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- I -  
 

Stochastic Volatility  
and the  

Pricing of Financial Derivatives: 
An Introduction 

 
 
 
 
 

1.  Motivation 
 
Volatility, i.e., the uncertain fluctuations in the prices of financial assets such as 
stocks, is of paramount importance in financial markets theory and practice. 
Volatility is central in asset allocation decisions, risk management and asset 
pricing. Volatility characterizes the risk of investments. Moreover, the volatility of 
an asset is a major determinant of the price of a financial derivative.  
 
A financial derivative is a contract that derives its value from another, underlying 
asset. The holder of a European call option for example, has the right (but not the 
obligation) to buy stock for a certain contract-specified price, the strike price, at 
some date in the future, the expiration or maturity date. A put option gives the 
right to sell. The value of this right is the option price or premium. Apart from 
these vanilla calls and puts, numerous other option-style products are traded in 
financial markets. These assets are collectively dubbed exotic options. Nowadays, 
a multimillion industry in these derivatives exists, and financial engineers 
continually invent new products to extend a bank’s product range. These products 
are often tailored to specific speculative and hedging needs of a bank’s clients, 
and are typically sold over the counter, rather than at organized markets. 1  
 
Black and Scholes (1973) 
A bank or other financial institution wishing to issue a new derivative wants to 
know the fair price that can be asked for this product. A derivative pricing model 
serves this purpose. In practice, the most widely applied model is still the 
celebrated Black-Scholes (1973) model, in which the underlying asset price 
follows a geometric Brownian motion. The main advantage of the Black-Scholes 
(BS) model is that it leads to closed-form formulas for many of the standard 
option products (e.g., the famous Black-Scholes formula). Moreover, the model 
depends on just one parameter, the underlying asset’s volatility, which the BS 
model assumes constant. As such, once this volatility has been estimated from 
e.g. past stock returns or the prices of market-traded liquid options, any exotic 
derivative can subsequently be priced by Monte Carlo simulation.  
 
As convenient as this is, the Black-Scholes model is severely misspecified: 
Volatility changes over time, volatility is stochastic. Periods of high and low asset 

                                           
1 An excellent introduction to financial derivatives and their uses in practice is Hull (2003). 
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volatility alternate in the practice of financial markets, a phenomenon known as 
volatility clustering. 2 When a 3D-plot is made of Black-Scholes implied volatilities 
of empirical call and put options against moneyness and remaining time to 
maturity, the resulting implied volatility surface is far from flat, whereas a flat 
surface is what the Black-Scholes theory predicts. 3 Instead, for given maturity 
one observes a smile or skew-shaped pattern, known as the volatility smile or 
skew. For given moneyness one observes a variety of shapes of the so-called 
volatility term structure. A stochastic volatility (SV) model generates a smile-
shaped Black-Scholes implied volatility curve. An SV model with so-called 
leverage effect generates a volatility skew. 4  
 
Derivative pricing under SV 
As stochastic volatility provides a more realistic data description, a derivative 
pricing model in which the underlying asset is subject to SV has a clear potential 
of generating more accurate exotic option prices. 5 In here should lie the main 
reason why a financial institution should have an interest in SV derivative pricing 
models. 6 
 
Stochastic volatility makes derivative pricing more complex however. Due to SV, 
the market is no longer complete, in the sense that derivative payoffs cannot 
perfectly be hedged by trading in the underlying stock and risk-free borrowing 
and lending only. Other derivatives are needed to “complete” the market, i.e., to 
be able to hedge price changes due to volatility changes. Stated differently, the 
assumption of no arbitrage only (and hence risk-neutral valuation) no longer 
results in unique option prices. In contrast to the BS model, the option prices 
resulting from an SV derivative pricing model are not preference-free: The risk-
neutral probability measure used for derivative pricing depends on the attitude of 
investors towards volatility risk, as reflected in the market price of volatility risk. 
This attitude is implicitly present in the market prices of options, and needs to be 
distilled out from data to be able to recover the risk-neutral measure the market 
uses for pricing. Once this has been done, exotic derivatives can next be priced 
by risk-neutral valuation as usual.  
 
Paying a price for volatility risk 
The issue whether investors are compensated for the risk associated with 
uncertain volatility fluctuations has recently attracted a lot of academic attention. 
Conventional asset pricing theory states that if volatility risk is systematic, 
investors should be compensated for it. Recent empirical evidence indicates that 

                                           
2 See sections 2.1, 3.2.1, 3.2.2 and 3.3.2 of chapter III for a discussion of GARCH, stochastic volatility 
and realized volatility models, their estimation methods and research in this area.  
3 The BS implied volatility of an option is that stock volatility for which the observed market price of the 
option equals the theoretical Black-Scholes price. An option’s moneyness  is defined here as the ratio of 
the strike price and the current stock price. A currently at-the-money option has a moneyness of 1. 
4 The leverage effect  (Black (1976)) translates into a negative correlation between stock returns and 
volatility changes. Renault and Touzi (1996) show that SV implies a volatility smile. See chapter VI. 
5 This holds for vanilla options as well, though in practice their prices are typically determined by 
interpolation on the implied volatility surface. A more sophisticated model than the BS model is thus in 
principle not needed for pricing vanilla options.  
6 Examples of SV derivative pricing models include the models by Hull and White (1987), Scott (1987), 
Wiggins (1987), Melino and Turnbull (1990), Stein and Stein (1991), Ball and Roma (1994), the 
influential Heston (1993) model (see chapter VI), and the very general class of affine-jump diffusion 
models of Duffie, Pan and Singleton (2000). 
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investors are willing to pay a premium for bearing market volatility risk. In other 
words, the volatility risk premium is found to be negative. 7  
 
At first sight, a negative volatility risk premium seems counterintuitive. Why 
would investors be willing to pay for volatility risk? Should they not receive a 
reward instead? One of our main aims is to provide a possible economic rationale 
for negative volatility risk compensation.  
 
Estimating SV derivative pricing models 
Although an SV derivative pricing model is more realistic than the Black-Scholes 
model (and hence is likely to generate more reliable prices), the econometric 
estimation of these models is complicated and far from trivial. First, volatility 
cannot be observed directly, but is somewhere hidden in the background instead. 
Volatility is latent. As such, it needs to be “integrated out” during estimation. This 
is not easily possible in general and requires intensive computations. 8 Second, as 
option prices can only be obtained by simulation, computationally demanding 
procedures result. This makes a fast implementation impossible (at least, so it 
seems). A commonly applied estimation method is calibration. 9 Calibration 
performs parameter estimation by minimizing the sum of squared deviations 
between the market-observed and theoretical option prices on a particular day, 
essentially by a simulation-based non-linear least squares procedure. Although 
seemingly attractive, this method disregards the time-series dimension of the 
model completely and is therefore inherently inconsistent with the dynamic 
principles of the model. Moreover, the estimates depend on today’s information 
only. Other estimation methods based on information in time series of stock 
returns only have as drawback that the market price of volatility risk cannot be 
estimated, whereas this is a necessary input for pricing derivatives.  
 
A clear need thus exists for estimation methods for SV derivative pricing models 
that combine stock and option time-series data in a dynamically consistent 
manner. Given the complexity of this problem, only recently a number of 
estimation methods has appeared in the literature, see Chernov and Ghysels 
(2000), Pan (2002) and Jones (2003). Chernov and Ghysels (2000) and Pan 
(2002) consider method of moments-based approaches, Jones (2003) a Bayesian 
approach. From a practical point of view, the main disadvantage of these 
methods is that they require long, demanding simulations. This makes a fast 
implementation impossible. In addition, these methods do not directly yield a 
volatility forecast. 10  
 
Another central aim of this thesis is to develop a different, transparent but above 
all fast estimation method for affine SV derivative pricing models that 
circumvents long simulations during estimation. As such, especially for practical 
(banking) purposes our method forms an attractive alternative to the other 
methods. Our method is based on a state space approach of the problem and the 
Kalman filter. As volatility is latent, the state space framework is naturally suited 
for estimation. As opposed to moment-based approaches, state space models 

                                           
7 See section 6.3 of chapter II for a discussion of the recent evidence in Chernov and Ghysels (2000), 
Coval and Shumway (2001), Buraschi and Jackwerth (2001), Pan (2002), Driessen and Maenhout 
(2003), Jones (2003), Bakshi and Kapadia (2003) and Carr and Wu (2004). 
8 See section 2.1 of chapter III for current estimation methods for SV models. 
9 E.g., Bates (1996b, 2000), Bakshi, Cao and Chen (1997), Duffie et al. (2000). Calibration is also 
popular in banking practice. For more discussion, see section 2.1 of chapter III.  
10 See section 2.1.1 of chapter III for an explanation and discussion of these approaches.  
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truly treat volatility as unobserved and readily deliver a volatility estimate (and 
forecast). Using a number of approximations, we derive a discrete-time linear 
state space model from our continuous-time SV derivative pricing model, which 
can be estimated by quasi-maximum likelihood. 11  
 
A related aim is to investigate what data is best suited for the estimation of SV 
derivative pricing models. What type of data yields the most reliable parameter 
and volatility estimates? Is this daily squared return data, high-frequency 
intraday data (i.e. realized volatility data), option data, a combination of daily 
squared return and option data, or a combination of realized volatility and option 
data? To the best of our knowledge, combining realized volatility and option data 
in an estimation strategy of SV derivative pricing models is also new to the 
literature. 12  
 
A multifactor SV model 
As accumulating empirical evidence indicates that stock volatilities are driven by 
more than one latent factor in practice, we consider a multifactor SV model. 13 
Specifically, we assume the conditional variance of the stock returns to be driven 
by an affine function of an arbitrary number of latent volatility factors, which 
follow mean-reverting affine Markov diffusions.  
 
The extension towards multiple volatility factors is well motivated. As Meddahi 
(2002), Chernov, Gallant, Ghysels and Tauchen (2003) and Tauchen (2004) 
argue, one of the reasons for the poor fit of 1-factor SV diffusion models is that 
these models do not allow for a joint adequate fit of a fat-tailed return distribution 
and large volatility persistence, which are both stylized facts of asset return data. 
14 Introducing a second volatility factor (or adding jumps) breaks this link. Given 
that volatility is typically found to be so persistent, Eraker, Johannes and Polson 
(2003) argue that 1-factor SV models do not allow for sufficiently fast-changing 
volatility, which is unrealistic in times of sudden market stress. They advocate 
adding jumps to volatility. A possible alternative is a second volatility factor.  
 
Evidence from option markets that points towards multiple volatility factors 
comes from Cont and Fonseca (2002). These authors show that the daily 
fluctuations in the implied volatility surface of S&P500 and FTSE100-index options 
can satisfactorily be described by three underlying, abstract principal component 
processes. Important additional evidence against 1-factor SV models comes from 
studies that combine stock and option data for the estimation of SV option pricing 
models (Chernov and Ghysels (2000), Pan (2002), Jones (2003)). Besides time-
series data on the underlying stock, typically one additional short-maturity at-
the-money option series is used for estimation. The estimated 1-factor models 
tend to overprice longer-dated options out of sample. Pan (2002) for example, 
mentions that multiple SV factors may be necessary to improve on the fit of the 
volatility term structure, a point also emphasized by Bates (1996b, 2000). 
 
Among the various multifactor volatility models that have recently been proposed 
are the 2-factor GARCH model of Engle and Lee (1999), the affine and non-affine 

                                           
11 For references on state space models and related methods, see sections 2 and 3.2.1 of chapter III. 
12 Section 3.3 of chapter III introduces realized volatility and provides an overview of research. 
13 See Engle and Lee (1999), Gallant et al. (1999), Barndorff-Nielsen and Shephard (2001b, 2002), 
Alizadeh et al. (2002), Cont and Fonseca (2002), Pan (2002), Eraker et al. (2003) and Chernov et al. 
(2003) for recent empirical evidence on the existence of multiple volatility factors. 
14 Volatility is said to be persistent if it shows close-to random walk behavior.   
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(e.g. logarithmic) SV models considered by Gallant, Hsu and Tauchen (1999), 
Alizadeh, Brandt and Diebold (2002), Chernov et al. (2003), the Lévy process-
driven models of Barndorff-Nielsen and Shephard (2001b, 2002) and the 
continuous-time pure jump Lévy process-driven ARMA SV models (CARMA) of 
Brockwell and Davis (2001) and Brockwell (2001). Meddahi (2001) introduces the 
eigenfunction approach for volatility modeling. His general class of Eigenfunction 
SV models includes the (multifactor) logarithmic and affine SV models as special 
cases. Most of these papers focus on the stock price dynamics and, as such, only 
use stock data for estimation. In a more direct option-pricing context, Bates 
(2000) proposes a 2-factor SV model with jumps in returns. Bates uses 
calibration to a cross-section of option prices for estimation. Duffie et al. (2000) 
introduce the very general class of affine jump-diffusions models for option 
pricing. Our multifactor model fits in this class.  
 
Empirical implementations of multifactor volatility models show the following. 
Engle and Lee (1999) decompose the volatility into a permanent and transitory 
component, of which the latter one is mean reverting towards the former. US and 
Japanese stock market data support this decomposition, and reinforce the 
common finding of persistent volatility. The empirical results in Gallant et al. 
(1999) of a 2-factor non-affine volatility model show an improvement in fit of 
S&P500 returns over a 1-factor model. Using daily price-range data on five major 
US dollar exchange rates in a Kalman filter-based QML estimation strategy of 
non-affine SV models, Alizadeh et al. (2002) find strong evidence of two volatility 
factors, one very persistent and the other fast mean-reverting. Chernov et al. 
(2003) find that a 2-factor logarithmic SV stock price model with leverage (but 
without jumps) yields a better fit of daily 1953-1999 DJIA stock-index data, than 
do 1 or 2-factor affine SV models, or SV models with jumps. They find the first 
factor to be very persistent and the second quickly mean-reverting. The 
persistent factor does not feature level-dependent volatility, the other does. 15  
 
Investigating the information in option data 
So far multifactor volatility models have been estimated (in a dynamically 
consistent manner) using stock return data only. As mentioned earlier, the value 
of an option is largely determined by the volatility of the underlying asset. As 
such, an evident additional, very rich source of volatility information is formed by 
option prices. Indeed, Tauchen (2004) points out that daily returns (even very 
long time series) are just not sufficiently informative to discriminate between 
different competing models, which appear to fit US stock-index returns about 
equally well. 16  
 
Another central aim of this thesis is to provide further empirical evidence on the 
existence of multiple volatility factors, by using stock and option data  
for estimation. The data we analyze consists of four time series of FTSE100-index 
returns and at-the-money index options of different maturities. Focusing on the 
affine class of SV models assuming an arbitrary number of volatility factors  
(but no jumps), we search for the model that best fits the joint data. 
                                           
15 A volatility factor features level-dependent volatility if its volatility depends on the current level of the 
factor. Relatedly, level-dependent volatility-of-volatility or volatility feedback means that the volatility of 
stock volatility fluctuations depends on the level of the volatility: A large (small) current volatility implies 
more (less) turbulent volatility fluctuations. See section 2 of chapter II and chapter V for more details.  
16 These are the (continuous-path) 2-factor logarithmic (i.e. exponential-linear) SV model considered in 
Chernov et al. (2003), the 1-factor affine SV model with price jumps considered in Andersen, Benzoni 
and Lund (2002) and the 1-factor affine SV model with both jumps in prices and volatility as considered 
in Eraker et al. (2003).  
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Interpreting the volatility factors 
Driven by the recent evidence just discussed, our first interest is in how many 
volatility factors are needed to obtain an adequate description of the volatility 
dynamics present in the joint FTSE100 stock-index and option data. A second 
interest is, if we indeed find multiple SV factors, which of these factors feature 
level-dependent volatility and which do not. A third interest is in possible 
interpretations of these hidden volatility factors. What is their role in the stock 
volatility evolution? How do the factors affect the shape and dynamics of the 
volatility term structure over time? Relatedly, how does each of the unobserved 
volatility factors impact on the prices of options of different maturity?  
 
1.1 Summary of main goals 
 
To summarize, this thesis considers the pricing and hedging of financial 
derivatives written on assets which value is subject to stochastic volatility, in a 
multifactor affine SV derivative pricing model. We develop a state space, Kalman 
filter-based QML estimation strategy for estimating this model that circumvents 
simulation of option prices during estimation. Our method is fast. We show how 
to include stock return, realized volatility and option data (jointly) for estimation. 
We investigate what type of data yields the best estimation results, regarding 
bias, efficiency and volatility filtering. Our empirical work fits our model to time-
series cross-section data consisting of FTSE100-index returns and FTSE100-index 
options. We search for the derivative pricing model within the affine SV class that 
best fits the data. We give interpretations to the volatility factors, and explain 
how they impact on the prices of options of different maturity. We study the 
nature of volatility risk, and provide an economic justification for why the 
volatility risk premium is found to be negative in practice. 
 
 

2.  Outline 
 
The outline of the remainder of this thesis is as follows.  
 
Chapter II, The Multifactor Affine Stochastic Volatility Derivative Pricing 
Model, considers the theoretical framework of our asset pricing model and its 
implications regarding derivative pricing, hedging and risk compensation.  
 
The chapter starts with discussing the stock market setting of the model. The 
pricing and hedging of arbitrary complex financial derivatives receives attention, 
and we derive pricing formulas for European call and put options. We consider 
asset returns, define the volatility risk premium, and relate to classical asset 
pricing theories such as the Capital Asset Pricing Model and Arbitrage Pricing 
Theory. We develop a beta concept for derivatives similar to the CAPM beta, 
leading to an expected return – beta relationship for derivatives.  
 
To set the stage for our theory on volatility risk compensation, we consider 
investment strategies dominated by volatility risk: straddles, variance swaps and 
delta hedging a derivative. Having discussed the empirical evidence, we introduce 
investor attitude into the model. Connecting to consumption-based asset pricing 
theory and the permanent-income hypothesis from macroeconomics, we provide 
an economic rationale for why the volatility risk premium is negative. The chapter 
ends with outlining how the model can be transformed towards derivative pricing 
and hedging in foreign exchange markets.  
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Chapter III, A State Space Approach to the Estimation of the Multifactor 
Affine Stochastic Volatility Derivative Pricing Model, proposes a first, 
Kalman filter-based QML estimation strategy for our derivative pricing model. 
 
The chapter starts with an overview of current estimation methods for SV models. 
Here the emphasis is on recently developed methods that combine stock and 
option data for estimation and we argue why this is important. We discuss 
drawbacks of the existing methods and motivate why we advocate a state space 
approach. We give a review of the linear state space representation, the Kalman 
filter, QML estimation and diagnostic checking in state space models.  
 
We next derive a discrete-time linear state space model from the derivative 
pricing model. We relate our way of extracting information from squared stock 
returns to earlier developed state space approaches for estimating the 
autoregressive SV model for stock prices. We highlight connections and 
differences with GARCH models. We discuss what realized volatility is, give an 
overview of the main strands of research towards this recent novelty in financial 
econometrics and explain how to incorporate high-frequency intraday data in the 
state space model. We then turn to our method for extracting information from 
option prices. Using a specific linear approximation of the call price formula, we 
show how information from option markets can be included in a linear state space 
model. A discussion of higher-order approximations is next. The chapter ends 
with a number of resulting possible unconditional state space models that are 
appropriate for parameter estimation and volatility extraction, and we argue why 
we favor one above the other.  
 
 
Chapter IV, Monte Carlo and Empirical Results for Ornstein-Uhlenbeck 
SV: Examining UK Financial Markets, considers a special case of our model, 
the Ornstein-Uhlenbeck (OU) SV case. This chapter assumes the volatility-of-
volatility to not depend on the volatility level itself. For the OU SV case, the 
unconditional state space model is excellently suited for estimation. As Kalman 
filter QML yields consistent estimates in such a linear framework, OU SV allows us 
to focus on the quality of e.g. the call price approximation. 
 
The chapter starts with an explorative analysis of the FTSE100-index data. Using 
the information in this data, we next simulate data from the 1-factor OU SV 
model and examine the performance of the unconditional state space model as a 
means for parameter estimation and volatility filtering. We use (combinations of) 
squared return, realized volatility and option data for estimation. 
 
We next confront the 1-factor OU SV model to the FTSE100-index data. Initially 
we use only part of the dataset for estimation. We interpret the results, compare 
GARCH with SV volatilities, study compensation for FTSE100-index volatility risk, 
and show that the 1-factor OU SV model is heavily misspecified for the full set of 
data. As the main misspecification appears inadequate modeling of the volatility 
dynamics present in the data, this naturally motivates a consideration of multiple 
OU volatility factors. We interpret the factors in a number of ways, consider their 
risk premia and implied expected straddle returns, and show how each SV factor 
impacts on option prices. Diagnostic checking reveals that a major shortcoming of 
OU SV is its negligence of level-dependent volatility-of-volatility.  
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Chapter V, Exploiting Level-Dependent Volatility-of-Volatility: An 
Extended Kalman Filter Approach to the Estimation of the Multifactor Affine 
Stochastic Volatility Derivative Pricing Model, considers affine SV processes that 
model level-dependent volatility-of-volatility. To better exploit the characteristics 
of such SV processes, we propose a second estimation method for our derivative 
pricing model based on the Extended Kalman filter. 
  
The chapter starts with introducing the conditional state space model and the 
Extended Kalman filter. Apart from the approximations performed to arrive  
at a linear state space representation, Extended Kalman filter QML generates 
inconsistent estimates. As such, we first explore the performance of the 
estimation method by simulation for the 1-factor CIR SV model (i.e. the Heston 
(1993) model without leverage effect).  
 
We next confront the 1-factor CIR SV model with associated estimation method to 
the FTSE100-index data. We compare the results to the 1-factor OU SV results, 
focus on the main differences and perform a specification analysis. The 1-factor 
CIR SV model lacks sufficient volatility dynamics to model the full set of data 
(which is not surprising given the OU SV results). Estimating various 2-factor 
affine SV specifications still reveals an inadequate modelling of volatility behavior. 
Extending to various 3-factor affine SV specifications shows that the most suitable 
model for the joint FTSE100 stock-index and option data within the affine class is 
a 3-factor SV model with one CIR and two affine independent volatility factors. As 
diagnostic checks reveal however, the model can still be improved upon in several 
ways, one of which is modelling of the leverage effect.   
 
Chapter VI, Leverage Effect and the Heston (1993) Model, takes the 
leverage effect into account in a 1-factor affine SV derivative pricing model, of 
which the Heston (1993) model is a special case.  
 
Chapters II - V ignore the leverage effect because it complicates matters greatly, 
mainly with regard to our estimation method. Nonetheless, a valid question to 
pose is if having neglected leverage has influenced the FTSE100-index estimation 
results reported in chapters IV - V in any major way. This chapter reports Monte 
Carlo evidence suggesting that the results seem not much distorted towards 
having neglected leverage, given our focus on at-the-money options only in the 
empirical analysis of the UK market. We concentrate hereby on the Heston (1993) 
model. The chapter also shows how to value and hedge derivatives in the 1-factor 
SV model with leverage effect, considers risk compensation and explains the 
differences induced by leverage as opposed to assuming it absent.  
 
Chapter VII, Summary and Directions for Future Research, provides a brief 
summary of our findings regarding the main aims of this thesis, and indicates 
directions for future research.  
 
Appendix A serves as a convenient reference regarding matrix definitions 
associated with the statistical properties of the volatility factors and the affine SV 
specification. 
 
Appendix B derives and explores the main statistical properties of the volatility 
factors and the multifactor affine SV process. These properties are extensively 
referred to in the main text. 
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3. Overviews of research 
 
At several locations in this thesis we provide overviews of literature and recent 
evidence on certain research topics. These include the following.  
 
For multifactor SV models, see section 1 of this chapter. For market price of 
volatility risk assumptions in the literature, see section 6.1 of chapter II. For 
empirical evidence on volatility risk compensation, see section 6.3 of chapter II. 
For estimation methods for SV stock price models, see section 2.1 of chapter III.  
For Kalman filter-based approaches to estimating SV stock price models, see 
section 3.2.1 of chapter III. For state space approaches to estimating affine 
models of the term structure of interest rates, see section 2.1.2 of chapter III. 
For GARCH models, see section 3.2.2 of chapter III. For methods that combine 
stock and option data for estimating derivative pricing models, see section 2.1.1 
of chapter III. For realized volatility research, see section 3.3.2 of chapter III. For 
estimated Heston (1993) model parameters by researchers in the literature, see 
section 5.1.1. of chapter VI. For statistical properties of affine SV processes (and 
of affine models of the term structure of interest rates), see appendix B.  
 
