UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

A closer look at declarative interpretations

Apt, K.R.; Gabbrielli, M.; Pedreschi, D.

DOI
10.1016/0743-1066(95)00150-6

Publication date
1996

Published in
Journal of Logic Programming

Link to publication

Citation for published version (APA):
Apt, K. R., Gabbrielli, M., & Pedreschi, D. (1996). A closer look at declarative interpretations.
Journal of Logic Programming, 28(2), 147-180. https://doi.org/10.1016/0743-1066(95)00150-6

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:09 Mar 2023

https://doi.org/10.1016/0743-1066(95)00150-6
https://dare.uva.nl/personal/pure/en/publications/a-closer-look-at-declarative-interpretations(a56f2c36-6373-43f2-8f39-fe3f631e75e0).html
https://doi.org/10.1016/0743-1066(95)00150-6

]

NORTH - HOLLAND

A CLOSER LOOK AT
DECLARATIVE INTERPRETATIONS*

KRZYSZTOF R. APT, MAURIZIO GABBRIELLI, AND
DINO PEDRESCHI

> Three semantics have been proposed as the most promising candidates for
a declarative interpretation for logic programs and pure Prolog programs:
the least Herbrand model, the least term model, i.e., the #-semantics, and
the #semantics. Previous results show that a strictly increasing informa-
tion ordering between these semantics exists for the class of all programs.
In particular, the .#semantics allows us to model the computed answer
substitutions, which is not the case for the other two.

We study here the relationship between these three semantics for
specific classes of programs. We show that for a large class of programs
(which is Turing complete), these three semantics are isomorphic. As a
consequence, given a query, we can extract from the least Herbrand model
of a program in this class all computed answer substitutions. However, for
specific programs the least Herbrand model is tedious to construct and
reason about because it contains “ili-typed” facts. Therefore, we propose a
fourth semantics that associates with a “correctly typed” program the
“well-typed” subset of its least Herbrand model. This semantics is used to
reason about partial correctness and absence of failures of correctly typed
programs. The results are extended to programs with arithmetic. <

*A preliminary, shorter version of this paper appeared in Apt and Gabbrielli [2].

Address correspondence to Krzysztof R. Apt, CWI, P.O. Box 94079, 1090 GB Amsterdam, The
Netherlands, apt@cwi.nl, Maurizio Gabbrielli, Dipartimento di Informatica, Universita di Pisa, Corso
Italia 40, 56125 Pisa, Italy, gabbri@di.unipi.it, or Dino Pedreschi, Dipartimento di Informatica, Univer-
sita di Pisa, Corso Italia 40, 56125 Pisa, Italy, pedre@di.unipi.it.

Received December 1994; accepted October 1995.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1996 0743-1066 /96 /$15.00
655 Avenue of the Americas, New York, NY 10010 SSDI 0743-1066(95)00150-6

148 K. R. APT ET AL.

1. INTRODUCTION

1.1. Motivation

The basic question we are trying to answer in this paper is: Can one reason about
partial correctness (that is about the computed answer substitutions) of “natural”
pure Prolog programs using the least Herbrand model semantics? We claim that
the answer to this question is affirmative by showing that many logic programs and
pure Prolog programs (i.e., logic programs using the leftmost selection rule) satisfy
a property that implies that various declarative semantics of them are isomorphic.

Usually the declarative semantics of a logic program is identified with the least
Herbrand model. When considering the class of all logic programs, there are a
number of problems associated with this choice. First, this model depends on the
underlying first-order language. For certain choices of this language this model is
equivalent to the least term model, and for others not. Second, in general, it
matches the procedural interpretation of logic programs only for ground queries,
so the procedural behaviour of the program cannot be completely “retrieved” from
this model.

The least term model of Clark (8] (or #-semantics of Falaschi et al. [12)) is
another natural candidate for the declarative semantics, and in fact it has been
successfully used in the probably most elegant and compact proof of the strong
completeness of the SLD resolution due to Stirk [19]. However, it shares the same
deficiencies with the least Herbrand model.

The last choice is the .#semantics proposed by Falaschi et al. [11]. This
semantics provides a precise match with the procedural interpretation of logic
programs, so it captures completely the procedural behaviour of the program.
However, for specific programs it is rather laborious to construct and difficult to
reason about.

We show here that for a large class of programs, called subsumption-free
programs, these three semantics are in fact isomorphic. This allows us to reason
about partial correctness and absence of failures of subsumption-free programs
using the least Herbrand model. To prove that a program is subsumption-free we
propose a semantic method based on the least Herbrand model. We also prove its
equivalence with the method of Maher and Ramakrishnan [16] which is based on
the #semantics. Using it we checked that several standard pure Prolog programs
are subsumption-free.

However, for several natural programs, including APPEND, MEMBER, and other
classical logic programs, the least Herbrand model is “overdefined” because it also
includes facts with “ill-typed” arguments, whereas the program usually will be used
only with “well-typed” arguments. As a result, the least Herbrand models are often
tedious to construct and to reason about. This problem has to do with the fact that
logic and Prolog programs are untyped, whereas in usual applications one uses
these programs only with “well-typed” queries.

To remedy this problem we introduce yet another semantics, which consists of a
“well-typed” fragment of the least Herbrand model. To define it we use types. We
prove that this semantics, like the other three, admits a simple characterization in
terms of fixpoints. Then we show how this semantics can be naturally used to
reason about partial correctness and absence of failures of logic programs.

Finally, we extend these results to pure Prolog with arithmetic built-in’s.

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 149

1.2. A Word on Terminology

Unless otherwise specified, we use the standard notation of logic programming. We
consider here finite programs and queries w.r.t. a first-order language defined by a
signature 2. Given two expressions E, and E,, we say that E, is more general than
E, and write E, <FE, if there exists a substitution 6 such that E,6=E,. The
relation < is called the subsumption pre-ordering. If £, < F, but not E, < F|, we
write £, <E,, and when both E, <E, and E, <E,, we say that E, and E, are
variants. Finally, we denote by Var(E) the set of all variables occurring in the
expression E.

A substitution is called grounding if all terms in its range are ground and is
called a renaming if it is a permutation of the variables in its domain. We say that
substitutions 6, and 6, are variants if for some renaming n we have 0, = 8,7.
Below we shall freely use the well-known result that all mgu’s of two expressions
are variants and that E, and E, are variants iff for some renaming v we have
E, = E, 7. Further, we denote by % the set of all atoms (the base of the language)
and by %, the set of all ground atoms.

For a number of reasons, we found it more convenient to work here with the
concept of a query, correct and computed instance, and most general instance,
instead of, respectively, the concepts of a goal, correct and computed answer
substitution, and most general unifier. Moreover, we allow arbitrary mgu’s when
forming resolvents in SLD derivations and use the notion of standardization apart
as in Lloyd [14].

In short, a query is a finite sequence of atoms, denoted by letters @, A, B, C,... .
Given a program P, Q' is a correct instance of Q if P=Q’ and Q' = Q8 for a
substitution 6; Q' is a computed instance of Q if there exists a successful SLD
derivation of Q with a computed answer substitution 8 such that Q' = Q6.

Our interest here is in finding, for a given program P, the set of computed
instances of a query. In analogy to the case of imperative programs, we write
{Q}P@ to denote the fact that & is the set of computed instances of the query Q,
and we denote the set of computed instances of the query Q by sp(Q, P) (for
strongest postcondition of Q w.r.t. P). So by definition {Q}P sp(Q, P) for any Q and
P. Given two queries Q and Q', we write

mgi(Q, Q') = {Q6]6 is an mgu of Q and Q'}.
So mgi(Q, Q') is the set of most general instances of Q and Q.
A query is called separated if the atoms forming it are pairwise variable disjoint.

Given a set of atoms I, we denote by I* the set of separated queries formed from
the atoms of . Given a query Q and a set of atoms I, we write

mgi(Q,I) ={Q013Q’ e I*(Var(Q) N Var(Q') =
and 6 is an mgu of @ and Q')}.

So mgi(Q, I) is the set of most general instances of Q and any query from /*
variable disjoint with Q. Finally, an atom is called pure if it is of the form
p(x,..., x,), where x,,..., x, are different variables.

150 K. R. APT ET AL.

2. BACKGROUND—THREE DECLARATIVE SEMANTICS
Three semantics of logic programs, each yielding a single model, were introduced

in the literature and presented as “declarative.” We review them now briefly and
discuss their positive and problematic aspects.

2.1. The Least Herbrand Model (#-Semantics)

This semantics was introduced by van Emden and Kowalski [22]. It associates with
each program its least Herbrand model. Identifying each Herbrand model with the
set of ground atoms true in it, we can equivalently define this semantics as

#(P) ={A€8,|P=A}.

As van Emden and Kowalski [22] showed, this semantics can be characterized by
means of the following immediate consequence operator defined on Herbrand
interpretations:

Tp(I) = {H|3B(H < B € Ground(P), I = B)}.

More precisely, they established the following theorem.

Theorem 2.1 (.#-characterization)

(i) T, is continuous on the complete lattice of Herbrand interpretations ordered
with -C.
(ii) .#(P) is the least fixpoint and the least pre-fixed point of Tp.
(i) #(P) = T} 1 .

In Section 8 we shall use an obvious generalization of this theorem to infinite
programs.

As is well known, this semantics completely characterizes the operational
behaviour of a program on ground queries because (see Apt and van Emden [5]),
for a ground Q a successful SLD derivation of Q exists iff Q €.#(P)*. However,
for nonground queries, the situation changes as the following example of Drabent
and Maluszynski [10] shows.

Example 2.1. Consider two programs: P,
p(X).
and P,,
p(a).
p(X).
Then .#(P,)=#(P,), but the query p(X) yields different computed answer

substitutions w.r.t. to each program.

So, in general, the .#-semantics does not characterize precisely the computed
answers. This is an undesirable situation for program verification and analysis,
because in these cases usually one needs to reason on the operational behaviour of
programs in terms of their computed answers.

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 151

2.2. The Least Term Model (%-Semantics)

This semantics was introduced by Clark [8] and more extensively studied in
Falaschi et al. [12]. It associates with each program its least term model. Identifying
each term model with the set of atoms true in it, we can equivalently define this
semantics as

Z(P)={Ac®B|PrA).

