 

Remember that (in the present notation) the s12 embedding is given by t + = t, , to = - t5 and 
t_ = tg. The nilpotent subalgebra Y, is spanned by itl, t3}, go by{t2, t4, tS, t6} and ‘K by {t7, tgj. 

The dI cohomology of fired is generated by {,?“, j’, J6, j”}, and using the tic-tat-toe construction 
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one finds representatives for these generators in HO(&; d): 

II@“) = J^” ) w (S”) = J^” , w(j7) = j’ _ 995 _ ;3^45^2 + 32, 

w(js) = 5^8 + $j”J^” + j”j” _ j” . 
(4.2 1) 

Let us illustrate the tic-tat-toe construction by working out the form of W(j7) in somewhat more 
detail. Starting with j7, we find 

d#) = 512cr - +s4c3 - :&, . (4.22) 

To find a ~$r such that d,(4,) equals this, one can either write down the most general form of ~$i 
with arbitrary coefficients, 

~l=a,~2~2+a2S2J15+a3J15J15+a4J14J12+a5S2J16 

+ aJ5.F4 + a7.f5.T6 + a,j2 + a,J^’ , (4.23) 

or make a more clever guess using the form of do(j5) = 2cr and do(j2) = -c3. In our case, this 
immediately tells us that al = a3 = a5 = a6 = a7 = 0, and that a2 = i and a4 = i. The value of 
a8 and a9 have to be fixed by explicit computation, and one finds 

+r _--j2j5 +$j4j2 _$j2, (4.24) 

leading to the form of W(j7) in (4.21). 
Let us introduce another set of generators 

c = -fgv(P) - $v(j4)w(j4) - 1 , 

j, = -$w(S4) + i , j, = w (j7), j_ = ~w(P), 

The commutation relations between these generators are given by 

(4.25) 

Lio,j+l = Zi+ , Cj0,j-1 = -XL , Cj+,j-1 =jo’ + C, 

CC,j+l = CC-1 = CWol = 0 . 
(4.26) 

These are precisely the same as the relations for the finite IV:“’ algebra given in [lo] and (2.26). 
Notice that in this case the quantum relations are identical to the classical ones. The explicit 
ti dependence can be recovered simply by multiplying the right-hand sides of (4.26) by h. 

In the appendix we also discuss the explicit quantization of all the finite W-algebras that can be 
obtained from s14. There one does encounter certain quantum effects, i.e. the quantum relations will 
contain terms of order /i2 or higher. 

4.2.3. Quantum Miura transformation 
In Section 3.2.4 we saw that there exists a realization of classical finite W-algebras in terms of the 

Kirillov-Poisson algebra X(?Jo). A similar Miura transformation can be constructed in the 
quantum case, using the explicit form of the generators as described at the end of Section 4.2.1. 
Denote by W( 4)O.O the part of W( 4) of bidegree (O,O), so it is (- 1)p4p in the notation of (4.19). The 
quantum Miura transformation is simply given by the map IV(+) + IV(+)“,“. As was shown in 
[Ill], this map is an isomorphism of algebras. The generators p, with E restricted to so, form an 
algebra that is isomorphic to @so, the universal enveloping algebra of go. As we will see later, these 
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facts play an important role in the representation theory of finite W-algebras. Let us illustrate the 
quantum Miura transformation for the example we considered in the previous section. If we 
introduce s = (.?” + 3f5)/4, h = (.?” - f4)/4, f= 2j6 and e = 5”/2, then h,e,f form an sl, Lie 
algebra with [h,e] = e, [h, f] = -f and [e, f] = 2h while s commutes with everything. The 
quantum Miura transformation one finds from (4.25) by restricting these expressions to their 
bidegree (0,O) part reads, in terms of s, e, f, h, 

C = -:(h* + ief+ ife) - $s” + $s - 1 , 

H=2h-$sfl, E=-2(s-h-l)e, F=$J’. 
(4.27) 

4.3. Quantum jinite W-algebras not from s12 embeddings 

As promised, we now turn to the more difficult case of finite W-algebras that cannot be obtained 
from s12 embeddings. Important is the case where we take x = 0, which we will study first. In 
general these BRST cohomologies are very difficult to calculate. One exception to the rule is the 
case where one chooses 9 to be the Cartan subalgebra (we considered the classical counterpart of 
this case in the previous chapter). We explicitly quantize this algebra in the case of s1(3). 

4.3.1. x = 0 
The BRST charge in this case reads 

Q = J’c, - $$?bvc,cp . 

The action of the differential d is given by 

d(J”) =rJ’c, , d(q) = -;f$c,+q , d(b”) = J” +~,@bYc,. 

To simplify the algebra, it is again advantageous to introduce 

ja = J” +,&aBbkp . 

In terms of J^ we have 

(4.28) 

(4.29) 

(4.30) 

d(?‘) ==&Y?;‘c~, d(c,) = -:fP’cacv, d(b”) = J^’ . (4.3 1) 

Here 7 runs over a basis of the orthocomplement 9’ of 9, $9’ = 9” @ 9. Notice that in contrast 
to the cases obtained from s12 embeddings, 9’ need not be a closed Lie algebra itself. This makes 
life extra complicated. 

Although we have made a simplification by going to the hatted generators j”, they satisfy more 
complicated commutation relations than the original generators J”. They read 

(4.32) 

Let us define Fp as the vector space spanned by all products of at most p generators J^’ and 
arbitrarily many ghosts and antighosts. Clearly, the differential d preserves this space. Further- 
more, the relations (4.32) show that 9P9 q c 9 ptq and that the induced algebraic structure on the 
quotient 9p/9p-1 is precisely that of a set of commuting variables .?a and anti-commuting 
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variables ba, c,. These are just the classical relations between the variables. The subspaces BP 
define a so-called filtration of Q, and associated to such a filtration is another spectral sequence 
[42]. What we have shown here is that the computation of the first term in this particular sequence 
is equivalent to the computation of the cohomology of d assuming classical commutation relations 
between the .?’ and the ghosts. It would be great if the spectral sequence would degenerate after this 
first step, but although we expect that this happens in many cases, we do not have a general proof. 
The problem is that certain higher cohomologies will survive, and to show that the spectral 
sequence degenerates one has to do an explicit computation of all the higher operators Di. To avoid 
this problem we will from now on assume that the spectral sequence indeed degenerates after the 
first step, but keep in mind that in all explicit examples this has to be verified explicitly. 

The problem has now basically been reduced to a ‘classical cohomology’ computation. The 
following observation is that we can (like in the slZ case) go to a reduced vector space consisting of 
polynomials in c, and ? (using the Kiinneth theorem, see also [29]). Let V,, denote the 
commutative algebra freely generated by the ?. V + is nothing but the constrained phase space we 
have seen previously. We want to compute the cohomology of d on V,, @ A .Y*, the last term 
A_%‘* representing the ghosts c,. This particular cohomology problem is a well-known one in 
mathematics. Since _!Z’ is an _Y* module in the obvious way, so is V,,, and the cohomologies we 
are computing are nothing but the Lie algebra cohomologies H”(_Y*, V,l). Alternatively, they can 
be described in terms of the Ext groups Ext& (C, VYl), which might be computable if we had 
a resolution of V,, in terms of injective &Y* modules, but we do not know how to write down 
such a resolution. In any case, if the spectral sequence degenerates after one step and we would 
know these Lie algebra cohomologies, to obtain the final full result for the original problem still 
requires an additional amount of work. First, we have to use a tic-tat-toe type of construction to 
find the explicit generators, and secondly, we have to compute their commutation relations. In the 
latter we have to be careful to identify terms which differ by a BRST exact expression. Altogether 
the result of this procedure will be that the BRST cohomology is a quantum deformation of the 
classical Lie algebra cohomology, granted that the spectral sequence degenerates after the first step. 

Extra subtleties further arise if one wants to write down a generating basis for the quantum finite 
W-algebra. The number of generators may be much smaller than the number of generators of the 
corresponding classical Poisson algebra. This is due to the fact that the Poisson algebra is 
commutative, and the quantum algebra is not. Take for example 9 = slZ, and .Z = 0. In this trivial 
case the classical algebra is the Kirillov-Poisson algebra based on &, with generators J-, Jo, J+. 
The quantum algebra is the quantum-Kirillov algebra (4.3), but this one is generated by just J+ and 
J-, by virtue of the relation Jo = l/h[J+, J-1. This relation becomes singular in the limit h + 0, 
explaining the apparent discrepancy between the two. Similar phenomena take place in conformal 
field theory, see [43]. 

Since the zeroth cohomology H’(_Y*, I’,,) is simply the space (VTI)Y* of _Y* invariants of VYl, 
and the quantum W-algebra is by definition the zeroth cohomology, we find that the quantum 
finite W algebra, assuming the spectral sequence degenerates, is as a vector space isomorphic to 
( v&)Y*. To give a basis of this space with its classical multiplication rule is a problem of the 
so-called invariant theory. The answer to this question is known only for special V,, and Y*. 
Again, this resembles closely the situation in conformal field theory as explained in [43]. Thus, even 
classically we cannot in general give a minimal set of generators of the algebra (9, Z,O). 

To illustrate these rather abstract statements we will now give a few examples. 
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4.3.2. The algebra (%,9’, 0) 
Suppose that we have chosen 2’ as in the case of an s12 embedding, but with 2 = 0. This problem 

is interesting for a variety of reasons. Firstly, in the case of the principal slZ embedding it is an 
interesting open problem in mathematics. And secondly, it is the first term in the ‘difficult’ spectral 
sequence that we encountered before in the case where 2 was a one-dimensional character, and 
might shed some light on the W-algebras obtained from s12 embeddings. More generally, we can 
look at any 92+ which is the positive eigenspace of some grading element 6 of the Cartan 
subalgebra. The nice feature of this case is that 2” = %- @ $9’ is a closed subalgebra. That implies 
that we can rigorously reduce the cohomology problem to one for the subalgebra generated by J^? 
and the ghosts c,. The classical zeroth cohomology can easily be worked out, it is just the 
KirillovPoisson algebra based on $9’. According to the spectral sequence argument above, the 
quantum algebra can as a vector space be at most isomorphic to this. On the other hand, by explicit 
computation one verifies that the quantum-Kirillov algebra based on $9’ is contained in the 
quantum algebra. Combining these two facts proves 

H0(4e,2Jf,0) = WY0 . (4.33) 

The really difficult problem is to compute the higher cohomologies here. For this, we only know the 
answer for &, if 9’ is generated by J+. Then 

H’(&>~+,O) = ca=[J_] . (4.34) 

4.3.3. The algebra (9, F, 0) 
In this example we choose 2 = Y to be the maximal torus of 9’. Now, .LZ” is no longer a closed 

subalgebra. However, we are in the fortunate circumstances that .?’ = J“. This means in particular 
that the quantum algebra is generated by expressions 

(4.35) 

where J, is the generator J7 associated to the (positive or negative) root ai, and c Xi = 0. To find 
a minimal basis is a separate problem. For example, for slj a set of generators is 

B = :(J-&qJq+m2 - J,,J,,J-x,-x,) , (4.36) 

C =i(J-.,J-,zJ,,+yz + J,,J,,J-,,-a,) 

The BRST charge in this case is 

Q = coHo + ciHi, (4.37) 

where 110 = [JsLl, J-z,] and Hi = [Ja,, J-,,I. This is an example where the commutators do not 
close in themselves, but only modulo BRST exact expressions. For example, when working out 
[AZ, C] one encounters the expression [Jz2, J-=,1, which lives in the Cartan subalgebra. Elements 
of the Cartan subalgebra can be moved to either the left or the right of an expression. Only if they 
stand to the left or right will the resulting expression be BRST exact (it is the d of an anti-ghost 
times something) and can be put equal to zero. In this way we find [AZ, C] is purely BRST exact, so 
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the commutator vanishes. The final result for the quantum algebra can be conveniently expressed 
as follows. Introduce 

B”=B+;ti(Ai-&+A~). (4.38) 

Then the brackets are 

[Ai,Ai+i] = 2hB ) [Ai, B”] = h(Ai+lAi - AiAi-1) 3 (4.39) 

which is indeed a quantum deformation of the classical result. The generators satisfy the following 
relation 

C2--2=:(A1A2A3+A3A2A1)+~h(A1--2+A3)2. (4.40) 

It is amusing to note that in this particular case with S? equal to a maximal torus there is an exact 
result for the zeroth cohomology, 

HO(?J, 5-, 0) = (%!lu)“/Y . (4.41) 

In the right hand side, we first perform a gauge fixing by looking at the centralizer of F. In this 
resulting algebra, Y generates a left ideal and we can divide out by this ideal, corresponding to 
imposing the constraints. Thus we have interchanged the usual order of first imposing constraints 
and then gauge fixing. 