Programming 
The computations in this thesis have been carried out with the excellent object-
orientated matrix programming language Ox (which is part of OxMetrics). See 
http://www.doornik.com and http://www.timberlake.co.uk for more details on 
this C/C++ related programming language.  
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The Multifactor Affine Stochastic Volatility  
Derivative Pricing Model 

 
 
 
 
 

1. Introduction  
 
In this chapter we propose a derivative pricing model that plays a central role in 
the chapters to come. We label it the multifactor affine stochastic volatility 
derivative pricing model. 1 In this model investors are exposed to two sources of 
risk, stock price fluctuations and stock volatility changes. This chapter discusses 
the theoretical framework of the model and its implications.  
 
The outline is as follows. In section 2 we describe the stock market setting of our 
financial markets model. In our market investors can trade in two basic assets, a 
bond and a dividend-paying stock. The volatility of the stock price is assumed to 
be stochastic. It is determined by a number of unobserved factors, which follow 
mean-reverting Markov diffusions. In addition to the stock and bond, investors 
may also trade in derivative assets written on the stock, to meet their speculative 
needs or for hedging purposes.  
 
Section 3 is devoted to the pricing of derivative securities, assuming the absence 
of arbitrage opportunities in the market. We consider the partial-differential-
equation approach, the martingale approach and the stochastic-discount-factor 
approach to contingent claim valuation. We derive pricing formulas for European 
call and put options, and forward contracts.   
 
Section 4 deals with hedging derivative products. As the market is incomplete, 
meaning that a trading strategy in the bond and stock is not sufficient to 
neutralize all derivatives risk, derivatives themselves must be incorporated in the 
hedging strategy to achieve a perfect hedge. For path-independent derivatives we 
derive an explicit hedging strategy in the 1-factor SV special case of the model.   
 
Section 5 looks at asset returns and derivative betas. We develop a beta concept 
for derivatives, which is related to the Capital-Asset-Pricing-Model beta. It 
appears that a similar reward-risk relationship as the expected return - beta 
relationship implied by the CAPM can be derived for derivative investments in our 
model. Derivative returns are partly determined by a premium for volatility risk. 
An excursion to Arbitrage Pricing Theory reveals why we could have expected 
such a reward-risk relationship to hold in our arbitrage-free market beforehand. 
We explain the concept of spanning derivatives by other derivatives from 
mimicking the unobserved volatility risk premium by risk premia on traded 

                                           
1 Our model fits in the very general class of affine jump-diffusion models for asset pricing, as considered 
in Duffie, Pan and Singleton (2000). Alternative multifactor models for stock price dynamics are 
discussed in e.g., Barndorff-Nielsen and Shephard (2001b, 2002) and Chernov et al. (2003).  
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assets. This is closely related to market completeness, hedging and redundancy 
of derivatives. We also provide an alternative derivation of the derivative-return 
formula based on the hedging strategy. We end section 5 by discussing the link 
between asset returns and the stochastic discount factor.  
 
Section 6 is devoted to volatility risk and the empirical evidence on whether 
investors receive a premium for (market) volatility risk in practice. Volatility-risk 
compensation has been attracting a lot of academic attention lately. We review 
the assumptions made in the literature with regard to the market price of 
volatility risk. We next consider several trading strategies that (partly) hedge 
stock risk, but not volatility risk: straddles, variance swaps and delta-hedging a 
derivative. If there exists a volatility risk premium in practice, it should be 
apparent from considering the returns on such investments. An overview of the 
recent empirical evidence on volatility-risk compensation is thereafter. It appears 
that investors seem to be willing to pay for undiversifiable market-volatility risk. 
 
Section 7 provides an economic justification for the likely existence of a negative 
volatility risk premium. We first extend our model by incorporating a more explicit 
characterization of an investor and his equilibrium behaviour. We then relate 
expected derivative returns to an investor’s optimal consumption pattern. To 
pursue a smooth consumption pattern over time, we argue that an investor is 
likely to be willing to pay a premium for consumption insurance. As delta-neutral 
positive-vega derivatives provide such insurance, we show that this premium 
takes the form of a negative market-volatility risk premium. 
 
Section 8 considers foreign exchange markets. Although the context in the 
previous sections deals with a stock market setting, we explain how to easily 
transform to a context suitable for derivative pricing and hedging in foreign 
exchange markets. No additional mathematical analysis is required. 
 
Section 9 discusses some first thoughts on how to implement our theoretical 
model for practical purposes as e.g., the pricing and hedging of new-to-be-issued 
exotic over-the-counter derivative products by a financial institution. An appendix 
concludes this chapter.   
 
 

2. Stock market setting of the model 
 
An arbitrage-free perfect market 
Consider an arbitrage-free financial market in which trading takes place in 
continuous time. The calendar time is denoted by t , with 0t ≥ . Time is measured 
in years. The market is assumed informationally efficient and frictionless, in the 
sense that there are no transaction costs, taxes or any short-sale restrictions, 
assets are infinitely divisible, and borrowing and lending occurs at the same rate. 
The market is competitive such that a single investor cannot influence prices by 
his individual trades. In this financial market uncertainty is resolved by an ( 1)n + -
dimensional standard Brownian motion process { ; 0}t t ≥W , given by 
 
 , , , 1( , ')'; ( ,.., )'t S t x t x t t ntW W W= =W W W .  (P)  (2.1) 
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W is defined on the filtered probability space 0( , , { } , )t ≥Ω PF F , satisfying the 
“usual conditions”. 2 Probability measure P represents the objective or market 
measure. The natural Brownian filtration { ; 0}t t ≥F  represents the information 
accruing to all market participants as time goes by.  
 
Basic assets: stock and bond 
Two primitive or basic assets are traded in this market, which price processes are 
exogenously given. Investors can deposit part of their wealth in a risk-free 
savings (or money-market) account, or invest in a so-called cash bond B , which 
value process { ; 0}tB t ≥  is characterized by the ordinary differential equation 
 

 0

0

exp
t

t t t t sdB r B dt B B r ds
 
 = ⇔ =
 
 
∫ ,     (2.2) 

 
in which { ; 0}tr t ≥  represents some deterministic short interest-rate process. 3  
 
Besides the bond a risky stock S  is traded that pays dividends at a continuous 
rate. The ex-dividend stock price process is denoted by { ; 0}tS t ≥ . The stock 
pays a continuously compounded dividend yield of 0tq ≥  per annum at time t . 
The dividend payment in the time interval [ , ]t t dt+  of infinitesimal length equals 

t tq S dt . Under P the stock price evolves according to the stochastic differential 
equation (SDE) 
 

 ,t t t t t S tdS S dt S dWµ σ= + ,    (P)  (2.3) 

 
in which { ; 0}t tµ ≥  governs the drift 4 and { ; 0}t tσ ≥  is a stochastic volatility 
process. Notice that tS  is not the price of a tradable asset, as dividends are 
automatically received as soon as the stock is bought. The dividend payment 

t tq S dt  instantaneously buys tq dt  additional units of stock. By continuous 
immediate reinvestment of the dividends a tradable asset is obtained however. 
This asset will be referred to as the reinvestment portfolio, .rS  As explained in 
the appendix, its value process { ; 0}r

tS t ≥  satisfies  
 
 ,( )r r r

t t t t t t S tdS q S dt S dWµ σ= + + .   (P)  (2.4) 
 
This SDE has a natural interpretation: On average, the value of the reinvestment 
portfolio appreciates with the growth rate tµ  of the stock price plus the dividend 
yield tq . (Notice that risk-averse investors typically require that t t tq rµ + ≥ .) The 
market consisting of the bond and tradable reinvestment portfolio is arbitrage-
free, as shown in the appendix. 
 
Stochastic volatility specification  
The instantaneous stock variance is driven by n possibly correlated, unobserved 
factors 1( ,.., )'nx x=x  in an affine way, 
 

 2
0 't tσ δ= + δ x ,       (2.5) 

                                           
2 See, e.g., Protter (1990). 
3 Allowing interest rates to vary randomly over time would further complicate the mathematical analysis 
and would moreover introduce additional issues such as interest-rate risk compensation. Bakshi et al. 
(1997) show that modeling interest rates as being stochastic does not significantly improve the 
performance of both the Black-Scholes model and the Heston (1993) model extended with jumps in 
returns, as opposed to assuming constant interest rates. 
4 We assume a general drift specification of the form ( , , )t t tt Sµ µ= x .  
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in which 0δ  and 1( 1) ( ,.., )'nnx δ δ=δ  are positively valued. Motivations for 
considering a multifactor stochastic volatility (SV) specification were given before 
in chapter I. Under P the latent factors evolve according to stationary mean-
reverting affine Markov diffusions, 5 
 

 ,( )t d t t x td dt d= − +x K θ x ΣΛ W ,   (P)  (2.6) 

 
in which ( 1)nx >θ 0  represents the mean of the factors, ( ) ,dnxn K Σ  are matrices 
of constants with 1diag[ ,.., ]d nk k=K  being diagonal and positive definite (the 
stationarity condition), and tΛ  is a diagonal matrix given by 
 

 1 1 ndiag ' ,.., 't t n tα α = + + Λ β x β x ,    (2.7) 

 
in which 1( ,.., )'nα α=α  and 1( ,.., )'i i inβ β=β , 1,..,i n=  are ( 1)nx  vectors of 
positive real-valued constants. 6 The matrix dK  governs the speed of adjustment 
of the factors towards their mean θ . We assume the dynamics of the factors to 
be well defined, which requires ' 0i i tα + ≥β x  for all i  and t . 7  
 
The Heston (1993) volatility specification (without leverage effect) in which the 
latent factor follows a square-root (i.e. CIR) process is a special case of this 
model. 8 Note that if the factors follow a multifactor Ornstein-Uhlenbeck process 
(in case i i= ∀β 0 ), the stock variance is not guaranteed to stay positive at all 
times. Although this is theoretically inconsistent, the OU assumption yields large 
analytical tractability. 9  
 
The volatility specification allows for level-dependent volatility-of-volatility or 
volatility feedback: If the current volatility is high (low), then the volatility of the 
volatility is currently high (low). 10 In other words, fluctuations in the volatility 
level depend on the state of the volatility. A thorough investigation of the 
statistical properties of this multifactor SV process can be found in appendix B. 
These properties will be used extensively in the sequel. 
 
Notice that the Brownian motions SW  and xW  are (assumed) independent, such 
that stock price movements occur independently from volatility movements. The 

                                           
5 Duffie and Kan (1996) introduce this multivariate system of affine SDEs in yield-curve modeling. 
6 The theoretical specification of the SV process is clearly very general. Econometric estimation will 
require certain parameter restrictions to be imposed to avoid identification problems. These will depend 
on both the specific special case one considers and the particular estimation method.  
7 Parameter restrictions that ensure a unique strong solution to the SDE (2.5) are in Duffie and Kan 
(1996) and Dai and Singleton (2000).  
8 The volatility factor then follows  θ σ= − + ,( )t t t x tdx k x dt x dW , and σ =2

t tx .  
9  Similarly, in the interest-rate literature the Gaussian OU assumption has often been used as a model 
for the (non-negative) short rate, see e.g. Vasicek (1977), Langetieg (1980), the continuous-time limit 
of the Ho-Lee (1986) model and de Jong (2000). Stein and Stein (1991) and Scott (1987) assume a  
1-factor OU process for stock volatility, not the least because of its analytical tractability. A similar 
argument applies here: In our multifactor SV estimations to be discussed in chapter IV this tractability is 
more than welcome. The OU assumption ought to be considered as a first approximation. More 
recently, Bakshi and Kapadia (2003) also assume an OU process for the stock volatility in their 
proposition 2. Barndorff-Nielsen and Shephard (2001b, 2002) and Nicolato and Venardos (2002) discuss 
modeling the stock variance as a sum of independent non-Gaussian positive OU processes driven by 
positive-increment Lévy processes. See section 3.3.4 of the next chapter for details.  
10 Recent time-series evidence that supports this assumption is in Gallant, Hsu and Tauchen (1999), Pan 
(2002) and Jones (2003). 
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leverage effect (Black (1976)) is thus not modeled. 11 Although this is generally 
not realistic for stock markets, for foreign exchange markets this seems an 
adequate assumption. We refer to section 8 for a discussion.   
 
Exposures to risk 
Investors are exposed to two sources of risk in this market: stock price 
fluctuations and volatility changes. Risk-averse investors require compensation 
for bearing these risks in the form of expected asset returns. These returns are 
determined by the market prices of the risk sources; see section 5 for details. The 
market price of risk associated with stock price fluctuations, ,S tγ , is given by the 
Sharpe ratio (see appendix IIa), 
 

 ,
t t t

S t
t

q rµ
γ

σ
+ −

= .       (2.8) 

 
It equals the risk premium on the reinvestment portfolio expressed per unit of 
risk, as measured by its standard deviation. A specification of the market price of 
volatility risk is given shortly.   
 
Derivative assets 
Apart from the stock and bond (the basic assets) investors can trade in derivative 
assets written on the stock, like options and forward contracts. These assets 
derive their value from the underlying stock. Such value is therefore 
endogenously determined.  
 
The condition of no arbitrage imposes certain restrictions on the price processes 
of these derivative securities. However, as explained and further elaborated upon 
in section 4.2, due to stochastic volatility the market consisting of the stock and 
bond only is incomplete in the sense that not all derivatives can be perfectly 
hedged by a dynamic self-financing trading strategy in the basic assets. Although 
the stock risk inherent in derivatives can be hedged, the inherent volatility risk 
cannot be hedged. Other derivatives are needed to “complete” the market; that 
is, to be able to neutralize all risk. Stated differently, derivatives are typically 
non-redundant assets in this market. Therefore, imposing the condition of no 
arbitrage is not sufficient for generating unique derivative prices. 12 As opposed to 
a complete-markets setting like Black-Scholes (1973), derivative prices are no 
longer preference-free, but instead do depend on the attitude of investors 
towards volatility risk. This attitude is reflected in the market price of volatility 
risk. Together with the market price of stock risk, the price of volatility risk fully 
determines the risk-neutral pricing measure Q. Different assumptions result in 
different prices for derivatives that cannot be fully hedged by trading in the stock 
and bond only.  
 
In order to guarantee unique derivative prices it is necessary to make additional 
assumptions besides no arbitrage. Rather than yet now modeling investor 
behavior explicitly however, we first directly focus on its implication; i.e., a 
certain specification for the market price of volatility risk. (A more explicit 

                                           
11 Modeling the leverage effect in this multifactor SV setting complicates matters dramatically, mainly 
with regard to our estimation method to be developed in the next chapter. Nonetheless, we hope to 
cover it in future research. In chapter VI we consider the Heston (1993) model, which has 1 SV factor 
and which allows for leverage.  
12 Exceptions are derivatives which payoff can be replicated by a generating strategy in the stock and 
bond, e.g. forward contracts. Their price equals the cost of the replicating bond-stock portfolio.    
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inclusion of investor preferences is deferred to section 7, where we propose an 
economic theory for volatility-risk compensation.)  Following the literature on the 
term structure of interest rates (see e.g. Duffie and Kan (1996), de Jong (2000) 
and Dai and Singleton (2000)), we model the market price of risk for factor ix   
-denoted by itγ - as being proportional to its instantaneous standard deviation, 
 

 'it i i i tγ γ α= + β x ,       (2.9) 
 

in which iγ ∈ R . The market price of volatility risk may thus be represented by 
the vector , 1( ,.., )'x t t ntγ γ=γ  given by 
 

,x t t=γ Λ γ ,        (2.10) 
 

in which 1( ,.., )'nγ γ=γ . The price of volatility risk is thus a fixed multiple of the 
volatility function of the risk source. It goes to zero if volatility risk goes to zero, 
as it should by no-arbitrage requirements. 13 Given this specification of the price 
of volatility risk, derivative prices can now uniquely be determined. In section 3 
we return to derivative pricing.  
 
The model under Q 
Given the prices of stock and volatility risk, from Girsanov’s theorem 14, changing 
from the market measure P to the artificial pricing measure Q is governed by the 
transformation 

 

0

t

t t t t t ud d dt du= + ⇔ = + ∫W W γ W W γ% % ,    (2.11) 

in which , ,( , ')'t S t x tγ≡γ γ  is the vector of prices of risk. 15 The process { ; 0}t t ≥W%  
with , ,( , ')'t S t x tW=W W% % %  is an ( 1)n + -dimensional drifting Brownian motion under 
measure P. Under the risk-neutral probability measure Q, which is characterized 
by the Radon-Nikodym derivative  
 

 1
2

0 0

exp ' '
T T

T u u u u
d

L d dt
d

 
 ≡ = − −
 
 
∫ ∫γ W γ γ

Q
P ,    (2.12) 

 
{ ; 0}t t ≥W%  is a standard Brownian motion however. 16  
 
Under Q the ex-dividend stock price follows 
 
 ,( )t t t t t t S tdS r q S dt S dWσ= − + % ,   (Q)  (2.13) 
 
whereas the tradable reinvestment portfolio follows ,

r r r
t t t t t S tdS r S dt S dWσ= + % . One 

advantage of the assumed form for the market price of volatility risk is the fact 
that it delivers the same type of mean-reverting SDE for the factors under Q as 

                                           
13 In the literature on affine models of the term structure of interest rates, people have recently 
criticized this assumption, as the risk compensation cannot switch sign over time; see e.g. Duffee 
(2002). Duffee extends the affine class to the essentially affine class, which allows for such switching. 
He finds that this increased flexibility results in a better fit of empirical bond returns and improved 
forecasts of future Treasury yields.  
14 See, e.g., Duffie (2001) or Etheridge (2002). 
15 We assume that the specifications for { },{ }t tqµ  and { }tr  are such that the Novikov condition  

1
02[exp( ' )]T

u udu < ∞∫ γ γPE  necessary for Girsanov’s theorem to hold is satisfied. 
16 In particular, for all Borel sets 1n+Β ⊂ R , [ ] [ 1 ( )]t T tL Β∈ Β ≡W W% %

PQ E  where 1 (.)Β  denotes 
the indicator function of the set Β . 
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under P. 17 Although the volatility function remains the same, both the speed of 
adjustment towards the mean and the mean itself differ under P and Q. Some 
algebraic manipulations show that the factors obey the following SDE under Q: 
 

 ,( )t t t x td dt d= − +x K θ x ΣΛ W%% % ,   (Q)  (2.14) 

with 
 'd≡ +K K ΣΓ% B        (2.15) 

 1( )d
−≡ −θ K K θ ΣΓα% % , 

and  

1 1 1( 1) ( ,.., )', ( ) ,.., , ( ) diag ,..,n n nnx nxn nxnα α γ γ≡ ≡ ≡      α β β ΓB ,  

 
and in which we assume the inverse of the matrix K%  to exist. This completes the 
description of the multifactor affine SV derivative pricing model.  
 
 

3.  Derivative pricing 
 
In this section we consider the pricing of derivative securities written on the stock 
by enforcing the condition of no arbitrage. Section 3.1 describes the partial-
differential-equation, the martingale and stochastic-discount-factor approaches to 
contingent claim valuation. Their intimate connections are highlighted. In section 
3.2 we derive pricing formulas for European call and put options that hold in our 
market. In everyday banking practice these vanilla options are often combined 
with a stock position to create a wide range of different payoffs, to meet 
speculative or hedging needs of clients. Such packages are the simplest form of 
exotic options. We refer to Hull (2003) for further discussion.  
 
3.1  Valuation of a general contingent claim 
 
Consider a general tradable European-style derivative F  written on the stock S  
that pays off an amount ( )T TF f S=  at some fixed future maturity date .T  For 
now we assume that this payoff is a function (.)f  of the terminal stock price TS  
only. (Path-dependent derivatives, which payoff depends on the path followed by 
the stock price during the life of the contract, are considered at the end of this 
section.) Our aim is to derive the time- t  price, tF , of such a claim for t T< . Let 
us assume that this price is given by some function ( , , )t t tF F t S= x  of , tt S  and 

tx  only. 18 Itô’s formula 19 then yields the SDE the derivative price follows under 
the market measure P : 20 
 

                                           
17 Chernov and Ghysels (2000), Pan (2002) and Jones (2003) make similar assumptions.  
18 Notice that we –moreover- implicitly assume that such a price exists. Currently we do not know if this 
is the case, let alone if it is unique. 
19 The following should be noted. Whenever we perform general derivations in this thesis, the implicit 
assumption is that the processes and functions involved are such that technical conditions as e.g. Itô 
and Riemann-integrability conditions are satisfied. We will not repeat this all the time to enhance the 
readability of this thesis.  
20 tr(.)  denotes the trace of a matrix. The first equality uses the result 

2 2 2

, ,' ' ' =tr '
' ' '

t t t
t t x t t t x t t t

t t t t t t

F F F
d d d d dt

 ∂ ∂ ∂
 =
 ∂ ∂ ∂ ∂ ∂ ∂ 

x x W Λ Σ ΣΛ W Λ Σ ΣΛ
x x x x x x

.  
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2 2
2 21 1

2 22
tr '

' '
t t t t t

t t t t t t t
t t t tt

F F F F F
dF S dt dS d

t SS
σ

  ∂ ∂ ∂ ∂ ∂
= + + + +   ∂ ∂ ∂ ∂ ∂∂   

Λ Σ ΣΛ x
x x x

 

 
2 2

2 21 1
2 22

( ) + tr '
' '

t t t t t
t t d t t t t t

t t t tt

F F F F F
S S dt

t S S
µ σ

  ∂ ∂ ∂ ∂ ∂
= + + − +   ∂ ∂ ∂ ∂ ∂∂   

K θ x Λ Σ ΣΛ
x x x

 , ,'
t t

t t S t t x t
t t

F F
S dW d

S
σ

∂ ∂
+ +
∂ ∂

ΣΛ W
x

.   (P) (3.1) 

         
We need to rule out arbitrage strategies that include this derivative instrument. 
The SDE (3.1) is not the SDE the arbitrage-free derivative price follows, as we 
have not yet enforced the no-arbitrage condition in its derivation. That is our next 
aim. Under the risk-neutral measure Q the derivative price follows 
 

2
2 21

, , 2 2
( ) ( )

'
t t t t

t t S t t t d t t x t t t
t t t

F F F F
dF S S dt

t S S
µ γ σ σ

 ∂ ∂ ∂ ∂ = + − + − − +   ∂ ∂ ∂ ∂ 
K θ x ΣΛ γ

x

 
2

1
, ,2 tr '

' '
t t t

t t t t S t t x t
t t t t

F F F
dt S dW d

S
σ

 ∂ ∂ ∂
+ + +  ∂ ∂ ∂ ∂ 

Λ Σ ΣΛ ΣΛ W
x x x

% % . 