Falaschi et al. [12] showed that this semantics also can be characterized by
means of an operator defined on term interpretations:

Up(1) ={H|3B, ---3AB,(H < B,,..., B, €inst(P), {B,,..., B,} cI)},

where inst(P) denotes the set of all the instances of clauses in P. Then they
established the following theorem analogous to the .#-characterization of Theo-
rem 2.1.

Theorem 2.2 (%¥-characterization)

() Uy is continuous on the complete lattice of term interpretations ordered with
c.
(ii) #(P) is the least pre-fixpoint and the least fixpoint of Up.
(iii) #(P)=Up 1 w.

However, the #-semantics cannot model the operational behaviour of a pro-
gram either, because for Example 2.1 we have also #(P,) = €(P,).

2.3. S~Semantics

This semantics was introduced in Falaschi et al. [11]. For a survey on the
S~semantics and its uses, see Bossi et al. [7]. The aim of this semantics is to provide
a precise match between the procedural and declarative interpretation of logic
programs. Ideally, we would like to be able to “reconstruct” the procedural
interpretation from the declarative one. Now, a procedural interpretation of a
program P can be identified with the set of all pairs (Q, 8), where 6 is a computed
answer substitution for Q, or, equivalently, with the set of all statements of the
form {Q}P&.
The .#semantics assigns to a program P the set of atoms'

F(P) ={A 2| A is a computed instance of a pure atom} .

It seems at first sight that the restriction to pure atoms results in a “loss of
information” and as a result the operational interpretation cannot be recon-
structed from A(P). However, this is not so, as the following theorem of Falaschi
et al. [11] shows.

Theorem 2.3 (Strong completeness). For a program P and a query Q,
{Q)P mgi(Q,#(P)).
Consequently, by the form of .#(P) we have the following corollary.

'In the original proposal, actually the sets of equivalence classes of atoms w.r.t. the “variant of”
relation are considered. We found it more convenient to work with the above definition.

152 K. R. APT ET AL.

Corollary 2.1 (Full abstraction). For all programs P,, P,,
(P =F(P,) iff sp(Q,P,) =sp(Q, P,) forall queries Q.

An important property of the .#-semantics is that it can be defined by means of
a fixpoint construction. More precisely, Falaschi et al. [11] introduced the following
operator on term interpretations,

T7°(1)={H6|3B,C(H <~ B P,Cel* Var(H < B) N Var(C) =,
6 is an mgu of B and C)},
and proved the following theorem.

Theorem 2.4 ($“characterization)

() Ty is continuous on the complete lattice of term interpretations ordered with
c.
(ii) A(P) is the least fixpoint and the least pre-fixpoint of Ty .
(i) AP) =Ty 1 .

3. RELATING THEM

In what follows we wish to clarify the relationship between these three semantics
for various classes of programs. To this end we introduce the following definition,
where we view semantics as a function from the considered class of programs to
some further unspecified semantic domain 2.

Definition 3.1. Consider a class of program C. We say that two semantics .#:
C -2, and .%,: C —»2, are isomorphic on C iff there exist two functions ¢;:
2, -2, and ¢,: D, »2, such that, for any program P e C,

F(P) = (F(P)) and H(P) =¢1(5p1(P))~

Alternatively, two semantics .#;: C =2, and .%,: C »2,, are isomorphic on C
iff there exists a bijection ¢: Range(.#;) — Range(.%,) such that, for any program
PeC, #(P) = ¢(F(P)).

Every semantics .7, for C induces an equivalence relation =, on programs from
C defined by P, =, P, iff 7(P,) = F(P,). Note that the notion of isomorphism also
can be equivalently given in terms of equivalences by defining two semantics
isomorphic on C if they induce the same equivalence relation on C. When
constructing isomorphisms between the semantics, the following operators will be
useful.

Definition 3.2. Let I be a set of atoms. We define

(i) Variant(/) ={4 €|3B €1 s.t. B<A and A < B}, the set of variants.
(i) Up(1)={4 €£|3AB €I s.t. B < A}, the set of instances.
(iif) Ground(/) ={A4 €%,|3B €1 s.t. B < A}, the set of ground instances.
(iv) Min(I)={A €I|-3Be]s.t. B<A}, the set of minimal (i.e., most gen-
eral) elements.
(v) For I a set of ground atoms, True(1) = {4 €%#|1 = A}, the set of atoms true
in the Herbrand interpretation /.

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 153

Note that Variant, Up, Ground, and Min are all idempotent. Moreover, the
following statement clearly holds.

Note 3.1. For all I, Min(Up(I)) = Min(]).

3.1. Relating .#-Semantics and &-Semantics

We begin by clarifying the relationship between .#(P) and #(P). The following
result is an immediate consequence of the definitions.

NoTE 3.2. .#(P)= Ground(Z(P)).

Therefore, the .#-semantics can be reconstructed from the #-semantics. The
converse does not hold, in general, as the following argument due to Falaschi et al.
[12] shows.

Example 3.1. Consider two programs: P,,
p(X) .
and P,,

defined w.r.t. the language with the signature 3 = {a/0, b/0}. Then .#(P,) =
#(P,)= {p(a), p(b)},whereas #(P,)= {p(X), p(a), p(b)}and F(P,) =
{p(a), p(b)}.

In case the signature contains infinitely many constants, the situation changes,
as the following result due to Maher [15] shows.

Theorem 3.3. Assume that the signature contains infinitely many constants. Then
&(P) =True(#(P)).

PROOF. We provide here an alternative, direct proof based on the theory of SLD
resolution. The implication #(P) C True(.#(P)) always holds, because .#(P) is a
model of P. Take now A € True(.#(P)). Let x,,..., x, be the variables of 4 and
let cq,...,c, be distinct constants that do not appear in P or 4. Let 6=
{x,/cy,...,x,/c,}. Then A0 €.#(P). By the completeness of SLD resolution there
exists a successful SLD derivation of 46 with the empty computed answer
substitution. By replacing in it ¢; by x; for i €[1,n] we get a successful SLD
derivation of A with the empty computed answer substitution. Now by the
soundness of SLD resolution, 4 € #(P). O

Consequently, when the signatire contains infinitely many constants, the seman-
tics .#(P) and #(P) are isomorphic. We shall exploit this fact later.

3.2. Relating %-Semantics and %-Semantics

Next, we clarify the relationship between #(P) and #(P). First, we have the
following result of Falaschi et al. [12].

154

K. R. APT ET AL.

Theorem 3.4. €(P) = Up(A(P)).

Therefore, the #-semantics can be reconstructed from the .%2semantics. The
converse does not hold, in general, as the following argument due to Falaschi et al.
[11] shows.

Example 3.2. Consider the programs P,,
p(X) .
and P,,

pla).
p(X).

of Example 2.1. Then #(P,) = #(P,) = Up({p(X)}), whereas AP, =
Variant({p (X) }) and A(P,) = Variant({p (X), p(a)}). Note that the signature
of the language was immaterial here.

Thus on the class of all programs, the #-semantics and the .#semantics are not
isomorphic. In what follows we show that for a large class of programs they are, in
fact, isomorphic. First, we have the following result.

Lemma 3.1. Min(#(P)) cA(P).

Intuitively, Lemma 3.1 states that all most general atoms true in #(P) belong to

AP).

PrROOF. By Theorem 3.4, Min(Z(P)) = Min(Up(A(P))) and the claim follows by
Note 3.1, because for all I, we have Min(J/)cI. O
In general, the converse inclusion does not hold.

Example 3.3. Consider the following program P,

defined w.r.t. the language with the signature X = {a/0}. Then AP)=
Variant({p (Y) }) U {p(a) }, whereas Min(#Z(P)) = Variant({p (Y) }).

A closer examination of the situation reveals the following information: By the
soundness of the SLD resolution we always have S(P) (P). Example 3.3 shows
that the stronger inclusion (P) € Min(#(P)) does not need to hold. The reason
is that A(P) can contain a pair A, B such that A strictly subsumes B (i.e., 4 < B).
This cannot happen when (P) contains only minimal elements, so we are
brought to the following definition due to Maher and Ramakrishnan [16].

Definition 3.3. A set of atoms [is called subsumption-free if Min(I) = I. A program
P is called subsumption-free if A(P) is.

We now show that the notion of a subsumption-free program is a key for
establishing the converse of Lemma 3.1.

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 155

Theorem 3.5. #(P) =Min(Z(P)) iff P is subsumption-free.
PROOE. (=) We have
Min(A(P))
= {assumption}
Min(Min(#(P)))
= {idempotence of Min}
Min(%(P))
= {assumption}
AP).
(<) We have
A(P)
= {assumption}
Min(S(P))
= {Note 3.1}
Min(Up(A(P)))
= {Theorem 3.4}
Min(#(P)). O

Consequently, the Z-semantics and .%*semantics are isomorphic on subsump-
tion-free programs. Additionally, when the signature contains infinitely many
constants, all three semantics are isomorphic. Combining Theorems 2.3, 3.3 and 3.5
we thus obtain the following corollary.

Corollary 3.1. Assume that the signature contains infinitely many constants. Then for a
subsumption-free program P and a query Q,

{Q}P mgi(Q, Min(True(.#(P))))-

Corollary 3.1 shows that computed answers of subsumption-free programs can
be fully reconstructed from the .#-semantics using unification and, therefore, the
least Herbrand model can be used to reason about partial correctness.

The point of view taken in this paper is that the .#-semantics is handier than the
Ssemantics for reasoning about partial correctness. By the .#-characterization of
Theorem 2.1 and the #~characterization of Theorem 2.4, both .#(P) and #(P)
are obtained as the w power of a suitable monotonic operator associated with the
program under consideration and, therefore, a natural form of inductive reasoning
can be adopted to construct either semantics. However, in the case of .#~semantics,
it is necessary to deal with sets of nonground atoms, which entails dealing with
general substitutions of variables with nonground terms—a process that may be
very elaborate in practice. Moreover, for a large class of programs it is possible to
show that a given interpretation coincides with the .#-semantics in a straightfor-
ward way, without using inductive arguments. This technique is briefly discussed in
Section 6.

156 K. R. APT ET AL.

On the other hand, the .%“semantics is in general more compact than the
#-semantics. For instance, the .#semantics of both programs given in Example 2.1
is a finite set (modulo variable renaming), whereas the .#-semantics of both such
programs is infinite (albeit easy to describe in an infinitary language) when the
signature contains infinitely many constants. However, this advantage of the
S~semantics is hardly useful when conducting “paper and pencil” proofs of partial
correctness, due to the complications arising from manipulation of arbitrary
substitutions. In the next section we shall identify a smaller class of programs for
which this characterization of partial correctness does not involve unification.