4.3.4. Further jinite W-algebras 
The last case we have not considered so far is when x is some representation of 3 in a non-trivial 

algebra. An example is to take 3 = sEJ, 2’ equal to the upper triangular matrices, and a representa- 
tion of x in the one-dimensional Heisenberg algebra generated by p and 4 with [p,q] = 1. 
Explicitly, one can take x(Ja,) = p, x(JN,) = q, and x(J~,+~, ) = 1. In this case one presumably 
recovers IV?‘, the p and 4 corresponding to a set of auxiliary variables that can also be introduced 
in the infinite-dimensional case [44]. In fact, from the infinite-dimensional case [45] we know that 
the analysis for higher dimensional representations x may become more complicated in that the 
spectral sequence does not degenerate after the first step any more. For certain higher dimensional 
x that are inspired by s12 embeddings, one can nevertheless still compute the cohomology exactly. 
For all other type of representations x, little is known, and this remains a region consisting of a vast 
number of new unexplored finite W-algebras. If eX is isomorphic to a copy of %c?, and x is the 
isomorphism between the two, then the cohomology reduces essentially to ?&$Y, the space of 
_Y invariants in 3. For some cases, this space of invariants has been studied in [46]. In addition, we 
want to mention that there exists an alternative method to quantize W-algebras [31]. Using this 
method one finds a faithful *-representation of the maximally non-compact real form (see next 
chapter) of a given finite W-algebra. 

For applications to physics we are interested in the representation theory of quantum finite 
W-algebras. This is the subject of the next chapter. 

5. The representation theory 

We now turn to the representation theory for finite W-algebras. Physically, the representations 
that are most interesting are the unitary irreducible representations on Hilbert spaces. However, as 
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finite W-algebras are non-linear it is not completely obvious what unitary representations are. 
Usully, a representation of a group is called unitary if all group elements are represented by unitary 
operators on some Hilbert space. For finite W-algebras there is no such thing as an abstract group 
which one can get by exponentiating the algebra. Nevertheless, it is possible to define the concept of 
unitarity for finite W-algebras. The reason for this is that if the generators of a finite W-algebra are 
represented by (finite) matrices one can exponentiate them without runing into trouble because 
exp(A) converges for any matrix A. Therefore, even though there is no formal grouplike object 
associated to a finite W-algebra we can exponentiate its elements in any given representation. Now, 
not every element of a complex finite W-algebra can exponentiate to a unitary matrix, as we will 
explain in a moment (this is also true for the Lie algebras). It is therefore necessary to consider real 
forms of finite W-algebras before one addresses the problem of constructing unitary repesenta- 
tions. 

Deriving finite W-algebras from compact (real) Lie algebras such as su(n) is complicated by the 
fact that these Lie algebras do not admit Gaussian decompositions. The question therefore arises 
whether the constructions developed up to now are physically interesting at all, as non-linear 
algebras involving compact Lie algebras seem not to be included. In fact they are included. The 
point is that one should consider the Lie algebras discussed above as compEex Lie algebras, that is 
sl(n) means sE(n;C). Applying the reduction procedures one obtains complex finite W-algebras. 
Only then should questions about compactness and unitarity be addressed by studying the real 
forms of the complex W-algebra. As we shall see, a given finite W-algebra admits many real forms 
not all of which admit unitary representations. 

The next problem we address is defining the concept of a highest weight representation. For this 
one needs a Poincare-Birkhoff-Witt (PBW) like theorem for finite W-algebras. Using this we 
discuss some conjectures for the Kac determinants and character formulas for finite W highest 
weight modules. These conjectures were proposed in [12], although a discussion of the PBW 
theorem, of real forms of finite W-algebras and some other details are lacking in [12]. 

5. I. Real forms and unitary representations 

Let YCC denote a complex finite W-algebra (where we explicitly specified the fact that the algebra 
is a module over the complex numbers) obtained from a complex Lie algebra by the construction 
discussed in the previous sections. A representation p : VP”’ -+ lin(*), where (%, ( . , . )) is a (com- 
plex Hilbert space), can never be such that exp(p(W)) is a unitary operator on 2 for all IV E w. 
One can see this as follows. For exp(p(W)) to be unitary, we must have 

exp(p(V)+ = exp(MV-’ , (5.1) 

from which follows 

P(W)+ = -P(W) ’ (5.2) 

Suppose (5.2) holds for WE w. Now consider IV’ = iW. We have p(W’)+ = (ip(W))+ = 

-ip(W)+ = p(W’). From this it follows that exp(p(W’)) IS not unitary. We see that W and iW can 
never simultaneously give rise to a unitary operator. 

What one needs to do is go to ‘real forms’ of nly-‘. It is clear from the argument above, that if 
exp(p( IV)) is unitary, then exp(p(alV)) is also unitary, provided cc is real. Real subspaces of 
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PV therefore have a chance of being represented unitarily. These real vector spaces should, 
however, be invariant with respect to taking commutators. This requirement leads one to consider 
the so-called anti-involutions of order 2 of P’V. 

A two-anti-involution of a complex finite W-algebra WC is a map co: wc + -ty-’ such that 

(I) > d = 1 

(2) o(aw, + ljwz) = &U(Wi) + &J(w2) ) (5.3) 

(3) c@1 w2) = ~(%)c@1) > 

where c( and j are complex numbers and wl, w2 E YY@. From (1) it follows that o has two 
eigenvalues: f 1. Consider the negative eigenspace of o 

~“_={WE,llr~CO(W)=-IV}. (5.4) 

This space is actually a real subspace of wc:, as one can see as follows: let W E %‘” and a E @, then 
o(aW) = -&IV. If aW is to be an element of ?‘Y!, we must have a = CI. We conclude that aW is 
only an element of 7Y@ if a is real. 

?II’! is also closed under commutation, because 

4CWI,W21) = C4W2X4WI)l (5.5) 

by property (3). Therefore, if wl, w2 E %“?, we find 

~(cw,w21)= -cwI~w21~ (5.6) 

which means that [wi, w2] is an element of ?N’“! if w1 and w2 are. %“? is therefore actually 
a subalgebra of -ly-‘. We have thus found a closed real subalgebra of YV@ that stands a chance of 
admitting unitary representations. From now on we denote the space YY? by %$ where we have 
made the o dependence explicit and in analogy with the Lie algebra case we call it a ‘real form’ 
of YV. 

A unitary representation of the real form %‘-f is now defined as a representation of YV,” in some 
(complex) Hilbert space 2 (with inner product ( . , . )), such that for all elements W E 3llrI 

exp(OU)+ = exp(NV-’ T (5.7) 

or, equivalently, 

P(W)+ = P(c#V) = -P(W). (5.8) 

In general, not all real forms of a given YV@ algebra will admit unitary representations and in this 
sense the situation is similar to that in group theory. 

Let us look at some examples. Consider again the (complex) finite W-algebra 

CjO,jkl= f2j,, [j+,j-]=ji + C. (5.9) 

This algebra has two independent anti-involutions o1 and 02, given by 

dj0) =j0 9 02(j0) = -j0 , 

01(L) =.k 9 02(j,) = +j, , 

col(C) = c ) 04(C) = c . 
(5.10) 
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The negative eigenvalue eigenspace of w1 is spanned by 

+(-i)“-‘(ak, . . . Dk. - ck. . . . gk,) (5.11) 

and 

+( -i)n(Ok, . . . ukn + ok, . . . ok,,) , (5.12) 

forOIp<nk,E{l,..., 4},andn=0,1,2 . . . . where 

crl = ij, , fs2 =j+ -j_ , r~~=i(j+ +j_), o,=iC. (5.13) 

The non-zero commutation relations between the generators bk read 

[Or, 021 = 2fJ3 , [Q2,CT3] = l&s4 - 2ia: , [03,01] = 202 . (5.14) 

This is the real form of (5.9) with respect to ul. The unitary irreducible representations of this 
algebra were constructed in [lo]. The two-dimensional representations read 

( i(x + 1) 
01 = 

i(x”l))’ ‘i=(> F)’ 

(T3 = 

( 

if in), ba=(-i(10+x2) _i(lo\.l)). (5.15) 

where x > 0 is real. Note that exp(aaaa) is unitary for all real numbers CI,. 
Now consider w2. In this case, the negative eigenvalue eigenspace is spanned by 

+(-i)“-l(Sk, . . . Sk. - Sk. . . . Sk,) (5.16) 

and 

+( -i)“(S& . . &, + Sk. . . . sko) , (5.17) 

withforO<p<nk,E{3,+,-,O},andn=0,1,2 . . . . where 

S3=j0, S+=ij+, S_=j_, SO=iC. (5.18) 

The non-zero commutation relations between the generators read 

CLSJ = +2s, , [S+,S_] = iSi + So. (5.19) 

This real form cannot have a non-trivial finite-dimensional unitary representation. In order to see 
this, assume that v. is an eigenvector of S3 (where we omit explicit reference to the representation 
p). As S: = -S3 in a unitary representation, all eigenvalues of S3 are purely imaginary, i.e. 
S3 o. = (iL)u,, where /I E IR. Now, consider the vector S, vo. It is also an eigenvector of S3, as follows 
from 

S,S,uo = (S, S3 * 2S,)uo = (in f 2)S,vo , (5.20) 

but with eigenvalue iA + 2. This contradicts the fact that S3 only has purely imaginary eigenvalues, 
therefore Stvo must be zero. This means that the representation is at most one-dimensional. 
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5.1. I. Real forms of general Jinite W-algebras 
In the previous section we have demonstrated that real forms of a complex finite W-algebra can 

be obtained from anti-involutions co. Since our construction of finite W-algebras is based on the 
computation of a certain BRST cohomology, the question arises whether real forms of the Lie 
algebra lying above can be used to construct ones of the finite W-algebra. In the example we just 
considered, one can, however, easily convince oneself that none of the two anti-involutions comes 
from any of the three real forms of s13 (corresponding to s1(3, [w), ~2.43) and su(l,2)). To understand 
what causes this, notice that if the BRST operator is given by d(X) = [Q,X], then an anti- 
involution o of Y descends to an anti-involution of H*(d) iff H*(d) = H*(o(d)), where 
w(d)(X) = [o(Q),X]. In particular, a sufficient condition for this to happen is that co(Q) is 
proportional to Q. Put differently, an anti-involution on 9 gives rise to one on the finite W algebra 
(%,2,x), if o(p) = _.Y and [w,x] = 0. For example, this shows that the anti-involution 
w(X) = -X of 3 always gives rise to an anti-involution of (3, Z, O).3 It is unknown whether or not 
any other anti-involutions of these algebras exist, and since we will not discuss their representation 
theory in detail, we will, for the remainder of this section, focus on those W-algebras that can be 
obtained from slZ embeddings. Let us denote the generators of slZ by {t_,tO,t+ >, and the 
corresponding images in ?? by J-, Jo, J+. Furthermore, we will assume that the one-dimensional 
representation x is given by x(J’) = 5, where now 5 is an arbitrary complex number. The Lie 
algebra 9 can be decomposed in terms of the half-integral eigenvalues of ad(J’) as 3 = @,, g(“) 
(see also (3.30)). Naively, one would think that the choice of 5 is irrelevant, since there is an 
automorphism of 9 where every element of %@I is resealed by A” for some non-zero complex 
number A, and one can use this to put t = 1. However, this resealing does not scale the generators 
in terms of the anti-commuting variables b’,c, and the J” contains terms with different ad(J’) 
eigenvalues. Therefore, varying 4 gives a one-parameter family of finite W-algebras that are not 
necessarily isomorphic. An interesting situation arises when r is purely imaginary. In that case, the 
anti-involution w(X) = -X of 3 satisfies [co, x] = 0 and gives rise to an anti-involution on the 
corresponding finite W-algebra. In particular, the second anti-involution o2 in (5.10) can be 
obtained in this way, since for the embedding that describes the algebra W:“’ it turns out that the 
resulting algebras are isomorphic for all 5. More explicitly, for arbitrary 5 the algebra (5.9) becomes 

CjO~j~l = k2.l.i , [j+,j-] = t-'j,' + C . (5.21) 

One sees that indeed for purely imaginary 5 an anti-involution is obtained by sending each 
generator X to -X. A subsequent basis transformation C + 5-l C and j+ + l- 'j+ yields exactly 
the anti-involution o2 in (5.10). Notice that taking 5 imaginary brings one automatically in the 
basis described in Eqs. (5.18) and (5.19). 

In general, we will call the finite W-algebras that one gets for imaginary 5, with their correspond- 
ing anti-involution, the maximal non-compact real form of (g,_Y, x). In analogy with the corres- 
ponding situation for Lie algebras, these algebras do not have any interesting finite-dimensional 
unitary representations. The argument is the same as the one we presented for the case of WY’ at 
the end of the previous section. 

3 We assume here and in the sequel that a basis of 9 with real structure constants has been chosen, typically the one 
corresponding to the maximal non-compact real form of 3, which for 59 = sl(n, C) is sl(n, R). 
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To have a more interesting representation theory, we would like to have the analogue of the 
compact real form for finite W-algebras, like the anti-involution o1 in (5.10). The construction of 
this real form is somewhat more involved, since it cannot be induced from one on 8. Let us denote 
the parabolic subalgebra on I 0 9(“) of 9 by 9, the centralizer of si2 in 9 by X, the restriction of 
the Cartan subalgebra to X by XX and the orthocomplement of XK in 8 by Xi (so 
H = Hs @ ZK). The centralizer of ,X and $9 is a direct sum of some subalgebra %& (with Cartan 
subalgebra Xs) and the u(l) factors of X. This algebra ?& plays an important role in the discussion 
of the representation theory [12]. In most cases, 9& is the subalgebra of 99 in which the slZ is 
principally embedded. X is precisely the semi-simple subalgebra of the finite W-algebra described 
in Section 3.2.7. 