 (Q) (3.2) 

 
The Fundamental Theorem of Asset Pricing states that the prices of all tradable 
assets expressed in terms of the bond price should be martingales under Q if 
arbitrage is to be excluded. 21 For our choice of Q, we prove in appendix Ia that 
the relative prices of the bond and reinvestment portfolio (the stock with 
dividends reinvested) are indeed Q-martingales. Under Q the relative derivative 
price evolves according to 
 
   1 1 1( )t t t t t t td B F B dF r B F dt− − −= −      (Q) (3.3) 

          
2

1 1
2.. tr '

'
t t

t t t t t
t t

F F
B r F dt

t
−
  ∂ ∂ = + + −   ∂ ∂ ∂  

Λ Σ ΣΛ
x x

  

 1 1
, ,'

t t
t t t S t t t x t

t t

F F
B S dW B d

S
σ− −∂ ∂

+ +
∂ ∂

ΣΛ W
x

% % ,  

 
in which the expression for the dots is as in (3.2). As martingales are driftless, 
imposing no-arbitrage implies that the drift of this SDE must be zero. This results 
in the following restriction:  
 

 , ,( ) ( )
'

t t t
t t t S t t t d t t x t

t t

F F F
r F S

t S
µ γ σ

∂ ∂ ∂  = + − + − − ∂ ∂ ∂
K θ x ΣΛ γ

x
 (3.4) 

                                           
21 Harrison and Kreps (1979), Harrison and Pliska (1981), and Delbaen and Schachermayer (1994). The 
First Fundamental Theorem of Asset Pricing states that the absence of arbitrage is equivalent to the 
existence of at least one probability measure Q -equivalent to the market measure P-, under which the 
prices of all tradable assets relative to the price of some numéraire asset, are Q-martingales. Such a Q 
is called an equivalent martingale measure (EMM). Each asset characterized by –at all times- a strictly 
positive price can act as a numéraire asset. The martingale measure(s) is (are) numéraire-dependent. 
The conventional numéraire-asset choice is the cash bond, and the associated EMM(s) –if it exist- is 
commonly called the risk-neutral measure. The Second Fundamental Theorem of Asset Pricing states 
that the EMM Q is unique if and only if the market is complete; that is –essentially-, if all risks can be 
hedged by trading in the primitive (i.e. exogenously given) assets.  
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2 2

2 21 1
2 22

+ tr '
'

t t
t t t t

t tt

F F
S

S
σ

 ∂ ∂
+   ∂ ∂∂  

Λ Σ ΣΛ
x x

. 

 
From (3.2), under the risk-neutral measure the arbitrage-free derivative price 
thus follows   
 

 , ,'
t t

t t t t t S t t x t
t t

F F
dF r F dt S dW d

S
σ

∂ ∂
= + +

∂ ∂
ΣΛ W

x
% % .  (Q) (3.5) 

 
Recall that the reinvestment portfolio follows ,

r r r
t t t t t S tdS r S dt S dWσ= + %  under Q. It 

is clear that enforcing no-arbitrage results in all tradable assets earning the same 
rate (on average) as the numéraire asset; i.e., the risk-free rate of interest tr . 
Under the artificial probability measure Q investors thus demonstrate risk-neutral 
behavior: Although trading in the assets entails risk, as compensation for bearing 
this risk they only require the risk-free rate of return. They are thus indifferent 
towards the risks involved. Hence the name risk-neutral measure for Q.  
 
Finally, transforming back to P using (2.11) yields the SDE the arbitrage-free 
derivative price follows under the market measure: 
 
 

, , , ,
1

' '
t t t t t

t t t S t t x t t t t S t t x t
t t t t t t

S F F F F
dF r F dt S dW d

F S F S
σ γ σ

    ∂ ∂ ∂ ∂
= + + + +    

∂ ∂ ∂ ∂     
ΣΛ γ ΣΛ W

x x
.  

(P) (3.6) 

 
Partial-differential-equation approach to derivative pricing 
The no-arbitrage restriction (3.4) implicitly defines a second-order or parabolic 
partial differential equation (PDE) that the derivative price ( , , )t t tF F t S= x  must 
satisfy for t T< . The boundary condition of this PDE is formed by the derivative-
specific payoff ( )T TF f S= , which is realized at maturity .T  Together they uniquely 
define the derivative price at time t .  
 
As mentioned in section 2, notice that this price is indeed not preference-free: 
Although we may simplify ,t S t t t tr qµ γ σ− = −  in (3.4) such that compensation for 
stock price uncertainty ( tµ ) has no derivative-pricing implications, the attitude of 
investors towards volatility risk (as reflected in the price of volatility risk, ,x tγ ) 
does matter.  
 
The PDE and hence the derivative price can in principle be solved for by engaging 
in numerical methods such as finite difference methods. 22 However, even if there 
is only one latent factor the computations are cumbersome (as this already 
requires a 3-dimensional grid of ( , , )t tt S x  to evaluate the derivative price on), 
and their number rapidly increases when the number of factors increases.  
 
Martingale approach 
Fortunately, the derivative price can also be obtained from a different angle. If we 
integrate the SDE (3.3) over the interval [ , ]t T  with the no-arbitrage restriction 
(3.4) imposed, we obtain 
 

                                           
22 Finite difference methods replace differentials by differences. See e.g. Hull (2003) for an introduction 
to these methods.  
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, ,'

T T
u u

T T t t u u u S u u u x u
u ut t

F F
B F B F B S dW B d

S
σ− − − −∂ ∂

= + +
∂ ∂∫ ∫ ΣΛ W

x
% % . (Q) (3.7) 

 
Taking conditional Q-expectations yields 
          (3.8) 

1 1 1 1
, ,| | | .

'

T T
u u

T T t t t u u u S u t u u x u t
u ut t

F F
B F B F B S dW B d

S
σ− − − −

   ∂ ∂     = + +  ∂ ∂      
∫ ∫ ΣΛ W

x
% %

Q Q QE E EF F F  

 
As the Itô-integrals involved in (3.8) are ( ,{ })t −Q F martingales, we subsequently  
obtain the following risk-neutral valuation formula for the derivative price: 
 

 1 | exp |
T

t t T T t u T t

t

F B B F r du F−
 

   = = −      
 
∫Q QE EF F ,   (3.9) 

 
in which the second equality uses the assumption of deterministic interest rates. 
The fact that the discounted conditional expectation on the right-hand side of 
(3.9) is a function of ( , , )t tt S x  only (and does not depend on the history t −F ), is 
a consequence of the assumption of a Markov process for ,x  and the assumption 
of the payoff function to be of the form ( ).T TF f S=    
 
The solution to the (deterministic) PDE (3.4) with boundary condition ( )T TF f S=  
is thus given by the pricing function ( , , )t t tF F t S= x , which can be expressed as 
the conditional expectation (3.9). We have essentially proven the Feynman-Kac 
Stochastic Representation Theorem in our setting (see, e.g., Duffie (2001)). 
 
Besides solving the PDE, the derivative price can thus also be computed as a 
discounted probability-weighted average of all possible payoffs that may be 
realized under the risk-neutral measure. This price can generally only be obtained 
by Monte Carlo simulation, if the model parameters are known. Notice that as 
investors are risk neutral under Q, it makes sense that the proper (deterministic) 
discount factor is derived from the risk-free interest rate.  
 
Stochastic-discount-factor approach  
As a third possible way to compute the derivative price, an implication of 
Girsanov’s theorem (see e.g. Shreve (1997)) is that the derivative price (3.9) can 
also be rewritten as a certain discounted payoff under the market measure P. 
Specifically,  
 

   exp | |
T

T T
t u T t T t

t tt

L M
F r du F F

L M

      = − =         
∫ P PE EF F ,   (3.10) 

 
in which { ; 0}tL t ≥  is the Radon-Nikodym process defined by  
 

  1
2

0 0

exp ' '
t

t t

t u u u u
d

L d du
d

 
 = = − −
  
∫ ∫γ W γ γ

Q
P F

,   (3.11) 

 
and the process { ; 0}tM t ≥  with 1

t t tM B L−≡  is known as the stochastic discount 
factor (SDF) process. Commonly used alternative names are state-price deflator, 
state-price density, pricing kernel or marginal rate of substitution (see also 
section 7). Notice that [ | ]t t T T tM F M F= PE F , which illustrates that the product of 
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the stochastic discount factor and the price of any tradable asset is a 
( ,{ })t −P F martingale.  
 
Formula (3.10) shows that the derivative price can also be computed as the 
expected value of its discounted payoff under the market measure P, but now 
using a stochastic discount factor /T tM M  that involves the market prices of stock 
and volatility risk. Notice that if these prices of risk were both equal to zero, then 
the discount factor reduces to exp[ ( )]tr T t− −  with tr  as in (3.14); i.e., the one 
normally used for discounting non-risky payoffs. This implies that investors would 
be risk-neutral under P in that case. This is clearly not realistic in practice; 
investors are typically risk-averse and therefore require compensation for bearing 
(non-diversifiable) risks.  
 
The stochastic discount factor thus clearly corrects for risk. Notice that the SDF is 
not asset-specific. It carries all pricing information and prices all assets in the 
economy if there is no arbitrage (see e.g. Cochrane (2001)). We have basically 
illustrated the fact that the First Fundamental Theorem of Asset Pricing –which 
provides us with (3.9)- can essentially also be stated as follows: The absence of 
arbitrage is equivalent to the existence of at least one (strictly positive) stochastic 
discount factor that prices all payoffs in the market. It will be clear that the 
Second Fundamental Theorem can alternatively be stated as: The SDF is unique if 
and only if the market is complete.  
 
Path-dependent derivatives 
So far we have assumed payoff functions of the form ( ).T TF f S=  Path-dependent 
derivatives are characterized by payoffs given by ( ;0 )T uF f S u T= ≤ ≤ . Prominent 
examples are forward start options, barrier, Asian and lookback options. The 
pricing function of these derivatives is typically not of the form ( , , )t t tF F t S= x .  
 
Consider for example a forward start call, in which the holder receives at some 
future date 1T  (at no extra cost) a European call option with strike 

1TK S=  (i.e., 
at-the-money) and maturity 2 1T T> . For 1 2[ , ]t T T∈  the value tF  of the forward 
start thus equals the value of a European call option with a fixed strike 

1TS , as 

1TS  is part of the current information set tF . From (3.19) it is clear that 

1
( , , , )t t T tF F t S S= x  for 1 2[ , ]t T T∈ . 

 
The PDE (3.4) is derived from the assumption that ( , , )t t tF F t S= x  using Itô’s 
lemma. As a result this PDE can in general not be used for pricing such path-
dependent derivatives. 23 However, as the Fundamental Theorem of Asset Pricing 
states that relative asset prices should all be ( ,{ })t −Q F martingales if there is to 
be no arbitrage, it immediately follows that / [ / | ]t t T T tF B F B= QE F . This leads 
directly to the risk-neutral valuation formula (3.9), and thus (3.10). Hence, these 
formulas can still be used for pricing path-dependent derivatives.  
 
Let us return to the forward-start example. For 1[0, )t T∈  the strike price 

1TS  is 
still uncertain. The risk-neutral-valuation formula (3.9) nevertheless applies. Due 
to the Markov property it now does hold that ( , , )t t tF F t S= x . 
 
 
 
 

                                           
23 For some path-dependent claims a different PDE can be obtained that the price should satisfy. 
However, as stressed by Hull (2003), finite difference methods are very difficult to apply in those cases. 
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3.2 Call and put option valuation 
 
In this section we value some specific derivative instruments. Consider a 
European call option C  written on the stock S  that has strike price K  and 
maturity .T t>  Its payoff function is given by max{0, }T TC S K= − . From the risk-
neutral valuation formula (3.9), its arbitrage-free time- t  price tC  is given by  
 

 1 | exp max{0, }|
T

t t T T t u T t

t

C B B C r du S K−
 

   = = − −     
 
∫Q QE EF F . (3.12) 

 
To compute this expectation requires the conditional distribution of TS  under Q. 
Itô’s lemma yields the SDE for ln tS  from (2.13). If we next integrate the 
increments ln td S  over [ , ]t T  and then take exponents, results in 
 

 21
,2exp ( )

T

T t t t t t u S u

t

S S r q dWσ τ σ
 
 = − − +
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∫ % ,   (Q) (3.13) 

     
in which we define the current time to maturity tτ , the average interest rate ( tr ), 
dividend yield ( tq ), and variance ( 2

tσ ) -all over the remaining option’s life-, by: 
 

2 21 1 1
, , ,

T T T

t t u t u t u
t t tt t t

T t r r du q q du duτ σ σ
τ τ τ

≡ − ≡ ≡ ≡∫ ∫ ∫ .  (3.14) 

 
Recall the assumption of independence between the volatility and stock-price 
driving P-Brownian motions xW  and SW . This independence is preserved under 
Q, such that xW%  and SW%  are also independent. 24 Therefore, conditioning on the 
sample path of ,x uW%  for t u T≤ ≤  implies that the volatility path { ; }u t u Tσ ≤ ≤  is 
known, such that the Itô integral in (3.13) is conditionally normally distributed,  
 

 2
, ,|{ } ~ 0,

T T

u S u x u u

t t

dW duσ σ
 
 
 
 

∫ ∫W% % N ,    (Q) (3.15) 

 
in which ,{ }x uW%  is short-hand notation for ,{ ; }x u t u T≤ ≤W% . In turn this implies 
that ,| ,{ }T t x uS W%F  is lognormally distributed. We may thus write 
 

 21
, 2| ,{ } exp ( )T t x u t t t t t t tS S r q σ τ σ τ ε = − − + W%F , (Q) (3.16) 

 
with ~ (0,1)ε N  under Q. Next, express the conditional call payoff in terms of ε :  
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in which 
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24 This is so as the probability measures P and Q are equivalent; i.e., they agree on the same null sets.    



3. Derivative pricing 

 23

Given these results, we obtain 
 

,max{0, }| ,{ }T t x uS K − W%QE F        

( )
2

2
1

22
1

exp ( ) exp ( )
2

t

t t t t t t t

d

S r q d K dτ ε σ τ ε
π

∞

−

 = − − − − Φ     ∫  

1 2exp ( ) ( ) ( )t t t t t tS r q d K dτ= − Φ − Φ   ,   (3.18) 
    
in which (.)Φ  denotes the cumulative standard Gaussian distribution function, 
and where the last equality follows after making the change-of-variable towards 

t tξ ε σ τ≡ − , and performing some further manipulations.  
 
The arbitrage-free call price at time t  can subsequently be obtained by invoking 
the law of iterated expectations: 
 

 ( ),exp( ) max{0, }| ,{ } |t t t T t x u tC r S Kτ  = − − W%F FQ QE E  

 1 2exp( ) ( ) exp( ) ( ) |t t t t t t t tS q d K r dτ τ= − Φ − − Φ  FQE  

 2( , , , , , ) |t t t t t tBS S K r qτ σ =  FQE ,     (3.19) 

where 
2

1 2( , , , , , ) exp( ) ( ) exp( ) ( )t t t t t t t t t t t tBS S K r q S q d K r dτ σ τ τ≡ − Φ − − Φ  (3.20) 
 
stands for the conventional Black-Scholes (BS) call price adjusted for continuous 
dividend payments, evaluated in the arguments , , , ,t t t tS K r qτ  and 2

tσ .  
 
If ,t TF  represents the fair time- t  forward price of the forward contract written on 
S  that has the same maturity t T tτ = −  as the call option, i.e., 25 
 

 , exp ( )t T t t t tF S r q τ= −   ,      (3.21) 

 

then the call valuation formula can conveniently be rewritten as 
  

2
,( , , , , )|t t T t t t tC BS F K rτ σ =  QE F ,     (3.22) 

with 

 2
, , 1 2( , , , , ) exp( ) ( ) ( )t T t t t t t t T t tBS F K r r F d K dτ σ τ  ≡ − Φ − Φ  ,  (3.23) 
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σ τ
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σ τ

+
= = − .    (3.24)  

                                           
25 This forward price is derived from no-arbitrage arguments as follows. Consider the following portfolio 
strategy: At time t  we buy a number of exp( )t tq τ−  stocks, and reinvest all dividends received 
immediately in the stock as time goes by. Furthermore, we borrow an amount of ,exp( )t t t Tr Fτ−  
against the short rate { }tr . The forward contract expires at maturity T  and results in a payoff of 

,T t TS F− . This payoff is exactly replicated by the payoff of liquidating the portfolio at time T : At time 
T  we have exactly one stock in our portfolio which we sell for TS  in the market, whereas the cash has 
to be paid back with interest, which results in a negative cash flow of ,t TF− . By imposing no-arbitrage, 
the initial cash flow of entering the forward contract at time t  must match the cost of setting up the 
portfolio. As it costs nothing to enter the forward contract at time t  as it is an obligation and not a 
right, this leads us to the restriction ,0 exp( ) exp( )t t t t t t Tq S r Fτ τ≡ − − + − , such that the arbitrage-free 
time- t  forward price equals , exp[( ) ]t T t t t tF S r q τ= − .  
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The advantage of this latter expression is that the average dividend yield, which 
may be hard to estimate in practice, does not play a role anymore in this formula. 
 
The analysis shows that in our multifactor SV model, the value of a call option is 
obtained as an expectation of the Black-Scholes call price, where the expectation 
is taken over all possible volatility paths that may realize over the remaining life 
of the option, under the risk-neutral measure. Notice that although we allow for 
multifactor SV, a similar type of valuation formula results as in the 1-factor SV 
model considered by Hull and White (1987). The reason is twofold. First, the 
volatility and stock price processes are assumed independent (the leverage effect 
is not modeled). Second, the stock price follows a geometric Brownian motion-
type SDE under Q. 
 
Put option valuation 
European put options can be valued by no-arbitrage arguments as follows. We 
focus on a put P  with the same strike K and remaining maturity t T tτ = −  as the 
call option above. Consider the following trading strategy. At time t T<  we buy 
one put at price tP , and exp( )t tq τ−  stocks for price tS  each. All dividends 
received are immediately reinvested in the stock as time goes by, such that at 
maturity T  we have exactly one stock in our portfolio. Consider next the strategy 
of buying one call for tC  at time t , and investing an amount of money equal to 

exp( )t tK r τ−  in the cash bond. This amount has grown to K  at time .T  As both 
strategies yield exactly the same payoff at time T , irrespective of specific stock-
price movements, it must be the case –by no-arbitrage- that the costs of setting 
up each strategy exactly match. Therefore, the price of the put satisfies 
 
 exp( ) exp( )t t t t t t tP C r K q Sτ τ= + − − − .    (3.25) 
  
This is the so-called put-call parity relation that holds in our market. Using the 
forward price from (3.21), the put price can also be computed from 

,exp( )( )t t t t t TP C r K Fτ= + − − . 
 
Deterministic and constant-volatility cases: Black-Scholes option prices 
For future reference, a final remark. If volatility is deterministic instead of 
stochastic, it follows from our analysis that the call price is given by equations 
(3.20) and (3.17), or, in terms of the forward price, by (3.23)-(3.24). If volatility 
is further restricted to be constant, such that the ex-dividend stock price (2.3) 
evolves as ,t t t t S tdS S dt S dWµ σ= +  for some 0σ >  under P, our model essentially 
reduces to the conventional Black-Scholes model. In that case the call price is 
given by either equations (3.20) and (3.17), or, in terms of the forward price, by 
equations (3.23)-(3.24), but with the random tσ  replaced by the parameter σ . 
In both cases the put option value follows again from the put-call parity (3.25), 
which remains in tact in case of deterministic and constant volatility, like the 
formula for the forward price (3.21) does.  
 
 

4. Hedging derivatives 
 
If our model is to be used by a financial institution in practice, then hedging 
becomes important. Suppose there are a number of underlying risk factors that 
determine the value of a certain position in assets. Uncertain movements in these 
risk factors result in value changes, which may be (temporarily) undesirable. 
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Hedging aims at building protection against such unwanted value changes by 
taking in an offsetting position in other assets, which is subject to the same risk 
factors. One may desire to hedge against all risk factors simultaneously –if 
possible-, or against a subset of them. In the latter case the risk is only partly 
neutralized. In general, an offsetting hedge position only temporarily provides 
protection. If prolonged protection is desired, the hedge needs to be rebalanced.  
 
In section 4.1 we first consider measures to quantify the various exposures to 
risk inherent in derivative securities. Section 4.2 takes a closer look at the 
hedging problem in our incomplete-markets model. In section 4.3 we derive an 
explicit hedging strategy for derivatives with payoff function ( )T TF f S=  in the  
1-factor SV special case of our model. We also comment on hedging path-
dependent derivatives, and hedging in practice. 
 
4.1 Delta, vega and other Greeks 
 
Consider a general European-style derivative .F  This derivative may or may not 
be path-dependent. The arbitrage-free time- t  price tF  of this derivative is given 
by the risk-neutral valuation formula (3.9), or, equivalently, by the SDF formula 
(3.10). This price is perceptive to the two sources of randomness in our model: 
stock price fluctuations and latent factor changes; i.e., volatility movements.  
 
A common way of measuring derivatives risk is by focusing on derivative-price 
sensitivities. These sensitivities are known as the Greeks; we refer to Hull (2003) 
for details. The delta (∆ ) of derivative F  is defined as its price sensitivity with 
respect to stock price movements, whereas its gamma (Γ ) measures the rate of 
change in its delta. That is, 
 

 , ,t
F t

t

F
S
∂

∆ ≡
∂

 
2

,
, 2

F t t
F t

t t

F
S S

∂∆ ∂
Γ ≡ =

∂ ∂
.     (4.1) 

 
Both are obviously varying over time. In our multifactor SV setting, it is most 
convenient to define the vega (V ) of derivative F  as the derivative-price 
sensitivity towards changes in the stock-variance-driving factors: 26 
 

 ,
t

F t
t

F∂
≡
∂xV .        (4.2) 

 
Notice that the vega is an ( 1)nx  vector. In the 1-factor SV special case with 
imposed restrictions 0 10, 1δ δ= =  such that 2

t txσ = , the vega equals 
2

, /t tF t F σ= ∂ ∂V , and measures price changes as a result of changes in the stock 
variance. Its price sensitivity with respect to volatility movements is then given 
by ,/ 2t t t F tF σ σ∂ ∂ = V . Other Greeks are rho, which is defined as ,rho /F t t tF r≡ ∂ ∂ , 
and theta (Θ ), defined as , /F t tF tΘ ≡ ∂ ∂ . Less commonly known is epsilon, which 
measures dividend risk: ,epsilon /F t t tF q≡ ∂ ∂ .  
 
                                           
26 In the special case of ( , , )t t tF F t S= x  with 2n ≥  factors, notice that  

σ
σ σσ σ

 ∂ ∂ ∂ ∂ ∂
= ≠ = =  

 ∂ ∂ ∂∂ ∂  

2

, 2 2

ˆ ˆ ˆ1
2

t t t t t
F t

t t t tt t

F F F F
δ δ

x xV , 

as it can be shown that it does not  hold that tF  can be (re)written as a function of 2
0 't tσ δ= + δ x  

directly; i.e., σ= ≠ 2ˆ( , , ) ( , , )t t t t tF F t S F t Sx . Unfortunate as this is, as it would facilitate and further 
embellish the analysis in the coming sections. 
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4.2 Hedging in incomplete markets 
 
Due to stochastic volatility our market is incomplete, in the sense that most 
derivatives cannot be hedged by a conventional delta-hedging strategy in the 
stock (cum dividends) and bond only. Those that can be hedged in this way have 
a price that does not depend on the volatility-driving factors x ; e.g., a forward 
contract. To be able to hedge a general derivative however, requires adding other 
derivatives to the set of hedging instruments. In a sense one then completes the 
market.  
 
Let us explain the hedging problem in more detail. For simplicity we focus on a 
derivative with payoff ( )T TF f S= . As explained in section 3.1, its time- t  price tF  
is given by some function ( , , )t tF t S x  of , tt S  and tx  only. A change in this price 
is either caused by stock price fluctuations or volatility movements (or just by the 
passage of time). Although such a derivative position can be made 
instantaneously delta neutral (i.e., a zero delta) by taking in an offsetting position 
in the stock, vega neutrality cannot be achieved with a stock investment only, as 
price changes due to volatility shocks cannot be hedged with it. Hence, a delta-
hedging strategy will only partly neutralize risk, and will therefore exhibit a 
tracking error. (In section 6.2.3 we return to this issue when discussing delta-
hedged gains.) In more technical terms, the price change tdF  (i.e. infinitesimal 
increment) which ought to be hedged against, depends on both the stock price 
and factor changes tdS  and tdx , and thus on the Brownian increments ,S tdW  
and ,x tdW ; recall the SDEs (3.1) and (3.6). With a stock investment one can only 
hedge against the risky SW , but not against the risky xW , which is clear from 
reconsidering the stock price SDE (2.3).   
 