Of course, if we do not make any assumption on the class of programs C,
subsumption-freedom is only a sufficient condition for the isomorphism of the
#-semantics and .%*semantics. Indeed, when the class of programs consists of just
the program from Example 3.3, which is not subsumption-free, then the #-semantics
and #“semantics are obviously isomorphic. However, for a “reasonably large” class
of programs, subsumption-freedom turns out to be also a necessary condition for
isomorphism of programs.

Definition 3.4. A class of programs C is %closed if, for every program P in &,
every finite subset of (P) is in C.

Indeed, we have the following resulit.

NoTE 3.6. For an .closed class C of programs, the #-semantics and .#*semantics
are isomorphic on C iff C is a class of subsumption-free programs.

PrROOF. (=) Suppose that some P & C is not subsumption-free. Then for some
atoms A4,BeS(P) we have A <B. By the definition of .#closedness, both
P, ={A, B} and P,={A} are in C. Now %(P,) =Up({4, B}) = Up({4)) = &(P,),
whereas A(P,) = Variant({ 4, B}) # Variant({ A}) =5(P,). Contradiction.

(=) This is the contents of Theorems 3.4 and 3.5. O

The foregoing proof shows that the notion of subsumption-freedom is crucial for
our considerations. In what follows we provide some means of establishing that a
program is subsumption-free.

4. REDUNDANCY-FREE PROGRAMS
We begin by studying a subclass of subsumption-free programs.

Definition 4.1. A program P is called redundancy-free iff #(P) does not contain a
pair of nonvariant unifiable atoms.

Clearly, redundancy-freedom implies subsumption-freedom, because A %) is
closed under renaming and A <B implies that 4 and a variant B’ of B are
nonvariant and unifiable. The converse does not hold.

Example 4.1. Consider the following program P defined w.r.t. the language with
the signature 3 = {a/0}:

p(X, a).
pla, X).

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 157

Then SAP)= Variant({p (X, a), pla, X)}), so P is not redundancy-free.
However, it is clearly subsumption-free because the atoms p (X, a) andp(a, X)
are not comparable in the subsumption pre-ordering.

The following theorem summarizes the difference between the subsumption-free
and redundancy-free programs in a succinct way. Let us extend the Min operator in
an obvious way to sets of queries.

Theorem 4.1

(i) P is subsumption-free iff for all pure atoms A, Min(sp(A, P)) = sp(A, P).
(ii) P is redundancy-free iff for all queries Q, Min(sp(Q, P)) = sp(Q, P).

PROOF. (i) Note that for some variables x,, x,,..., S(P) is a disjoint union of sets
of the form sp(p(xy,..., X,y) P) and that atoms belonging to different such
sets are incomparable in the < pre-ordering. Thus Min(A(P)) is a disjoint union
of sets of the form Min(sp(p(xy,. .., X,riy) P

(ii) (=) Consider two computed instances Q; and Q, of Q. By Theorem 2.3
there exist C, and C, in YA P)* such that, for i €[1,2], Q and C,; are variable
disjoint and

0, € mgi(Q,C,). (4.1)

In particular, C; <Q, and C, < Q,.

Suppose now that Q, < Q,. Then C, < Q,, so Q, is an instance of both C, and
C,. Because we may assume that C, and C, are variable disjoint, we conclude that
C, and C, are unifiable. By assumption about P and the fact that C, and C, are
separated queries, C; and C, are variants. This implies by (4.1) that Q, and Q, are
variants, as well. Contradiction.

(=) Suppose that A(P) does contain a pair A, B of nonvariant unifiable atoms.
Let C € mgi(A4, B). Then A <C and B < C and at least one of these subsumption
relations, say the first one, is strict, so A < C. Take now a variant A’ of A4 variable
disjoint with 4 and B. By Theorem 2.3 A, C €sp(A4’, P), so Min(sp(A4’, P)) #
sp(A’, P). Contradiction. 0O

For redundancy-free programs we can simplify the formulation of Corollary 3.1.

Corollary 4.1. Consider a redundancy-free program P and a query Q. Then:

0 {Q}P Min({Q6| P = Q6)).
(i) {Q}P Min({Q6|Z(P) = Q6)).

(iii) If the signature contains infinitely many constant symbols,
{Q}P Min({Q6|.#(P) = 06}).

PROOF. (i) follows from Theorem 4.1(ii) and the following two claims.

Claim 1. For an arbitrary program P and a query Q,

Min({Q61P = 06}) Csp(Q, P) < {Q6|P = Q6).

Proor. Take Q, € Min({Q8|P = Q8)}). By the strong completeness of SLD resolu-
tion, there exists a computed instance Q, of Q, such that Q, < Q,. By the choice

158

K. R. APT ET AL.

of Q,, P=Q,, so by the minimality of Q,, O, and Q, are variants. Thus Q, is also
a computed instance of Q, ie., @, €sp(Q, P). O

Claim 2. For two sets of queries &, and &@,, if Min(&,) C &, C &, and Min(&,) = &,,
then &, = Min(&,).

The proof is immediate.

Now (ii) is a straightforward consequence of (i) and the definition of the
#-semantics. Finally, (iii) follows from (ii) and Theorem 3.3. O

So for redundancy-free programs the sets of computed instances can be defined
without the use of unification.

The following result provides a method based on the least Herbrand model,
which allows us to conclude that a program is redundancy-free, so a fortiori it is
subsumption-free.

Theorem 4.2. Suppose that the following conditions hold for a program P:

SEMI. If H < B, and H < B, are ground instances of two different clauses in P,
then

A(P)EB, AB,.

SEM2. If H < B, and H < B, are distinct ground instances of the same clause in
P, then

#(P) ¥ B, AB,.
Then P is redundancy-free.
PrOOF. We shall need the following observation.

Claim 1. Let ¢ be an SLD-refutation of a query and a program P and let & be the
composition of the mgu’s used in £. If H < B is an input clause used in &, then

#(P)EBY.

PrROOF. We have &= #,9,, where 9, is the composition of the mgu’s used in ¢
until H « B is used, and 9, is the composition of the mgu’s used in £ from that
moment on. By the soundness theorem for SLD-resolution,

#A(P) =BY,,
but by the standardization part BJ; = B, so in fact
A(P)EBY,

which concludes the proof. O

We prove now the contrapositive. Assume that the program P is not redun-
dancy-free. By Theorem 4.1 there exists a query Q that admits two computed
instances Q' and Q" such that Q' < Q". Consider then two SLD-refutations &’
and ¢” for Q which use the same selection rule, yielding the computed instances
Q' =Qy and Q" = Q8, where y and § are the compositions of the mgu’s used in
&' and &, respectively. Note that, by a suitable choice of the variants of the

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 159

clauses used in ¢’ and &", we can assume without loss of generality that Q' and
Q" are variable disjoint and thus unifiable.
Let cy,...,c, (n>=1) be the sequence of clauses of P used in £’ and let

dy,...,d, (m=>=1) be the sequence of clauses of P used in £”. Next, consider k
(1 <k < min(n, m)) such that
c;=d;, forie[l,k-1],

c,*+d,.

Observe that k exists, since Q' and Q" are not variants. Assume that H' < B’ is
the variant of ¢, used as input clause in £’ and H” « B" is the variant of d, used
as input clause in ¢”. The following two cases arise.

Case 1 (H'y and H" 8 unify). By the definition of a unifier there exists a ground
instance H « B, of (H' « B')y and a ground instance H < B, of (H" « B")8,
where H is a common ground instance of H'y and H" 8. From Claim 1 it follows
A#(P)=B ; AB, and consequently P does not satisfy condition SEM1.

Case 2 (H'y and H" 8 do not unify). In this case let R,,..., R, be the first k
resolvents of both SLD refutations, so R, = Q and, for i €[2,k], R, is obtained
from R;_, by using the clause ¢, _, (=d,_,). Let A4 be the selected atom in R,.

From the definition of v, 8, ¢,, and d, it follows that Ay=H'y and A8=H" 4.
Therefore, the nonunifiability of H'y and H" 8 implies that R,y and R, 8 are not
unifiable. On the other hand, by the previous assumption, R,y (=Q’) and R,8
(= Q") are unifiable.

Thus there exists an index j €[2, k] such that

R;y and R,;8 unify forie[1,j—1],
R,y and R;8 do not unify. (4.2)

Let ¢; be of the form K « B. Because nonrelevant mgu’s can be used in the

SLD derivation, we can assume without loss of generality that
Var((K < B)y) NVar((K< B)§) = <. (4.3)

From the definition of the R;s and from (4.2) it follows that Ky and K§ unify,
whereas By and B are not unifiable. This, together with (4.3), implies that there
exist two different ground instances H < B, and H « B, of the clauses (K « B)y
and (K < B)3, and hence of the clause K « B, such that H is a common ground
instance of Ky and K#&. Again from Claim 1 it follows .#(P)= B, A B,. Conse-
quently, P does not satisfy condition SEM2 and this completes the proof. O

If H<B, and H < B, are ground instances of clauses in P, then clearly
A#(P) ¥ B, AB, iff .#(P)w¥ H A B, AB,. Therefore, in some cases we shall con-
sider the formulation of SEM1 and SEM2 that uses .#(P)# H A B, A B,, because
this will simplify the reasoning. It is also easy to see that SEM1 and SEM2 are,
respectively, implied by the following two conditions:

SYN. No variable disjoint variants of two clause heads of P unify.
SEM. If H < B, H < B, € Ground(P) and B, # B,, then .#(P)#% B, A B,.

Note that condition SEM alone does not ensure subsumption-freedom (and
hence, a fortiori, redundancy-freedom), as the program {p(X) ., p(a) .} shows.

160

K. R. APT ET AL.

Maher and Ramakrishnan [16] studied subsumption-free programs in the con-
text of the bottom up computation in deductive databases and showed that for
these programs this computation can be performed more efficiently. They proved
that the class of redundancy-free programs is Turing complete. They also provided
two conditions ensuring redundancy-freedom. One was based on .#(P) and, using
our terminology, is exactly condition SEM2 used above. The other condition was
based on the .#semantics and can be expressed as follows:

SEML1'. If ¢ and d are different clauses in P, then no pair 4 € TJ((P)) and
B € T;7(SA(P)) is unifiable.