In Section 4.2.1 we saw that the computation of the BRST cohomology could be reduced to one 
for a reduced complex, where only the J” which are not in 9 appear. If there are no degree $ 
subspaces in $9, so that 9- +(u~) = 0 and the grading provided by to is integral, then exactly the .J” 
that correspond to the parabolic algebra 9 appear. If the degree i subspaces are non-zero, then 
there exists an other, equivalent formulation of the BRST cohomology involving auxiliary fields, 
and one can go to a modified reduced complex, where still only generators of P appear. Rather 
than trying to reduce an anti-involution of the whole Lie algebra 9, we can also try to start with 
one of the reduced complex and reduce that to the finite W-algebra. It is straightforward to analyze 
what conditions such an anti-involution has to satisfy and one finds that any anti-involution CL, of 
the parabolic algebra 9 gives rise to one of the finite W-algebra ($,d;p, x) if co(K) = (</r)J-. 

To prove the existence of anti-involutions is not so easy in general. For example, the existence of 
the Cartan involution for ordinary Lie algebras becomes only transparent in certain distinguished 
bases of the Lie algebra, like the Cartan-Weyl basis. We do not have similar distinguished bases of 
9 at our disposal, so that we can only conjecture the following. 

There exists an anti-involution on 9 which restricts to the Cartan involution on .w‘ and to minus 
the identity on Xs. We will call the corresponding real form of the finite W-algebra the compact 
real form. 

In all known examples such an anti-involution exists. For example, in the example in the 
previous section the anti-involution of 9 corresponding to the anti-involution LCI~ in (5.10) is 

(5.22) 

Another example is the finite W-algebra corresponding to the sl, embedding in s14 under which the 
fundamental representation of & decomposes as 2 0 2. In that case 

(5.23) 

where A, B, C are two by two matrices. 
It is an open problem to classify all possible real forms of finite W-algebras, and to prove the 

existence of a compact real form in general. 
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5.2. Highest weight representations 

In this section we work out the construction of highest weight representations of finite W- 
algebras, and the conjectured form of the Kac determinant and the Kazhdan-Lusztig conjecture 
for such representations [12]. The latter relates the characters of highest weight representations to 
those of irreducible representations. 

The definition of highest weight representations of Lie algebras uses the decomposition of the Lie 
algebra into generators corresponding to the positive roots, the negative roots and the Cartan 
subalgebra. A highest weight module is built by acting on a particular vector with arbitrary 
negative root generators. This vector is by definition annihilated by all the positive root generators, 
and has specific eigenvalues with respect to the generators of the Cartan subalgebra. If the 
Hamiltonian of a physical system would be part of the Cartan subalgebra, a physical motivation to 
look at such representations would be that their energy is bounded from below. 

To imitate this construction, we need a similar type of decomposition of the finite W-algebra. 
The part of the Cartan subalgebra which survives in the finite W-algebra is precisely XX, and every 
generator of the finite W-algebra has well-defined eigenvalues with respect to the adjoint action of 
the generators of XX. Thus we can associate to every generator of the W-algebra a root in the root 
space X,$, which is the dual of XX. To find out what are the positive and negative roots, we 
assume there is an automorphism of the Lie algebra 3 which maps 9& into a subalgebra generated 

by {E+,,,Hx,}i,s, where S is a subset of the set of simple roots of 3. From now on we will assume we 
are in a basis of 3 where this is the case. Any root c( of 99 can be orthogonally projected onto an 
element (called rc(~)) of the root space X.2. The image of the positive roots of 3 under this 
projection (except those which project to zero) is what we will call the positive roots of 8’. This 
then defines the following decomposition of the generators of the finite W-algebra 

?Y = -w1@ ?J!& @ %Y+ . (5.24) 

The same decomposition can be written down not just for the generators, but also for the universal 
enveloping algebra of the W-algebra. Typically, %$ contains s&$, a certain number of central 
elements that commute with everything and do not give new roots (one of such generators is the 
remnant of the quadratic Casimir of the original Lie algebra), and other elements whose adjoint 
action cannot be diagonalized. 

The properties of such a root-space type decomposition of the generators of the finite W-algebra 
are different from those of Lie algebras. Here, there can be root spaces of dimension larger than 
one, and one does not have subalgebras isomorphic to s12 corresponding to any root. In addition, 
in the case of Lie algebras [En, Ea] vanishes if a + p is not a root or zero. Finite W-algebras, on the 
other hand, satisfy non-linear relations, so even if a + /I is not a root, one can still have relations of 
the type [E,+,/,Elr-),] - E,E,. 

An important property that finite W-algebras share with Lie algebras is that the Poincare- 
Birkhoff-Witt theorem still holds. Choose a basis of the finite W-algebra so that the generators are 
in one-to-one correspondence with elements of ker(ad,_) and have a well defined non-negative 
half-integer eigenvalue with respect to -adtO. For example, choose the generators in one-to-one 
correspondence with the lowest weights of the irreducible sZZ representations in which 9 decom- 
poses under the action of the embedded &. If this basis is (VCli}iEI, we can order the index set I in 
some arbitrary fashion, and the Poincare-Birkhoff-Witt theorem states that a basis for the finite 
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as a vector space) is given by all expressions of the type 

185 

(5.25) 

where il I i2 . . . I i,. To prove this, we first note that from the explicit form of the generators, as 
obtained from the tic-tat-toe construction, one can see that the commutator of two generators of 
-ad,<, eigenvalue A1 and & does not contain generators or products of generators of -ad,<) 
eigenvalue larger than ;1r + Iw2. More precisely, the linear terms have eigenvalues 5 i, + &, the 
quadratic terms have eigenvalues <,I1 + j.2 - 1, the third order terms have eigenvalues 
1i1 + i2 - 2, etc. Armed with this observation the theorem can now be proven using double 
induction on the number of generators and their -adto eigenvalue. 

A particular useful ordering of the generators of the finite W-algebra is to put all generators in 
% 1 to the left, those corresponding to Y& in the middle and those corresponding to %Q’i to the right. 
Then one can define a highest-weight representation in the usual fashion, by acting with the 
W-algebra on a particular vector liL), which (i) is annihilated by the generators in 7%; and (ii) has 
certain eigenvalues with respect to the generators in wO. The Poincare-Birkhoff-Witt theorem 
then tells us that the resulting module is spanned by the vectors 

w,, r/r/;, ... KV”) 3 (5.26) 

where il I i2 . . . I i,, and the Wi are elements of “I%?. This agrees precisely with the standard 
definition. 

At this stage we should discuss how one constructs highest weight representations of finite 
W-algebras in terms of representations of $9. One possibility is to use the BRST procedure once 
more. The finite W-algebra was the BRST cohomology of a certain complex constructed out of 9, 
and it is possible to extend this complex to one where the Lie algebra is replaced by a representa- 
tion of the Lie algebra. The cohomology of this complex then automatically gives representations 
of the finite W-algebra. This procedure has some disadvantages, however. Firstly, it is rather 
cumbersome if one has to compute a new cohomology for every representation, and secondly, 
finite-dimensional representations of Y typically yield just the trivial representation of the finite 
W-algebra. For a discussion, see [6]. 

A better procedure is to take explicit representatives for the generators of the finite W-algebra, 
and to use those to obtain finite W-representations as subspaces of representations of the universal 
enveloping algebra of 93.4 This only works if the generators form an exact closed algebra, not one 
up to BRST exact terms.’ The only realization which has this property is the one that one gets from 
the tic-tat-toe construction in Section 4.2.1. This is not yet the complete story, however. One would 
also like to get highest weight representations of the finite W-algebra from highest weight 
representations of 3. However, from (4.25) one sees that C contains a lowering operator of 9, 

’ Strictly speaking, one also needs a representation of a b”, c, Clifford algebra, for which one can take the module 
obtained by acting on a vector IO) that is annihilated by all the cl. In that case one never has to deal with the Clifford 
algebra explicitly, and we will ignore it from now on. 

‘It would, for instance, be nice if one could express the generator of the finite W-algebra corresponding to the 
quadratic Casimir simply as T-J,J”J*, but then the finite W-algebra no longer closes and it is in general not clear whether 
the other generators can be modified in order to close the algebra. 
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namely J8. Hence C is not automatically diagonal on a highest weight of 3. To achieve this we also 
have to use the quantum Miura transformation, which tells us that we can consistently restrict the 
generators to their bidegree (0,O) part. If we do this, then C will be diagonal on a highest weight of 
3, and we end up with a highest weight representation of the finite W-algebra. Thus, to summarize, 
we can construct highest weight representations of finite W-algebras via 

highest weight representations of Y 

J restriction 

highest weight representations of ‘Z& 

LM iura 

highest weight representations of nllr 

(5.27) 

Assume from now on that we are in the basis of ?& where ?& is generated by {E+,,, H,Z}i,s. The 
above construction of highest weight representations of the finite W-algebra leads to a non-linear 
parametrization of the eigenvalues of the generators of -W, in terms of the weights of 3. This is 
a correct counting of degrees of freedom: Y&o consists of generators obtained from Y& in addition to 
those of XX. Since the slZ is principally embedded in gs, we get rank(gs) generators in ?.@$ from 
this, so that dim(wO) = rank(gs) + dim(X%) = dim(Xs) + dim(XX) = rank(g). The w0 eigen- 
values corresponding to z&$ are linear in terms of the 3 weight A. The P!& eigenvalues correspond- 
ing to the generators obtained from %s will typically be non-linear, and be reminiscent of the 
Casimirs of $&. Indeed, the conjectured form of the Kac determinant, to be discussed in a moment, 
shows that the Y& eigenvalues correspond to the I%‘,, invariants that can be constructed out of /1; 
W, is the Weyl group of gs, and its action on the weights /i will be discussed later. 

As we said previously, every generator of the finite W-algebra has well-defined eigenvalues with 
respect to the adjoint action of XX, and this defines for every W-generator an root in X2.. The set 
of roots corresponding to the generators of “w; will be denoted by d 7.. We will write d 7 = 

{ (69 /k)}ieI, where Ei E X.2, and pi labels the potential degeneracy of such a root. The correspond- 
ing generators of %Y+ will be denoted by W,“, and those of w by WE’,. Furthermore, we will by 
d: denote the set of positive roots of 9 minus the set of positive roots of G!&, and denote by z the 
canonical (orthogonal) projection from the root space of 3’ to that of X’. On 2.; we can define the 
Kostant partition function P(E), which is the number of inequivalent series of non-negative integers 

2 iG vectors 
such that & = ci ti&i. Now consider the highest weight module generated by Iii). It consists 

w’“,,w!Y”,, . . . W!!&l) = Wjil’,,l/l> ) (5.28) 

with(t?i,pi) 2 (&,P~) 2 . . . 2 (E,,, PJ with respect to some ordering of the roots of A r. The states 
with xi Ei = fl span some finite-dimensional vector space VP. If o denotes the anti-involution 
corresponding to the compact real form of YV, and we define 1~4) + = (LI/ and (/1/ A) = 1, then 
unitarity of the highest weight representation implies that the dim(V’p) x dim(Vg) dimensional 
matrix 

Mg(4(P.,a*},{a,a) = (nlw(W([“!QW.(%ln> (5.29) 

is hermitian and has only positive eigenvalues. Reducibility of the highest weight representation is 
indicated by zero eigenvalues of this matrix, and both unitarity and reducibility can be studied by 
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looking at the so-called Kac determinant of this matrix, which we denote by M&l). In [12] the 
following form of the Kac determinant was conjectured6 

M/?(~)=UW n I-I <n+P*-,r+50 
( > 

P(/?- kn(a)) 

> (5.30) 
k>O rcii: 

where K($, A) is a positive constant and ( , ) is the usual positive definite invariant inner product 
on Z*. The vector p M that appears in (5.30) depends on the details of the Miura transformation 
and the slz embedding. To construct it, we look at the generator of the finite W-algebra which is 
written in the tic-tat-toe form of Section 4.2.1, and which differs from the quadratic Casimir 
q,J”J’ of $9 by a BRST-exact quantity. The bidegree (0,O) of this generator, which appears in the 
Miura transformation, has a certain eigenvalue on the highest weight state (A). The eigenvalue in 
terms of l/i ) is of the form 

a<n + Pa ,A i- P% > + b 9 (5.31) 

for some constants a, 6, and this defines pr-. One of the properties of p7/. is that the W’;, eigenvalues 
are invariant under the following action of IV, 

M” .4 = w(A + p1/ ) - /I#- . (5.32) 

This is consistent with (5.30), since one easily verifies that Mg(w . A) = ibIg for w E I&. Thus the 
Kac determinant can be rewritten as a polynomial function of the %$ eigenvalues. 

To illustrate the use of the Kac determinant we will now work it out in more detail for the finite 
W-algebra described in Section 4.2.2. 