To be able to hedge against volatility risk, we need to rely on other derivatives. 
These derivatives essentially proxy for the non-tradable unobserved volatility. The 
principle is as follows. Recall that ( , , )t t tF F t S= x , such that if we observe the 
prices of n  derivatives in the market, then the current factor value tx  can in 
principle be backed out by an inverse transformation. The latent volatility-driving 
factors tx  then become essentially observable. Hence, these derivatives indirectly 
make volatility a tradable asset. Therefore, in our market, a hedging strategy for 
a derivative which price is sensitive to the ( 1)n +  risk factors SW  and xW  
through S  and x , incorporates both the bond, stock and n  other derivatives. 27  
 
4.3 Example: hedging in 1-factor SV models 
 
As an example, consider hedging in the 1-factor SV special case of our model. For 
simplicity we set 0 0δ =  and 1 1δ =  such that 2

t txσ = . The latent factor evolves 
as  

,( )t t t x tdx k x dt dWθ σλ= − +      (P) (4.3) 
 
under P, with t txλ α β≡ + .  
 
 
 

                                           
27 These n  derivatives ought to be chosen in such a way that together they are able to fully hedge the 

xW -risk. Thus they ought to be “linear-independent” assets, in the sense that their vegas must be 
linearly independent. Intuitively, we cannot hedge more risk with two assets that equally respond to the 

xW -risk as we can with just one of these assets. Moreover, the maturity of each of these n  derivatives 
ought to be at least as large as the maturity of the derivative that we want to hedge.  
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4.3.1   Hedging path-independent derivatives 
 
In this section our interest is in hedging a general European-type derivative F  
written on the stock S  that pays off an amount ( )

F FT TF f S=  at its maturity .FT  
Notice that we explicitly assume that this payoff is a function of the terminal stock 
price only. In section 4.3.2 we cover the hedging of path-dependent derivatives.  
 
From (3.6) the arbitrage-free price ( , , )t t tF F t S x=  evolves according to the SDE 
 
 , , , ,,t F t t F t t t S t t x tF tdF F dt S dW dWµ σ σλ= + ∆ + V ,  (P) (4.4) 
 
with , , , ,,( / ) (1 / )F t t t t F t t S t t t x tF tr S F Fµ σ γ σλ γ≡ + ∆ + V . Consider next another, longer-
maturity European-type derivative G  that pays off ( )

G GT TG g S=  at its maturity 

G FT T> . Derivative G  will serve as a hedging instrument for F . Its arbitrage-free 
price ( , , )t t tG G t S x=   follows 
 
 , , , , ,t G t t G t t t S t G t t x tdG G dt S dW dWµ σ σλ= + ∆ + V ,  (P) (4.5) 
 
in which , , , ,,( / ) (1 / )G t t t t G t t S t t t x tG tr S G Gµ σ γ σλ γ≡ + ∆ + V .   
 
Our aim is now to design a dynamic self-financing hedging strategy for derivative 

,F  which takes both the bond ,B  the dividend-paying stock ,S  and derivative G  
into account. Derivative payoffs are stated in terms of the ex-dividend stock 
price. As such derivative prices are functions of tS , and not of the reinvestment-
portfolio value .r

tS  Now recall that the process { }tS  does not represent the price 
of a tradable asset. The desired trading strategy must therefore be in terms of 
the reinvestment portfolio ,rS  as this is a tradable asset. Moreover, as we desire 
a self-financing strategy which, by definition, does not allow for an outflow of 
wealth, the automatically received stock dividends need to be immediately 
reinvested again, which makes the reinvestment portfolio a natural candidate to 
hedge stock price risk with. Recall that the bond price evolves as t t tdB r B dt= , the 
stock price as ,t t t t t S tdS S dt S dWµ σ= + , and the value of the reinvestment 
portfolio as ,( )r r r

t t t t t t S tdS q S dt S dWµ σ= + + , all under measure P.  
 
A self-financing hedging strategy 
Assume that we start hedging F  at time 0, for maturity FT . The dynamic hedging 
strategy is given by an tF -adapted triplet ( , , )r

t t tψ φ ξ  for [0, ]Ft T∈ . Here, tψ  
governs the bond holding, r

tφ  is the number of reinvestment portfolios, and tξ  is 
the number of G − derivatives to hold in the hedge portfolio at time t . Recall that 
starting off with 1 stock at time 0 followed by continuously reinvesting received 
dividends, implies that the time- t  value of the reinvestment portfolio is given by 

0exp( )r
t t tS q t S= , where 0tq  is the average dividend yield over [0, ]t .  

 
Our object now is to determine the positions ( , , )r

t t tψ φ ξ  to hold in each instrument 
at each point in time, such that the hedging strategy is self-financing and 
replicates the payoff of derivative .F  The value of the hedge portfolio at time t , 

tV , is given by 
 

 r r
t t t t t t tV B S Gψ φ ξ= + + .      (4.6) 

 
We want the strategy to be replicating. Therefore, we impose the restriction that 

F FT TV F= . Moreover, we require it to be self-financing, such that the infinitesimal 
increment in the hedge portfolio value must satisfy 
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      0

0 0 0

t t t
r r r r

t t t t t t t t u u u u u udV dB dS dG V V dB dS dGψ φ ξ ψ φ ξ= + + ⇔ = + + +∫ ∫ ∫ . (4.7) 

 
Then, by no arbitrage, it must hold that the value of the hedging strategy equals 
the derivative value at all times, i.e. t tV F t= ∀ . It then automatically follows that 
their increments must match, such that t tdV dF= . In other words, the 
infinitesimal change in the derivative price is perfectly hedged by the change in 
value of the hedge portfolio, as required. The expressions for the instrument 
holdings , r

t tψ φ and tξ  then follow from equating the coefficients of the ,, x tdt dW  
and ,S tdW  terms in the equality t tdV dF= . This equality is given by  
 

r r
t t t t t t tdV dB dS dGψ φ ξ= + +  

, , , ,,( )r r r r
t t t t t t t t G t t t t t t G t t t S t t t x tG tr B q S G dt S S dW dWψ φ µ ξ µ φ σ ξ σ ξ σλ     = + + + + + ∆ +      V

, , , ,,F t t F t t t S t t x tF tF dt S dW dWµ σ σλ≡ + ∆ + V .    (4.8) 

 
Specifically, we obtain that the number of G -derivatives to hold in the hedge 
portfolio at time t  equals the ratio of vegas (as long as ≠, 0G tV ),  
 
 , ,/t F t G tξ =  V V ,       (4.9) 
 
whereas the number of reinvestment portfolios should equal 
 

 ,
, , 0 , ,

,

exp( ) F tr t
t F t t G t t F t G tr

G tt

S
q t

S
φ ξ

 
 = ∆ − ∆ = − ∆ − ∆  

  





V

V
.  (4.10) 

 
Notice that since , ,, ,[ ( / ) ]r r

t t F t G t tF t G tS Sφ = ∆ − ∆ V V , a self-financing strategy of r
tφ  

invested in the reinvestment portfolio corresponds to a strategy of 

, , 0, ,( / ) exp( ) r
t F t G t t tF t G t q tφ φ≡ ∆ − ∆ = V V  invested in the stock, as r r

t t t tS Sφ φ= . 
Finally, equating the dt  terms  yields for the bond holding  
 

 , ,
1

( )r r
t F t t t G t t t t t t

t t
F G q S

r B
ψ µ ξ µ φ µ = − − +  ,    (4.11) 

 
with tξ  and r

tφ  as above. For an alternative expression, recall that 
r r

t t t t t t t tV B S G Fψ φ ξ= + + ≡  by no arbitrage, such that tψ  can also be computed as 
1 1[ ] [ ]r r

t t t t t t t t t t t t tB F G S B F G Sψ ξ φ ξ φ− −= − − = − − , which is more convenient. It 
requires some algebra to show that both expressions for tψ  are indeed the same.  
 
“Spanning” and redundancy 
We have shown that we are able to perfectly hedge a general derivative F  with 
payoff function ( )

F FT TF f S=  by a continuous-time self-financing trading strategy in 
the bond, stock and some longer-maturity derivative G  having payoff function 

( )
F FT TG g S= . In particular, if we are long F  we must short the hedging strategy 

(and vice versa), to be sure that at maturity we end up with a zero net cash 
position. Derivative G  assumes the role of hedging that part of F ’s value change 
due to unobserved volatility movements. Taking derivative G  as a hedging 
instrument into account ensures that we have essentially completed the market, 
in the sense that shorter-maturity derivatives are now attainable by a generating 
strategy in the bond, stock and derivative G .   
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We might even state this differently. Together the bond, stock and derivative G  
essentially span the space of derivative instruments that have a shorter maturity 
than :G  their payoffs can all be perfectly replicated by a self-financing trading 
strategy. The stock and bond only do not span that space, as these assets do not 
allow volatility risk to be “traded”. This is basically the reason why the bond-stock 
market is said to be incomplete. Notice furthermore that these shorter-maturity 
derivatives are redundant assets as soon as we take derivative G  into account. 
 
4.3.2   Hedging path-dependent derivatives 
 
Derivatives with payoff function ( )T TF f S=  can perfectly be hedged by 
implementing the dynamic trading strategy (4.9)-(4.11). The strategy hinges on 
the fact that for such derivatives ( , , )t t tF F t S x= . But what about hedging path-
dependent derivatives? It turns out that although for these derivatives a perfect 
hedging strategy exists, explicit general expressions for the instrument holdings 
can unfortunately not be given. 
 
Consider hedging a general derivative F  that is now allowed to be path-
dependent. It pays off 

FTF  at its maturity FT . As before, our hedging instruments 
consist of the bond ,B  the reinvestment portfolio ,rS  and some longer-maturity 
derivative G  that pays off ( )

G GT TG g S=  at its maturity G FT T> , such that its price 
is given by ( , , )t t tG G t S x= . (Note the explicit assumption of ( )

G GT TG g S= .)  
 
Collect the prices of the latter two assets in the vector ( , )'r

t t tS G=H , and collect 
their bond-discounted prices in 1( , )'r G

t t t t tZ Z B−= ≡Z H . The SDE tG  obeys under Q 
follows from (3.5). Moreover, r

tS  satisfies ,
r r r
t t t t t S tdS r S dt S dWσ= + %  under Q. As 

such 

 ,

, , ,

0rr r
S tt tt t

t
G t t t tG tt t x t

dWSdS S
r dt

SdG G dW

σ
σ σλ

     
 = +            ∆       

%

%
V

,  (Q) (4.12) 

 
or H

t t t t td r dt d= +H H Σ W%  with H
tΣ  the 2x2 matrix in (4.12). It follows that under 

the risk-neutral measure, 1 1 1 1( ) H
t t t t t t t t t td d B B d dB B d− − − −= = + =Z H H H Σ W% . The  

relative hedge-instrument prices Z  thus follow a 2-dimensional Q-martingale 
process with respect to the natural filtration { }tF  of the 2-dimensional standard 
Q-Brownian motion W% . By the tower property of conditional expectations, the 
discounted claim process ;0 }t Ft T≤ ≤{Б , defined by 
 

 1 |
F Ft T T tB F− ≡  FQEБ ,       (4.13) 

  
is a 1-dimensional ( ,{ })t −FQ martingale. It then follows from the multifactor  
Brownian martingale representation theorem (MRT; see e.g. Etheridge (2002)), 
that there exists a unique { }t −F previsible 28 2-dimensional process 
{ ;0 }t Ft T≤ ≤φ  such that 
  

0

0

' '
t

t u u t t td d d= + ⇔ =∫φ Z φ ZБ Б Б .     (4.14) 

 
In words, for all t  the increment in the martingale Б  is a unique previsible linear 
combination of the increments in the martingales rZ  and GZ .  

                                           
28 As our model does not allow for jumps such that all sample paths are continuous, there is no 
distinction between { }t −F predictability and { }t −F adaptedness. 
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A self-financing hedging strategy 
Given these preliminaries, consider next the following hedging strategy for 
derivative .F  At time t  hold 
 

 
units of the instruments ( , )'

' units of the cash bond

r
t

t t t t

S G
Bψ

 =


≡ −

φ H
φ ZБ

    (4.15) 

 
in the hedging portfolio. The value tV  of the hedge at time t  equals 

' .t t t t t t tV B Bψ= + =φ H Б  In particular, at the expiration date FT  of derivative F  
we have 1[ | ]

F F F F F F F FT T T T T T T TV B B B F F−= = =FQEБ , as the payoff 
FTF  is 

FTF -
measurable. The hedge strategy (4.15) thus replicates the payoff of derivative .F  
It is moreover self-financing: 
 

 1 1

' ( ' )

' '

' .

t t t t t

t t t t t t

t t t t t t t t t t t t t

t t t t

dV B d dB

B d dB

B B d r B dt dB r B dt

d dB

ψ

ψ

ψ

− −

= +

= + +

 = − + + 
= +

tφ Z φ Z

φ H H φ Z

φ H

Б Б

  (4.16) 

 
This analysis shows that a unique self-financing perfect hedging strategy exists 
for each and every derivative in our model, be it path-dependent or not. 29 Our 
proof is based on an application of the MRT. Although a strong result, its 
weakness is that the MRT is not constructive, in the sense that the MRT only tells 
us that some unique process { }tφ  exists such that (4.14) holds, without giving 
guidance how to find it. Obviously, if we cannot find the process { }tφ , we cannot 
physically implement the hedging strategy (4.15).  
 
For derivatives characterized by a payoff function of the form ( )T TF f S=  we 
derived the explicit expressions for ( , )t tψφ  in the previous section; i.e., (4.9)-
(4.11). Although for path-dependent derivatives a perfect hedging strategy thus 
exists, whether one succeeds in finding it, will typically depend on both the 
specific derivative and the creativity of the financial engineer. In light of our 
discussion in the next subsection, instead of trying to find the perfect hedging 
strategy for path-dependent derivatives, a satisfactory alternative might be to 
resort to an approximate strategy; e.g., the strategy (4.9)-(4.11).  
 
4.3.3   Hedging in practice 
 
The perfect hedging strategy outlined in section (4.3.1) requires continuous 
rebalancing of the hedge portfolio -as expressed by the time-varying instrument 
holdings ( , , )r

t t tψ φ ξ . In our frictionless market this poses no problem. However, in 
practice where markets are less than perfect, continuous rebalancing is obviously 
infeasible if only due to transaction costs or market-microstructure effects. As a 
result a financial institution faces a trade-off between being prone to sufficiently 

                                           
29 Notice that no-arbitrage thus dictates 1[ | ]

F Ft t t t t T T tF V B B B F−≡ = = FQEБ . Our analysis essentially 
reveals the following. Suppose we extend our set of basic assets (bond and stock) with derivative .G  
That is, suppose its price process (4.5) is now exogenously given (and hence is not determined within 
the model). Suppose next that we want to price a new-to-be-issued (shorter-maturity) derivative .F  
Since we can replicate 'F s payoff by a self-financing trading strategy in ( , , )rB S G  as we just proved, 
its price must be equal to the cost of the replicating portfolio, tV , by no-arbitrage. This next leads us to 
the risk-neutral valuation formula 1[ | ]t t t T T tF V B B F−= = FQE  (where Q  is the measure under which 

1 1( , )'r
t t t t tB S B G− −=Z  is a martingale), and the notion that the relative derivative price 1

t tB F−  is 
itself a Q-martingale. Moreover, the market is now complete. Indeed, we have essentially proven the 
Fundamental Theorem of Asset Pricing in this case.  
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limited risk and the cost of hedging. Rebalancing at discrete intervals will not 
eliminate all risk: delta and vega-neutrality can only be achieved for a short 
while, after which rebalancing is needed. For example, if gamma is large (in 
absolute value) then delta changes quickly, and the hedge portfolio ought to be 
sooner adjusted in order to maintain sufficiently limited protection against stock 
price fluctuations. 30  
 
 

5. Derivative betas and asset returns 
 
In our model investors are exposed to two sources of risk: stock price fluctuations 
and volatility changes. Risk-averse investors require a reward for bearing 
(undiversifiable) risks. Such compensation takes the form of expected asset 
returns. These returns are determined by the market prices of stock and volatility 
risk. In this section we explore the various risk premia earned on assets traded in 
our market. It appears that in our model, a similar expected return - beta 
relationship as implied by the Capital Asset Pricing Model (CAPM 31) can be 
derived for derivatives.  
 
In section 5.1 we start with developing a concept that is related to the CAPM 
beta. We label it the derivative betas. A derivative’s stock and volatility beta have 
a natural interpretation in terms of expected derivative returns, as explained in 
section 5.2. In section 5.3 we relate our derivative pricing model to Ross’s (1976) 
Arbitrage Pricing Theory (APT). We explain why the specific form of the 
derivative-return formula could be expected in advance. We show how to mimic 
the premium for volatility risk by risk premia on traded assets. The link to APT 
proves valuable in later sections. In section 5.4 we derive the derivative-return 
formula from a different viewpoint: the hedging strategy. In section 5.5 we 
explore the relation between derivative returns and the stochastic discount factor. 
It paves the way for the connection with consumption-based asset pricing theory 
and the premium for volatility risk, both to be developed in section 7.  
 
5.1  CAPM and stock and volatility betas 
 
The expected return – beta, or reward-risk relationship predicted by the CAPM is 
central in modern finance. The conventional CAPM implies that the risk premium 
on an individual asset equals the product of its beta and the risk premium on the 
market portfolio, which comprises all assets. In symbols: [ ] ( [ ] )i f i m fr r r rβ− = −E� E� . 
Here, ir  is the return on asset i , fr  is the risk-free rate, mr  is the return on the 
market portfolio, and iβ  is the beta of security i , which is defined as 

cov[ , ]/ var[ ]i i m mr r rβ ≡ . The asset beta measures the extent in which the asset 
and market returns move together. The CAPM implies that the appropriate asset 
risk premium demanded by investors is determined by the extent in which this 
                                           
30 In an interesting paper, Figlewski (1989) explores by simulation in the BS framework the impact of 
various market imperfections, if the usual delta-hedging strategy is rebalanced only daily. He finds that 
daily rebalancing has a considerable impact on its risk, but also leads to substantial transaction costs. 
Bertsimas et al. (2000) derive the asymptotic distribution of the tracking error incurred when discrete-
time delta-hedging a call option in the BS model. Although its distribution is symmetric with zero mean, 
the root-mean-squared tracking error is of order N-1/2, where N is the number of rebalancing times. 
Bakshi and Kapadia (2003) allow for 1-factor SV and delta-hedge a call with a stock and bond 
investment only. They show that the discrete delta-hedged gains -as they call them- is centered around 
zero unless volatility risk is priced (i.e. a non-zero market price of volatility risk). See also section 6.2.3. 
31 Sharpe (1964), Lintner (1965), Mossin (1966). See e.g. Bodie Kane and Marcus (1996) for a standard 
textbook treatment of the CAPM.   
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asset contributes to the overall risk of the fully diversified market portfolio. The 
market portfolio yields a better risk-return profile than holding the individual 
assets -the diversification effect. All idiosyncratic (i.e. firm-specific) risk has been 
diversified away; only systematic (i.e. market) risk remains. Therefore, investors 
do not care about an asset’s risk as measured by its standard deviation of 
returns; it is its beta that matters.   
 
Based on these insights, our aim is to devise an analogy between our derivative 
pricing model and the CAPM. In our market derivative returns are influenced by 
two underlying “systematic” risk factors, stock price and latent factor movements. 
For simplicity, in the remainder of this chapter we focus on derivatives 
characterized by ( , , )t t tF F t S= x ; i.e., path-independent derivatives.  
 
Similar to the CAPM beta, we define the stock beta of a derivative ,F  denoted by 

,F Sβ  32, as the covariance between the spot derivative and stock returns, as a 
fraction of the instantaneous stock return variance, given current information:  
 

, , ,cov , | / var |t t t t t t
F S t t t F t

t t t t t t

dF dS dS S F S
F S S F S F

β
    ∂

≡ = = ∆    ∂   
F FP P . (5.1) 

 
We refer to the appendix for a derivation. The stock beta clearly varies over time. 
It equals the elasticity of the pricing function ( , , )t tF t S x  with respect to tS , or 
the product of leverage /t tS F  and delta. It is a unitless measure. 33 Moreover, 
note that the beta of the “systematic” risk factor S  equals 1.   
 
To develop a beta measure with respect to the hidden factors x , it is again 
natural to focus on the derivative return. In this case however, we focus on its 
sensitivity towards absolute instead of relative factor changes. As the factors 
drive the stock volatility, and as absolute volatility changes directly affect the 
derivative price and hence return, this seems most natural. Another argument is 
that the factors are not assets, such that there seems no need for focusing on 
relative changes. 34 As such, we define 'F s volatility beta as 
 

( ) 1
, , ,

1 1
var | cov , |t t

F x t t t t t F t
t t t t

dF F
d d

F F F
−   ∂

≡ = =     ∂ 
β x x

x F F VP P , (5.2) 

 
with , , ,1, , ,( ,..., )'F x t F t F n tβ β=β . A derivation is again in the appendix. This beta 
essentially equals the covariance between the spot derivative return and absolute 
factor changes, corrected for the instantaneous variation in factor value changes. 
The beta of F  with respect to volatility-driving factor ix  is given by 

, ,F i tβ = (1 / )( / )t t itF F x∂ ∂ , 1,..,i n= . It represents the vega with respect to factor 

ix , scaled by the derivative price. Notice that if  Σ  is diagonal such that 
var [ | ]t tdx FP  is diagonal, then , ,F i tβ =  cov [ / , | ] /t t it tdF F dxP F var [ | ]it tdx FP .  
 

                                           
32 The symbols ,F Sβ  and , ,1 ,( ,..., )'F x F F nβ β=β  for the derivative betas ought not be confused 
with the symbol for the parameter vector iβ  which consists of parameters ijβ   ( , 1,.., )i j n= , and 
which occurs in the SDE for the factors x . 
33 This obviously follows from focusing on returns instead of absolute changes, which is most natural. As 
prices in economic models are generally expressed in terms of some numéraire asset (e.g. the cash 
bond or the currency “money”), by focusing on asset returns this unit of measurement drops out.  
34 Recall that tx  governs the variance of the instantaneous stock return, i.e. var [ / | ]t t tdS S =FP  

2
0( ' )t tdt dtσ δ= + δ x  and is therefore already numéraire-free. 
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The SDE (3.6) the arbitrage-free derivative price follows can be rewritten in terms 
of the stock and volatility betas, as follows:     

(P) (5.3) 

( ) ( ) ( ) ( ), , , , , , , , , , , ,' 't
t F S t t S t F x t t x t F S t t S t F x t t x t

t

dF
r dt dW d

F
β σ γ β σ = + + + + β ΣΛ γ β ΣΛ W . 

  
This equation makes perfect sense now: Given time- t  information, the spot 
derivative return over the next infinitesimal time interval consists of a 
deterministic (i.e. adapted) part (see next section) and a random part, which 
decomposes into two components. The first component consists of the 
derivative’s sensitivity towards stock price fluctuations as measured by its beta 

, ,F S tβ , multiplied by the exogenous shock ,t S tdWσ  occurring in the instantaneous 
stock return /t tdS S . The second component equals the product of the volatility 
beta , ,F x tβ  and the shock ,t x tdΣΛ W  occurring in the factor change tdx . The 
shocks to the derivative return have a very natural interpretation now.   
 
5.2  Asset returns and the volatility risk premium 
 
In this section we explore the returns investors are expected to earn when 
investing in the various assets traded in our market.  
 
Consider first the cash bond. Its price varies deterministically according to 

t t tdB r B dt= . The instantaneous bond return /t tdB B  is given by the non-random 
quantity tr dt . It represents the time value of money or “market price of time”: 
By investing in the bond and thereby postponing consumption, an investor is 
guaranteed to make a risk-free rate of return equal to the bond rate. 
 
Consider next the dividend-paying stock. The stock price itself does not represent 
the value of a tradable asset. The reinvestment portfolio is tradable however. In 
terms of the market price of stock risk (2.8), under P its value evolves as 

, ,( )r r r
t t t S t t t t S tdS r S dt S dWσ γ σ= + + . This investment’s expected spot return equals  

 

 ,| ( ) ( )
r
t

t t t S t t tr
t

dS
r dt q dt

S
σ γ µ

 
= + = + 

  
PE F .    (5.4) 

 
It provides a clear interpretation of the market price of stock risk, ,S tγ . The risk 
premium on this asset equals the product of the amount of risk currently inherent 
in the stock price (as measured by the volatility of its fluctuations, tσ ), and the 
price of this risk, measured by ,S tγ . Notice that this risk premium may depend on 
the current level of the stock volatility, as we assumed ( , , )t t tt Sµ µ= x  in general 
terms. It may be argued that investors demand a larger (smaller) compensation 
when risk (i.e. volatility) is high (low), which would require /t tµ∂ ∂ >x 0 . 
 