Interestingly, the simpler condition SEM1 turns out to be equivalent to SEM1’.
This is the content of the following lemma.

Lemma 4.1. For a program P, SEM1' holds iff SEM1 holds.

PrOOF. We prove the contrapositive for both implications.

(=) Assume that SEM1 does not hold. Then there exist two ground instances
(H, < B,)n, and (H, < B,)n, of two different clauses c: H, < B, and d: H, < B,
in P, such that .#(P)=Bn, AB,n, and Hm =H,n,. However, #(P)=
Ground(.%(P)), so there exist some C, e A(P)*, C, e A P)*, y,, and vy, such that

B =Cyvi, (4.4)
Bm, =Cy7,. (4.5)

We can assume without loss of generality that H, « B; and C; do not share
variables, for i €[1,2]. Therefore, (4.4) and (4.5) imply that there exists 3, 3,, 8,
and B, such that

¥, is a relevant mgu of B, and C,, Hyn =H By, (4.6)
3, is a relevant mgu of B, and C,, H,n,=H,%,B,. 4.7)

Consider now A =H;®, and B=H,d,. From (4.6) and (4.7) it follows that
A € TZ(AP)) and B € T;(#(P)). In order to show that 4 and B are unifiable,
note that, again without loss of generality, we can assume Var(H;) N Var(Hj < B)
= & and Var(H)) N Var(C)) = &, for i, j €[1,2], i # j. From the fact that the mgu’s
J; are relevant, it follows that also H\#, and H,9, do not share variables.
Therefore, from the assumption H,n, = H,7,, (4.6), and (4.7) it follows that H,d
and H,d are unifiable. Thus condition SEM1’ does not hold.

(=) Assume that SEM1’ does not hold. Then there exists a pair 4 € T, ((P))
and B € T, 7(#(P)) which is unifiable, where c¢: H, < B, and d: H, < B, are two
different clauses in P. Then for some C, e A(P)*, C, €A P)*, and 8, 3,,

A=H9,, Var(H < B,) N Var(C,) = J, ¥, is an mgu of B, and C,,
B=H,d,, Var(H« B,)NnVar(C,)=0O, ¥, is an mgu of B, and C,.

Because A4 and B are unifiable there exists an 7 such that H,9n=H,9,n and
(H, < B))%n, (H, < B,)9,n are ground instances of ¢ and d, respectively. Note
3.2 and Theorem 3.4 imply .#(P) = Ground(.%(P)). Therefore,

#(P) = B9 AB,97,

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 161

because C; € #(P)* and B,9;n = C, 9, for i €[1,2]. Consequently SEM1 does not
hold and this completes the proof. O

Let us discuss now the conditions of Theorem 4.2. It is obvious that conditions
SEM1 and SEM2 are only sufficient for proving that a program is redundancy-free.
Indeed, adding to a program a variant of its clause does not change any of its
semantics, so a fortiori its redundancy-freedom status, but it invalidates the SEM1
condition.

To deal with such probiems, consider the following strengthening of the equiva-
lent condition SEM1":

SEMLI". If ¢ and d are different clauses in P, then no pair 4 € T(‘j)” (“(P)) and
Be T(j;(y(P)) is unifiable, unless 4 and B are variants.

Theorem 4.2 remains valid when SEM1 is replaced by SEM1”, because essen-
tially the same proof as in [16] holds. This strengthening of SEM1 is of use not only
for “artificial” programs, namely, consider the following program ISO_TREE:

iso(void, void).

iso(tree(X, Leftl, Rightl), tree(X, Left2, Right2)) <«
igso(Leftl, Left2), iso(Rightl, Right2).

iso({tree (X, Leftl, Rightl), tree(X, Left2, Right2)) «
iso(Leftl, Right2), iso(Rightl, Left2).

from Sterling and Shapiro ([20], p. 58), which tests whether two binary trees are
isomorphic. Clearly, condition SEM2 is satisfied by ISO_TREE, because actually its
stronger version SYN2 defined at the end of this section holds, but SEM1 does not
hold because

iso(tree(void, void, void), tree(void, void, void)) <«
iso(void, void), 1iso(void, void).

is a ground instance of both the second and the third clause of ISO_TREE and
clearly

M (ISO_TREE) = iso(void, void), 1iso(void, void)

holds, However, condition SEM1” does hold. Indeed, define by induction a most
general tree (mgt) as follows: void is a mgt. If £, and t, are variable disjoint mgts
and X is a variable that appears neither in t, norin t,, then tree (X, t,, t,)is
a mgt.

The following observations follow from the definitions by a straightforward
inductive argument:

() If iso(t,, t,) E&(ISO_TREE), then t, and t, are mgts.
(i) If t, and t, are unifiable mgts, then they are variants.

In order to show that SEM1” holds for the program ISO_TREE, let us consider
two atoms A € T}(#(ISO_TREE)) and B &€ T7(#(ISO_TREE)), where ¢: H,
< B, is the second clause and d: H, <« B, is the third clause. Assume that

162 K. R. APT ET AL.

iso(t,, t,), isolt,, t,), iso(l;, 1,), and iso(l,, 1,) are pairwise
variable disjoint atoms in .#(ISO_TREE) such that

¥, isanmgu of B, and iso(t,, t,), isol(t;, t,),

¥, isan mgu of B; and iso(1,, 1,), iso(1;, 1,),
and 4 = HY,, B=H¥Y,. Then

A=1iso(tree(X, t;, t;), tree(X, t,, t,)),

B=1iso(tree(Y, 1,, 1;), tree(Y, 1,, 1,)).
If A and B unify, from (i) and (ii) above and an easy inspection of the unification
algorithm it follows that 4 and B are variants. So SEM1” holds and ISO_TREE is
redundancy-free.

In certain situations the conditions of Theorem 4.2 can be ensured by means of

syntactic restrictions, namely, condition SEM1 is obviously implied by the following
condition:

SYNI1.If H, « B, and H, « B, are variable disjoint variants of different clauses
in P, then H, and H, do not unify,

In addition, condition SEM2 is automatically satisfied when the following condition
holds:

SYN2. If H « B € P, then Var(B) C Var(H).

Note that the qualification “variable disjoint variants” cannot be dropped from
SYNI. Indeed, consider the program P

p(X).
p(£(X)).

Then for P this modification of SYN1 holds, but SEM1 does not hold.

It is worth mentioning that an immediate proof of Turning completeness for
redundancy-free programs can be obtained by using the encoding of two register
machines into pure logic programs given in Shepherdson [18]. In fact, conditions
SYN1 and SYN2 readily apply to programs obtained by such an encoding. In the
next section we assess the applicability of Theorem 4.2.

5. CHECKING REDUNDANCY-FREEDOM

We provide here four illustrative uses of Theorem 4.2.

Example 5.1.
(i) Consider first the proverbial APPEND program:
append([], Ys, Ys).
append ([X|Xs], Ys, [Xl|Zs]) « append(Xs, Ys, Zs).

Here the syntactic conditions SYN1 and SYN2 readily apply.
(ii) Consider now the SUFFIX program:
suffix(Xs, Xs).
suffix(Xs, [YIYs]) « suffix(Xs, Ys).

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 163

Note that the heads of the clauses unify, so we cannot use condition SYN1.
To prove condition SEM1 we reason as follows. Denote by OCC the set of
ground atoms of the form suffix(s, t_.) where t, is a term containing
the term s. By definition of 7;, T, (OCC)COCC, ie., OCC is a
pre-fixpoint of T, .-, By the .#-characterization Theorem 2.1, .#(SUF-
FIX) COCC, so, for any ground instance

suffix(t,, [t,lty]) « suffix(t,, t3)

of the second clause, if .#(SUFFIX)=suffix(t,, t,), then t, and
[t,lt,] are different terms. Thus suffix(t,, [t,lt;]) is not an
instance of the first clause and consequently SEM1 holds.
The clauses of SUFFIX do not contain variables, so condition SYN2
applies.
(iii) Consider now the naive REVERSE program:

reverse([1, [1).
reverse([X|Xs], Zs) & reverse(Xs, Ys),
append (Ys, [X], Zs)

augmented by the APPEND program.

The heads of different clauses do not unify, so condition SYN1 applies.
However, due to presence of the local variable Ys in the second clause,
condition SYN2 does not apply. To prove condition SEM2 we analyze the
least Herbrand model .#(REVERSE). Using the list constructor binary
function [-|--] let us define the notation [¢,|¢, --- |¢,] for n > 2 by induction

as follows. For n =2, [¢,|t,] is the induction base. For n > 2, we define by
induction,

(el e,] = [1a1[2]+ I8,]].

A list is then defined as either the constant symbol [] (the empty list) or
a construct of the form [¢,|¢,|--- ¢,], where n > 2 and ¢, =[]. Finally, given
a list s and a term ¢, we define their concatenation s * ¢ as follows:
If s=[] then sxt=t.
If s=(¢,(---[t,_,[1], then s*¢={t [---¢t,_,lt].

Then it can be shown that

A (APPEND) = {append(s, t, u)lsisa ground list,

t is a ground term and s* t =u}
and

#(REVERSE) = {reverse (s, t)|s, t are ground lists and t =rev (s)}

U.#(APPEND),
where given a list s, rev(s) denotes its reverse.
Take now a ground instance
reverse([xlxs], zs) « reverse(xs, ys),
append(ys, [x], zs)

of the second clause with reverse ([xixs], zs) in #(REVERSE). Then
reverse (xs, ys) €4 (REVERSE) implies ys=rev (xs), so condition

164 K. R. APT ET AL.

SEM?2 holds for this clause. For other clauses condition SYN2 applies. We
conclude that REVERSE is redundancy-free.

(iv) Finally, consider the following program HANOI from Sterling and Shapiro
[20], which, for the query hanoi(n, a, b, c, Moves), solves the
“Towers of Hanoi” problem with n disks and three pegs a, b, and ¢
giving the sequence of moves forming the solution in Moves:

hanoi(s(0), A, B, C, [A to Bl]).

hanoi(s(N), A, B, C, Moves) &
hanoi(N, A, C, B, Msl)
Hanoi (N, C, B, A, Ms2)

append(Msl, [A to B|IMs2], Moves).
augmented by the APPEND program.

Note that conditions SYN1 and SYN2 do not apply here. To prove
condition SEMI, first note that .#(HANCT) E hanoi (t1, t2, t3, t4,
t5) implies t1 # 0. Hence for any ground instance hanoi (t1, t2, t3,
t4, t5) <« B of the second clause, if t1 =s(0), then .#(HANOI) & B. This
implies SEM1.