5.2.1. Example 
In this example the algebra gs is generated by {tl, tS, ta}, which is not generated by 

{Hz,,E+zL}i,s. Th ere ore we first perform an automorphism of the sl, to make sure that 9,V is f 
generated by {IIZ,,,E~,~}. This automorphism is 

+ 8 +[; ; %i 

and the new basis of st, is 

rata = 

1'4 F.5 
--- 6 2 r1 y2 

y8 ;+!$ l-7 

r4 
r6 r3 -- 

3 

(5.33) 

(5.34) 

61n [12], the constant K is omitted and it is implicitly assumed that one has chosen an embedding and a Miura 
transformation such that pS = p. 
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Strictly speaking J’s are elements of the dual Lie algebra 3 *. We identify the latter with the Lie 
algebra via the pairing (X, Y) = tr(XY). Furthermore, highest weight representations of 3 corres- 
pond to lowest weight representations of 3 *, and it is the highest weight representations of 3 * that 
give the highest weight representations of the finite W-algebra. To correct for this, we apply the 
Chevalley automorphism H -+ -H, E,++E_, to 9. This leads to the following identification 
between the J’s and s13 matrices 

; 

-r4 + rs r1 r2 

r,Ja = r8 -r4-r5 r, . 

I 

(5.35) 

r6 r3 214 

The semi-simple subalgebra x is a u(l), and is spanned by t4 which is proportional to 
2HaI + H,]. Therefore, the root space 2.: is spanned by a2 + &xl. Furthermore, we find that 
2: = {cI~,c(~ + CI~}, and that 7r(a2) = n(al + a2) = ti2 + :~r. Hence the positive roots of the 
W-algebra correspond to positive multiples of 2a1 + al, and we see that w0 is generated by C and 
j,, that -W; is generated by j+ with root a2 + $a, and that % is generated by j_ with root 
-(a2 + $M~). The anti-involution corresponding to the compact real form is the same as al in 
(5.33). 

The explicit form of the generators as given in (4.21) and (4.25) can now be used to deduce what 
the eigenvalues of j, and C on a s13 highest weight state 1 A ) are. If we parametrize the weight /1 as 
qlibl + q2A2, where 1 1, 2 are the fundamental weights of s13, we find for the j, and C eigenvalues h, c 
respectively, 

h = 1 + 5(2q1 + 4q,) ) c = -$(qf + q; + qlq2) - 442 - 1 . (5.36) 

Alternatively, c can be written as -:(A + a2,/1 + c(~) + :, and we deduce that p%. = a2. There- 
fore, element w of the Weyl group acts on a weight /1 as 

w./l=w(/l+p,)-&$, . (5.37) 

The Weyl group is Z2 and is generated by the reflection s,, in the line perpendicular to al. It acts on 

4142 as 

S&l) = --41 + 2 > &l(q2) = 41 + q2 + 1 9 (5.38) 

and leaves h, c invariant. 
For the Kac determinant at B = p(a2 + +cll) we find 

qdq142) = qql,q2) fi (42 + 2 - k)(q, + q2 + 1 - k) 7 
k=l 

(5.39) 

which can in agreement with our expectations be rewritten in terms of c,h as 

MPh q2) = &&ll, q2) 

3*p 0 4 ,‘=I, (c + (h + 1 - Q2 + :(k2 - 1)) . (5.40) 

This result can be compared with the results in [lo] by working out explicit commutation 
relations. Then one finds out that Kp(ql, q2) = p!($)“. 
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The Kac determinant can now be used to obtain information about unitary and reducible 
representations of the finite W-algebra. 

Unitarity of a representation implies that the Kac determinant is positive for every p. In this 
example the representation is spanned by ( jt 1 A) 1 ~ I> o and the Kac determinant gives us the norm 

M,hq2) = ~4~p+jWO : (5.41) 

so that positivity of the Kac determinant is here equivalent to unitarity. It follows that the highest 
weight representation is unitary if(i) q2 < min( -ql, - 1) or (ii) there exists a non-negative integer 
Y such that max(r - 2,r - 1 - ql) < q2 < min(r - 1,r - ql). If the Kac determinant has a zero at 
some level p, then the norm jP IA) is zero and this vector can be consistently put equal to zero, 
leading to a finite-dimensional representation of the finite W-algebra. The condition for this is that 
either q2 = p - 2 or q1 + q2 = p - 1. This leaves one parameter free which we parametrize by an 
arbitrary real number .X as q1 + 2q, = :(p + x - 2), so that h = p + x - 1 and c = i(l - p2) 
- x2. When are these finite-dimensional representations unitary? From the Kac determinant we 

see that if q2 = p - 2 then q1 + q2 + 1 - k must be positive for 0 I k I p - 1, and if 
ql + q2 = p - 1 then q2 + 2 - k must be positive for 0 2 k 5 p - 1. Therefore we find that (i) 
q2 = p - 2 and q1 > 0 or (ii) q1 + q2 = p - 1 and q2 > p - 3. Both possibilities imply the same 
condition for x, namely $(p + x - 2) > 2p - 4, or x > $(p - 2). Finally, let us look at the maximal 
reducible representations. These are representations where the Kac determinant has a maximal 
number of zeroes, corresponding to finite-dimensional reducible representations of the finite 
W-algebra. Such representations exist if for some integer 1 satisfying 0 < 1 < p we have (i) 
q,+2-p=o andq,+q2+1-~=Oor(ii)q~+q2+1-p=Oandq2+2-I=O.Intermsof 
x this implies p + 1 - 3 = +(p + x - 2), or x = $(2I - p). For this value of .x the finite W-algebra 
has a p-dimensional representation with an I-dimensional subrepresentation. 

5.3. Characters of jnite W-algebras 

In this final part of the description of the representation theory of finite W-algebras we will take 
a closer look at the characters of these representations. In the description of the Kac determinant 
we explained that every highest weight representation can be decomposed into finite-dimensional 
vector spaces VP, and the Kac determinant was defined as det (VilVj), where the /vi) formed 
a certain distinguished basis of VB. The formal character of a highest weight representation R with 
highest weight A of a finite W-algebra is now defined as follows 

ch R = 2 dim(VD)e”(“‘Pfl, 
B 

(5.42) 

where rc is the orthogonal projection of the weight space of 9 on that of X. This is a formal 
expression in the sense that it contains the ill-defined object exp@). The best way to think of these 
objects is that ultimately we want to view the character as a function on X$, and for 1 E LZ$?~ the 
function exp(,@ is defined as exp(p)(A) = exp( (/?, 2)). In particular, these exponentials satisfy 
the usual property exp(E)exp@) = exp(& + fl). The combination rc(A) - p which appears in the 
exponent in (5.42) is exactly what gives the eigenvalues of the generators in Y&, when acting on the 
states in Vfl. 
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The Verma module M(I1) with highest weight /i is by definition the highest weight module that is 
freely generated by I/i), so that in particular we keep all the states with zero norm. Every highest 
weight module with highest weight n is a quotient of M(A), and the quotient of M(A) and its 
maximal proper submodule n/i’(n) is an irreducible highest weight module L(/i) = M(/1)/M’(/i). 
All irreducible highest weight modules are of the form L(/1) for some A, and our goal in this section 
is to study the characters of the modules L(n) in terms of the characters of the Verma modules 

M(A). 
The characters of the Verma modules M(/l) are easily obtained, since they are freely generated 

by nw1, and we can use the Poincar&-Birkhoff-Witt theorem to write down a basis for M(A) (see 
(5.28)). From this one deduces that 

ch M(A) = 
eNm 

JJ,.,.(l - epi) ’ 
(5.43) 

Non-trivial submodules of M(A) can arise if M(A) contains a singular vector, which is a vector (not 
equal to IA)) annihilated by all generators in -W; . If we denote this vector by 1 A’), then the Verma 
module M(_4) contains the submodule M(/i’). If the latter would happen to be the maximal proper 
submodule of M (A), we would find that L(A) = M(.4)/M(A’). Since the character of a quotient of 
two modules is simply the difference of the two characters, this would lead to the following identity 
for characters 

chL(/i) = ch M(A) - chM(/i’) . (5.44) 

More general situations can occur, of course. For example, if M(A) contains three singular vectors 

I&>, I&> and I&>, and I&) is contained in both M(A,) and M(n,), then the maximal proper 
submodule is generated by M(A,) and M(A,), but it would not be correct to subtract their 
characters from M(A) to get the character of L(n), since we would have subtracted the vectors in 
M(A,) twice. Rather, the correct formula is 

chL(/l) = ch M(A) - ch M(A,) - ch M(A,) + chM(A,) . (5.45) 

A further complication is the possible existence of subsingular vectors. These are vectors that 
become singular after modding out a module generated by singular vectors. In that case one also 
needs to subtract the submodules generated by these subsingular vectors. Altogether this leads to 
an expression for the character of L(I1) as a linear combination of those of M(A) with integer 
coefficients. Since we know the latter explicitly (5.43), this immediately yields the explicit characters 
of L(/i). 

The character formula conjectured in [12] deals with the maximally degenerate representations 
of the finite W-algebra. These are representations for which the Kac determinant has a maximal 
number of vanishing factors. Vanishing factors in the Kac determinant are closely related to the 
existence of singular vectors (the latter have zero norm), and an alternative definition of maximally 
degenerate representations is those representations with a maximum number of singular vectors. 
For these representations the character formulas will be the most complicated ones. A factor 
<A + Pw, a) - (k/2) (CI, a) in the Kac determinant vanishes (for 99 = sl,,) if (A + pw, a) is a posit- 
ive integer, since every root has length two. If p denotes one half of the sum of the positive roots, 
then (p, ai) = 1 for all simple roots ai. Therefore, if n + pw = ;1 + p, and 1 is a dominant integral 
weight (a linear combination of the fundamental weights with nonnegative integer coefficients), 
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then (A + pw , a) will b e a positive integer for any root cc. From now on we will restrict our 
attention to such weights. 

The Weyl group W of 9 acts on n via (5.32). The subgroup IV, does not change the 
representation of the finite W-algebra, so from that point of view we may identify weights and their 
images under the action of IV,. Thus, the orbit of the weight under the Weyl group gives a set of 
weights of the finite W-algebra in one-to-one correspondence with the coset I+‘,\ W, and the 
conjecture is that these are precisely all the singular vectors of the representation of the finite 
W-algebra. 

The Weyl group is generated by the reflections in the hyperplanes perpendicular to the simple 
roots. Every element of the Weyl group can be written as the product of such reelections, and the 
minimal number of reflections in simple roots needed to obtain an element w of the Weyl group is 
called the length of that element, E(w). A particular ordering of the elements of the Weyl group plays 
an important role in the character formula, the so-called Bruhat ordering (see e.g. [47]). Write 
w’ --f w if w = tw’ and l(w) > l(w’), where t is the reflection in the hyperplane perpendicular to some 
root (not necessarily simple). Then we say that w’ < w, if there is a sequence w’ --+ w, --f 

. . -+ w, _ 1 --+ w. Now given a Weyl group IV, associated to some subset S of the set of simple 
roots, we define Ws as the set of w e W such that l(sw) > l(w) for all reflections s in any hyperplane 
perpendicular to any root (not necessarily simple) of gs. Any element w E W can be uniquely 
written as uu with u E IV, and ZJ E I+“, and Ws is a set of representatives for the coset W,\W. We 
will identify Ws\W with the set IV’ and give it a partial ordering by restricting the Bruhat ordering 
on IV to IV’. 

We can now write down the Kazhdan-Lusztig conjecture for finite W-algebras, as proposed in 
[12]. It reads 

ch L(z . (wmax. A)) = g,7~w~,w (-1)““‘(-1)““P”,S,(l)chM(o.(w,,,.n)) . (5.46) 
7 

Here, w,,, is the longest element of W (so that wmax. /1 + p% - p is an anti-dominant weight), and 
p&(x) are the so-called dual relative Kazhdan-Lusztig polynomials associated to IV,, see [48,49]. 
In [48] this character identity is proven for ordinary simple Lie algebras, when S is the empty set. 

One of the implications of this character formula is that the singular vectors in M(n) are in 
one-to-one correspondence with the elements of I+‘,\ W - IV’, and that the Bruhat ordering tells 
us precisely which singular vectors can be obtained from which other singular vectors by acting on 
them with -w1. 

To conclude this section we illustrate this character formula with the example studied in Sections 
4.2.2 and 5.2.1. The Weyl group of slg is S3 and the Bruhat ordering on S3 coincides with the 
ordering with respect to the length of the elements, i.e. w < w’++l(w) < l(w’). If we denote the 
reflections in the lines perpendicular to the simple roots ~~ and a2 by s1 and s2, then IV, = { 1, s1 } 
and Ws = {1,sz,s2s1}. We represent the highest weight as in Section 5.2.1 as /1 = qlkl + y212. 
The maximal Weyl group element in s1s2s1 and by explicit computation one finds that 

W ma* .A =(-1 --q2)& +(-1 -q1)&, 

s2 . (wnax .A) = C-41 - c?2)& + (41 - 3)& 9 

s2 Sl . (%ax . A) = (2 - 4lVl + (41 + cl2 - 1112 . 