Consider finally a general derivative .F  From (5.3) the expected spot derivative 
return equals 
 

( ) ( ), , , , , ,| 't
t t F S t t S t F x t t x t

t

dF
r dt

F
β σ γ

   = + +    
β ΣΛ γPE F   (5.5) 

( ) ( )2
, , , , 't F S t t t t F x t tr q r dtβ µ = + + − + β ΣΛ γ ,   

 
where the latter equality follows from substituting the expressions for the market 
prices of stock and volatility risk, , ( ) /S t t t t tq rγ µ σ= + −  and ,x t t=γ Λ γ . This is 
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the expected return - beta or reward–risk relationship that holds for derivative 
securities in our market. It says that the return an investor is expected to earn 
consists of three components (of which the third consists of n  separate 
components). The risk-free rate is earned as compensation for delayed 
consumption by investing in the derivative instead of immediate expenditure, i.e. 
the time value of money. Both other components are compensation for being 
exposed to the risks underlying the derivative. Compensation for stock risk equals 
the product of the risk premium on the dividend-paying stock and the amount of 
stock risk inherent in the derivative, as measured by its beta , ,F S tβ . 
Compensation for volatility risk equals the product of the volatility beta , ,F x tβ  and 
a vector, which we will refer to as the volatility risk premium: ,t x tΣΛ γ  = 2

tΣΛ γ .  
 
The volatility risk premium consists of n  separate factor risk premia, one for each 
factor .ix  35 The premium depends on the current state of the volatility, unless 
the factors follow an OU process, for which it is constant. If there is currently no 
volatility risk such that the volatility-of-volatility is zero, the volatility risk 
premium is zero, as required by no arbitrage. Depending on the value of γ , the 
volatility risk premium can be zero, negative or positive. It is of obvious interest 
to investigate both the sign and magnitude of the volatility risk premium in real-
world financial markets. We refer to sections 6 and 7 for further discussion.   
 
5.3  Asset returns and the relation with Arbitrage Pricing Theory 
 
In our market, enforcing no-arbitrage results in the reward–risk relationship (5.5) 
for investing in derivatives. This relationship is similar in spirit to what Ross’s 
(1976) Arbitrage Pricing Theory (APT) predicts. So could we have expected a 
relation as (5.5) to hold in our market beforehand? At first sight our derivative 
pricing and the APT setting seem only superficially related. In this section we 
explain the correspondences. Perhaps not surprisingly, it is the arbitrage 
argument that provides the connection. We also show how the volatility risk 
premium can be mimicked by risk premia on traded assets. As in sections 5.2 and 
5.3 where we connected to the CAPM, the analysis below provides valuable 
insights in continuous-time derivative pricing theory in general, and its links with 
more traditional asset pricing models.  
 
APT and factor-mimicking portfolios 
Ross’s (1976) Arbitrage Pricing Theory assumes that a set of abstract common 
factors f  drives security returns in a perfect, competitive market. Specifically, 
Ross assumes the 1-period return on asset ,i  ir , to be generated by 
 

 'i i i ir a e= + +b f ,       (P) (5.6) 

 
in which 2| ~ (0, )i ie σf , and ia  and ib  are constants with the vector ib  
measuring the asset’s sensitivity to the systematic factors .f  These sensitivities 
are also known as factor loadings. The error term ie  measures the idiosyncratic 
or specific risk in the security return that cannot be attributed to the systematic 
factors that drive the economy. If the 'ie s  are sufficiently uncorrelated across 
assets, then the specific risk of a large well-diversified portfolio can be shown to 
approach zero, essentially by applying the weak law of large numbers. Notice that 

                                           
35 Notice that the volatility risk premium equals the product of the volatility function tΣΛ  of the SDE of 
the factors and the market price of volatility risk ,x tγ . This is similar to the risk premium on the stock, 

,t S tσ γ , which equals the product of the volatility function tσ  of  the stock return /t tdS S , and the 
market price of stock risk ,S tγ . 
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this set-up has not been imposed the absence of arbitrage strategies yet. 
Assuming the existence of a risk-free asset earning a return of fr , Ross shows 
that in markets in which a large number of assets trades and that are free of 
arbitrage opportunities, for most assets it must hold that   
 

 'i f ir r= +   b λPE ,       (5.7) 
 
in which λ  is a vector of factor risk premia. Hence, like in the CAPM, from (5.7) it 
is clear that idiosyncratic risk is not compensated for: var [ ]ieP  does not enter 
(5.7). Relation (5.7) holds for all but possibly a small number of assets which 
may be mispriced; i.e. earn an expected return not commensurate with risk. For 
well-diversified portfolios the relation is always exact.  
 
Although the APT does not specify the number or nature of the abstract factors, 
the factor risk premia can in theory be proxied for using the concept of factor-
mimicking portfolios. Suppose a change in the value of portfolio j  is only affected 
by a change in factor j , such that 0jkb =  for all factors k j≠ . Rearranging from 
(5.7), factor j ’s risk premium is thus equal to ( [ ] ) /j j f jjr r bλ = −PE ; i.e. the risk 
premium on factor j ’s mimicking portfolio per unit of risk as measured by the 
factor sensitivity. (Note that a logical consequence is that if portfolios j  and J  
both mimic factor j , then it must hold that ( [ ] ) / ( [ ] ) /j f jj J f Jjr r b r r b− = −P PE E , 
otherwise there is arbitrage possible. 36) Identifying these factor-mimicking 
portfolios one by one results in asset i ’s (with i j≠ ) expected return being 
rewritten in terms of the risk premia on the factor-mimicking portfolios as  
 

 ( )ij
i f j f

jjj

b
r r r r

b
 = + −    ∑P PE E .     (5.8) 

 
Hence, in a sense, it is the factor-mimicking portfolios that essentially “span” the 
space of assets in this setting.  
 
Comparison 
So how does the 1-period APT setting compare to our continuous-time derivative  
pricing setting (and derivative pricing models in general)? First, regard the 
interval of infinitesimal length [ , ]t t dt+  as “one period”. Second, in our model 
asset returns are driven by two “common factors”. The first factor 1f  is the shock 

,t S tdWσ  in the stock return /t tdS S . The second factor 2f  is the unpredictable 
shock ,t x tdΣΛ W  in a stock-volatility change, governed by tdx . Notice that our 
model does not know “idiosyncratic risks ie ”, i.e., asset-specific risk. Instead, all 
asset uncertainty is fully governed by the underlying common factors. The 
derivative betas (implicitly) measure the sensitivity of an asset’s return to the 
common factors. These betas clearly serve as the “factor loadings” 1ib  and 2ib .  
 
Consider now the asset returns in our market. Both “factor loadings” of the bond 
return /t t tdB B r dt=  are zero, whereas it’s ia -term from (5.6) equals tr dt . For 
the reinvestment portfolio return we have ,/ ( )r r

t t t t t S tdS S q dt dWµ σ= + + . Hence, 
its ia -term from (5.6) equals ( )t tq dtµ + , it has a loading of 1 to the first factor 

1f = ,t S tdWσ , and a zero-loading with respect to the second factor 2f = ,t x tdΣΛ W . 

                                           
36 Notice the analogy with a continuous-time setting. For example, suppose two assets 1S  and 2S  are 
driven by the same risky P-Brownian motion W  and evolve according to it i it i it tdS S dt S dWµ σ= +  for 

1,2i = . Imposing no-arbitrage in this case results in the equal Sharpe-ratio restriction 
1 1 2 2( ) / ( ) / :r rµ σ µ σ γ− = − =  where γ  is the market price of W − risk and r  is the risk-free rate. 

This is basically an alternative way of stating that the relative prices of all tradable assets should be 
martingales under the same  measure Q in the absence of arbitrage. 
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Consider finally the return on a derivative with price ( , , )t t tF F t S= x . From Itô’s 
lemma, , , , , , ,/ (..) / ( ) '( )t t t F S t t S t F x t t x tdF F F dt dW dβ σ= + + β ΣΛ W  under P, where the 
expression for the dots is as in (3.1). The analogy with the APT relation (5.6) will 
be clear; notice once more that there is no derivative-specific risk ie .  
 
Considered in the interval [ , ]t t dt+ , our model setting thus exactly fits into the  
1-period APT-setting. Therefore, imposing the no-arbitrage condition in our 
market should lead to an expected-return expression similar to what the APT 
predicts; i.e., an expression like (5.7). Moreover, as there is no asset-specific risk 

ie  37, we expect this expression to hold with equality for all assets.  And indeed, 
this is precisely where we arrived at in the previous section in (5.4) and (5.5). 
The factor risk premia are given by ,t S tσ γ  and ,t x tΣΛ γ . The analogy with the 
classical APT is evident. Hence indeed, we could have expected an expected 
return – beta relationship as (5.5) to hold in our market. It is really the condition 
of no-arbitrage that is driving this result.  
 
Mimicking the volatility risk premium 
Similar to the factor-mimicking portfolios of the APT, we can rewrite the 
unobserved volatility risk premium in terms of the risk premia on n  traded 
derivatives , 1,.., ,iG i n=  with prices ( , , )it i t tG G t S= x . Consider some derivative 
F  with price ( , , )t t tF F t S= x . Assume the smallest maturity among the iG ’s to be 
at least as large as 'F s maturity. From (5.5), iG ’s spot risk premium is given by 
 

( ) ( ), , , , , ,| 'it
t t i S t t S t i x t t x t

it

dG
r dt dt

G
β σ γ

   − = +   
 

β ΣΛ γPE F ,  (5.9) 

 
with , ,i S tβ  and , ,i x tβ  the stock and volatility beta of iG  respectively. Stacking 
these n  risk premia in an ( 1)nx  vector we obtain 
 

 ( ) ( ), , , , , ,. / |t t t t S t t S t x t t x td r dt dtσ γ − = +    G GG G 1 β β ΣΛ γPE F , (5.10) 

 
with , , 1, , , ,( 1) ( ,.., )'S t S t n S tnx β β≡Gβ , , , 1, , , ,( ) ' [ ,.., ]x t x t n x tnxn ≡Gβ β β , and where we 
use the notation 1 1. / ( / ,.., / )'t t t t nt ntd dG G dG G≡G G  and ( 1)nx 1  is a vector of 
ones. From (5.4), ,t S tdtσ γ  is the spot risk premium on the reinvestment portfolio 

rS . The volatility risk premium can then be written as  
          (5.11) 

 1
, , , , ,. / | | /

r
t

t x t x t t t t t S t t tr
t

dS
d r dt r dt dt

S
−

  
=  − − −         

G GΣΛ γ β G G 1 βP PE EF F , 

           
provided that the inverse of the matrix , ,( ) x tnxn Gβ  exists. The sensitivity vectors 

, ,i x tβ  (and hence the vegas of the iG ’s) thus ought to be linear independent. For 
example, the set of iG ’s is not allowed to contain derivatives that mature at the 
same date and which payoff is a linear combination of the payoffs of other iG ’s. 
We thus need “linear-independent” derivatives. We encountered this condition 
earlier in section 4.2 on hedging. (Indeed, this is essentially a rank condition for 
completeness of the market.) 
 
                                           
37 This is clearly common to all derivative pricing models: The link between the underlying factors and 
the derivative is exact; there is no room for “pricing error”. Thinking about stock and option trading in 
practice, this is arguably both a weak  point (as models are only reflections of reality) and a strong  
point (as we can quote an exact model-based price) of derivative pricing models at the same time. For 
parameter-estimation purposes it seems best to introduce some source of error between model-based 
derivative prices and observed real-world prices. This is exactly what we will do in the next chapter.  
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Having rewritten the unobserved volatility risk premium in terms of the risk 
premia on observed assets iG  and rS , derivative 'F s spot return (5.5) becomes 
 

( )1
, , , , , , , ,| ' |

r
t t

t t F S t F x t x t S t t tr
t t

dF dS
r dt r dt

F S
β −   

= + − −  
    

G Gβ β βP PE EF F  

1
, , , ,' . / |F x t x t t t t td r dt−+ −  Gβ β G G 1PE F .  (5.12) 

 
The analogy with the concept of factor-mimicking portfolios and equation (5.8) is 
apparent. Together the bond, reinvestment portfolio and derivatives iG  span the 
return on any arbitrary derivative.  
 
5.4 Derivative returns and the hedging strategy 
 
The expected spot return (5.5) on a general derivative F  with price 

( , , )t t tF F t S= x  can alternatively be derived from its associated hedging strategy. 
Again, it is the arbitrage argument that fuels the derivation, and again it shows 
up in a somewhat different disguise, yielding additional insight. For simplicity we 
consider the 1-factor SV special case of our model.  
 
As in section 4.3.1, we consider hedging F  with a dynamic trading strategy in the 
bond ,B  the reinvestment portfolio rS , and a longer-maturity derivative .G  The 
hedging strategy ( , , ), [0, ],r

t t t Ft Tψ φ ξ ∈  is given by equations (4.9)-(4.11). As we 
can perfectly replicate F ’s payoff and as the strategy is self-financing, it holds 
that r r

t t t t t t tF B S Gψ φ ξ= + +  by no-arbitrage, and r r
t t t t t t tdF dB dS dGψ φ ξ= + + . 

Dividing this SDE by tF  and rearranging, we obtain 
 

 
r r r

t t t t t t t t t t
r

t t t t t tt

dF B dB S dS G dG
F F B F F GS

ψ φ ξ    
= + +         

.      (5.13) 

 
This equation tells us that the spot derivative return is a replicating-portfolio-
weighted average of the spot returns on its composing instruments. Recalling  
that /t t tdB B r dt= , rewriting in terms of excess returns, and using 

r r
t t t t t t tB S G Fψ φ ξ+ + = , we get 

 

 
r r r

t t t t t t t
t t tr

t t t tt

dF S dS G dG
r dt r dt r dt

F F F GS

φ ξ       
= + − + −                 

.      (5.14) 

 
If we next take conditional expectations, the expected derivative return becomes  
 

 | | |
r r r

t t t t t t t
t t t t t tr

t t t tt

dF S dS G dG
r dt r dt r dt

F F F GS

φ ξ        
= + − + −                   

P P PE E EF F F .(5.15) 

 
Derivative F ’s spot risk premium is thus a replicating-portfolio-weighted average 
of the spot risk premia on the hedging instruments, being the reinvestment 
portfolio and the “volatility-mimicking” derivative .G  This result is something that 
was not at all apparent from either (5.5) or (5.12). Taking the explicit hedging 
strategy (4.9)-(4.11) into account and the definitions of delta, vega and the stock 
and volatility betas, it requires some algebra to show that the portfolio  
weights in equation (5.15) are equal to /r r

t t tS Fφ = , , , , , , , ,/F S t F x t G S t G x tβ β β β−  and 

, , , ,/ /t t t F x t G x tG Fξ β β= . Hence, equation (5.15) can be rewritten as the 1-factor 
version of (5.12), as it should be of course. The link is obvious.  



- II - The Multifactor Affine Stochastic Volatility Derivative Pricing Model 
 

 38

5.5 Asset returns and the stochastic discount factor 
 
It is interesting to go one step further and explore the relation between expected 
derivative returns and the stochastic discount factor (SDF). Its importance will 
become apparent in section 7, which proposes a theory for volatility-risk premia. 
 
Consider the no-arbitrage pricing relation (3.10) that holds for all tradable assets, 
 

|t t T T tM F M F=   PE F .       (5.16) 
 
As the process { ; 0}t tM F t ≥  is a 1-dimensional ( ,{ })t −P F martingale, the 
martingale representation theorem tells us that 
  

 0 0

0

' ( ) '
t

t t u u t t t tM F M F d d M F d= + ⇔ =∫ ξ W ξ W ,  (P) (5.17) 

 
for some ( 1)n + − dimensional t −F adapted process { ; 0}t t ≥ξ . 38 It follows that 
 
 ( ) | 0t t td M F =  PE F .       (5.18) 
 
The P-expected increment in the martingale given current information thus equals 
0. It is essentially the infinitesimal analogue of the martingale property (5.16). 39 
As both the derivative price and the stochastic discount factor follow Itô 
processes, integration by parts gives us 
 

( ) ( )( )t t t t t t t td M F M dF F dM dM dF= + + .    (5.19) 
 
Substitution in (5.18), dividing by t tM F  (which is allowed as no-arbitrage yields a 
strictly positive stochastic discount factor, and 0tF ≠  as long as the derivative 
does not pay off zero in all states of the world), and rearranging yields 
 

 | | |t t t t
t t t

t t t t

dF dM dM dF
F M M F

     
= − −     

     
P P PE E EF F F .   (5.20) 

 
To further simplify, notice first that the latter expectation equals the conditional 
covariance between /t tdM M  and /t tdF F , as both the conditional mean of 

/t tdM M  and /t tdF F  are of order dt , such that their product equals zero. 
Second, as (5.18) holds for all tradable assets, (5.20) holds for the bond as well. 
As the bond obeys /t t tdB B r dt=  and does not covary with /t tdM M , it follows  
 

 |t
t t

t

dM
r dt

M
 

= − 
 

PE F .       (5.21) 

 
Equation (5.20) can thus be rewritten as 
  

                                           
38 Recall that the MRT is not constructive: it only tells us that some process { ; 0}t t ≥ξ  exists such that 
(5.17) holds, without giving guidance how to find it. In this case it is possible to find the process 
{ ; 0}t t ≥ξ  however, as we have explicit expressions for the SDF tM  and for .tdF  
39 Notice the analogy with the risk-neutral arbitrage-free pricing relation / [ / | ]t t T T tF B F B= QE F , 
which is dictated by The Fundamental Theorem of Asset Pricing. Alternatively stated it thus says 

10 [ ( )| ].t t td B F−= QE F  As ( , , )t t tF F t S= x  follows an Itô process, integration by parts yields 
1( )t td B F− =  1 1 1( )( )t t t t t t tB dF r B F dt dB dF− − −− +  with 1( )( ) 0t tdB dF− = . Substitution followed by 

rearranging yields [ / | ]t t t tdF F r dt=QE F . Indeed, this is a quick way of showing that no-arbitrage 
requires the expected growth rate of all tradable assets under Q to equal the risk-free bond rate.  
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| cov , |t t t
t t t

t t t

dF dM dF
r dt

F M F
   

= −   
   

P PE F F .    (5.22) 

 
This equation tells us that, apart from the risk-free rate as compensation for 
delay in expenditure, the expected derivative return is determined by the extent 
in which the derivative return covaries with the “return” on the SDF, /t tdM M . A 
negative (positive) correlation implies an expected derivative return above 
(below) the risk-free rate. Notice that no matter how large the “derivative-
specific” risk var [ / | ]t t tdF FP F , it does not influence the derivative return. Similar 
results appear in different model settings and are well known in the literature 
(see e.g. Cochrane (2001)). The common underlying force that leads to this 
result is evidently the condition of no arbitrage. We refer to section 7 for further 
discussion.   
 
Obviously, equation (5.22) must lead to expression (5.5), which also resulted 
from imposing the absence of arbitrage. From expression (3.11) for the Radon-
Nikodym process { ; 0}tL t ≥ , we obtain that 1

2ln ' 't t t t td L d dt= − −γ W γ γ . By Itô’s 
formula, 't t t tdL L d= −γ W . This illustrates the well-known fact that the Radon-
Nikodym process is a ( ,{ })t −P F martingale. Recall that the SDF is defined by 

1
t t tM B L−=  such that 1 1 1 1

t t t t t t t t t tdM B dL L dB B dL r B L dt− − − −= + = − , and hence 
 
 , , , ,/ ' 't t t t t t S t S t x t x tdM M r dt d r dt dW dγ= − − = − − −γ W γ W .  (5.23) 
 
Notice the apparent roles of the market prices of time, stock and volatility risk, 
i.e., tr , ,S tγ  and ,x tγ  in the process for the stochastic discount factor. The 
expression for /t tdF F  is given in (3.1), which is of the form /t tdF F =  

, , , , , ,(..) 'F S t t S t F x t t x tdt dW dβ σ+ + β ΣΛ W . We find for the covariance 
 

 ( ) ( ), , , , , ,cov , | 't t
t F S t t S t F x t t x t

t t

dM dF
dt

M F
β σ γ

   = − +   
 

β ΣΛ γP F . (5.24) 

 
In the absence of arbitrage equation (5.22) holds. We obtain (5.5) once again: 
   

 ( ) ( ), , , , , ,| 't
t t F S t t S t F x t t x t

t

dF
r dt

F
β σ γ

   = + +   
 

β ΣΛ γPE F .  (5.25) 

 
 

6. Volatility risk and compensation for volatility risk 
 
In this section volatility risk and compensation for volatility risk are central. The 
issue whether investors are compensated for bearing (market) volatility risk in 
practice has recently attracted much attention in the finance literature. Standard 
asset pricing theory (the APT) states that if volatility risk is systematic –i.e. 
cannot be diversified away-, then investors should be compensated for it. As 
Bakshi and Kapadia (2003) point out in their first paragraph: “However, a less 
than understood phenomenon is whether volatility risk is compensated, and 
whether this compensation is higher or lower than the risk-free rate. [..]”. 
Moreover, they end their article with “Much more remains to be learned about 
how volatility risk is priced in financial markets.”  
 
Section 6.1 reviews the assumptions made so far in the literature with regard to 
the market price of volatility risk. Before turning to the evidence, in section 6.2 



- II - The Multifactor Affine Stochastic Volatility Derivative Pricing Model 
 

 40

we first consider a number of popular derivative strategies in which volatility risk 
plays a dominant role. We look at straddles, variance swaps and delta hedging a 
derivative. Then, in section 6.3, we provide a detailed overview of the empirical 
evidence on volatility-risk compensation. The evidence has only recently become 
available, and arrives from very different studies. Our empirical work to be 
discussed in later chapters further adds to this evidence.  
 
6.1 Market-price-of-volatility-risk assumptions in the literature 
 
To obtain unique derivative prices under SV formally requires an asset pricing 
model that integrates explicit investor attitude towards volatility risk. Aware of 
this, some of the earliest researchers on SV option pricing use general equilibrium 
arguments (based on Cox et al. (1985)) to be able to say more about the form of 
the market price of volatility risk. Examples are Wiggins (1987) and Chesney and 
Scott (1989). However, only for a few special (restrictive) types of investor 
preferences a closed-form expression for the price of volatility risk can be 
derived.  
 
Given the complexity of such a model, others in the earliest stream simply 
assume a zero correlation between volatility and aggregate consumption. 
Volatility risk can then be diversified away, and hence should not be priced in 
equilibrium. Examples of this approach include Hull and White (1987), Johnson 
and Shanno (1987), and Scott (1987). Subsequent researchers (e.g. Melino and 
Turnbull (1990) and Stein and Stein (1991)) assume the market price of volatility 
risk to be constant. This can be justified if an investor derives logarithmic utility 
from consumption. Heston (1993) (implicitly) models the price of volatility risk as 
being proportional to the square root of the stock variance. His choice is 
motivated by a combination of Breeden’s (1979) consumption-based asset pricing 
model, and the consumption process that emerges in the general equilibrium 
model of Cox et al. (1985). The resulting Q-volatility process is still CIR.   
 
The more recent literature has more or less side-stepped from such direct 
motivations. Researchers currently seem to favor tractable functional forms for 
the market price of volatility risk that depend on extra (free) parameters, which 
can be estimated from option prices. The price of volatility risk is then essentially 
only an indirect reflection of investor preferences. These functional forms are  
often chosen rather ad hoc (e.g., Jones (2003)). For instance, it is nowadays 
common to assume that the volatility process under the market and risk-neutral 
measures is of the same type. 40 Examples include Chernov and Ghysels (2000), 
Pan (2002), Jones (2003), and our model specification.  
 
6.2  Investment strategies dominated by volatility risk 
 
In this section we look at investment strategies in which volatility risk is of 
paramount importance. The idea is that if derivatives incorporate a volatility risk 
premium in practice, then its existence should be apparent from an investment 
strategy that has hedged all, but volatility risk. We consider straddles, variance 
swaps and delta-hedging a general derivative. These strategies are commonly 
employed in practice.  
 