To prove condition SEM2 we use the methodology of Maher and Ra-
makrishnan [16] based on functional dependencies. First we need a defini-
tion.

Definition 5.1. Let p be an n-ary relation symbol. A functional dependency is a
construct of the form p[I —J], where I,J C{1,...,n}. Let M be a set of ground
atoms. We say that p[I — J] holds over M if for all p(s,,...,s,), p(¢,,...,t,) EM,
the following implication holds:

(Viel.s;=t;)=(Vjel.5;=¢).
A set F of functional dependencies holds over M iff each of them holds over M.

We now show that the set of functional dependencies
F ={hanoi[{1, 2, 3, 4} - {5}], append[{1, 2} - {3}]}

holds over .#(HANOT). By the fixpoint definition of .#(P), if A €.#(P), then A isa
ground instance of the head of a clause in P. Then a simple syntactic check on the
heads of the clauses in HANOT reveals that hanoil{l, 2, 3, 4} — {5}] holds over
#(HANOI). The other functional dependency can be directly established by consid-
ering the explicit definition of .#(APPEND) previously given.

Using the information given by F it is now straightforward to prove the
implication required by SEM2. The only clause that we have to consider is the
nonunit clause for hanoi. Consider an instance

hanoi(s(n),a,b,c,moves)
<« hanoi(n,a,c,b,msl),hanoi(n,c,b,a,ms2),
«— append(msl, [a to blms2],moves)

of such a clause with hanoi (s(n),a,b, c,moves) ground and in .#(HANOI).

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 165

Because hanoil[{l, 2, 3, 4} — {5})] holds over .#(HANOI), if
hanoi(n,a,c,b,msl) € #(HANOI), then there exists no
hanoi (n, a, c,b, ms1’) €4(HANOI) such that ms1 # ms1’. Analogously for ms2
and, using the dependency append [(1, 2} — {3}], for moves. Consequently, SEM2
holds and HANOT is redundancy-free.

A general method for establishing functional dependencies on .#(P), based on
an extended version of Armstrong axioms (see Ullman [21]), is given in Maher and
Ramakrishnan [16].

Note that Theorem 4.2 only provides sufficient conditions for redundancy-free-
dom. Indeed, the program {p(X) < q(X,Y)., g(a,b)., gla,c).} is easily
seen to be redundancy-free, but condition SEM2 does not hold. Moreover, for
certain natural programs, Theorem 4.2 cannot be used to establish their subsump-
tion-freedom simply because they are not redundancy-free. An example is, of
course, the program considered in Example 4.1, but more natural programs exist.
In such situations we still can use a direct reasoning to prove subsumption-
freedom.

Example 5.2. Consider the MEMBER program:
member (X, [XIXs]).
member (X, [Y|Xs]) e member (X, Xs).

We now prove that MEMBER is subsumption-free. By the .#“characterization of
Theorem 2.4 it suffices to show that if I is subsumption-free, then T, .--7(1) is
subsumption-free. Denote the first clause by ¢, and the second one by c¢,. Consider
a pair A}, A, € T\pyzezv(1). The following two cases arise.

Case 1[A, € T7(I) and A, € T;7 (D). By definition of T3, 4, = member (X,
[X1Xs])p for a renaming p and A, =menmber (X, [YIXs])d, where ¢ is an
mgu of member (X, Xs) and B for a B such that Y& Var(B). This implies
X¢# Yd and hence 4, £ A4, and A4, £ A,.

Case 2 [A}, A, € T/ (D] By definition, A, =member (X, [Y|Xs])d, where
¥; is an mgu of member (X, Xs) and B, for i = 1,2. Assuming B; = member (t,,
1,),we have ¥,={X/t,,Xs/1,} (up to renaming). Then the assumption B, « B,
implies member (X, Xs)®, £member (X, Xs)® , and hence A, £A,. Analo-
gously for the symmetric case.

Note that MEMBER is not redundancy-free. In fact, the query member (X, Y)
has the computed instances member (X, [X|XS]) and member (X,
[Y| [X1XS]]) which are unifiable.

6. FOURTH SEMANTICS—#,

The results of the previous sections indicate that the .#-semantics precisely
captures the procedural interpretation for the subsumption-free programs. How-
ever, it should be noticed that for many programs it is quite cumbersome to
construct their least Herbrand model. Note, for example, that .#(APPEND) con-

166

K. R. APT ET AL.

tains elements of the form append (s, t, u), where neither t nor u is a list, and
analogously for .#(MEMBER), because it can be shown that

A(MEMBER) = {member (t, [t,lt,| - It,])
|n>2,t, t,,...,t, are ground terms and t = t; for some j € [1,n— 1]}

Clearly, it is quite clumsy to reason about programs when even in such simple
cases their semantics is defined in such a laborious way. Preferably, one would
rather like to associate with the APPEND program the following, more natural
meaning:

{append(s,t,u) s, t, uare ground lists and s *t =u} (6.1)
and with the MEMBER program the following meaning:
{member (s, t) |t is a ground list and s is an element in t}.

To be able to do this we have to find a systematic way of associating with the
APPEND program the set (6.1), etc. Note that the set (6.1), when viewed as a
Herbrand interpretation, is not a model of APPEND, because the first clause does
not hold in it.

The solution proposed here involves the use of types. We use the notion of a
well-typed query and clause as in Apt [1] (which, from the semantics point of view,
coincides with the method of Bossi and Cocco [6] for proving partial correctness),
but follow the equivalent presentation of Ruggieri [17], which is more convenient
for our purposes.

Definition 6.1. Consider a pair pre, post of Herbrand interpretations.

e A query is called (pre, post)-correct if, for every ground instance A,,..., 4,
of it, for j €[1,n],

Ays...,A;_ Epost = A;Epre.
e A clause is called pre, post)-correct if, for every ground instance H «
B,,...,B, of it,
HepreAB,,...,B,_ €post = B;epre, forje[l,n],

Hepre AB,,...,B,€post = H e post.

e A program is called (pre, post)-correct if every clause of it is.

Note that every instance and every prefix of a (pre,post)-correct query is
(pre, post)-correct.

Given a pair of Herbrand interpretations pre, post-correct program P, we now
define its “well-typed” semantics as

"‘((pre,post)(P) =/(P) N pre.
Intuitively, £, s, (P) is the “well-typed” fragment of the least Herbrand

model of a program P. We call it #,, . -semantics. Note that the .#. ,ox)-
semantics does not depend on post, but as the following result of Ruggieri [17]

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 167

shows, for (pre, post)-correct programs ;.. ,..,(P) can be equivaiently defined as
#(P) N pre N post.

Lemma 6.1. For a (pre, post)-correct program P we have #,., ,.\(P) < post.

In general, the #,. . -Semantics is not a model of the program, but for the
(pre, post)-correct queries it turns out to be equivalent to the .#-semantics. This is
the content of the following result.

Lemma 6.2. For a (pre, post)-correct program P and a (pre, post)-correct query Q,
‘/[(P) = Q tﬁ‘/[(pre,posl)(‘n) = Q

PrOOF. (=) Consider a ground instance A,,..., A, of the query Q such that
Ay,..., A, €4(P). We show, by induction on n, that A4; € pre for j €[1,n]. For
the base case (n = 0), the claim holds vacuously. For the induction step (n > 0), we
have A4,,..., A, , €pre by the induction hypothesis. Together with the assump-
tion A,,..., A, | €#(P) this implies A,,..., A, , € post by Lemma 6.1. By the
fact that A4,,..., A, is (pre, post)-correct, we conclude that A, € pre, which com-
pletes the proof of the first implication.

(=) Obvious, as by definition A, ,..(P) S#(P). O

The following example should clarify the idea behind this approach to types.
Here and in other natural cases postCpre. Then by Lemma 6.2 we have
Hipre. poso(P) =#(P) 1 post, which makes the .#,,. ..,,-semantics somewhat easier
to construct.

Example 6.1. Consider the program APPEND. In general, APPEND is used either to
concatenate two lists or to split a list. This use is reflected in the following choice
of pre:

pre = {append (s, t,u) I's, t are ground lists and u is a ground term}
U{append (s, t,u) s, t are ground terms and u is a ground list} .

Intuitively, pre is the set of all ground instances of the intended one atom
queries. It is readily checked that APPEND is (pre, post)-correct, where

post = {append (s, t,u) |s, t,u are ground lists}.
Now, using the previously obtained characterization of .#(APPEND), we obtain
M,

(ore. posty (APPEND)

={append(s,t,u)ls, t, uareground listsand s*xt=u}.

Example 6.1 shows how to construct the set £, ,o(P) by using the least
Herbrand model .#(P). However, as we already noticed, the construction of .#(P)
can be quite cumbersome, so we would prefer to define .#, . (P) directly,
without constructing .#(P) first. To this end we introduce the notion of a reduced
program w.r.t. a Herbrand interpretation.

Definition 6.2. Consider a program P and a Herbrand interpretation J. Then the
reduced program w.r.t. J, denoted by J(P), is the (possibly infinite) program

168

K. R. APT ET AL.

consisting of the ground instances of clauses from P, the head of which is in J,
that is,

J(P) ={A < B Ground(P)| A €J}.

As a direct consequence of the definition, observe that
Tip(1) =Tp(1)NJ (6.2)

and that T, is continuous on the complete lattice of Herbrand interpretations
ordered with C.

We now prove that for a (pre, post)-correct program P, the .#,,, ,.,-Semantics
coincides with the .#-semantics of pre(P). This result provides us with a method
for removing the “ill-typed” atoms from the .#-semantics by using the reduced
program pre(P).

Theorem 6.1. For a (pre, post)-correct program P,
"l(pre,post)(P) =l(pre(P))

PROOF. By the .#-characterization of Theorem 2.1, A, post)(P)=Tp T @ N pre
and #(pre(P)) = T,py T w. Now, on the account of (6.2), we have 7)) T wC
Tp T @wNJ, for all J, so for pre in particular. Thus .#(pre(P)) A, post)(P)-

To prove the other inclusion we show by induction that, for n > 0,

Tptnnpre CT e py T n.