(5.47) 
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In view of (5.38) representations with weight s2sl +(w,,; /i) can be identified with those with weight 
SlSZSl ~(wnax . A) which is just n = q1 A1 + q2&, and we will do so in the equations that follow. The 
values of the dual relative Kazhdan-Lusztig polynomials are given by P:Jl) = 1 for all 0 I z, with 
one exception. If r~ = 1 and z = szsl then it vanishes. Substituting everything in the character 
formula yields three equations 

chL(-1 - q2, -1 -qi)=chM(-1 -q2,-1 -4r) 

chL(-q, - q2,q1 - 3) = chM(-q, - q2,qi - 3) - chM(-1 - q2, -1 - qi) (5.48) 

ch%,,q,) = chM(q,,qz) - chM(-q, - q2,ql - 3). 

These identities agree with the picture of the representation of this finite W-algebra as sketched at 
the end of Section 52.1. An explicit expression for the character of L(q,, q2) is now easily obtained. 
The positive root in d 7 is a2 + $a1 = :A,, and rc(/i) = (q2 + iq1)A2. Thus 

chL(q,,q2) = 
e(2~, + 41)&/2 _ e(ql - qz - 6)&/2 

1 _ e -3i.d 
(5.49) 

The formal limit A2 + 0 of the right-hand side yields q2 + 2 and this is the dimension of L(q,, q2). If 
we parametrize as in the end of Section 5.2.1 the maximal reducible representations by q1 = 1 - 2 
and q2 = p - 1 - 1, we find that the dimension of L(q,, q2) is 1. This is indeed correct since for these 
values of ql, q2 the p-dimensional finite representation had an E-dimensional subrepresentation 
which is precisely L(q,, q2). 

6. Constructing theories with finite W-symmetries 

In Chapter 2 we have seen some finite W-algebras that appear in simple physical systems. This 
happened more or less by coincidence, a priori we had no reason to expect a finite W-algebra to 
show up (although anisotropic harmonic oscillators have quite generally extended non-linear 
symmetry algebras for rational frequency ratios, see e.g. [15]). Here we want to pose the reverse 
question, namely, can one given some finite W-algebra construct theories that have this W-algebra 
as their symmetry algebra? An additional interesting question is whether or not one can build 
gauge theories based on finite W-algebras. If we would succeed in constructing a gauge theory for 
a finite W-algebra that contains SU(3) x SU(2) x U(l), this might be a new candidate for a Grand 
Unified Theory. Such finite W-algebras certainly exist, as we briefly explained at the end of Section 
3.2.7. Unfortunately, we have not succeeded in constructing a gauge theory for finite W-algebras 
except in one dimension, and some topological type theories in other dimensions. In this section, 
we want to sketch some of the ideas and problems involved in the construction of theories with 
finite W-symmetries. This is definitively not a finished chapter in the theory of finite W-algebras, 
and it will have more the character of a series of remarks than that of a finished theory. 

6. I. Problems with jinite W-symmetries 

We start with some particular (classical) finite W-algebra given by the Poisson brackets 

{w,> w,) = P&V , (6.1) 
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where the Paa are certain polynomials in WY. Suppose that we have some field theory with fields 4i 
with a finite W-symmetry. This means that there are transformation rules S4i = C, a,6,4i that 
leave the action invariant, where E, is the constant parameter corresponding to the generator IV,. 
Associated to these transformation rules are a set of conserved currentsji that can be found in the 
usual way through the Noether procedure. The corresponding conserved charges, that generate the 
symmetries, are 

Q1 = dd-‘xj’ . 
s 

(6.2) 

The statement that the theory is invariant under the finite W-algebra (6.1) means that the 
conserved charges have to satisfy precisely (6.1), i.e. 

{Qm Qa) = R,dQJ . (6.3) 

It is hard to see how one could realize (6.3). The left-hand side contains two integrations j ddmm lx, 

and one of these disappears after integrating over the delta function that arises in the equal-time 
Poisson brackets. Hence, the left-hand side contains exactly one integration j dd- ’ .Y. The right- 
hand side contains as many integrations j dd-‘x as the degree of PzB. These two facts can only be 
made to agree with each other if(i) the finite W-algebra is linear or (ii) d = 1. Case (i) is precisely 
what we are not interested in, since that brings us back in the realm of ordinary Lie algebras, and 
we will come back to d = 1 later. Therefore, it seems that we have some kind of no-go theorem in 
dimensions d > 1. What else could we try to do? First, the above argument assumes the symmetries 
are local. If one drops this assumption, it might still be possible to do something. We have not 
analyzed this possibility, partly because of the problems in dealing with theories with non-local 
symmetries. A second possibility is to change the definition of what we mean by a theory with finite 
W-symmetries, and this will be the subject of the next section. The reader who has some knowledge 
of the corresponding situation with ‘infinite’ W-algebras in two dimensions may wonder how these 
escape the no-go theorem given above. The reason is that the ‘infinite’ W-algebras have an infinite 
number of generators, and this makes it possible to convert the integrations that remain in the 
right-hand side of (6.3) into infinite sums of generators. Since we restrict attention 
W-algebras with a finite number of generators, this does not provide a way out either. 

to finite 

6.1. I. Another dejnition of Jinite W-symmetries 
In [SO] an attempt was made to write down a gauge theory for a non-linear algebra which is 

a deformation of su(2). This construction involved a set of scalar fields, which are not needed in the 
gauge theory of pure su(2). This can be rephrased in the language of the previous paragraph by 
saying that rather than looking for a theory which has (6.3) as its symmetry algebra, we look at one 
which has the following algebra of symmetries 

{ Qa, Qs) = P$U'dQ, 7 (6.4) 

where the Th are extra scalars, one for each generator of the finite W-algebra. The Th are added by 
hand. Now the left- and right-hand sides of (6.4) contain the same number of integrations and the 
objection of the previous paragraph no longer applies. In some sense one might say that a minimal 
finite IV-multiplet necessarily involves an extra set of scalar fields. We have not yet specified what 
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the polynomials P$ are. A first guess could be to require 

f'&(Qa)Q, = Rp(Qa) > (6.5) 
so that (6.4) becomes identical to (6.3) upon identifying QM with T,. It is, however, not clear that with 
this choice the Jacobi identities are satisfied. To verify the Jacobi identities, we need also the 
bracket 

(QJ'p) = &GJ . (6.6) 
Furthermore, we assume that the equal time Poisson bracket of T, with Tp vanishes. Then the 
Jacobi identities give two differential equations for S and P. If we choose P$ as in (6.5), we cannot 
give an explicit solution for S or even prove that a polynomial solution always exists. A much more 
natural choice is 

(6.7) 

since now the Jacobi identities {Qa, {Qa, Q,>> + cycl = 0 and {Qa, {Qs, T,}} + cycl = 0 follow 
directly from the Jacobi identities for the original W-algebra. These conventions differ slightly from 
those in [SO], but agree after resealing the deformation parameter in [SO] by a factor of two. The 
bracket (6.6) with S,, as in (6.7) also appeared in [13], where a study of theories with non-linear 
gauge symmetries was performed and the two-dimensional non-linear gauge theory (6.25) was first 
discovered. A particular nice feature of the algebra (6.4) and (6.6) is that if the original finite 
W-algebra contains a semi-simple Lie subalgebra as in Section 3.2.7, it is preserved in our new 
‘W-inspired’ Poisson algebra, and the new algebra could still serve as a starting point for 
a non-linear Grand Unified Theory. 

Is it possible to realize the algebra (6.4), (6.6) in some field theory? Although this would not be 
a finite W-invariant theory in the narrow sense, it would at least be a finite W-inspired theory. If 
there are no further fields in the theory apart from the scalars T,, it is natural to look at 
sigma-models with Lagrangian density 

.9 = -+GQ(T~T,~,T, - v(T,) . (6.8) 
Invariance under the transformations generated by Q, yields the equations 

$YGaPPp, ++GPPFPpy +;GWPPp,=O, FVP,, =O. (6.9) 

The equation for the potential simply states that V is in the center of the finite W-algebra. If the 
latter is generated by certain polynomials Ci(W,), then I/is a function of these Ci. The center of 
a finite W-algebra from an slz embedding consists of the Casimirs of the original Lie algebra, since 
these clearly commute with the BRST operator. Of course, depending on the explicit representa- 
tives one chooses to represent the W-algebra generators, the generators of the center of the 
W-algebra will in general differ from the Casimirs by certain BRST-exact terms. 

The solution to the first equation in (6.9) is less obvious. If the symmetry algebra is a Lie algebra 
then one can choose GE8 to be an invariant inner product on the Lie algebra. However, Lie algebras 
are special in the sense that Qa and T, transform in the same way under W-transformations. In 
general, Qa transforms in the same way as ap T,, which differs from the way T, transforms. We have 
examined two examples of non-linear algebras in detail. One of them is the finite W-algebra 



J. de Boer et al./Physics Reports 272 (1996) 139-214 195 

I+‘:” and the other one is the following non-linear deformation of slz7 

C.h&l = kj, , [Ij+ ,j- 1 = 4’(h) , (6.10) 

where $( j,) is neither a linear nor quadratic function ofjo. The center of this algebra is (classically) 
generated by Ci = 2j+ j_ + 4( j, ). The finite I%‘?’ algebra can be written in the same way as (6.10), 
where now 4 = f j: + Cj, and C is an additional generator that commutes with everything. The 
center of this algebra is generated by C1 - j+ j- + 4 and C2 = C. In both cases we have explicitly 
solved the differential equation for GaB and we have found that the only allowed kinetic terms are in 
either case of the form 

Gij(C,)aPCc,al,Cj . (6.11) 

These are not really interesting, since they only induce dynamics for the gauge invariant combina- 
tions of T,. It would be interesting to know whether a similar result holds for all non-linear 
algebras. 

We can rephrase what went wrong in a different language as follows. The derivative a,,T, 
transforms under Q, as 

iQ:.,a,lT3() = appya(79aPTl,. (6.12) 

Let us call a tensor which transforms in this way a covariant tensor. The transformation rule for 
a contravariant tensor Y” can now be determined by requiring a,,T, Y” to be invariant, yielding 

{Q,, Y “} = av,;,(T) P . (6.13) 

The lack of interesting invariant actions of the type (6.8) can now be rephrased by saying that there 
is no interesting symmetric rank-two contravariant tensors. For Lie algebras the Killing metric 
provides such a tensor, but for non-linear W-algebras this property ceases to exist. Interestingly, 
there is a natural rank-two contravariant tensor in the game, namely the inverse P”“(T) of the 
tensor P,,(T). The latter is not invertible in general, due to the fact that the non-linear algebra may 
have a center. If it has a center we will treat the generators of the center as numbers rather than 
generators, so that P”” can contain inverses of these, and the indices a,fl range only over those 
generators that are not in the center of the finite W-algebra. It is now a straightforward exercise to 
verify that P”” indeed transforms as a rank-two contravariant tensor. Since it is anti-symmetric 
rather than symmetric we cannot use it to construct an invariant action of the type (6.8), but it can 
be used to construct an invariant action in two dimensions involving an s-tensor 

s = d2X E”“P”“(T)a,T,a,,T,j . (6.14) 

This is a topological action in two dimensions, as it does not depend on the two-dimensional 
metric. We will come back to this and other related actions after we have introduced gauge fields 
for finite IV symmetries, since we are after all looking for gauge theories. 

7Non-linear algebras of this type are among the few examples of non-linear algebras that are similar to finite 
W-algebras and that have been studied previously, see remark at the end of Section 2.2.2. 
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6. I .2. Gauge fields for finite W-symmetries 
Gauge fields appear if we want to make finite W-symmetries local, i.e. we allow the parameter of 

the gauge transformations to be space-time dependent. To find the transformation rules for the 
gauge fields one can for example propose a covariant derivative for T,, D, T, = 8, T, - hi&(T), 
and require that OPT, satisfies the same transformation rule under local W-transformations as 
8, T, under global ones, in other words, it should still transform as a covariant tensor. This leads to 
the following result 

DpT, = a,T, - h&Pp,(T) , Sh,B = a,&” - C’aBP,,y(T)h;, (6.15) 

where E’ is the local parameter for the finite W-transformation generated by Q,. With these 
definitions one finds indeed a structure such as (6.12), 

S(D,T,) = EV~~P,JT)D,,T~ . (6.16) 

It is not at all clear, however, that (6.16) (or (6.12)) is the appropriate way to define an object that 
transforms ‘covariantly’ under finite W-transformations. Firstly, it is not clear how to define 
another covariant derivative 0:” so that Dj2’D,T, transforms also covariantly, as a,a,T, trans- 
forms differently from a,T,, already under finite W-transformations. Secondly, one could as well 
consider modified transformation rules for hi such as 

Sh,B = a# - CQaPvy(T)h; + E'I(DJJC;(T) , (6.17) 

to obtain for DpTT, the following transformation rule 

b(D,T,) = cq(ayP,,(T) + P,,(T)Cp)D,,T, . (6.18) 

If we can choose C in such a way that DfiTT, transforms in the same way as T,, then we can 
immediately write down an invariant kinetic term for the T,, based on one of the elements of the 
center of the finite W-algebra. We have, however, no clue whether this can be done or whether it is 
sensible. Alternatively, one could try to fix C by requiring the gauge algebra to close on the gauge 
fields. One can easily compute that 