 
                                           
40 This is also common practice in the term-structure-of-interest-rates literature for the short interest-
rate specification under P and Q; see e.g. Dai and Singleton (2000) and de Jong (2000). 
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6.2.1   Straddles: bets on volatility 
 
A long straddle ( Str ) is a derivative asset consisting of a portfolio of a European 
call C  and put P  written on the same stock S , with equal strike K  and 
remaining maturity t T tτ = − , where T t>  is the expiration date of the options. 
By no-arbitrage, the time- t  straddle price, delta and vega equal 
 

t t tStr C P= + ,    , ,2 exp( )Str t C t t tq τ∆ = ∆ − − ,     , ,2Str t C t= V V ,  (6.1) 
 
with ,C t∆  and ,C tV  the call delta and vega, and where we exploited the put-call 
parity (3.25). (Notice in particular that the vega of a call and put option coincide.)  
 
Now suppose for the moment that we live in a world without stochastic volatility, 
such that ,t t t t S tdS S dt S dWµ σ= +  - the world of Black-Scholes (BS). The BS call 
price is given by (3.23) and (3.24), but with tσ  replaced by the parameter σ . 
The BS call delta equals 1exp( ) ( )t t tq dτ− Φ . The BS call vega –which is defined as 

/tBS σ∂ ∂ - is given by 1exp( ) ( )t t t t tq S dτ τ φ− , where (.)φ  is the standard normal 
density. If the straddle is currently at-the-money-forward (ATMF) such that 

tF K= , it holds that 1
1 2 0t td σ τ= ≈ , especially for short-maturity options. As 

1
2(0)Φ =  and (.)φ  reaches its maximum for 1 0td = , it is clear that an ATMF-

straddle position is virtually delta neutral, whereas its vega is maximal. In other 
words, an ATMF straddle is (instantaneously) insensitive to stock price 
fluctuations, whereas it is maximally perceptive to volatility changes. This 
analysis explains why ATMF straddles are typically being referred to as  
bets on volatility in practice, and allow investors to trade volatility risk. It is a 
clear example of a (spot) delta-neutral positive-vega strategy. An investor will 
buy such a straddle if he –different from other market participants- expects big 
swings in the stock price, and will write one if he expects tranquillity. 
 
In our world with stochastic volatility, the straddle delta is given by 

1exp( ) [2 ( ) 1| ]t t t tq dτ− Φ − FQE . If the straddle is currently ATMF, then it still holds 
that 1

1 2 0t t td σ τ= ≈  by approximation, for whatever empirically reasonable 
value the random variable tσ  assumes, and in particular for short-maturity 
options. So an ATMF straddle is still delta neutral by approximation. Moreover, 
Hull (2003) mentions that the vega of an option calculated from a (1-factor) 
stochastic volatility model is very similar in magnitude to the Black-Scholes vega. 
41 Hence, also in our world an ATMF straddle is particularly sensitive to volatility 
movements.    
 
Given that its vega is maximal, its delta (and thus stock beta) is approximately 
zero, an ATMF-straddle position seems ultimately suited for enlarging our 
understanding of the volatility risk premium. From (5.5), the ATMF-straddle 
return is 
 

 ( )2
, ,| 't

t t Str x t t
t

dStr
r dt

Str
   ≈ +    

β ΣΛ γFPE .     (6.2) 

 
The risk premium on such a straddle is virtually only determined by the volatility 
risk premium. Notice that in case volatility risk is not priced, the expected 

                                           
41 In our world, our vega definition implies 2

, [ ( , , , , ) | ]/t t t t t tC t BS F K rτ σ= ∂ ∂ =xQEV F  
2[ ( , , , , ) / | ]t t t t t tBS F K rτ σ∂ ∂xQE F  which –it seems- can only be obtained by simulation. 
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straddle return equals the risk-free rate. 42 (However, realize that the ATMF 
straddle is only instantaneously delta neutral, and that we are considering its spot 
return.) The straddle volatility beta is given by , , ,2 /Str x t tC t Str=β V . If tF K=  
(ATMF), then t tP C= , and hence , , , , , ,, /Str x t t C x t P x tC t C= = =β β βV . For a numerical 
impression of these betas we refer to the empirical analyses in later chapters.  
 
Special case: 1-factor SV model 
If we specialize to the 1-factor SV special case with 0 0δ =  and 1 1δ =  such that 

2
t txσ = , ,( )t t t x tdx k x dt x dWθ σ α β= − + + , the ATMF-straddle return becomes 

 

 , ,| ( )t
t t Str x t t

t

dStr
r x dt

Str
β σγ α β

 
 ≈ + +   

 
PE F ,   (6.3) 

in which ( )txσγ α β+  is the volatility risk premium. As the volatility beta of an 
option and hence a straddle is positive, we observe that the risk premium on the 
straddle is negative (resp. positive) if γ  is negative (resp. positive). The 
parameter γ  determines the market price of volatility risk, which in the 1-factor 
case is given by ,x t txγ γ α β= + .   
 
6.2.2   Variance swaps: trades on realized variance 
 
A volatility derivative that has recently gained much popularity in financial 
markets is the so-called variance swap, .VS  This instrument is nowadays actively 
traded over the counter. The theoretical payoff of a long variance swap equals a 
fixed dollar-multiple A  of the difference between the average stock variance, 2σ , 
realized over the life [0, ]T  of the contract, and a fixed swap rate, .SW  That is, 

2[ ]TVS A SWσ= − . To determine the payoff at maturity in practice, 2σ  is 
estimated by the average realized variance. 43 This volatility derivative is clearly 
path-dependent and, moreover, of the Asian type. A variance swap allows 
investors to trade volatility (or more precisely, quadratic variation) directly, 
without being exposed to stock price risk. Other than a straddle, a variance swap 
is constantly immune to stock price fluctuations.  
 
A variance swap is a mutual agreement between two parties to essentially 
exchange volatility. Therefore, as there are no costs associated with entering 
such a contract (hence 0 0VS ≡ ), the risk-neutral valuation formula (3.9) yields 
for the variance-swap rate 2

0[ | ]SW σ= QE F . From time 0 onwards, the arbitrage-
free contract value at time ,t  tVS , can next be determined from (3.9) again:  
 

 exp( ) |t t t T tVS r VSτ= −   QE F  
 

 { }2exp( ) |t t tA r SWτ σ = − − QE F  

 2 2

0

1
exp( ) | ;

T t

t t t s t t s

t

A r I ds SW I ds
T

τ σ σ
      = − + − ≡       

∫ ∫QE F  

 ( , , )t tVS t I= x ,       (6.4) 

                                           
42 This is moreover exactly what the conventional Black-Scholes model predicts. In the BS world the 
price of a derivative for which ( )T TF f S=  is given by ( , )t tF F t S= , as there is no volatility risk. 
Following a similar analysis as before, it can be shown that ( ), , ,/ |t t t t F S t S tdF F r dtβ σ γ = +    FPE  
with , ( ) /S t t t tq rγ µ σ= + − . An ATMF straddle is thus expected to earn the risk-free rate 
instantaneously. 
43 This average realized stock return variance is computed as the annualized average of the squared 
(log) stock returns, in which the sampling frequency of the returns is specified in the contract. 
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in which { ;0 }tI t T≤ ≤  represents the integrated stock-variance process. The 
conditional expectation appearing after the third equality is a function of tx  only 
(and not of its past), as { }tx  follows a Markov diffusion. 44 The variance-swap 
value is therefore a function of , tt x   and tI : ( , , )t t tVS VS t I= x . 45  
 
In appendix IIc we show that the expected spot variance-swap return is given by 
 

 ( )2
, ,| 't

t t VS x t t
t

dVS
r dt

VS
   = +    

β ΣΛ γPE F .    (6.5) 

 
Because of its permanent delta-neutrality, the return on this exotic product is 
fully determined by the volatility risk premium.  
 
Special case: 1-factor SV model 
As an illustration, let us consider the 1-factor SV special case of our model with 

2
t txσ =  (i.e., 0 0, 1δ δ= = ). Under Q, the factor dynamics read 

 

,( )t t t x tdx k x dt x dWθ σ α β= − + +% %% ,    (Q) (6.6) 

 
in which the risk-neutral parameters are given by , ( ) /k k k kσγβ θ θ σ γ α= + = −% %% . 
Using equation (9.17) from appendix B, the swap rate equals 
 

 ( )2 2
0 0 0

0

1 1 exp( )
| |

T

s
kT

SW ds x
T kT

σ σ θ θ
  − −   = = = + −    
∫

%
% %

%Q QE EF F . (6.7) 

 
Using (6.4) and this (9.17) again, we obtain for the variance-swap value: 
 

 21
exp( ) |

T

t t t t s t

t

VS A r I ds SW
T

τ σ
      = − + −       

∫QE F  

 
1 exp( )1

exp( ) t
t t t t t

k
A r I x SW

T k

ττ θτ θ
  − −  = − + + − −       

%
% %

%
. (6.8) 

 
From (6.5), the expected spot variance-swap return equals 
 

 , ,| ( )t
t t VS x t t

t

dVS
r x dt

VS
β σγ α β

 
 = + +   

 
PE F ,    (6.9) 

 
in which the swap’s volatility beta is given by 
 

 , ,
exp( ) 1 exp( )1 t t t t

VS x t
t t t

VS A r k
VS x VS kT

τ τβ
 ∂ − − −

= =   ∂  

%

%
.   (6.10) 

 
A more physical interpretation of the market price of volatility risk can  
now be given as follows. The spot variance-swap risk premium is given by 

                                           
44 See appendix B, equation (9.17) for an illustration.  
45 Notice that if it were  the case that ( , )t tVS VS t= x , then the analysis from section 3.1 could 
directly be used to obtain an expression for the spot variance-swap return as in equation (3.6) (but 
leaving out the terms involving tS ). However, it does not hold that ( , )t tVS VS t= x ; instead, 

( , , )t t tVS VS t I= x . Additional analysis is therefore required.  
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, , ,[ | ]t

t

dVS
t t VS x t t x tVS r dt x dtβ σ α β γ− = +PE F  with ,x t txγ γ α β= + . From appendix 

IIc, (c.6), it follows that 2 2
, ,var [ | ] ( )t

t

dVS
t t VS x tVS x dtσ α β β= +P F . Dividing yields 

 

 ,

[ | ]

var [ | ]

t

t

t

t

dVS
t tVS

x tdVS
tVS

r dt
dtγ

−
=

P

P

E F

F
.      (6.11) 

 
The market price of volatility risk thus essentially represents the instantaneous 
Sharpe ratio of a variance swap. Moreover, any asset’s risk premium can be 
expressed as a linear combination of the risk premia on the dividend-paying stock 
and a variance swap: These instruments essentially span the universe of assets in 
the 1-factor SV market. (Notice once more the APT-analogy.)  
 
As the swap’s volatility beta (6.10) is positive (as long as >% 0k  and > 0)tVS , it 
follows that the risk premium on a variance swap is negative (resp. positive) if 
the market price of volatility risk (and hence γ ) is negative (resp. positive). If 
volatility risk is not priced, then the variance swap is expected to earn the risk-
free rate. 
 
6.2.3   Delta hedging  
 
As a final example of investment strategies that are dominated by volatility risk, 
we consider delta hedging a derivative. Consider, at time 0, a general derivative 
F  with maturity T  and time- t  price given by ( , , )t t tF F t S= x . Similar to Bakshi 
and Kapadia (2003) 46, we define the delta-hedged gains over [0, ]T , 0,TΠ , as the 
gain or loss on the delta-hedged derivative position (with immediate reinvestment 
of dividends 47), and where the net investment earns the risk-free rate: 
 

0, 0 0 , 0 ,

0 0

exp( ) exp( )
T T

r r
T T t F t t t t t F t tF F q t dS r F q t S dt Π ≡ − − − ∆ − − − ∆ ∫ ∫   

0 , ,

0 0

( )
T T

T F t t t t t t F t tF F dS r F r q S dt = − − ∆ − − − ∆ ∫ ∫ . (P) (6.12)  

 
The second equality uses 0exp( )r

t t tS q t S=  such that 0exp( )[ ].r
t t t t tdS q t dS q S dt= +  

Combining (3.1) with the no-arbitrage restriction (3.4), and using ,t S t tµ γ σ− =  

t tr q−  (see (2.8)), we obtain for the gain on derivative F  over the interval [0, ]T : 
  

0 , , ,, ,
0 0 0 0

( ) ' ' ( )
T T T T

T t t t t t F t F t t t d t t x tF t F tF F r F r q S dt dS d dt   − = − − ∆ + ∆ + − − −   ∫ ∫ ∫ ∫x K θ x ΣΛ γ V V

         (P) (6.13) 

Substituting the SDE (2.6) for x  results in the delta-hedged gains being equal to:   
 

0, , ,, ,
0 0

' '
T T

T t x t t x tF t F td dtΠ = +∫ ∫ΣΛ W ΣΛ γ V V .   (P) (6.14) 

                                           
46 These authors consider the delta-hedged gains from both continuous and discrete-time delta-hedging 
a call option written on a non-dividend-paying stock in a 1-factor SV model, and test its implications on 
S&P500 option data. See section 6.3.  
47 Due to dividends, we need to delta-hedge with the tradable reinvestment portfolio. Recall from 
section 4.3.1 (or appendix IIa), that starting out with 1 stock at time 0 followed by continuous dividend-
reinvestment yields 0exp( )tq t  stocks at time t , such that 0exp( )r

t t tS q t S= .  
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There are a number of things to learn from this expression. First, this dynamic 
trading strategy hedges all stock price risk. It is therefore delta neutral at all 
times. Second, notice that if the value of derivative F  does not respond to 
volatility changes such that its vega is persistently zero, then the delta-hedged 
gains are zero. In that case the derivative price satisfies ( , )t tF F t S= . Moreover, 
the derivative payoff can then perfectly be replicated by the bond-stock trading 
strategy just outlined, which is self-financing in this case. An obvious example of 
such a derivative is a forward contract. Third, if derivative F  is perceptive to 
volatility movements such that ( , , )t t tF F t S= x , then the delta-hedged gains are 
non-zero. This illustrates once again that a perfect hedge is not possible with a 
bond-stock strategy only; such a strategy results in a tracking error, the delta-
hedged gains. 48 These derivatives are essentially why we label our market as 
incomplete. As explained in section 4.2, we need to add other derivatives to our 
set of hedge instruments for perfect replication. Fourth and finally, the expected 
delta-hedged gains are given by 
 

 0, 0 , 0,
0

| ' |
T

T t x tF t dt  Π =   ∫ ΣΛ γF V FP PE E .    (6.15) 

 
The mean gains are essentially determined by the product of the premium for 
volatility risk (i.e. ,t x tΣΛ γ  which equals 2

tΣΛ γ ), and the amount of volatility risk 
inherent in the derivative, as measured by its vega. Notice that if volatility risk is 
not priced, then the delta-hedged derivative position is expected to break even. If 
the volatility risk premium is negative (resp. positive), and the vega of the 
derivative is positive (resp. negative), then this delta-hedging strategy is 
expected to underperform (resp. overperform) zero.  
 
6.3 Empirical evidence on volatility-risk compensation 
 
The previous section has highlighted the role volatility risk plays in various 
investment strategies. It has moreover indicated how investors should be 
compensated for this risk source if indeed (market) volatility risk is systematic. 
But is volatility risk systematic?  
 
As Bakshi and Kapadia (2003) briefly point out in their introduction, evidence that 
market volatility risk is systematic can be motivated by three empirical findings.  
First, the hedging motive. Long option positions like calls and puts are hedges 
against large downward market movements. As volatility tends to increase as 
markets go down, such positions increase in value and thus provide a hedge. An 
interpretation is that investors are willing to pay a premium for this downside 
protection. The hedging motive is indicative of a negative volatility risk premium. 
Second, ATM Black-Scholes implied volatilities (which are typically considered 
market forecasts of future volatility) are consistently found to be larger than 
subsequent realized volatilities; see e.g. Jackwerth and Rubinstein (1996) and 
Christensen and Prabhala (1998). A possible explanation is that the market price 
of volatility risk is negative. Ceteris paribus, this leads to an increase in the drift 
of the volatility process under Q (as compared to P), hence in option prices and 
thus BS implied volatilities. Third, empirically observed stock-index options are 
found to be non-redundant securities; see e.g. Buraschi and Jackwerth (2001) 
and Coval and Shumway (2001). They are redundant in the Black-Scholes world 

                                           
48 In this case, the strategy is also clearly not self-financing which should be apparent from 
reconsidering equation (6.12).  
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(or in “deterministic” volatility models in which volatility depends on the asset 
price but not on a separate Brownian motion), but not in a world with stochastic 
volatility, as we have seen in section 4.3.1. Index-option models omitting the 
economic impact of a volatility risk premium may therefore be inconsistent with 
observed option prices.  
 
The empirical evidence on volatility-risk compensation seems to arrive from two 
broad directions. More indirect evidence comes from studies that integrate both 
time-series data on the underlying and an option series in an estimation strategy 
for SV option pricing models. Important examples are Chernov and Ghysels 
(2000), Pan (2002) and Jones (2003). Other evidence comes from studies that 
either test implications of the conventional BS model (or “deterministic” volatility 
models), or look at investment strategies in which volatility risk plays an 
important role. Examples include Coval and Shumway (2001), Buraschi and 
Jackwerth (2001), Bakshi and Kapadia (2003), Driessen and Maenhout (2003) 
and Carr and Wu (2004).  
 
No consensus on a volatility-risk-premium definition 
Before we start discussing the evidence, it should be noted that there does not 
seem to exist a clear consensus on a definition for the volatility risk premium. 
Most authors refer to a divergence between the measures P to Q. They mention 
that this is indicative of volatility risk being priced -and thus that investors require 
a premium for volatility risk-, but without explicitly defining this premium. Our 
definition (recall section 5.2) seems attractive in the sense that it has a clear 
interpretation in terms of a derivative’s expected return; e.g., straddles and 
variance swaps. Moreover, having estimated “our” volatility risk premium, this 
premium may next be used to estimate returns on other, arbitrary derivatives.  
 
Because of this lack of consensus, and as the evidence on volatility-risk 
compensation is so recent, we find a rather detailed discussion both interesting 
and useful. Moreover, it motivates our economic theory on volatility-risk 
compensation, as will be developed in section 7. Whenever possible we provide a 
link with the definition maintained by us. This allows for a comparison with our 
own empirical results to be discussed in later chapters.  
 
6.3.1   Discussion of the evidence 
 
For convenient reference below, consider the following 1-factor SV special case of 
our model with 2

t txσ =  and 0, 1α β= = . The factor dynamics become 
  
 ( ) ,t t t x tdx k x dt x dWθ σ= − +    (P)  (6.16) 

 ,( )t t t t x tdx k x x dt x dWθ σγ σ= − − +  
%   (Q)  (6.17) 

 ,( ) t t x t
k

k x dt x dW
k

θσγ σ
σγ

 
= + − + + 

%  

( ) ,t t x tk x dt x dWθ σ= − +% %% . 

 
The risk-neutral speed-of-adjustment coefficient equals k k σ γ= +% , whereas the 
risk-neutral mean of the variance process equals /k kθ θ= %% . The market price of 
volatility risk is given by ,x t txγ γ= . The volatility risk premium equals txσγ , and 
averages at σ γ θ . This particular 1-factor SV model essentially coincides with the 
Heston (1993) model, but without leverage effect.  



6. Volatility risk and compensation for volatility risk 

 47

Chernov and Ghysels (2000) 
Chernov and Ghysels (2000) extend the efficient method of moments (EMM, 
Gallant and Tauchen (1996)) to estimate the Heston (1993) model, using both 
daily return and option data on the S&P500 index over the period 1986 – 1994. 
Their main concern is the estimation method. (See section 2.1.1 of the next 
chapter for more details). They do not explicitly comment on the estimated 
market-price-of-volatility-risk process, nor mention the volatility risk premium.  
 
Chernov and Ghysels find 0.931k = , 0.0154θ = , 0.0615σ = , 0.690k =%   
and 0.00956θ =% . From these estimates we compute the market price of volatility 
risk-determining parameter γ  as ( ) / 3.92k kγ σ= − = −% , which indicates a 
negative average volatility risk premium of σ γ θ = -0.37% per annum.  
 
Coval and Shumway (2001) 
Coval and Shumway (2001) are the first to focus on the theoretical and empirical 
nature of option returns over an option’s lifetime, in the context of broader asset 
pricing theory than Black-Scholes or CAPM. Under the weak assumption of the 
existence of an SDF that prices all assets in the economy (which is implied by no-
arbitrage; recall section 3.1), they prove two theorems that option returns should 
satisfy. Specifically, long calls are expected to earn a positive lifetime return 
above that of the underlying security, whereas long puts generate an expected 
lifetime return below the risk-free rate. Moreover, both call and put returns are 
increasing in the strike price. Coval and Shumway find that S&P100 and S&P500 
index-option returns conform to these implications. They also find that empirical 
option returns are too low to be consistent with the BS and CAPM frameworks.  
 
Recall from section 6.2.1 that the BS world predicts expected spot ATMF-straddle 
returns to equal the risk free rate, as these instruments are virtually delta 
neutral. Coval and Shumway find that market-neutral S&P500-index straddles 
earn returns that are significantly lower than the risk-free rate: -3% per week on 
average (period 1990-1995). Notice that, again, this corresponds again to a 
negative market volatility risk premium. They conclude that a natural 
interpretation for these results is that other risks than just market risk, and in 
particular stochastic volatility, is priced in the market.  
 
Buraschi and Jackwerth (2001) 
Buraschi and Jackwerth (2001) reach a similar conclusion by showing that 
S&P500-index options are non-redundant securities. They develop a statistical 
test for testing if options are needed for spanning of the pricing kernel. They 
reject the null hypothesis of redundancy (as implied by BS or “deterministic” 
volatility models), and conclude that this is indicative of additionally priced risk 
factors such as volatility, interest rate or jump risk.  
 
Pan (2002) 
Pan (2002) estimates the parameters of the Heston (1993) and Bates (2000) 
models 49 by her own developed implied-state GMM (IS-GMM) method. (We refer 
to section 2.1.1 of the next chapter for details on IS-GMM.) She uses weekly data 
on the S&P500 index (period 1989 – 1996) and a near-the-money short-dated 
option series for estimation.  
 
Fitting the Heston model, Pan finds a significant negative volatility risk premium, 
although the model is rejected by the joint data. Remarkably, her results imply a 
                                           
49 The Bates (2000) model extends the Heston (1993) model to allow for jumps in stock prices. 
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risk-neutral volatility process that has both a negative mean and speed-of-
adjustment coefficient, and is therefore explosive. 50 Specifically, Pan specifies the 
drift term of the Heston variance process { }tV  under Q as [ ( ) ]v t tV V dtνκ ν η− + , 
and mentions that “volatility risk is priced by the extra term tVνη , which is absent 
under P. [..]”. In terms of our SV specification (6.16)-(6.17), Pan’s specification 
implies a risk-neutral speed-of-adjustment coefficient of  vk νκ η= −% , which she 
estimates at –0.5. The corresponding risk-neutral mean equals /( )v v

νθ κ ν κ η= −% , 
and is estimated at –0.2. From (6.17), Pan’s tVνη−  should be compared to our 

txσγ  in our empirical work in later chapters.   
 
Setting tV  to its long-run mean of ν  and using Pan’s estimation results on the 
Heston model, implies an average volatility risk premium equal to ,νη ν−  
estimated at –(7.6)(0.0137) = -10.4% per annum for the S&P500 index over 
1989-1996. The long-run variance is estimated at 0.0137, or 11.7% S&P500 
volatility over 1989 - 1996. Notice that although Pan (2002) and Chernov and 
Ghysels (2000) both estimate the Heston model and virtually use the same 
dataset, their results dramatically differ on the implied magnitude of the volatility 
risk premium.  
 