The induction base (n = 0) is obvious. For the induction step (n > 0) assume
H €T, 1 nnpre. Then there exists a ground instance H < B, --- B,, of a clause in
P such that

(B, B, CTp 1(n~1). (6.3)

Because the program P is (pre, post)-correct, it is easy to prove by induction on
m, that also the inclusion

{B, -~ B,} cpre (6.4)

holds. Indeed, for the base case (m =0), the claim holds vacuously. For the
induction step (m > 0), assume that {B, :-- B,,_} C pre. This together with (6.3)
implies {B, ** B,, _} C# ;e posy(P) and hence, by Lemma 6.1, {B, - B, _,} C post
holds. Because by assumption H &€ pre, it follows from Definition 1 that B, € pre.

Now the induction hypothesis, (6.3), and (6.4) imply (B, --- B,,} C T, ;(p, T(n — 1
and, consequently, H € T, p, T n, which concludes the proof. O

This allows us to conclude that the £, .. -Semantics admits the characteriza-
tions analogous to those of the other three semantics so far considered, namely, we

have the following analogue of the characterization Theorems 2.1, 2.2, and 2.4.

Theorem 6.2 (# . o5ty Characterization 1). For a (pre, post)-correct program P:

() T,,re(py is continuous on the complete lattice of Herbrand interpretations ordered
with C.
(11) M re, pos)(P) is the least fixpoint and the least pre-fixpoint of Ty py.
(nl)"[(pre,post)(P) = Tpre(P) T .

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 169

PrOOF. We already noticed that (i) is a consequence of (6.2). (ii) and (iii) follow
directly from Theorem 6.1 and Theorem 2.1 applied to pre(P). O

As already mentioned, in specific applications it is often the case that for a
(pre, post)-correct program, we have post C pre. In this case an alternative charac-
terization of the .#(,. ,.,-semantics in terms of post(P) can be given, namely, we
have the following analogue of Theorem 6.2.

Theorem 6.3 (M. posry-Characterization 2). Suppose that post C pre. Then, for a
(pre, post)-correct program P:

() Toospy is continuous on the complete lattice of Herbrand interpretations
ordered with C.
(11) M pre, post)\ P) s the least fixpoint and the least pre-fixpoint of T . py-
(111) ‘/[(pre,post)(P) = Tpost(P) T w.

PROOF. By Lemma 6.1, 4., o1\ P) C post. Thus to prove (ii) and (iii) it suffices
to prove by the .#,. .., -Characterization 1 of Theorem 6.2 that post C pre implies
that, for n > 0,

ToepyTnNpost=T,4pTn.

The proof of the C inclusion does not use the assumption post C pre and is by
induction on n. The induction base (n =0) is obvious. For the induction step
(n>0) assume H €T, p T nNpost. Then there exists a ground instance H «
B, -+ B,, of a clause in pre(P) such that

{Bl Bm} ngre(P)T(n - 1)

By Lemma 6.1 and the #,,, . -characterization 1 of Theorem 6.2, we also
have

{B, - B,,} Cpost,

so by the induction hypothesis {B; - B, } € T,opy T(n — 1) and, consequently,
H € T, py T n N post.

For the other inclusion, note that T, py 1T 7 S Tyoepy T 1 N post and post C pre
now implies T,oqpy T 1 N post C T, py T 1 N post.

This concludes the proof. O

Returning to Example 6.1, note that using the above theorem it is now easy to
constructo (APPEND) by proving by induction on n > 0 that

Tos(APPEND) T 1 = {append(s,t,u) Is, t, uare ground lists,
sisoflength n — 1 and st =u}.

Finally, let us remark that for a large class of programs it is possible to verify
that a Herbrand interpretation coincides with the #,,. ,..,-semantics in a simple
way. Call a program left terminating if all its SLD derivations w.r.t. the leftmost
selection rule, starting with a ground query, are finite. Call a mode! 7 of a program
P supported if for every ground atom A such that /=4 there exists B such that
A < B & Ground(P) and I =B.

In Apt and Pedreschi [4] it is argued that most natural pure Prolog programs are
left terminating and a natural method is proposed to prove that a program is left
terminating. A result of Apt and Pedreschi [4] states that for a left terminating

170 K. R. APT ET AL.

program P the least Herbrand model .#(P) of P is the unique supported
Herbrand model of P. Now, if P is left terminating, then so is Ground(P) and a
fortiori pre(P) and post(P). Thus, for a left terminating program, by the .#(,,, ..
characterization of Theorems 6.2 and 6.3 we have that .#,,, ,.,(P) is the unique
supported Herbrand model of pre(P) and, if post Cpre, the unique supported
Herbrand model of post(P). Usually, checking that a given Herbrand interpreta-
tion is a supported model is straightforward.

7. APPLICATIONS TO PROGRAM VERIFICATION

When dealing with correctness of logic programs, one needs to prove the following
properties for a given program and a “relevant” query:

s All its SLD derivations terminate.
e All successful SLD derivations yield the desired resuits.

-« Absence of failure, that is an existence of a successful SLD derivation.

The first property has been dealt with in numerous papers and is not discussed
here. The second property is usually referred to as partial correctness. Partial
correctness of logic programs has been studied for a long time (see, for example,
Deransart [9], where various approaches are discussed and compared). Among
them the most powerful one is the inductive assertion method of Drabent and
Matuszyfiski [10] that allows us to prove various program properties that can be
expressed only using nonmonotonic assertions (like var (X)). Various other, sim-
pler cases of this method were presented in the literature. Apt and Marchiori [3]
provided a systematic, comparative study of the relative strength and expressive
power of these versions of the inductive assertion method and showed that they
can be arranged in a natural hierarchy.

In contrast, we are not familiar with any approaches to prove the third property
—absence of failures. In what follows we show how the results of the previous
sections can be applied to prove this property together with the proof of partial
correctness.

The point of departure in our approach is the observation that logic and pure
Prolog programs can yield several answers and, consequently, partial correctness
could be interpreted in two ways.

Take as an example the APPEND program. It is natural that for the query
append([1,2], [3,4]1, Zs) we would like to prove that upon successful
termination, the variable Zs is instantiated to [1,2,3,4], that is, that {Zs/
[1,2,3,4]} is the computed answer substitution.

On the other hand, for the query append(Xs, Ys, [1,2,3,4]) we would
like to prove that all possible splittings of the list {1,2,3,4]1) can be produced.
This means that for this query we would like to prove that each of the substitutions

{Xs/[1, ¥Ys/I[1, 2, 3, 41},
{Xs/[1}, ¥Ys/ (2, 3, 411},
{Xs/1[1,2], ¥Ys/[3,4]1},
{Xs/[1, 2, 3], Ys/[41},
{Xs/I[1, 2, 3, 41, ¥s/[1}

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 171

is a possible computed answer substitution to the query append(Xs, Ys,
[(1,2,3,4]).

Moreover, we should also prove that no other answer can be produced. This
boils down to the claim that the above set of substitutions coincides with the set of
all computed answer substitutions. Of course, a similar strengthening is possible in
the case of the first query. We would prove that the query append([1,2],
[3,4]1, Zs) admits precisely one computed answer substitution, namely, {Zs/
[1,2,3,41}.

Note that such a stronger formulation of partial correctness automatically takes
care of the proof of the last property—absence of failure. Indeed, this property
reduces to the statement that the set of computed answer substitutions is nonempty.
This explains why this formulation of partial correctness is beyond the scope of
other methods.

In the terminology introduced in Section 1.2 for a given program P and a query
Q, we thus wish to prove assertions of the form {Q}P#. In particular, we would like
to prove that

{append ([1,2]1, [3,4], Zs)} APPEND {append(I[1,2],
(3,43, [1,2,3,4])}
and
{append(Xs, Ys, [1,2,3,4]1)} APPEND &,
where
Q0=
{
append([], [1,2,3,4], [1,2,3,4],
append ([1], [2,3,4], [1,2,3,4]1),
append([1,2], [3,4], [1,2,3,47),
append([1,2,3], [4], [1,2,3,4]),
append((1,2,3,41, [1, [1,2,3,41])
}.

In Apt [1] it was shown how these properties can be established using the least
Herbrand model. However, this approach was limited only to the case of “ground”
inputs (or more precisely, to the queries with only “ground” computed instances).
We now show that in the case of subsumption-free programs this approach can be
generalized to arbitrary queries.

To this end one should perform the steps listed below. We illustrate this
technique by means of an example that shows that this method can also deal with
programs that use logical variables. Consider the following program REVERSE_DL,
which computes the reverse of a list using difference lists:

reverse(Xs, Ys) « reverse_dl(Xs, Ys-[1).
reverse_dl ([XIXs], Ys-Zs) « reverse_dl(Xs, Ys-[Xl|Zs]).

reverse—dl([], Xs-Xs).

172 K. R. APT ET AL.

Take the query Q = reverse(s, X), where s is a (possibly nonground) list
and X is a variable. In the following, we assume an infinite signature.

(1) Construct .#(P). Recall from Example 5.1 that for a list s, rev(s)
denotes its reverse. Using the .#-characterization of Theorem 2.1, one can
show that

#(REVERSE_DL) = {reverse_dl (s, t-u) | s is a ground list,
t, uare ground terms and rev (s) *u=t}
UA(reverse(s,t) Is, t aregroundlists and t=rev(s))

(2) Prove that P is redundancy or subsumption-free. In the case of REVERSE_DL it
suffices to note that it satisfies the conditions SYN1 and SYN2 and apply

Theorem 4.2.
(3) Find a correct instance Q' of Q, i.e., such that .#(P)=Q’. Note that by
definition
A(P)=Q' iff Ground(Q') c.#(P)*. (7.1)

In our case, by the form of .#(REVERSE_DL), if Q" is a ground instance of
reverse(s, rev(s)), then Q" €#(REVERSE_DL) holds. Therefore, by
(7.1),

A (REVERSE_DL) = reverse (s, rev(s)).

(4) By suitably generalizing from (3), find a minimal correct instance Q' of Q, i.e.,
such that .#(P) = Qy implies Q' < Qy. (In general, find the set of minimal
correct instances of Q.) Here the following implication, which holds for any
pair of expressions E;, E,, can be useful:

(Yn(E,=E;)nisground = Em=E,n) = E,=E,. (7.2)
In our case, assume that

#(REVERSE_DL) & reverse (s, X)Y.
We have Xyn=rev(syn) = (by definition of rev) rev(s)yn. Then, by (7.2),
Xy = rev(s)y and hence

reverse(s, rev(s)) <reverse(s, X))y
holds.