C&,,~,,lh,p = 4z,h& - d’~;(D,X)Xr$ > (6.19) 

where E[ = apP,,,E:&i and 

x$ = -a~p,,cf + aap,cF + a"P,Yz,BY - aV,Yzp + R,J~~z~ 

-P~J~c~~*/ + p,,aYc~ - P aYP-aYp rlY c Pi- aAaBp “‘I ‘i 01 . (6.20) 

Clearly, the gauge algebra closes if X,$ = 0, but the significance of this equation for C remains to be 
seen. Finally, one would like to write down an invariant action for the gauge fields, preferably in 
terms of a generalized curvature, which would be a non-linear version of Yang-Mills theory. It 
would be interesting to analyze for each of the possible transformation rules for the gauge fields 
whether or not such invariant actions exist. An attempt in this direction was made in [SO], where 
an invariant action was constructed for a non-linear deformation of su(2), to first order in the 
deformation parameter. However, it is not clear whether their result can be extended systematically 
to an arbitrary order in the deformation parameter. Another more successful attempt [13], based 
on the rules (6.15), led to a genuine invariant action in two dimensions (see (6.25) below), but 
unfortunately, since it is in two dimensions and of topological type, not a very useful generalization 
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Still, it might lead to new geometrical structures and a better understanding 
the next section we describe the action given in [13] and a number of 

6. I. 3. Topological actions with finite W-symmetry 
At the end of section (6.1) we already gave an example of a topological theory that is invariant 

under global finite W-transformations. Since we determined the covariant derivative by requiring 
that O,,T, transforms as a covariant tensor, we can immediately write down an action invariant 
under local W symmetries, simply by replacing in (6.14) the derivatives by covariant derivatives, 
yielding 

(6.21) 

The equations of motion obtained by varying this action with respect to h,” read D,, T, = 0. Under 
a finite W-transformation it transforms as (6.16), and hence finite W-symmetries map solutions of 
the equations of motion into other solutions. Since the equations of motion follow purely from the 
h:-dependent part of (6.21), this suggests that the h:-dependent as well as the hi-independent part 
of (6.21) are both separately invariant under finite W-transformations. This is indeed the case, as 
long as the two-surface we integrate over has no boundary. To write down the various possibilities 
and their transformation rules in the most transparent way, introduce the one forms h” E h,: dxl’, so 
that for example the covariant derivative of T, becomes the one-form DT, = dT, - h”P,<,. We next 
introduce the following three two-forms 

rFI = P”“(T)dT, r\dT, , &, = P”“(T)DT, A DT,{ , 

<FlII = 2T,dh” + P,,,(T)h” A h” . 
(6.22) 

The integral s d2x P,I is nothing but (6.21), and up to an exact form which we added for 
convenience, TI and FIrI are, respectively, the ha-independent and h”-dependent parts of F,r, 

,FfI = PI - Ffrr + 2d(T,h”). (6.23) 

By virtue of the Jacobi identity sI is closed, dFI = 0, but FIIr and FIIrI are not. Furthermore, the 
transformation rules for the three two-forms under local finite W-transformations read 

ri$[ = 2d(a;‘dT;.) , 6cF1, = 0 , ~59~~~ = 2d(c”h;‘(P,;. - T,CYP,,)) . (6.24) 

Starting from these identities one can now easily write down a variety of topological actions in 
arbitrary dimensions by wedging together suitable combinations of these two-forms, like an 
arbitrary number of 9{‘s, or an arbitrary number of _F,,‘s. One can also couple each of the three to 
a U(1) Yang-Mills field strength. Another possibility is to write down non-topological highly 
interacting theories like j d4x PII A * 4 rIr, where * denotes the Hodge star. The last action we 
want to mention is the integral of 9,rr, 

(6.25) 
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This action was proposed in [13] where it was called a version of two-dimensional dilaton gravity. 
If the fmite W-algebra is a quadratic extension of the Poincare algebra, this action describes 
a Yang-Mills-like formulation of R 2 gravity with dynamical torsion [Sl]. Interestingly enough, if 
the finite W-algebra is a Lie algebra, the two-form 9 rII is equal to Tr(BF), where B is an adjoint 
scalar and F the usual Yang-Mills curvature. The gauge theory described by the corresponding 
action (6.25) is sometimes called topological BF-theory and is related to Reidemeister-Ray-Singer 
torsion [52] and is a tool to study moduli spaces of flat connections [53,54]. It would be extremely 
interesting to see if (6.25) actually describes a non-linear generalization of all these geometrical 
structures. This would require a much better understanding of the notion of global W-transforma- 
tions and the concept of a fiber bundle with a non-linear structure group, and these topics certainly 
deserve a further investigation. 

6. I .4. Other possibilities in d > 1 
In this final section on dimensions larger than one, we will briefly indicate some other possible 

approaches to the construction of invariant actions for finite W-algebras. 
a In the construction sketched so far, we did not use the fact that our finite W-algebras were 

obtained from a Lie algebra by imposing constraints. It would be nice if we could somehow use 
this fact to our advantage. Suppose we have at our disposal a theory which is invariant under 
some global symmetry algebra 9. Associated to these $9 transformations are certain conserved 
charges whose Poisson brackets form precisely 99. We can impose the constraints that some of 
these charges have to be equal to either zero or one, but since these constraints are non-local, it is 
not obvious what the best way to impose them is. Adding the constraints with a Lagrange 
multiplier to the action makes the action non-local and difficult to handle. 

l Alternatively, if we would start with an action with a local symmetry based on the algebra 3, we 
could try to impose constraints on the gauge fields. Putting some components of the gauge field 
equal to one breaks Lorentz invariance, since the gauge field transforms as a vector, and not as 
a scalar. Putting components equal to zero is only compatible with Lorentz invariance if we put 
the same components equal to zero for all A,, p = 0, . . . , d - 1. This is such a strong requirement 
that typically no interesting non-linear symmetry will be left. A possible way around these 
obstructions is to perform some twisting, so that A, transforms in a non-standard way under 
Lorentz transformations. Whether or not this is possible remains to be explored, but this is for 
example what one does in two dimensions to get infinite W-algebras. 

l Previously, we have examined the representation theory of finite W-algebras in some detail. 
Given some n-dimensional unitary representation of a finite W-algebra, one can always take 
fields 4i, i = 1, . . . , n that transform in this representation, and write down a finite W-invariant 
term $F&. These are clearly not very interesting, as they are invariant under U(n) and the finite 
W-algebra is realized as a subalgebra of U(n). Now one can write down terms 4FMij4j which 
are also invariant under U(n) if M transforms in the adjoint representation. An interesting 
question is whether one can come up with some constrained field Mij so that this term is no 
longer U(n) invariant, but still invariant under finite W-transformations, so that it can be used to 
break U(n) to a finite W-algebra. Another way to phrase this question is whether the finite 
W-orbit on Mij is the same as the U(n) orbit, or strictly smaller? 

l Can one use the fact that many finite W-algebras look as if they are deformations of some Lie 
algebra? There is a one-to-one correspondence between generators of a finite W-algebra 
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associated to an s& embedding, and the generators of the Lie algebra go (see Section 3.2.4), given 
by the requirement that they belong to the same sl, orbit. We do not know whether a finite 
W-algebra can always be seen as a deformation of go, and whether this would be useful for the 
construction of actions. 
The universal enveloping algebra of a finite W-algebra can be viewed as an infinite-dimensional 
Lie algebra, subject to additional relations. Can one construct a theory invariant under this 
infinite-dimensional Lie algebra and systematically impose the extra relations? 

Fortunately, the obstruction explained in Section 6.1 does not apply in one dimension. For the 
remainder, we will examine some of the possibilities that exist in d = 1. 

4.2. Finite W-invariance in d = 1 

In one dimension it is possible to realize finite W-algebras in terms of conserved charges. 
However, this fact in itself is not yet sufficient to construct a theory invariant under finite 
W-symmetries. For that one needs a realization of finite W-algebras in terms of known objects, 
such as creation and annihilation operators or generators of a Lie algebra. Or alternatively, one 
can use the fact that finite W-algebras were obtained by imposing constraints on the generators of 
a Lie algebra. We will now briefly examine these possibilities in turn. 

6.2.1. Imposing constraints 

Suppose we have some action which is invariant under the global symmetry algebra 9. 
Associated to these global symmetries is a set of local conserved charges that obey { Qn, QB > = f$Q,. 
Then we can immediately write down an action in which we impose the constraints necessary to get 
the finite W-algebra (9,_5?, x) by adding to the action the term 

1’ dtTrV(Q - x(Q))) + -, (6.26) 

where A is an .P’ valued gauge field, and Q = QZTz. The dots indicate possible terms that are of 
higher order in A. This action has a local gauge invariance generated by the first class constraints 
Q - x(Q), under which A transforms as a kind of gauge field. How A transforms exactly depends on 
the details of the theory. If we perform a BRST gauge fixing of this gauge symmetry then the action 
becomes the original action plus a free ghost action, and the BRST operator that generates the 
BRST symmetries of this action is precisely the one we used to analyze quantum finite W-algebras, 
with J replaced by Q. In particular, the Hilbert space of the theory is given by the BRST 
cohomology and carries a representation of the finite W-algebra. This is a genuine finite W- 
invariant theory, but the W-invariance is only apparent on the level of the Hilbert space. 

In some cases, one starts with theories whose symmetry algebra contains two copies of 9. When 
this happens it is possible to impose constraints on both algebras, and it can happen that one can 
explicitly integrate out the Lagrange multipliers, thus yielding an action without BRST symmetry 
but with a finite W-invariance. One particular example is to start with the action of a point particle 
moving in a group manifold. This will lead to the celebrated Toda theories, and we will describe 
this example in some more detail. 
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One starts with the action for a free particle moving on the group manifold G (the Lie algebra of 
G is 9). The metric on G is given by extending the Cartan-Killing metric (t,, tb) = Tr(t,t,,) on the 
Lie algebra %J all over G in a left-right invariant way. This leads to the familiar action 

. 

It satisfies the following identity 

dgdh -1 
g-l --ddt h , 

from which one immediately deduces the equations of motion, 

(6.27) 

(6.28) 

(6.29) 

The action (6.27) is invariant under g --) hl gh2 for constant elements hl , hz E G. This leads to the 
conserved currents J, J given by 

dg J=-d-g-l -Jat, and J=g -1dg&?t 
dt a’ 

The equations that express the conservation of these currents in time coincide with the equations of 
motion of the system, so fixing the values of these conserved quantities completely fixes the orbit of 
the particle once its position on t = 0 is specified. In this sense, the free particle on a group is 
a completely integrable system. The conserved quantities form a Poisson algebra [55] 

(~0, J”> =~JC , (6.3 1) 

with similar equations for J. This is precisely the Kirillov-Poisson bracket we used as a starting 
point for the construction of finite W-algebras. These were obtained by imposing constraints on 
the Poisson algebra (6.31), and we want to do the same here to get systems with finite W symmetry. 
Actually, we already have the first explicit example at our disposal here. If we consider the trivial 
embedding of slZ in SL,, then the finite W-algebra is the Kirillov-Poisson algebra (6.31). The action 
(6.27) is the generalized Toda theory for the trivial embedding. The conserved currents of this 
generalized Toda theory form a Poisson algebra that is precisely the finite W-algebra associated to 
the trivial embedding. 

Finite W-algebras were obtained by imposing a set of first class constraints x9(J) = x(J), where 
7~~ is the projection on 2. Here we want to impose the same constraints, together with similar 
constraints on J, 

ny*(.?) = x*(J) and n9(J) = x(J). (6.32) 

There are two equivalent ways to deal with these constraints. One can either reduce the equations 
of motion, or reduce the action for the free particle. Let us first reduce the equations of motion, 
where we restrict our attention to the finite W-algebras obtained from an s12 embedding. If 
G, denote the subgroups of G with Lie algebra 2, _Y*, and Go the subgroup with Lie algebra $,, 
then almost every element g of G can be decomposed as g_ gag+ , where g&, o are elements of the 



J. de Boer et al. JPhysics Reports 272 (1996) 139-214 201 

corresponding subgroups, because G admits a generalized Gauss decomposition G = G _ GO G + 
(strictly speaking G_ GoG+ is only dense in G, but we will ignore this subtlety in the remainder). 
Inserting g = g - gag + into (6.32) we find 

ds+ gf?t+go =-@’ , got-go &- 
-1=g-‘77 (6.33) 

In the derivation of these equations one uses that nY( g _ t + g I’) = t + , and a similar equation with 
rcYJe and t- , which follow from the fact that t, have degree + 1. The constrained currents look like 

J = g- 
dgo -1 

t+ +xgo +got-9i1 
> 

g-l, J=g;’ dso t- +g;l dt +g;‘t_g, g+ . (6.34) 
> 

The equations of motion now become 

+ Ct-,92t+gol, 

(6.35) 

which are generalized finite Toda equations as will be shown in a moment. 
Alternatively, one can reduce the action by writing down the following gauged version of the 

action 

dg -idg g-1-d-g z+A2, +A? 