Jones (2003) 
Jones (2003) also fits the Heston model to joint daily time series of S&P100-index 
returns and the VIX 51 for the period 1988-2000. He uses a Bayesian perspective. 
(A discussion of his estimation strategy is in section 2.1.1 of the next chapter.)  
Jones uses a form for the market price of volatility risk that ensures an identical 
type of volatility process under P and Q. However, he does not explicitly comment 
on the volatility risk premium, let alone its magnitude implied by his estimation 
results. In particular, Jones models the drift term of the variance process under P 
as [ ]tV dtα β+ . In our notation (6.16)-(6.17), this implies a long-run mean of 

/θ α β= −  and a speed-of-adjustment coefficient of k β= − . Under Q he models 
the drift as *[ ]tV dtα β+ , which implies a long-run mean of */θ α β= −%  and a 
mean-reversion parameter of *k β= −% . Rewriting yields *[ ( ) ]t tV V dtα β β β+ + − , 
which shows that the volatility risk premium is given by *( ) tVβ β− − .  
 
Jones quotes his Heston-model estimates on a daily basis, assuming 264 days per 
annum. Replacing tV  by its long-run mean estimated at -(2.41*10-6)/(-1.81* 
10-2)*264 = 0.0351 per annum (implying a long-run S&P100 volatility level of 
18.7% over 1988 – 2000), yields a negative average S&P100 volatility risk 
premium of -264*(1.13*10-2+1.81*10-2)*0.035 = -27%. Jones’s results on the 
Heston model further imply 0.0563θ = −%  and 2.98k = −% , such that the volatility 
process is explosive under Q.   
 
Explosive risk-neutral volatility process? 
Let us comment on the finding by both Pan (2002) and Jones (2003) of a risk-
neutral volatility process (6.17) with negative k%  and θ% . Imagine what this 

                                           
50 We concentrate on Pan’s findings on the Heston model as this model is most comparable to ours. It 
should be noted however, that fitting the Bates model with a zero volatility risk premium but allowing 
for a jump risk premium, Pan finds a significant premium for jump risk. This model is not rejected by 
the data. Fitting the Bates model and allowing for both a volatility and jump risk premium, Pan finds 
that the jump risk premium dominates by far the volatility risk premium. We refer to sections 5.3.3 and 
7.2.1 of respectively chapters IV and V for more comments on Pan’s findings in light of our own results.  
51 The “market volatility index” VIX of the Chicago Board of Options Exchange used to represent an 
average of eight 30-days-to-maturity near-the-money BS implied volatilities from S&P100 index (OEX) 
options. In September 2003 the CBOE redefined the VIX; its (different) calculation is now based on 
S&P500 (SPX) index options. See http://www.cboe.com/micro/vix/faq.asp for details.   
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implies for out-of-sample call option pricing using this estimated process; recall 
formula (3.19). This requires simulated paths of { }tx  under Q, given an initial 
positive P-value of tx  (i.e., the current stock variance 2

t txσ = ). A negative k%  
and θ%  imply [ | ] ( ) 0t t tdx k x dtθ= − >% %QE F , such that the Q-tendency of the 
simulated paths is to go upward, and ever faster increase. The volatility process 
under Q is thus explosive (and does not mean-revert), which will imply large, 
unrealistic option prices, especially when the option’s maturity is large. (Another 
thing to worry about is, if the SDE has a properly defined solution at all.) A 
possible reason for this finding is the following. ATM BS implied volatilities (which 
are essentially “Q-volatilities”) are typically found to be larger than subsequent 
realized (“P-“) volatilities (e.g., Jackwerth and Rubinstein (1996) and Christensen 
and Prabhala (1998)). From (6.16)-(6.17), this translates into a negative γ  (and 
thus a negative volatility risk premium, txσ γ )). This γ  directly influences the 
risk-neutral parameter k% , and hence θ% . If this difference between these Q and  
P-volatilities in the data is too large, implying a large negative estimated γ , this 
results in a negative k%  and thus θ% , and hence in an explosive risk-neutral 
volatility process. 52 
 
Bakshi and Kapadia (2003) 
Bakshi and Kapadia (2003) consider the delta-hedged gains from both 
continuous-time and discrete-time delta-hedging a call option written on a non-
dividend paying stock in a 1-factor SV model, where the net investment earns the 
risk-free rate. (See also section 6.2.3.) Testing their theoretical implications on 
daily S&P500 index-option data over the period 1988-1995, they find that the 
mean delta-hedged gains underperform zero, which is evidence of a negative 
market volatility risk premium (even after having accounted for jump fears).  
 
Driessen and Maenhout (2003) 
Driessen and Maenhout (2003) find evidence of a negative market volatility risk 
premium in US and UK markets, in the context of the standard asset allocation 
problem, extended with index options as an additional investment instrument. 
Given historical prices, they find that (non-) expected-utility investors act 
optimally when shorting puts and straddles, in order to exploit the premia for 
volatility and jump risk. Long put positions are never optimal. Given the well-
known insurance motive for holding such positions in practice, this is a clear 
anomaly. In later chapters we consider the same FTSE100 index-option dataset 
as Driessen and Maenhout do. Their sample period covers March 1992 - Dec 
2001. Of special interest to us is the summary statistic they provide on the 
average monthly empirical return of –13.1% (std.dev. 37%) on a short-maturity 
ATM-straddle strategy. Later we will contrast this empirical return with the 
expected return on such a strategy, implied by our model and estimation results.  
 
Carr and Wu (2004) 
Carr and Wu (2004) also find evidence of a negative volatility risk premium in US 
index markets. They use a “direct and robust” ([..]) method for quantifying this 
premium, based on the variance swap. Notice from section 6.2.2 that if volatility 
risk is not priced (such that the volatility processes under P and Q coincide), the 
variance swap rate equals 2

, [ | ]t T t tSW σ= PE F . (This assumes the contract is 
entered at time t  and expires at ,T  such that its lifetime equals t T tτ = − .) Carr 
and Wu argue that the difference between 2[ | ]t tσPE F  and 2[ | ]t tσQE F  therefore 
reflects the magnitude of the volatility risk premium. They next define the 
                                           
52 Indeed, the direct dependence between γ  and k%  (and thus θ% ) is causing this. Duffee (2002) 
proposes the essentially-affine class of term-structure models to overcome this dependence. 
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volatility risk premium as such, i.e. by 2 2[ | ] [ | ]t t t tσ σ−P QE EF F . They show that it 
can be represented as the negative of the conditional P-covariance between some 
general normalized pricing kernel and the average variance. They also show how 
to synthesize and approximate the swap rate, by a particular linear combination 
of option prices. By next comparing it to ex-post average realized variances, they 
find strong evidence of a negative volatility risk premium in S&P100, S&P500, 
DJIA, and NASDAQ100 stock index-markets over the period 1996-2003.  
 
Let us compare Carr and Wu’s definition of the volatility risk premium to ours in 
the 1-factor SV model (6.16)-(6.17). Carr and Wu’s volatility risk premium is 
given by 2 2[ | ] [ | ]t t t tσ σ−P QE EF F , which (from appendix B, equation (9.17)) 
equals 

 
1 exp( ) 1 exp( )

( ) ( )t t
t t

t t

k k
x x

k k

τ τθ θ θ θ
τ τ

 − − − −
+ − − + −  

 

%
% %

%
.  (6.18) 

 
Their volatility risk premium averages at ( )2 2[ | ] [ | ]t t t tσ σ−P P QE E EF F  which equals 
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.  (6.19) 

 
In contrast, our volatility risk premium is given by txσγ , and averages at σ γ θ . 
Although both definitions agree on the sign of the average volatility risk premium 
(as long as 0k >% , the expression in [..] is in the interval [0,1]), they are clearly 
different and not directly comparable.  
 
Summary 
To summarize, recent empirical evidence supports the notion that market 
volatility risk is systematic. The evidence comes from various angles and very 
different studies. Investors seem indeed negatively be compensated for market 
volatility risk (even after having accounted for jump fears). Although a clear 
consensus on a definition does not exist, the associated volatility risk premium is 
found to be negative. (Hence, a long position in an ATM straddle yields a negative 
risk premium, a short position a positive risk premium.)      
 
 

7. A theory on the negative volatility risk premium  
 
This section provides an economic basis for the (likely) existence of a negative 
(market) volatility risk premium. To achieve this, we connect to both 
consumption-based asset pricing theory and the permanent-income hypothesis 
from macroeconomics. We show that there are theoretical indications that the 
volatility risk premium should be negative. The analysis in this section may be 
considered as a thorough theoretical justification of the hedging motive 
mentioned by Bakshi and Kapadia (2003). Given our analysis, we think the 
consumption-insurance motive is a somewhat more economically-justified name.  
 
Our model as described in section 2 does not explicitly characterize investor 
preferences and investor behavior. What is the aim of an investor? How does he 
respond to volatility risk at which he is exposed? We only gave an indirect  
reflection of these issues in terms of an exogenously given market price of 
volatility risk. To use the model for pricing and hedging in practice, such a 
description is not necessary; we can do without. To derive an economic theory on 
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the nature of volatility-risk compensation however, requires preference-based 
analysis. 53 
 
Section 7.1 characterizes an investor that considers investing in our market, and 
considers the problem he is facing. We derive a well-known formula that relates 
asset prices to investor’s marginal utility of consumption. In section 7.2 we relate 
the investor’s optimal consumption plan to derivative returns. The case in which 
the investor derives power utility from consumption serves as an illustration. 
Based on the permanent-income hypothesis, in section 7.3 we finally argue why 
the volatility risk premium should be negative.  
 
7.1 The investor problem 
 
Consider some infinitely-lived investor that enters our market at, say, time 0. At 
any point in time he has to decide how much to consume (i.e., the number of 
consumption goods to buy), how much to save for later (by investing in the cash 
bond), and how much to invest in the risky stock and its derivatives. The investor 
derives instantaneous utility (.)u  from consumption. Let 0ρ ≥  be his time-
preference rate, i.e., the rate at which he discounts utility of future consumption. 
This parameter captures his impatience. If 0ρ =  current and future consumption 
are as valuable to him, whereas future consumption is less important if 0ρ > . We 
assume positive, but decreasing marginal utility, i.e. '(.) 0u >  and ''(.) 0u < . 
Thus, the investor prefers more consumption to less, but the more he already 
consumes the less he values additional consumption. The concavity of the 
instantaneous utility function captures risk-averse behavior. We assume the 
investor’s lifetime utility to be time-separable; i.e., it is given by ρ−∞

0 ( )t
te u c dtŸ .  

 
Let 0w >  be the investor’s initial wealth, and let { ; 0}tc t ≥  be his nonnegative 
consumption-rate process of the consumption good. Let tP  denote the vector of 
time- t  prices of all assets traded in the market, including the bond, stock and all 
derivatives. Let { ; 0}t t ≥η  represent his dynamic trading strategy in these assets. 
The process { }tη  is { }tF -adapted, with tη  being a vector of equal length as tP .  
 
Taking prices as given, the investor aims at maximizing his expected lifetime 
utility ({ },{ })t tU U c= η , by choosing a consumption-rate process and a particular 
trading strategy that are budget-feasible. That is, he solves the intertemporal 
problem 

 0
{ 0},{ }

0

max ({ },{ }) ( ) |
t t

t
t t t

c
U c e u c dtρ

∞
−

≥

 
 =
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∫η

η PE F     (7.1) 

s.t.  

0 0

0 ' ' , 0
t t

t t s s sw d c ds t≤ ≤ + − ≥∫ ∫η P η P .    (7.2) 

 
The budget-feasibility restriction (7.2) says that, at all times, the value of his 
asset portfolio must be smaller than or equal to the sum of the investor’s initial 
wealth and the gains from trading, minus total consumption so far. Since 
marginal utility is positive, the budget restriction will hold with equality in the 
optimum. Notice that this consumption-investment plan implies that no money is 

                                           
53 For more comprehensive treatments of consumption-based asset pricing and general equilibrium 
aspects, see Duffie (2001) and Cochrane (2001). Here we basically cover individual-investor optimality 
with prices being taken as given, but that suffices for our discussion. 
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added to it besides trading gains, or withdrawn from it, other than the amounts 
consumed. 54   
 
Duffie (2001) discusses (complicated) methods for solving similar classic 
consumption-investment problems. He gives numerous references that extend 
the problem in various directions. One solution method is the stochastic-control or 
dynamic-programming approach, which relies on the Hamilton-Jacobi-Bellman 
equation. Dynamic programming regards the problem at any point in time as 
maximizing the remaining expected utility. So in a sense, the investor updates his 
strategy as both time goes by and what state of the world has occurred.  
 
Derivation of an explicit solution using stochastic-control methods is fortunately 
not necessary to arrive at the desired expression that relates asset prices to an 
investor’s marginal utility of consumption. It is commonly known that, if the 
investor is optimizing, the investor equates utility loss with (time-discounted) 
expected utility gain. Let us illustrate this argument in our continuous-time 
derivative pricing setting. 
 
Relating asset prices to marginal utilities  
Suppose that { ; 0}tc t ≥  is the investor’s optimal consumption process. (For 
simplicity, we refrain from discriminating between notation for some and the 
optimal consumption process.) Consider the following deviating experiment. 
Suppose the investor has arrived at time t . He decreases his optimal 
consumption in the time interval [ , ]t t t+ ∆  by going long, at time ,t  in an 
additional small number of 0ζ ≠  units of some derivative F  that has maturity FT  
and price tF . 55 Assume that he finances this purchase, costing ,tFζ  by evenly 
decreasing his consumption over the interval. That is, at any time [ , ]s t t t∈ + ∆  
he consumes /tF tζ ∆  less than is optimal for him. (In the limit for 0t∆ → , in 
which we are ultimately interested, this clearly does not matter.) Suppose next 
that the investor plans to increase his optimal consumption in some future time 
interval [ , ]T T t+ ∆  by selling the extra units of derivative F  bought at time t , for 
the amount TFζ   (with the proceeds of this sale evenly consumed over the 
interval; but again in the limit this does not matter). In the intervals [ , ]t t T+ ∆  
and [ , )T t+ ∆ ∞  he leaves his optimal consumption unaffected. As { ; 0}tc t ≥  is his 
expected-utility-maximizing consumption process, this deviating experiment must 
leave him with less or equal remaining expected utility. Therefore, given time- t  
information, it must hold that 
 

( ) ( ) |
t t T t

s t s tt T
s s t

t T

F F
e u c ds e u c ds

t t
ρ ρζ ζ

+∆ +∆
− − − −

     − + +   ∆ ∆    
∫ ∫ FPE  (7.3) 
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s t s t
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e u c ds e u c dsρ ρ
+∆ +∆

− − − −
 
 ≤ +
  
∫ ∫PE F . 

 
Taking everything to the left-hand side, dividing by ζ , and rewriting yields 
 

                                           
54 This is seen as follows. As the budget restriction holds with equality, taking differentials yields 

( ' ) 't t t t td d c dt= −η P η P  (as ( ) 0d w = ), or ' ' ' 't t t t t t t t td d d d d c dt+ + = −η P P η η P η P  
which simplifies to ' 't t t t td d d c dt+ = −P η η P . The left-hand side of this equality essentially 
represent portfolio rebalancing costs, which are absorbed by consumption.  
55 Derivative F  is chosen without loss of generality (as long as )FT T> ; i.e. he may alternatively have 
chosen to increase his investment in the reinvestment portfolio or the bond. The resulting equation to 
be derived below holds for all assets.  
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          (7.4) 

( ) ( ) ( ) ( )
( ) ( ) | 0
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F Ft t T t
s s s st ts t s tt T

tF F
t T tt

u c u c u c u cF F
e ds e ds

t t

ζ ζ
ρ ρ

ζ ζ

+∆ +∆
∆ ∆− − − −

∆∆

 − − + −
 − + ≤ ∆ ∆−  

∫ ∫ FPE

 
Taking the limit for the number of additionally purchased units of derivative F  in 
the interval [ , ]t t t+ ∆  approaching zero, i.e. 0ζ → , we get 

 

 ( ) ( )( ) ( )' ' | 0
t t T t

s t s tt T
s s t

t T

F F
e u c ds e u c ds

t t
ρ ρ

+∆ +∆
− − − −

 
 − + ≤

∆ ∆  
∫ ∫ FPE . (7.5) 

 
Finally, letting the interval length go to zero, i.e. 0t∆ → , we obtain 56 
 
 ( ) ( )( )' ' | 0T t

t t T T tF u c F e u cρ− − − + ≤ FPE ,    (7.6) 

or   
 ( ) ( )( )' ' |T t

t t T T tu c F e u c Fρ− − ≥  FPE .      (7.7) 

 
Clearly, this buy-sell strategy can also be reversed (as the investor can go short): 
The investor can increase his optimal consumption in the interval [ , ]t t t+ ∆  by 
short-selling ζ  F −derivatives which yields him tFζ  extra for consumption. At 
time T  he buys the ζ  units back in the market for a total cost of TFζ , which he 
finances with a reduced consumption in the interval [ , ]T T t+ ∆ . It will be clear 
that in the limit equation (7.7) will hold, but with an ≤ -sign. As both inequalities 
must hold at the same time, we arrive at the relation 
 
 ( ) ( )' '( ) |T t

t t T T tu c F e u c Fρ− − =  FPE ,       (7.8) 

 
or ( ) ( )

,' [ (1 ) '( ) | ]T t
t F tT T tu c e r u cρ− −= + FPE , with , ( ) /F tT T t tr F F F= −  the relative 

derivative return over [ , ]t T . This latter equation illustrates the following: If the 
investor is optimizing, the marginal utility loss of consuming a little less of the 
consumption good at time t  and instead investing it in the asset, should equal 
the expected time-discounted marginal utility benefit of holding the extra assets 
until time ,T  then selling them, and using the proceeds to increase consumption 
then.  
 
Rewriting (7.8) yields another commonly-known and useful interpretation. The 
time- t  derivative price can be written as its expected discounted time-T  value 
(and hence in particular, as its expected discounted time- FT  payoff) as follows: 
 

 ( ) '( )
|

'( )
T t T

t T t
t

u c
F e F

u c
ρ− − 

=  
 

FPE .      (7.9) 

 
The time-discounted ratio of marginal utilities is known as the marginal rate of 
(intertemporal consumption) substitution. It clearly acts as a (stochastic) discount 
factor. It is the rate at which the investor is willing to substitute  
time-T consumption for time- t  consumption. It basically measures his willingness 
(or incentive) to shift consumption through time by investing in the assets. 

                                           

56 Here we use ( ) ( )1
0 0

lim ( ) lim '( ) ( )
x x

G x x G x
x xx xx

g s ds G x g x
+∆

+∆ −
∆ ∆∆ → ∆ →

= = =∫ . 
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Realize that this substitution rate depends on the uncertain state of the world 
(which is governed by the Brownian motion W ). As the main purpose of financial 
assets is arguably to provide an opportunity to shift consumption through time 
and states of the world, it makes sense that the marginal rate of substitution 
shows up in the asset-pricing equation (7.9).  
 
Notice that we have looked at the problem of some investor to derive equation 
(7.9). 57 Equation (7.9) should hold for each optimizing investor (and for each 
tradable asset), regardless of his specific utility function, time-preference rate, 
budget-feasibility set, or optimal consumption-investment plan. We know from 
e.g. Duffie (2001) that, if the market were complete, the marginal rate of 
substitution of the representative investor (which exists in that case) can be used 
to price the assets. In an incomplete-markets setting, there may exist at least as 
many marginal rates of substitution that price assets according to (7.9) as there 
are investors. However, given that we have “fixed” the Q-measure by having 
chosen a specific market price of volatility risk (and hence have essentially 
completed the market, as derivatives have a unique price), the marginal rate of 
substitution in (7.9) can be seen as the one of the representative investor.  
 
7.2  Relating derivative returns to optimal consumption 
 
Equation (7.9) relates the derivative price to the optimal consumption process 
{ }tc  of an investor. Equation (5.16) on the other hand, relates the derivative 
price to the stochastic-discount-factor process { }tM : It states that in the absence 
of arbitrage, it must hold that [ | ]t t T T tM F M F= FPE . Combining both equations 
shows that the SDF equals the time-discounted marginal utility of optimal 
investor consumption:  
 

 '( )t
t tM e u cρ−= .       (7.10) 

 
Realize that in this way, we essentially link the no-arbitrage condition (which 
must obviously hold in equilibrium) with the investor’s equilibrium behavior.  
 
Equation (7.10) next allows us to relate the expected derivative return expressed 
in terms of the SDF (recall (5.22)) to investor consumption. As the optimal 
consumption process is an Itô process 58, Itô’s lemma yields 
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As 2( )tdc  is of order dt , we obtain for /t tdM M  an expression like 

 

 
''( )

(..)
'( )

t t t
t

t t t

dM u c dc
dt c

M u c c
= + ,      (7.12) 

 
such that the expected derivative return (5.22) may also be written as  

                                           
57 As Cochrane (2001, section 2.1) points out, (7.9) holds under very general circumstances in many 
different model settings.  His discussion in section 2.2 on general equilibrium, and on either asset prices 
or consumption being the chicken or the egg, is interesting. For our purposes it all does not matter.  
58 Notice that ( )t

t tc v e Mρ=  with (.)v  the inverse function of '(.)u . As { }tM  follows the Itô process 
(5.23), { }tc  follows an Itô process as well. 
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F u c F c
   
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This is a particularly illuminating relationship: 59 It connects the expected 
derivative return to the optimal consumption plan of an investor. Specifically, it 
specifies the required return the investor demands for bearing the risk inherent in 
the derivative. The factor ''( ) / '( )t t tc u c u c−  is the investor’s coefficient of relative 
risk aversion (CRRA). Notice that the CRRA is positive. Equation (7.13) implies 
that the larger (smaller) the covariance between the derivative return and the in-
vestor’s consumption growth, the larger (smaller) the expected derivative return. 
In particular, if there is negative correlation between the derivative return and 
consumption growth, the expected derivative return is below the risk-free rate.  
 
Optimal consumption in case of power utility  
Before proceeding, let us derive the investor’s optimal consumption-rate process 
in a special case, and confirm that (7.13) can indeed be used for pricing. Given its 
convenient properties, consider an investor that derives power utility from 
consumption. Specifically, the investor’s instantaneous utility function is given by 
 

 
1

( ) ; 0
1

t
t

c
u c

ψ
ψ

ψ

−

= >
−

.       (7.14) 

 
Here, ψ  is the investor’s coefficient of relative consumption-risk aversion in 
different states of the world: his CRRA equals ''( ) / '( )t t tc u c u c ψ− = .The investor’s 
willingness to shift consumption through time, i.e., his elasticity of intertemporal 
substitution, is given by 1 /ψ . 60 Notice that the risk-averter the investor, the less 
he is simultaneously willing to transfer consumption through time. 
 
Recall from section 3.1 that the no-arbitrage condition defines the SDF as the 
bond-discounted Radon-Nikodym process: 1

t t tM B L−= . Hence, by (2.2) and 
(3.11),  

( )1 1
0 2

0 0

exp ' '
t t

t u u u u uM B r du d−
 
 = − + −
 
 
∫ ∫γ γ γ W .   (7.15) 

  
On the other hand, equilibrium investor behavior defines the SDF as his time-
discounted marginal utility of optimal consumption: '( )t

t tM e u cρ−= . The 
investor’s marginal utility process { '( ); 0}tu c t ≥  thus equals 
 

 ( )1 1
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'( ) exp ' '
t t

t u u u u uu c B r du dρ−
 
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Marginal power utility equals by '( ) .t tu c c ψ−=  The investor’s optimal consumption 
rate is thus given by 
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59 We have essentially derived what is known as the consumption capital asset pricing model  (CCAPM; 
Breeden (1979)) in our derivative-pricing setting.  
60 The fact that this elasticity equals the reciprocal of CRRA is an oft-cited drawback of power utility: it is 
too restrictive. Epstein-Zin utility breaks this 1-to-1 link, but is unfortunately much harder to work with. 
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Logarithmic consumption evolves according to 
 

 ( )1
2

1
ln ' 't t t t t td c r dt dρ

ψ
 = − + + γ γ γ W ,    (7.18) 

 
which, after applying Itô’s lemma to exp(ln )tc , yields the SDE for optimal 
consumption, 
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Taking the derivative-return process (5.3) into account, the covariance between 
the derivative return and investor’s consumption growth then equals 
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The second equality follows from , , , ,' 't t S t S t x t x td dW dγ= +γ W γ W , the 
independence of SW  and xW , and some further manipulations. As the CRRA of 
power utility equals ψ , we finally obtain from the consumption-return formula 
(7.13) our by now familiar expression, 
 

 ( ) ( ), , , , , ,| 't
t t F S t t S t F x t t x t
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dF
r dt

F
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7.3  Consumption smoothing and the volatility risk premium 
 
To better be able to interpret result (7.13), remember that the key idea of the 
life-cycle or permanent-income hypothesis from macroeconomics 61 is that 
individuals (economic agents) tend to smooth their consumption over time by 
borrowing and saving. The primary aim of saving is future consumption, whereas 
borrowing is primarily used for increasing consumption now.  
 