(5) Apply Corollary 4.1 (or Corollary 3.1 for programs that are not redundancy-free).
For REVERSE_DL we obtain

{reverse(s, X)} REVERSE_DL Variant({reverse(s, rev(s))}).

In view of our comments in Section 6, the drawback of this approach to proving
partial correctness is point (1), so the construction of the .#-semantics. We also
argued that for pre, post)-correct programs it is usually easier to construct their
Mpre, posy-Semantics. Therefore, it is legitimate to rephrase the above methodology
for partial correctness by using .#,. ,.s(P) instead of .#(P). To this end, we
introduce the following notion of (pre, post)-redundancy-freedom.

Definition 7.1. A program P is said to be (pre, post)-redundancy-free if it is
(pre, post)-correct and, for any (pre, post)-correct query Q, Min(sp(Q, P)) =
sp(Q, P), that is, the set of computed instances of Q is subsumption-free.

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 173

Observe that, because of Theorem 4.1(ii), for a (pre, post)-correct program P, if
P is redundancy-free, then it is (pre, post)-redundancy-free. Later we shall exhibit
Herbrand interpretations pre,post and a natural program that is (pre, post)-re-
dundancy-free, but not redundancy-free. The next result is a relativized version of
Corollary 4.1. It shows that, for (pre,post)-redundancy-free programs, the com-
puted instances of the (pre, post)-correct queries can be retrieved from A, ,..(P),
thus motivating the previous definition.

Corollary 7.1. Consider a (pre, post)-redundancy-free program P and a (pre, post)-
correct query Q. Then

(i) P Min({Q6|P = Q6)).
(i) {Q}P Min({Q8|Z(P) = Q6Y).

(iii) If the signature contains infinitely many constant symbols,
{Q}P Mln({Q@ '/‘[(pre,post)(P) E Qe})

PrOOF. From Claims 1 and 2 of the proof of Corollary 4.1 we obtain (i), (ii), and
also

{Q}P Min({Q6L#(P) = Q8}),

provided that the signature contains infinitely many constant symbols. Then (iii)
follows from Lemma 6.2. O

Thus for (pre, post)-redundancy-free programs, the set of computed instances of
a (pre, post)-correct query coincides with the set of its most general instances that
are true in . .. (P). We are now faced with the problem of proving that a
(pre, post)-correct program P is (pre, post)-redundancy-free. Clearly, redundancy
freedom is a sufficient condition for (pre, post)-redundancy-freedom. However, the
proof method for redundancy freedom, namely, Theorem 4.2, is based on .#(P),
whereas for (pre, post)-correct programs, we would like to use .#,. ;o5 (P)-

To solve this problem, we provide an analogue of Theorem 4.2 that employs a
modification of the conditions SEM1 and SEM2. The new conditions refer to
M ore, post P) instead of .#(P) and allow us to prove that a program is (pre, post)-
redundancy-free.

In the proof of Theorem 7.1 we use LD resolution, that is, SLD resolution with
the leftmost selection rule, as adopted in Prolog. The following lemma, due to
Ruggieri [17], will be needed.

Lemma 7.1 (Persistence). Let P and Q be (pre,post)-correct and let ¢ be an LD
derivation of P U {Q). Then all resolvents in £ are (pre, post)-correct.

Theorem 7.1. Suppose that the following conditions hold for a (pre,post)-correct
program P:

SEML. If H < B, and H < B, are ground instances of two different clauses in P,
then

,l(p,e,pom(P) EHAB, AB,.

174

K. R. APT ET AL.

SEM?2. If H < B, and H « B, are distinct ground instances of the same clause in
P, then

'/l(pre,post)(P) “#HAB, AB,.
Then P is (pre, post)-redundancy-free.

PROOF. The proof follows closely that of Theorem 4.2. First, we shall need the
following observation.

Claim 1. Let ¢ be an LD refutation of a (pre, post)-correct query and a (pre, post)-
correct program P and let 0 be the composition of the mgu’s used in €. If H < B is
an input clause used in &, then

"{(Pfe,pOSt)(P) =(HAB)Y.

Proor. From Claim 1 of the proof of Theorem 4.2 it follows that .#(P) = B#,
which implies that also .#(P) = Hf. Furthermore, both H and B are instances of a
prefix of a resolvent in £, so by the persistence lemma (Lemma 7.1), both H and B
are (pre, post)-correct. It suffices now to apply Lemma 6.2. O

We now prove the contrapositive. Assume that the program P is not (pre, post)-
redundancy-free, that is, there exists a (pre, post)-correct query Q that admits two
computed instances Q' and Q" such that Q' <Q". By virtue of the strong
completeness of SLD resolution, we can consider then two LD refutations £’ and
&¢" for Q that yield its computed instances Q' and Q". The rest of the proof is
from now on the same as that of Theorem 4.2, using Claim 1 above instead of
Claim 1 of the proof of Theorem 4.2. O

Example 7.1. Reconsider the MEMBER program of Example 5.2:
member (X, [XI|Xs]).
member (X, [Y[Xs]) « member (X, Xs).

We showed that MEMBER is subsumption-free, although it is not redundancy-free.
We now prove in a straightforward manner that it is (pre, post)-redundancy-free
w.r.t. a class of natural queries. Consider

pre = post = {member (x, t) Ixisa ground term and
t is a ground list of distinct elements} .
It is readily checked that MEMBER is (pre, post)-correct and that
M pre. posy(MEMBER) = {member (x, t) |xisa ground term,
t is a ground list of distinct elements, and x is in t}.

Condition SYN2 of Section 4 obviously applies to the MEMBER program. To check
condition SEM1 of Theorem 7.1, consider two ground instances with a common
head of the two clauses of the program: member (x, [x|xs]) and member (x,
[x1xs]) < member(x, xs).If

e posy(BER) FEmenber (x, [xIxs]),M
then all elements in xs are different from x and, therefore,
A yre posy(MEMBER) B member (x, xs),

which implies that SEM1 holds for the MEMBER program. By Theorem 7.1 we have
that MEMBER is (pre, post)-redundancy-free. Now Corollary 7.1 can be applied to

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 175

any query of the form member (s, t), where t is a list of pairwise nonunifiable
elements, because such a query is (pre, post)-correct.

We can now summarize our methodology for proving partial correctness on the
basis of #. -S€Mantics.

(1) Construct pre and post such that the program P and the query Q are
(pre, post)-correct. Intuitively, pre is the set of ground instances of the
intended atomic queries.

(2) Construct My o5 (P). Usually, the “specification” of the program limited
to its ground queries coincides with .#(P). As explained at the end of
Section 6, the techniques of Apt and Pedreschi [4] are useful for verifying
validity of such a guess.

(3) Prove that P is (pre, post)-redundancy-free.

(4) Find a correct instance Q' of Q, i.e., such that A . (P)EQ'.

(5) By suitably generalizing from (4), find a minimal correct instance Q' of Q, i.e.,
such that .#(P) = Qy implies Q' < Qy. (In general, find the set of minimal
correct instances of Q.)

(6) Apply Corollary 7.1.

8. PROGRAMS WITH ARITHMETIC

We now apply the results of the previous sections to an extension of logic
programming with arithmetic. Because we wish to apply these results to reason
about Prolog programs, we follow here Prolog’s approach to arithmetic. We extend
the syntax by allowing, in the bodies of the program clauses, the arithmetic
comparison operators <, <, =:=, #, > and > are the is relation of Prolog.
We also assume that, conforming to the status of built-ins, in the original program
these arithmetic relations are not used in the heads of the clauses.

To model adequately the semantics and the computation process of programs
with arithmetic, we follow here the approach of Kunen [13] and first add to each
program infinitely many unit clauses that define the ground instances of the
arithmtic relations used.

To this end we use the shorthand gae to denote a ground arithmetic expression.
Given a gae n, we denote by val (n) its value. For example, val (3+4) equals 7.
So for < we add the set of unit clauses

M_={m<nlm,n are gaes and val (m) <val (n)},
for is we add the set
M, ={val(n) is nlinisa gae},

and so forth, so, for example, 7 is 3+4&€M,_.

Now we can apply the previous results on all four semantics to logic programs
with arithmetic. However, to deal with partial correctness of these programs, we
have to exercise some care because Prolog uses the leftmost selection rule and,
moreover, in the case of programs with arithmetic, run-time errors can arise.

From now on all proof-theoretic notions, such as the computed instance, refer
to the LD resolution. We extend the LD resolution by stipulating that an LD

176

K. R. APT ET AL.

derivation ends in an error when the last selected atom is with an arithmetic
relation and either of the following statements holds:

e Itis of the formp (s, t),where p is a comparison operator and either s or
t are not gae.

e Itis of the form s is t and t is not a gae.

This together with the extension of the programs by the definitions of the
arithmetic relations appropriately models Prolog’s computation process. For exam-
ple, the query X is 3+4 yields, as desired, the computed answer substitution
{x/7} and the query X is Y yields an error.

Now, the previously established results concerning partial correctness (so Corol-
laries 3.1, 4.1, and 7.1) hold for all queries such that their LD derivations do not
end in error. This is a consequence of the fact that by the strong completeness of
the SLD resolution the set of computed instances does not depend on the selection
rule and that for such queries the stipulated extension of the LD resolution
coincides with the LD resolution.

This brings us to the problem of proving absence of errors. This has been taken
care of in Apt [1]. To make the paper self-contained, we review this method in the
setting of (pre, post)-correct programs. We need the following immediate conse-
quence of Lemma 7.1.

Lemma 8.1. Let P and Q be (pre,post)~correct and let ¢ be an LD derivation of
PU{Q). Then pre = A for every atom A selected in .

PROOF. The first atom of every (pre, post)-correct query is true in pre. O
To apply it to a program P and a query Q that use arithmetic relations, it
suffices to find a pair pre, post of Herbrand interpretations such that:
e P and Q are (pre, post)-correct.
e For arithmetic comparison operators p, pre Ep (s, t) implies s,t are gae.
e For the is relation, pre = s is t implies t is a gae.

Then the LD derivations of PU{Q} do not end in error. The following two
examples show an application of this methodology.

Example 8.1. Consider the following program LENGTH:
length([], 0).
length([XITs], N} « length(Ts, M), N is M+1.

Let
pre = {length(s, t)Is,tareground} U{s is tltisa gae},
post={length(s, t)ls, t areground, t is agae}
U{s is tls, t are gae}.
It is easy to see that then LENGTH and all the queries of the form length (s,
t) are (pre,post)-correct. Thus for all s,t the LD derivations of LENGTHU
{length(s, t)} do not end in error.