+ 
s 

dtTr(A_(J -x(J)) + A+(.?- x*(J)) + A_gA+g-‘) . (6.36) 

This action is invariant under the following transformations 

g+h-gh., A_ +h_A_hI’-$z_‘, A+ +h;‘A+h+ -h;+, (6.37) 

where h, are arbitrary elements of G, . We assume here that x is either constant or zero. If x is some 
higher dimensional representation, one needs in addition to (6.36) a Lagrangian describing these 
additional degrees of freedom. In the case where the finite W-algebra comes from an slZ embedding 
we can use the gauge invariance to put g + = g- = e (where e is the unit element of the group G) in 
the Gauss decomposition of g, thus we can take g = go E Go. Then from the equations of motion for 
A,wefindA+ =gi’t+gOandA_ =got_g 0 l (The terms A: and Al are not present in this case). 
Substituting these back into the action it reduces to 

dgo - 1 dgo 
go1 =gO dt 

> s - dtTr(got_g;lt+). 

The equations of motion for this action are indeed given by (6.35), showing the equivalence of the 
two approaches. 
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This generalized Toda action describes a particle moving on G,, in some background potential. 
Two commuting copies of the finite W-algebra leave the action (6.38) invariant and act on the 
space of solutions of the equations of motion (6.35).* An explicit proof of this will be given in the 
next section. This action is only given infinitesimally, because we do not know how to exponentiate 
finite W-algebras. One can, however, sometimes find subspaces of the space of solutions that 
constitute a minimal orbit of the W-algebra, see for example [56] where this was worked out for 
the infinite IV, algebra. 

For the principal embeddings of s12 in s1,, the equations of motion reduce to ordinary finite Toda 
equations of the type 

(6.39) 

where i = 1, . . . ,IZ - 1, Kij is the Cartan matrix of sl,, and go = exp(qiHi). 
The general solution of the equations of motion (6.35) can be constructed as follows. Let hr’, hr’ 

be elements of Go. Let X0 be an arbitrary element of go. If go(t) is defined by the Gauss 
decomposition 

g_(t)go(t)g+(t) = hr’expt(X, + (hr))-‘t+hr) + h~‘t_(h~‘)-‘)h~’ , (6.40) 

then go(t) is the most general solution of (6.35). The easiest way to study the action of the finite 
W-algebra on these solutions, is to use the explicit transformation rules (6.58). This might provide 
a valuable tool in the study of the solutions (6.40). 

In the case when x = 0 in (6.36) it is not so straightforward to pick a good gauge for g, unless 
Z’ = g’, which corresponds to the case described in Section 4.3.2. Then a good gauge choice is to 
pick g in Go, and integrating out A, is trivial. The result is 

(6.41) 

The symmetry of this theory is go x go, which is in perfect agreement with (4.33). 
Finally, let us present an action which has the finite W-algebra obtained by setting the Lie 

algebra generators in a Cartan subalgebra equal to zero, as discussed in Section 4.3.3. We take the 
action (6.36), but since it is not easy to find a good gauge choice for g, we put A + = 0, i.e. we impose 
only constraints on J, not on .i. This is a special case of (6.26). A good gauge choice is then for 
example g = g-g+, where g* E G, and G = G_ TG+, is a standard Gauss decomposition of G. 
Integrating out A yields the following action 

dg- dg+ 9-l dtdtg+ -‘) - IdtTr(n,F(g- %g;‘g1’)2), (6.42) 

where 7~~ is the projection on the Lie algebra 9. 

* More precisely, the symmetries of (6.38) form an algebra that is on-shell isomorphic to a finite W-algebra. 
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Any of the actions in this section can in principle be used as a starting point for a theory with 
local finite W-symmetries in one dimension. We are not going to discuss this here; basically one can 
use the same techniques as one uses in two-dimensions to gauge infinite W-algebras, see e.g. [7]. 

6.2.2. Realizations of-finite W-algebras in terms of lie algebras 
The Miura transformation provides a realization of a finite W-algebra that comes from an s12 

embedding in terms of the generators of go (see Section 3.2.4). Can one, given such a realization, 
find an action invariant under finite W-transformations? One way is to first express the generators 
of %,, in terms of oscillators (see [6,57]), thereby providing a Fock realization of the finite 
W-algebra. Subsequently, one can try to use the method in the next section to find an invariant 
action. Alternatively, one can try to use the realization in terms of go. An obvious guess is to look 
for actions of the type 

dgo - 1 Go 
go1 zgo dt 

> s - dt v(go) . (6.43) 

The kinetic part of this action has a go x 9,, invariance, and the problem is now to find a potential 
V(gO) that reduces this invariance to a finite W-invariance. To be able to say something more we 
first need to work out some properties of the polynomials in terms of Jo = (dgo/dt)gol that the 
Miura transformation gives us and that form a realization of the finite W-algebra. 

The (classical) Miura transformation can be described as follows. We start with the Kiril- 
lov-Poisson algebra (6.3 l), and decompose J as J _ + J,, + J + , and in addition we will decompose 
J_ = J-i + J_2 + ... according to (3.33). After imposing the constraints we get JcOnStr = J_ + 

Jo + t+ . The finite W-algebra is the Poisson algebra of the polynomial. P(J_ , J,,) that are gauge 
invariant under the gauge transformations generated by the first class constraints on the con- 
strained phase space, i.e. P(J_ , Jo) satisfies 

Tr WJ-,Jo) + ~f’(J-,Jo) - 

6J- 6Jo 
+> 

E_, _. 
> 

where I:- is an arbitrary parameter with values in 9_. We can rewrite (6.44) as 

6p(J-,Jo) + WJ->Jo), Jo + J + t 
6J_ 6Jo 

0 + 1 ’ = o 

(6.44) 

(6.45) 

with n+ the projection on $9+. The Miura transformation does not give P(J_ ,Jo), but just 
P(Jo) = P(J-, J~)(L =o. If we insert J_ = 0 in (6.45) and then project it onto 9+1, we find 

[Q(Jo),Jo, +[p,t+]=O> 

with Q(Jo) = (@(J-, Jo)/SJ-l)JJ_ =o. 
Under a small W-transformation generated by P(J,), the potential V(go) transforms as 

(6.46) 

aI’ = ETr 
WJo) Jv(go) ~~ 

6Jo hog,’ > ’ 
(6.47) 
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For the perturbed action to be W-invariant, we want this variation to be a total derivative. In order 
to be able to use the identity (6.46) in (6.47), we need to require that 

a = Ct+,R(so)l . 

This allows us to rewrite 

Wgd = ~WQ(JdCNgd9Jd. 

If, in addition to (6.48), we require that 

CR(go),Jol =; T(go) 

(6.48) 

(6.49) 

(6.50) 

for some functional T(go), then 6V(g,) is a total time derivative modulo the equation of motion 
dJ,/dt = 0 of the unperturbed part of (6.43). We can then modify the transformation rule of go to 
cancel the equation of motion terms in 6V(go), but this gives rise to a new variation of the potential 
V(go), and we have to check that this is again a total time derivative. Clearly, this is a somewhat 
cumbersome procedure and it is not clear that it terminates. One obvious solution to (6.48) and 
(6.50) is the potential V(go) = Tr(got_g;‘t+), with R(go) = gOt_gil and T(go) = -R(go). We 
do not know whether other simple solutions to (6.48) and (6.50) exist. Rather than verifying step by 
step that (6.38) is invariant under finite W-transformations, we will give a direct proof of this. This 
proof, given below, will show that the procedure sketched in this section is in general not very 
efficient for finding invariant actions, but may provide some clues for finding other and better 
techniques. 

The Toda action was obtained by imposing constraints on both J and J. The corresponding 
constraints first brought J in the form J = J_ + Jo + t +, and subsequently in the form (6.34), 
where g_ is a function of go determined by (6.33). If we substitute this special constrained form of 
J in the gauge invariant polynomials P(Jo, J-), then the g_ dependence disappears, since we are 
precisely interested in G_ invariant polynomials, and we find the following polynomials in terms of 
go and its time derivatives: 

P(go) = P(Jo, J- )I.,, = (dg,ldt)g,‘,J~,=g,t-g,‘,J_1=O,J_~=O I_.. . (6.51) 

We claim that these are precisely the conserved quantities of the Toda theory. To prove this, we 
take (6.45) and deduce from it that we must in particular have 

6p(J-~JO)+Gp(J-~J~),J_ + J +t 
dJ_ ~Jo 

0 + I> . =. 

If we put Jp2 = J_3 = .+. = 0 in this equation, and denote 

(6.52) 

P(J-I>Jo) = P(J-,Jo)IJ_~=~,~_~=~, (6.53) 
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etc., we find 

I I 
,J-I 

L, =O 

The middle term in this equation drops out, and the remainder can be rewritten as 

CJO>J-11 + sP(J_-rY J0) [Jo, t+] = 0 . 
0 

Now if we put Jo = (dg,/dt)g; 1 and J_ 1 = got- go ‘, then 

dJo 
dt = Ct+,J-11, % = CJo,J-11 . 

205 

(6.54) 

(6.55) 

(6.56) 

The first equation is the Toda equation of motion, and the second one is a straightforward 
algebraic identity. Using these, (6.55) can be rewritten as 

Tr WJ-i,Jo)dJ-1 + WJ-~,Jo)dJo 
( 

- = 
6Jm1 dt 6J, dt 1 

o 
’ 

(6.57) 

and this is nothing but (d/dt)P(g,), proving that p(go) is a conserved quantity in the Toda theory. 
The transformation rules that leave (6.38) invariant can now immediately be deduced. They read 

(6.58) 

TO verify that these transformations form indeed a finite W-algebra, we compute the variation of 
another conserved quantity Q(go) = Q(J- 1, Jo)jJ, = (+,/&)gi’,J_, =Yof_g,l under the finite W-trans- 
formations generated by P(go) 

Using the exact identity (6.55) and the Toda equations of motion, we derive that 

~(~)=[i&J-‘] 
modulo equations of motion. Inserted into (6.59) this yields 

(6.59) 

(6.60) 

(6.61) 

This corresponds exactly to the brackets of the finite W-algebra, with Jm2 = ... = 0. Therefore, 
the symmetry transformations (6.58) form a finite W-algebra modulo field equations, i.e. the 
algebra is on-shell isomorphic to a finite W-algebra. 
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6.2.3. Realizations ofjnite W-algebras in terms of oscillators 
Given a realization of a finite W-algebra in terms of a set of oscillators, or more general in terms 

of the generators of an algebra &‘, one can try to compute the centralizer of the W-algebra in d, 
and take any of the generators of the centralizer as the generator of time translations in some 
physical system. For this to make sense one wants the generator to be Hermitian, so that it can be 
identified with the Hamiltonian. Any action whose Hamiltonian is identical to this one is an action 
invariant under W-transformations, provided the commutation relations found by canonical 
quantization agree with those given by the algebraic structure of ~2. For any realization, the center 
of the finite W-algebra is always a subalgebra of the centralizer in ~2, and these are the first 
candidates to look at. 

As an example, we can take the oscillator realization of IV:“’ in Section 2.2.2. It is given by 

j, =fa”h’, 
Xf 

j- = 3 a(bt)2 , 

J 

j, =ibtb-Gata, 

C = -(+a+a + $btb)” - (Sata + sbtb) . 

(6.62) 

The center of IV?’ contains C, and the Hamiltonian of the anisotropic harmonic oscillator is given 

by 2,/z. Although this is non-polynomial in terms of C, it is polynomial in terms of the 
oscillators and belongs to the centralizer of the finite W-algebra. The other generator of the center 
of IV:“’ is C3 = j,3 + 2j, + 3jOC + 3j+ j- + 3j- j+, which is equal to h/3 - 16h3/27 with h the 
Hamiltonian. This illustrates the fact that the centralizer of IV:“’ in the oscillator algebra is 
generated by h.9 It would be interesting to know whether the example of the anisotropic harmonic 
oscillator can somehow be obtained as a reduction of a system with SE(~) symmetry. This would 
open the door for the construction of many more examples of quantum mechanical systems with 
finite W-symmetry. 

To conclude, let us mention one more possibility. So far we tried to find systems with a finite 
W-algebra as its symmetry algebra. We could also be less restrictive, and demand that it is just 
a spectrum generating algebra. For our example of WY’, this would mean that we can also take j, 
as our Hamiltonian, since j, and j_ map j, eigenstates to j, eigenstates. Incidentally, an explicit 
example where this is the case is known [SS]. Consider a sequence of Schriidinger operators 
Lj = Af AJ + lj where A: = ) (d/dx) +fj( x and Lj is a constant. If LjAf = AJ Lj+ 1 and ) 
AJLj=Lj+l A- then the Af can be used to map eigenstates of Lj into those of Lj+l and vice 1 , 
versa. Therefore, if we know the spectrum of Lj we also know that of Lj+ 1. This technique to 
construct new exactly solvable Schrodinger operators from old ones is known as the factorization 
method. An interesting situation arises when one imposes a kind of periodic boundary condition 
on the chain of operators Lj, namely if one requires Lj+N = Lj + p and Aj+N = llj + p for some 
parameter ,u. If we denote L1 by j, and define 

j+ =A:...Ai, j_ =AN...A;, (6.63) 

‘If one allows non-polynomial expressions in terms of the oscillators, this is no longer true, as can be seen from the 
example ennlrrta, which commutes with all generators of Wr’. 
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then the following relations hold 

C.h,j+l = M+ , C.h,j-1 = -cl& : 

j+j_ = fi (j,-A,), j-j+ = fi (jo-&+p). 
k=l k=l 

In particular, for N = 3, the commutator of j, and j_ will be a quadratic polynomial in j,, exactly 
as in the W:“’ algebra. The Hamiltonian j, in (6.64) is -(d2/dx2) +f;” +f[ + A1, wherefi satisfies 
the following set of coupled differential equations 

-.K +.A2 + A1 =f2’ +f2’ + A2 ) 

-fi +.I;’ + 1, =fZ +f3’ + A3 ) (6.65) 

-.fi +h2 + &3 =j-iz +f{ + ill + y . 