Moreover, it is easy to check that the conditions SYN1 and SEM2 of Section 4
apply to the LENGTH program, so by Theorem 4.2, LENGTH is redundancy-free. So

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 177

following the procedure explained in Section 7, we conclude that for a list s and a
variable N,

{length(s, N)} LENGTHVariant({length(s, Is)})
where |s| is the length of the list s.

Example 8.2. Consider the following program DICTIONARY for retrieving a pair
(key,value) in a dictionary organized as a binary search tree (in short, a bst):

lookup(X, V, tree((Y,V), L, R)) « X =:= Y.
lookup (X, V, tree((Y,_, L, R)) « X<Y, lookup(X, VvV, L).
lookup (X, V, tree{((Y,_), L, R)) « X>Y, lookup(X, V, R).

This program is a simplified version of program 15.9 from Sterling and Shapiro [20].
Here, a bst is represented by either the constant void, denoting the empty bst, or
by the term tree((x, v), 1, r), where x is a gae, v is a term, 1 and r are
bsts, and x is greater than the keys occurring in the left subtree and smaller than
the keys occurring in the right subtree. The program uses the arithmetic equality
built-in =:=, which, similar to > and <, etc., evaluates both arguments before
comparison.

This program has been designed to be queried with bsts in the third argument of
lookup. As a result, the construction of .#(DICTIONARY) is particularly awkward.
Recall that by the soundness and completeness of the SLD resolution, .#(DICT-
IONARY) coincides with the set of successful ground atomic queries. However, a
ground query lookup (x, v, t) with an unorderd binary tree t, can either succeed
or not, depending on the distribution of the keys in the tree. Take now

pre = post
= {lookup (x,Vv,b) Ixis a gae, v is a ground term and b is a ground bst}
U{s =:= tis, t are gae}
U{s <tls, t aregae}
U{s <tls, t are gae}.

It is easy to see that DICTIONARY is then (pre, post)-correct, and that on virtue of
Theorem 6.2 the following natural interpretation is the well-typed fragment of its
least Herbrand model:

M pre posn DICTIONARY) = {lookup (x,v,Db) | x is a gae, b is a ground bst,

and (x, v) is an element in b},
UM__UM_UM,

Also, from Lemma 8.1 it follows that, for any gae x, term v and bst b, the LD
derivations of DICTIONARYU {lookup (x, v, b)} do not end in error. Condi-
tions SYN2 of Section 4 readily applies to the DICTIONARY program. To check
condition SEM1 of Theorem 7.1, it suffices to consider three ground instances of
the three clauses of the program with a common head, namely,

lookup(x, v, tree({y, v), 1, 1)) « x=:=y.
lookup(x, v, tree(ly, v), 1, r)) « x<y, lookup(x, v, 1).

lookup(x, v, tree((y, v}, 1, r)) <« x>y, lookup(x, v, r).

178 K. R. APT ET AL.

and observe that, for any two gae x and y, exactly one among x=:=y, x<y, and
x>y holds in .#,, . (DICTIONARY). This implies that SEM1 applies to the
DICTIONARY program, which is therefore (pre, post)-redundancy-free. As a conclu-
sion, following the procedure explained in Section 7, we have that for a gae x, a
variable v, and a bst b,

{lookup (v, X, b)}DICTIONARY Variant({lookup (x,v,b) | (x,V)

is an element of b}).

9. CONCLUSIONS

Table 1 presents a list of example programs from the book of Sterling and Shapiro
[20] for which we proved that ..semantics and .#-semantics are isomorphic. For
each program it is indicated by what method the result was established. For
example, SEM1-SYN2 means that condition SEM1 of Theorem 4.2 and condition
SYN2 following it were used. DP stands for a “direct proof.” In all cases, condition
SEM2 was established by means of the functional dependency analysis.

To deal with programs that use arithmetic relations, we followed the approach
of Section 8 and assumed that each such relation is defined by infinitely many
ground unit clauses, which form its true ground instances. Note that such ground
unit clauses obviously satisfy the conditions SYN1 and SYN2. It should be noted
here that the results of this paper hold for programs with infinitely many clauses
provided we modify the assumption “the signature has infinitely many constants”
to “the signature has infinitely many constants that do not occur in the program.”

Thus, for many “natural” Prolog programs, the .#*semantics is isomorphic to the
A-semantics. For such programs it is possible to reason about their partial
correctness using the least Herbrand model only. Moreover, the listed programs
are (pre, post)-correct with a natural choice of pre and post, which implies that it is

TABLE 1. Example programs from Sterling and Shapiro [20].

Program Page Subsum.-Free Redund.-Free Method

member 45 yes no DP

prefix 45 yes yes SYN1-SYN2
suffix 45 yes yes SEM1-SYN2
naive reverse 48 yes yes SYN1-SEM2
reverse_accum, 48 yes yes SYN1-SYN2
delete 53 yes yes SEM1-SYN2
select 53 yes no DP

permutation 55 yes no DP

permutation sort 55 yes no DP

insertion sort 55 yes yes SEM1-SEM2
partition 56 yes yes SEM1-SYN2
quicksort 56 yes yes SEM1-SEM2
tree_member 58 yes no DP

substitute 60 yes yes SEM1-SYN2
pre_order 60 yes yes SYN1-SEM2
in_order 60 yes yes SYN1-SEM2
post_order 60 yes yes SYN1-SEM2

polynomial 62 yes no DP

A CLOSER LOOK AT DECLARATIVE INTERPRETATIONS 179

possible to reason about the computed instances of the “well-typed” queries using
the . ,osy-semantics only. This fact is relevant, because according to our
experience, the #,. ..,-semantics usually coincides with the specification of the
program, limited to the ground instances of the intended atomic queries and,
consequently, is relatively easy to construct.

This provides a strong indication that, for most “natural” Prolog programs, it is
possible to fully reconstruct the procedural behavior of a program from its
declarative specification, a feature that accounts for the unique nature of logic
programming.

We thank both the referees of this paper and of Apt and Gabbrielli [2] for useful comments. The
research of the first and the third author was partly supported by the ESPRIT Basic Research Action
6810 (Compulog 2). This work was carried out while the second author was visiting CWI, Amsterdam.
The stay was supported by the Italian National Research Council (CNR) and by HCM grant ERBCH-
BGCT930496 in the context of the EUROFOCS project.

REFERENCES

1. Apt, K. R., Program Verification and Prolog, in: E. Borger (ed.), Specification and
Validation Methods for Programming Languages and Systems, Oxford University Press,
1995, pp. 55-95.

2. Apt, K. R. and Gabbrielli, M., Declarative Interpretations Reconsidered, in: P. van
Hentenryck (ed.), Proceedings of Eleventh International Conference on Logic Program-
ming, MIT Press, Cambridge, MA, 1994, pp. 74—-89.

3. Apt, K. R. and Marchiori, E., Reasoning about Prolog Programs: From Modes through
Types to Assertions, Formal Aspects of Computing 6(6A):743—765 (1994).

4. Apt, K. R. and Pedreschi, D., Reasoning about Termination of Pure Prolog Programs,
Inform. and Comput. 106(1):109—-157 (1993).

5. Apt, K R. and van Emden, M. H., Contributions to the Theory of Logic Programming,
J. ACM 29(3):841-862 (1982).

6. Bossi, A. and Cocco, N., Verifying Correctness of Logic Programs, in: Proceedings of
TAPSOFT °89, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1989,
pp- 96-110.

7. Bossi, A., Gabbrielli, M., Levi, G., and Martelli, M., The s-Semantics Approach: Theory
and Applications, J. Logic Programming 19-20:149-197 (1994).

8. Clark, K. L., Predicate Logic as a Computational Formalism, Research Report DOC
79/59, Dept. of Computing, Imperial College, London, 1979.

9. Deransart, P., Proof Methods of Declarative Properties of Definite Programs, Theoret.
Comput. Sci. 118:99-166 (1993).

10. Drabent, W. and Maluszynski, J., Inductive Assertion Method for Logic Programs,
Theoret. Comput. Sci. 59(1):133-155 (1988).

11. Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., Declarative Modeling of the
Operational Behavior of Logic Languages, Theoret. Comput. Sci. 69(3):289-318 (1989).

12. Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., A Model-Theoretic Reconstruc-
tion of the Operational Semantics of Logic Programs, Inform. and Comput. 102(1):86-113
(1993).

13. Kunen, K., Some remarks on the Completed Database, in: R. A. Kowaski and K. A.
Bowen (eds.), Proceedings of the Fifth International Conference on Logic Programming,
MIT Press, Cambridge, MA, 1988, pp. 978-992.

14. Lloyd, J. W., Foundations of Logic Programming, 2nd ed., Springer-Verlag, Berlin, 1987.

180

15.

16.

17.

18.

19.

20.

21.

22

K. R. APT ET AL.

Maher, M. J., Equivalences of Logic Programs, in: J. Minker (ed.), Foundations of
Deductive Databases and Logic Programming, Morgan Kaufmann, Los Altos, CA, 1988,
pp. 627-658.

Maher, M. J. and Ramakrishnan, R., Déja Vu in Fixpoints of Logic Programs, in:
E. Lusk and R. Overbeek (Eds.), Proceedings of the North American Conference on Logic
Programming, MIT Press, Cambridge, MA, 1989, pp. 963-980.

Ruggieri, S., Metodi Formali per lo Sviluppo di Programmi Logic, Tesi di Laurea,
Technical Report, Dipartimento di Informatica, Universita di Pisa, 1994 (in Italian).
Shepherdson, J. C., Unsolvable Problems for SLDNF Resolution, J. Logic Programming
10(1):19-22 (1991).

Stark, R., A Direct Proof for the Completeness of SLD-Resolution, in: E. Borger, H.
Kleine Biining, and M. M. Richter (eds.), Computation Theory and Logic 89, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1990, Vol. 440, pp. 382-383.
Sterling, L. and Shapiro, E. Y., The Art of Prolog, MIT Press, Cambridge, MA, 1986.
Ullman, J. D., Principles of Database and Knowledge-Base Systems, Computer Science
Press, Rockville, MD, 1988, Vol. 1.

van Emden, M. H. and Kowalski, R. A., The Semantics of Predicate Logic as a
Programming Language, J. ACM 23(4):733-742 (1976).