To solve these, first notice that the sum of these three equations is 2(f/ +f; +f;) + p = 0, from 
which one derivesf, +f3 = -fi - px/2 + k, with k some integration constant. Next, the second 
equation in (6.65) can be rewritten as (f3 -f2)(f3 +f2) + (f3 +f2)’ + i3 - A2 = 0, or equivalently 

(f3 -f2E.h - P-42 + k) + w-; - P/2) + IL3 - i2 = 0. We thus have one equation for f2 +f3 
and one forf2 -f3 in terms offi. Solving these for-f2 andf3 gives upon substituting these back into 
the differential equations (6.65) a differential equation forfi, which turns out to be the Painleve-IV 
equation. The corresponding potential in j, is then a one-gap potential. It would be interesting to 
see what role the representations of WY’ play in the spectrum of j,. 

The periodicity conditions for the operators Lj allow for a natural q-deformation [59]. The 
corresponding Schrodinger operators have a spectrum generating algebra which is a q-deformation 
of (6.64), and in particular for N = 3 one finds a q-deformation of I+‘?). The issue whether one can 
q-deform arb’t 1 rary finite W-algebras is an entirely different story, which we will not discuss here, 
but it is amusing to see that a q-deformation of Wr’ can still occur in simple quantum mechanical 
systems. 
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Appendix 

In this appendix we discuss the finite W-algebras that can 
standard constructions developed in this chapter we calculate 
Miura maps. 

be obtained from &. Using the 
their relations and the quantum 
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Casel: 4=2+1+1 
The basis of slq we use to study this quantum algebra is 

$rlo - ir8 - &r9 cl 112 r15 

rata = 
r5 ir8 - ir9 r7 r14 

-$r8 + $r9 
64.1) 

r4 r6 rl3 

\ r1 r2 r3 
1 

-zrlo - ir8 - $r9 
/ 

The s12 embedding is given by t + = t15, to = tlo and t_ = +tl. Th e nilpotent algebra $!J+ is spanned 
by (t13, t 14,tl5), 30 by (t4, 

by J^“ for a = 1 
. . . , t12} and K by {tl, t2, t3}. The d1 cohomology of ared is generated 

, . . . ,9. Representatives that are exactly d-closed, are given by IV@“) = ? for 
a = 4, ,.. ,9, and by 

w(jl)=jl +j4sl2 +j5J^ll +$jlOjlO +;j10, 

~j,'(J^2)=312 +j6jl2 +:jSjll+;J^lOj11 +j$', 

W(J^3)=53 +j7j11 +$j9j12 +;jl2jlO +5j12. 

64.2) 

Introduce a new basis of fields as follows: 

U = +(I@‘) + W(f9)) , H = $(W(?‘) - W(j9)) , F = - W(?‘) , E = - W(j6) , 

G; = - W(j3), G: = W(.?‘) , G; = IJV(~^~), G; = W(j4), (A.3) 

If we compute the commutators of these expressions, we find that C commutes with everything, 
(E, F,H} form a s12 subalgebra and G: are spin : representations for this s12 subalgebra. 
U represents an extra u(l) charge. The nonvanishing commutators, with k dependence, are 

[E,F] = 2hH, [H,E] = AE, [H,F] = -hF, 

[U,G:] =AG:, [U,G:] = -hG;, 

[H,G:] = k;G;, [E,G;] =hG+, [F, G+ ] = hG; , 

64.4) 
[G:,G:] = -2AE(U + h) , [G;,G,] = 2AF(U + A), 

[G:,G,] = h(-C + EF + FE + 2H2 +:U2 + 2HU) + h2(2H + 3U), 

[G;,G;] = h(C - EF - FE - 2H2 - ;U2 + 2HU) + h2(2H - 3U). 

Let us also present the quantum Miura transformation for this algebra. In this case, go = 
sl3 0 u(1). Standard generators of go can be easily identified. A generator of u(l) is 
s = ;j” + ;j” + 2j’O, 
f3 =j12,hl = -;5^" 

and the s13 generators are el = j5, e2 = j6, e3 = J4, fl = jll, f2 = j7, 
+ 35^'" and h2 = :j8 - :J^“. The convention is such that the commutation 
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relations between (ei, fi, hi} are the same as those of the corresponding matrices defined by 

The quantum Miura transformation reads 

U=;(s-2hz--4h1), H=ihz, F=-f,, E=-e2, 

CT = --f2fi - i(s - 2h2 - hl + 3h)f3 , G: = e2f3 + :(s + h2 - hl + 3h)f, , 

Gy = el , Cc = e3, (A.@ 

C = 24s + 2s +hL +flel + e2f2 +fie2 + e3f3 +.f3e3) 
r2 “> 

+ ;(h: + hlh2 + h;) . 

In C we again recognize the second Casimir of s13. It is a general feature of finite W-algebras that 
they contain a central element C, whose Miura transform contains the second Casimir of $,. C is 
the finite counterpart of the energy momentum tensor that every infinite W-algebra possesses. 

Case 2: 4 = 2 + 2 
A convenient basis to study this case is 

rat, = 

h2 r14 

2+7 -!$_F 
r13 r15 

r6 r10 r5 b3 
r1 r2 

--- -_- 

42 22 

rl r9 r3 r4 --- 

2 2 

(A.7) 

The s12 embedding is given by t + = t12 + t15, to = tlo - tll and t- = :(t, + t4). The subalgebra 
9+ is spanned by {t12, . . . ,t15), go by {ts, . . . . tll} and 9- by {tl, . . . ,t4}. The d, cohomology of 
L& is generated by ? ‘, . . , J^‘. The d-closed representatives are W(ja) = J^’ for a = 5,6,7, and 

ti w(j1) = j’ _ $51559 + $51’58 + $518519 + $j1oj10 + :j10 _ 4 ,-I1 , 
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To display the properties of the algebra as clearly as possible, we introduce a new basis of fields 

H=;W(P), E=-W(J17), F=-W(j5), 

G+ = W(J^3), Go = W(?‘) - W(j4), G- = -w(f”) , 

c = W(S’) + W(.T4) + $ W(P) wp) + $ W(S”) W(j7) (A.9) 

+ $ W(J17)W(J15) + $ W(P) . 

Here, C is the by now a familiar central element, {E, H, F} form an s12 algebra and (G+, Go, G- } 
form a spin 1 representation with respect to this s12 algebra. The non-vanishing commutators are 

[&F-J = 2hH, [H,E] = fiE , [H,F] = -hF, 

[E,G’] = 2hG+ , [E,G-] = tiG” , [F,G+] = hGo, [F,G’] = 2hG- , 

[H,G+] = hG+ , [H,G-] = -kG-, 

[GO,G+] = h(-CE + EH~ + +EEF + $EFE) - 2h3~, 
(A.lO) 

[G’,G-]=h(-CF+FH2+:FFE+;FEF)-2h3F, 

[G+,G-] = h(-CH + ~~ + +HEF + +HFE) - 2h3~. 

Since go = s12 @ s12 @ u(l), the quantum Miura transformation expresses this algebra in terms 
of generators (el,hl, .&),(e2,h2, f2>, s of %o. The relation between these generators and the jff 
are: s = 710 - jll, jr1 = i(j” + jl” + ?I’), h2 = $(J^” - jlo - j”), e, = $(J^’ + j9), 
e2 = i(.?’ - j9), fi = :(J^’ + 5^*) andf, = i(j5 - j*). The commutation relations for these are 
CelAl = fib, Ch ,,eJ = 2h, ChlAl = -RL and similar for {e,, h2, f2}. For the quantum 
Miura transformation one then finds 

H=i(h,+h2), E=-el-e2, F=--f,--f2, 

G+ = ielh2 - :e2hl + is(e, - e2) + h(el - e2) , 

Go =fle2 -f2e1 + is(hl - h2) + 5(hl - h2) , 

G- = ;f,h, - ;f,h, - $s(fi -j-z) - Wfi -fi) , 

C = (is” + hs) + :(elfl +fiel + e2f2 +he2) + $(h? + h,2) . 

(A.1 1) 

The infinite-dimensional version of this algebra is one of the ‘covariantly coupled’ algebras that 
have been studied in [60]. The finite algebra (A.lO) is almost a Lie algebra. If we assign particular 
values to C and to the second Casimir Cz = (Hz + +EF + $FE) of the slz subalgebra spanned by 
(E, H, F}, then (A.lO) reduces to a Lie algebra. For a generic choice of the values of C and C2 this 
Lie algebra is isomorphic to s12 @ s12. An interesting question is, whether similar phenomena occur 
for different covariantly coupled algebras. 
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Case 3: 4 = 3 + 1 
The last non-trivial non-principal slZ embedding we consider is 

another basis 
s4 = j2 @AZ. We choose yet 

rat, = 

y12 

r5 r6 
12 3 r8 f.11 

r5 
r4 -- 4 r13 

r3 r9 
--- 2 2 r10 !?+2+; f-l5 

rl r2 

(A.12) 

in terms of which the slZ embedding is t+ = tII + t15, to = -3t6 + t7 and t_ = 2t3. The sub- 
algebra ?I+ is generated by {t, 1, . . . , t15}, ?L is generated by {tl, t2, t3, tg, tlo}, and go is generated 
by (t4,... , t8 >. The dI cohomology is generated by J^’ , . . . , j5, and d-closed representatives are 
given by W(j4) = J4, W(j5) = j5, and 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ ;j”j”j” ,;,j”j”j6 + &j6j7j7 + g j”j8 _ T j” + ?& j6 j6 

+aj7j6_?!j7j7__$j7__ $j6, 

~(j2)~j2_fj3j8_fj5jlO_~jbjIO+fj7jlO_~j8j9+~j~O+aJ^jj5j8 

(A.13) 

We introduce a new basis 

U =+w(j5), G+ = w(j4), G- = w(j2), s = w(jl), 

C = w(.T3) +&w(S5)w(J15) -i w(j5). 
(A. 14) 

In this case, the fields are not organized according to slz representations, because the centralizer 
of this slz embedding in SE, does not contain an &_ Again C is a central element, and the 
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nonvanishing commutators are 

[U,G+] = hG+ , [U,G-]= -AG- , 

[S,G+] = tzG+ 
( 

29/i’ -++9JL!$J+T ) 
> 

[s,G-]=h ;G+J2+!$J_~ 
( > 

G-, 

IG+,G-I=hS_~CU+~C+~~,-~LI’+~Li. 

(A.15) 

This is the first example where the brackets are no longer quadratic, but contain third order terms. 
For the sake of completeness, let us also give the quantum Miura transformation for this algebra. 
We identify generators (e, f; h}, sl, s2 of s12 0 u(1) @ u(1) = %,, viaf= j*, e = j4, h = i(J^” - j”), 
s1 = i(2T6 + 3”) and sz = J^‘. The only non-trivial commutators between these five generators are 
[e, f] = hh, [h, e] = 2h e and [h, f] = -2hf: The quantum Miura transformation now reads 

U=asl+ih, G+=e, G- = 
( 

is; +;slh +ih’-$sz’ -2 +3s1 + 3h + ~2) + 2h2 
> 

f, 

S = -&e(Ssr + 4h - 3lti)f- &(sl - h)3 + &(s, - h)sz + g (sl - h)’ 

+ ; s2(s1 - h) - ; sz” - F s2 - g (sl - h) , 
(A.16) 

C=(~ef+ffe+$h2)+(~$+~s2)+($sf-hs1). 

This completes our list of finite quantum W-algebras from sE4. 
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Note added in proof 

In a series of papers [61-651 a very interesting class of two-dimensional topological field theories 
has been studied, that contain as a special case the BF theory for finite W-algebras described by 
equation (6.25). To each manifold N with a Poisson structure (i.e. a smooth section of A~TN 
satisfying the Jacobi identities) one can associate such a topological field theory. A finite 
W-algebra with k generators defines a Poisson structure on Rk, and the corresponding Poisson 
sigma model is precisely (6.25). Poisson sigma models contain many interesting topological field 
theories as subcases, such as two-dimensional Yang-Mills theory and the G/G gauged 
Wess-Zumino-Witten theory. The Hilbert space of Poisson sigma models turns out to be 
determined by the integral symplectic leaves of N. For finite W-algebras we analyzed the 
symplectic leaves in Section 3.2.6. It would be very interesting to determine which of these are 
integral, as this would immediately provide us with the Hilbert space of (6.25). The same leaves also 
play an important role in the representation theory of finite W-algebras, suggesting that the Hilbert 
space and partition function of (6.25) should have a representation theoretical interpretation, and 
this might ultimately lead to a geometrical proof of some of the conjectures in Chapter 5. 