The CRRA measures the individual’s aversion to having different consumption 
opportunities in different states of the world. To achieve a smooth consumption 
pattern, it may therefore be argued that an investor values an asset more if it 
pays off more when consumption is low (and vice versa). Such an asset is less 
risky in terms of his consumption opportunities: it clearly provides insurance. This 
theory thus suggests him to be willing to pay a higher price for a derivative which 
return covaries less with his consumption growth (and vice versa). As high (resp. 
low) prices are associated with low (resp. high) expected returns, formula (7.13) 
makes perfect sense. Moreover, as consumption smoothing is the investor’s 
primary purpose according to the permanent-income hypothesis, it is this 
covariance that matters for his required return, not the riskiness of the derivative 
itself (i.e., var [ / | ]t t tdF FP F  does not show up in (7.13)). The analogy with the 
ordinary CAPM is apparent. Similar reasoning is known in the literature. 
 

                                           
61 Modigliani and Brumberg (1954), Friedman (1957). See Romer (2001) for a textbook treatment. 
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Volatility risk premium is negative on theoretical grounds 
Given these appealing arguments, is it possible to derive a theoretical prediction 
on the sign of the volatility risk premium? First, combine (7.13) with (5.25) to get 
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This equation relates the riskiness of a derivative -in terms of its impact on an 
investor’s optimal consumption plan- to both the stock risk premium and the 
volatility risk premium.  
 
To make our statement, it is natural to focus on assets that are especially prone 
to volatility risk. Arguably, the majority of investors allocates most of its wealth to 
long stock and bond positions (in practice). So, as long as markets are either 
fairly steady or go up, an investor’s consumption stream will be rather stable. 
Now assume that a certain investor holds a delta-neutral positive-vega derivative 
G  in his portfolio, like a long straddle or variance swap. Such an instrument does 
not (instantaneously) respond to stock price fluctuations, but is prone to volatility 
risk. Since , , 0G S tβ =  and , ,G x t >β 0 , it holds for G :  
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t t G x t t x t

t t t

u c dG dc
c dt

u c G c
 

− = 
 

β ΣΛ γP F .    (7.23) 

  
Suppose then that the market suddenly crashes unexpectedly. Such a collapse 
typically goes hand in hand with decreased consumption: the investor’s long 
stock and bond positions devaluate. However, as dropping markets are typically 
also accompanied by increasing volatility in practice (the leverage effect 62), the 
value of positive-vega derivative G  will typically rise. As such, the increase in G  
(partly) offsets the drop in value in the investor’s stock and bond portfolio (and 
hence his consumption opportunities). Holding a delta-neutral positive-vega 
derivative G  in his portfolio thus indeed helps the investor pursuing a smooth 
consumption pattern over time (as opposed to not holding such a derivative). 
Hence, such a derivative investment provides consumption insurance in bad 
times. So the correlation between 'G s  return and the investor’s consumption is 
likely to be negative.  
 
Looking back at formula (7.23), our theory thus predicts the volatility risk 
premium (and hence the market price of volatility risk) to be negative. 63 In 
particular, reconsidering (5.5), the expected return on delta-neutral positive-vega 
derivatives such as straddles and variance swaps is expected to be smaller than 
the risk-free rate.  
 
The recent empirical evidence on market volatility-risk compensation discussed in 
section 6.3 suggests that financial markets practice conforms with this theory.  

                                           
62 Indeed, our reasoning here is explicitly based on the existence of a leverage effect, which we did not 
model. However, as we show in sections 3.4 and 3.5 of chapter VI on the Heston (1993) model (which 
does model the leverage effect), a similar formula as (7.23) results in case of leverage. Our reasoning 
here therefore theoretically still applies in case leverage is explicitly taken into account. 
63 A similar argument based on e.g. a long call option (which also rises in value if volatility rises) instead 
of a delta-neutral positive-vega derivative seems impossible to make: Reconsidering (7.22), dropping 
markets may induce a (temporarily) negative stock risk premium ,t S tσ γ . Moreover, the value of a call 
option decreases if the underlying declines in value. Hence, basing the argument on a non-delta-neutral 
derivative, we cannot disentangle what the sign of the volatility risk premium should be theoretically.  
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8.  Foreign exchange markets 
 
So far the context of our model has been a stock market setting. This section 
explains how our multifactor SV model may also be used for derivative pricing 
and hedging in foreign exchange (FX) markets. (Apart from this section the 
remainder of this thesis focuses on the stock market setting of our model 
however.) Section 8.1 first discusses the Garman-Kohlhagen (1983), or Black-
Scholes currency model. In section 8.2, the subjects are the currency-derivatives 
model of Bates (1996b), the evidence on correlation between exchange rate and 
volatility shocks, and the evidence on multiple SV factors in FX markets. Finally, 
in section 8.3 we state our model in a foreign-exchange market setting. 
 
8.1 Garman-Kohlhagen (1983) model 
 
Currency derivatives are contracts written on an underlying exchange rate; e.g., 
the euro/dollar exchange rate. Consider for example a Dutch company that does 
business in the US. It receives part of its profits in dollars. Exchanging these 
dollars for euros entails exchange-rate risk. The company may wish to partly 
hedge this risk by buying FX put options with strike ,K  giving the right to sell one 
dollar for K  euros at the expiration date T  of the contract. The company thus 
knows the minimum euro amount for which it can sell dollars for. If { ; 0}tS t ≥  
represents the euro/dollar exchange rate 64, the put payoff  is max{0, }TK S− .  
 
A widely-used model for pricing currency derivatives is the Garman-Kohlhagen 
(1983) model. This model assumes that the exchange rate S  follows a geometric 
Brownian motion as in (2.3), but with constant volatility σ . There are two assets: 
a domestic, domestic-currency-denominated cash bond B , which evolves as 

t t tdB r B dt= , and a foreign, foreign-currency-denominated cash bond fB , which 
evolves as f f f

t t tdB r B dt= . 65  
 
In the Garman-Kohlhagen model, the time- t  price tC  of a European FX call 
option C  struck at K  having maturity T  is given by the conventional Black-
Scholes call price formula (3.20), but with the average dividend yield tq  replaced 
by the average foreign risk-free interest rate, f

tr , over the remaining option’s life 

t T tτ = − . The price of a FX forward contract is given by (3.21), but again, with 

tq  replaced by f
tr . The intuitive reason for these results is that the owner of 

foreign currency receives a “dividend yield tq ” equal to the foreign risk-free 
interest rate f

tr  when investing this currency in the foreign market. 
 
In FX-markets banking practice, prices of currency options are quoted in terms of 
their associated implied volatilities. These implied volatilities are computed using 
the Garman-Kohlhagen model, stressing its importance.  
 
8.2 The Bates (1996) model and empirical evidence 
 
It is well known that, like stock prices, exchange rates exhibit stochastic volatility 
as well. 66 The Garman-Kohlhagen model is therefore misspecified. As mentioned 

                                           
64 It will soon become clear why we use the same notation as for a stock price.   
65 It should be noted that the original model assumes constant interest rates  r  and .fr  Here, we 
already partly extend the model towards our proposed extension to be discussed in section 8.3. 
66 See, e.g., Hull (2003), Franses and Van Dijk (2000), Bates (1996), Shephard (1996), Ghysels, Harvey 
and Renault (1996), Bollerslev, Engle and Nelson (1994), Bollerslev, Chou and Kroner (1992), Melino 
and Turnbull (1990), Bollerslev (1990), and numerous others. 
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by Carr and Wu (2004b), the jump-diffusion model of Bates (1996b) so far still 
represents the state of the art in the currency option pricing literature.  
 
Bates’s model assumes that the exchange rate follows the geometric Brownian 
motion-type SDE (2.3), but with a Heston (1993) volatility (i.e. CIR) process, 
extended with Merton (1976) jumps. The model allows for correlation between 
exchange-rate returns and volatility shocks (i.e., the “leverage effect”). 
 
Empirical evidence on correlation and multiple SV factors 
Bates (1996b) performs estimation using a calibration-type, implicit parameter 
estimation strategy on a panel of Deutsche Mark call and put option prices over 
the period 1984 – 1991. His estimation results for his model without jumps imply 
a correlation of only 0.045 (std.dev. 0.002), whereas with jumps this correlation 
is estimated at 0.078 (std.dev. 0.003). Bates thus finds that the correlation 
between exchange-rate returns and volatility shocks is close to zero in value.  
 
Other evidence that supports this is in, e.g., Chesney and Scott (1989), who 
estimate this correlation in a particular SV model at –0.0065 (std.dev. 0.76) for 
the dollar/Swiss-franc exchange rate (period 1979 – 1984). Melino and Turnbull 
(1990) estimate this correlation at –0.18 (std.dev. 0.09) for the Canadian-US 
dollar exchange rate (period 1975 – 1986). Hull (2003, p. 459) mentions that the 
typical pattern of FX implied volatilities over moneyness is a volatility smile, which 
is consistent with a zero correlation between FX returns and volatility shocks. 
Franses and Van Dijk (2000, p. 18) provide further evidence on the in general 
small magnitude of this correlation for eight exchange rates, for the period 1980 - 
1998.   
 
The evidence thus suggests that for exchange rates, the assumption of a zero 
correlation between FX returns and volatility shocks seems appropriate. 
Moreover, there seems to be no real reason why there should be a consistent 
positive or negative correlation in the first place: If the domestic/foreign currency 
exchange rate is inverted, one obtains the foreign/domestic rate, which is the 
series closely followed by traders and investors in the foreign country. This point 
is also mentioned by Franses and Van Dijk (2000).  
 
And what about multiple SV factors in FX markets? Bates (1996b) concludes that 
“The postulated 1-factor model […] does a poor job in capturing the evolution 
over time of implicit volatilities from multiple option maturities. There is therefore 
substantial scope for improvement from using multifactor rather than single-
factor models of stochastic volatility.” 
 
8.3 Our model in a FX-markets context 
 
Given the evidence, our multifactor SV model may appear to be of particular use 
in derivative pricing contexts regarding foreign exchange markets. Although the 
assumption of no leverage effect may generally not be realistic in stock markets, 
the assumption of a zero correlation between exchange-rate returns and volatility 
shocks seems more realistic. So how can we translate our multifactor SV model 
into an FX-markets setting?  
 
Assume that two basic assets are traded in the domestic market, a domestic cash 
bond ,B  and a foreign bond fB . The price of the domestic bond evolves as 

t t tdB r B dt= , where { }tr  represents the (deterministic) domestic risk-free interest 



- II - The Multifactor Affine Stochastic Volatility Derivative Pricing Model 
 

 60

rate process. The foreign bond price evolves as f f f
t t tdB r B dt=  in the foreign 

currency, where { }f
tr  is the (deterministic) foreign risk-free interest rate process. 

The domestic/foreign currency exchange rate S  follows the SDE (2.3), with SV 
specification (2.5)-(2.7). This specification assumes a zero correlation between 
exchange-rate returns and exchange-rate volatility shocks. 
 
Obviously, neither the exchange-rate process { },tS  nor the foreign-currency-
denominated price process of the foreign bond { }f

tB , represent price processes of 
assets that are tradable in the domestic market. The domestic-currency-
denominated price of the foreign bond, which we denote by { }r

tS , is given by 
r f
t t tS B S= . 67 Itô’s formula yields the SDE 

 
 ,( )r f r r

t t t t t t S tdS r S dt S dWµ σ= + + .    (P) (8.1) 
 
In contrast to { }f

tB , the  process { }r
tS  represents the value of an asset (the 

foreign bond) that is tradable in the domestic market. The risk from holding the 
foreign bond in the domestic market is derived from exchange-rate fluctuations.  
 
Comparing the SDE (8.1) with the SDE (2.4) reveals that, although the contexts 
of this FX-market setting and the stock market setting (as discussed in section 2) 
differ, the mathematical set-ups are essentially similar. The only difference is that 
in the stock market setting, the stock pays a dividend yield of tq , whereas in the 
FX-market setting, the foreign bond pays a “dividend yield” of f

tr . Therefore, all 
of the theoretical analysis in sections 3, 4, 5, and 6.2 on derivative pricing, 
hedging, asset returns, and volatility-risk dominated strategies, carries through, 
and can directly be applied to this FX-markets context in a straightforward 
manner. We only need to replace tq  with f

tr .  
 
For example, the market price of exchange-rate risk is given by 

, ( ) /f
S t t t t tr rγ µ σ= + − . Moreover, all FX derivatives can be priced using the risk-

neutral or SDF valuation formulas (3.9) or (3.10). In (3.9), Q is now the measure 
under which the domestic-bond-discounted domestic-currency-denominated 
foreign-bond price, i.e. the process 1{ }r

t tB S− , is a martingale. (In the stock 
market setting Q is the measure under which the discounted reinvestment 
portfolio 1{ }r

t tB S−  is a martingale.) The exchange rate follows 

,( )f
t t t t t t S tdS r r S dt S dWσ= − + %  under Q. As a final illustration, the price of a 

European FX call option having payoff max{0, }T TC S K= −  is given by (3.17) and 
(3.19)-(3.24) with tq  replaced by f

tr . 
 
 

9. From theory to practice  
 
So far the discussion of our model has mostly been theoretical. We have shown 
that having available a full specification of a stock (or foreign exchange) market 
that is prone to stochastic volatility, given a specific pricing measure Q, we know 
how to uniquely price and hedge derivative securities. We know what returns to 
expect. Moreover, we have acquired a lot of intuition for volatility risk; both in 
terms of investment strategies, and, economically, with regard to volatility-risk 
compensation. But what about using our model for practical purposes? How do we 
obtain such a full specification which includes numerical values of parameters, 

                                           
67 Again on purpose, we use the same notation as for the (tradable) reinvestment portfolio.  
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the specific Q-measure, and the unobserved volatility? In other words, how can 
we numerically relate our theory to practice?  
 
First of all, we ought to be willing to assume that observed real-world data is truly 
generated by our specific arbitrage-free model. For example, the market-
observed term structure of interest rates can serve as information on the cash 
bond process. Information on the stock price and dividend yield processes can be 
obtained from observed stock and forward prices and their history. As volatility 
affects both stock and derivative prices, information on the stochastic volatility 
process ideally comes from both sources jointly. Given the latent character of 
volatility, this poses an additional challenge. And what about the specific  
Q-measure that the market uses for pricing derivatives in practice? In other 
words, how can we numerically determine the empirical market price of volatility 
risk? In practice the pricing measure Q is not directly observable; it is only 
implicitly present in the prices of derivatives traded in the market. We therefore 
need a means to back out this measure from these prices, and as such “let the 
market speak” on what specific Q it uses for valuation.  
 
Once both the model parameters have been estimated, and an estimate of the 
unobserved volatility-driving factors is available, we can in principle price and 
hedge any other derivative by means of, e.g., Monte Carlo simulation. Suppose 
for example, that we desire to price and hedge a new-to-be-issued exotic over-
the-counter financial derivative in the 1-factor SV special case of our model. The 
risk-neutral valuation formula (3.9) can be used for pricing. To hedge this 
contract, we could follow some discretized version of the hedge strategy outlined 
in section 4.3. As continuous rebalancing of the hedge portfolio is not possible in 
practice due to transaction costs, such a strategy will not neutralize all risk. Not 
only due to the necessary discretization, but also due to model error and the 
unavoidable parameter uncertainty inherent to any estimation procedure. Such a 
hedging strategy requires an estimate of the latent volatility-driving factor x  at 
each point in time the hedging portfolio is rebalanced: Prices and hence deltas 
and vegas depend on it. These price sensitivities can in principle only be obtained 
by Monte Carlo simulation, or one should be willing to rely on some 
approximation. The derivative instrument with which to hedge volatility shocks 
must be market-observable, and preferably highly liquid. For example, an index 
option may do the job if the aim is pricing and hedging derivatives written on a 
stock index.  
 
The issue still left unspecified in this discussion however, is how to exactly extract 
the necessary information from real-world stock and option prices, that may 
serve to numerically specify our model, and how to obtain an estimate of the 
unobserved volatility. The next chapter is devoted to this problem. 
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Appendix 
 
IIa. The bond-stock market is arbitrage-free: A proof 
 
In section 2 we state that the bond-stock market is arbitrage free. Here we prove this 
claim by showing that the prices of the tradable assets (the cash bond and dividend-paying 
stock) expressed in terms of the value of the cash bond, are ( ,{ })t −Q F martingales, as 
required by the First Fundamental Theorem of Asset Pricing. 
 
First, and obviously, the relative price of the cash bond equals 1 for all t  under all 
measures, as 1 1t tB B t− = ∀ . It is therefore a martingale, irrespective of the specific 
probability measure and filtration. Second, the ex-dividend stock price process { ; 0}tS t ≥  
does not represent the value of a tradable asset, because it does not account for dividend 
payments. The stock cannot be bought without its dividend payouts: The dividend 
payment of t tq S dt  in the time interval [ , ]t t dt+  is automatically received. Notice that 
this payment instantaneously buys an additional tq dt  stocks. Consider then the following 
portfolio strategy. Suppose an investor buys 0a  (some positive number) stocks at time 0, 
and suppose he immediately reinvests all received dividends by buying additional units of 
stock. Doing so, at time t  the investor has  
 

 0

0

exp
t

t ua a q du
 
 ≡
 
 
∫        (a.1) 

 
stocks in his so-called reinvestment portfolio, which we denote by .rS  68 The reinvestment 
portfolio is a tradable asset. Its time- t  value equals r

t t tS a S= . Notice that ( , )r
t tS f t S= , a 

function of t  and tS . Using (2.3), Itô’s lemma yields 
 

 ,( )r r r
t t t t t t S tdS q S dt S dWµ σ= + + .    (P)  (a.2) 

 
Consider now the relative time- t  value of the reinvestment portfolio, r

tZ , defined as 
1r r

t t tZ B S−≡ . Integration by parts yields the SDE for { }r
tZ  under P, being  

 

 ,( )r r r
t t t t t t t S tdZ q r Z dt Z dWµ σ= + − + .   (P)  (a.3) 

 
Under our choice of Q for which   
 

 , , , ,, t t t
S t S t S t S t

t

q r
dW dW dt

µγ γ
σ

+ −
= + =% ,    (a.4) 

{ }r
tZ  follows    

 

 ,
r r
t t t S tdZ Z dWσ= % .     (Q)  (a.5) 

 
(Notice that the assumed specific form of the market price of volatility risk does not play a 
role here.) The process { ; 0}r

tZ t ≥  is driftless under Q. As it holds that 
21

02(exp[ ])T
sdsσ < ∞∫QE  (which is clear from the results in section 10 of appendix B),  

{ }r
tZ  is a martingale under Q w.r.t. { }tF  (and not a local martingale; see e.g. Baxter and 

Rennie (1996, p. 79)). Therefore, the bond-stock market is indeed arbitrage-free.  
 

                                           
68 Notice the analogy with depositing an amount 0B  in the money market account at time 0. 
Continuous reinvestment of received interest-rate payments, results in an amount of 

( )0 0exp t
t uB B r du= ∫  at time t . 
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IIb. Derivative betas 
 
In this part we derive the expressions for the stock and volatility betas of a general 
derivative  F  for which ( , , )t t tF F t S= x , as given in section 5.1. Recall that we define the 
stock beta of derivative F  as 
 

, , cov , | / var |t t t
F S t t t

t t t

dF dS dS
F S S

β
   

≡    
   

F FP P .   (b.1) 

 
From (2.3) and (3.6), the covariance between the spot derivative and stock returns equals 

 

, , ,
1

cov , | cov , |
'

t t t t t
t t S t t x t t S t t

t t t t t t

dF dS S F F
dW d dW

F S F S F
σ σ

   ∂ ∂
= +   ∂ ∂   

ΣΛ W
x

F FP P  

2 2
,var |t t t t

t S t t t
t t t t

S F S F
dW dt

F S F S
σ σ

∂ ∂
 = = ∂ ∂

FP , (b.2) 

 
in which the independence of the Brownian motions xW  and SW  is exploited, and in  
which we use , ,var [ | ] var [ ]S t t S tdW dW dt= =FP P , which holds due to the independent-
increments property of Brownian motion. The variance of the instantaneous stock return 
equals  

2
,var | var |t

t t t S t t t
t

dS
dt dW dt

S
µ σ σ

 
 = + =   

 
F FP P .   (b.3) 

 
The time- t  stock sensitivity of derivative ,F  as measured by its stock beta, then equals  

 

, , ,
t t t

F S t F t
t t t

S F S
F S F

β
∂

= = ∆
∂

.      (b.4) 

 
The volatility beta of derivative F  is defined as 
 

 ( ) 1
, , var | cov , |t

F x t t t t t
t

dF
d d

F
−  

≡     
 

β x xF FP P .   (b.5) 

By (2.6), 
 

,var | var ( ) |t t d t t x t td dt d = − +    x K θ x ΣΛ WF FP P

 2
,var | ' 't x t t t td dt = = ΣΛ W Λ Σ ΣΛ ΣFP ,  (b.6) 

 
in which the third equality uses , ,var [ | ] var [ ]x t t x t nd d dt= =W W IFP P , as the Brownian 
motions 1,.., nW W  are independent. For the covariance between the spot derivative return 
and spot factor changes, we get by (2.6) and (3.6): 
 

, , ,
1

cov , | cov , |
'

t t t t
t t t S t t x t t x t t

t t t t t

dF S F F
d dW d d

F F S F
σ

   ∂ ∂
= +   ∂ ∂   

x ΣΛ W ΣΛ W
x

F FP P  

, ,
1

cov , |
'

t
t x t t x t t

t t

F
d d

F
 ∂

=  ∂ 
ΣΛ W ΣΛ W

x
FP   (b.7) 

, ,
1

cov , ' ' |t
t x t x t t t

t t

F
d d

F
 ∂

=  ∂ 
ΣΛ W W Λ Σ

x
FP   

2
, ,

1 1
' | ' 't t

t x t x t t t t
t t t t

F F
d d dt

F F
∂ ∂

 = =  ∂ ∂
ΣΛ W W Λ Σ ΣΛ Σ

x x
FPE . 
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The second equality uses the independence of xW  and SW , and the fourth equality uses 

, ,[ | ] [ ]x t t x td d= =W W 0FP PE E . 69  'F s volatility beta then equals 
 

, , ,
1 1t

F x t F t
t t t

F
F F

∂
= =

∂
β

x V .      (b.8) 

 
 
IIc.  Variance-swap analysis 
 
As explained in the main text, the time- t  value of a variance swap is given by 

( , , )t t tVS VS t I= x ; recall (6.4). Here we aim at deriving the SDE the arbitrage-free 
variance-swap value follows under P. We follow a similar analysis as in section 3.1. Itô’s 
formula yields, under P, 
 

2
1
2 '

' '
t t t t

t t t t t
t t t t

VS VS VS VS
dVS dt dI d d d

t I
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂

x x x
x x x

  (P) (c.1)  

2
2 1

,2( ) tr ' ,
' ' '

t t t t t
t d t t t t x t

t t t t t

VS VS VS VS VS
dt d

t I
σ

  ∂ ∂ ∂ ∂ ∂
= + + − + +   ∂ ∂ ∂ ∂ ∂ ∂   

K θ x Λ Σ ΣΛ ΣΛ W
x x x x

 
as 2

t tdI dtσ=  such that ( )( ) 0tdI dt = , 2( ) 0tdI =  and ( )( ) .t tdI d =x 0 This SDE does not 
include the no-arbitrage condition yet. Using , , ,x t x t x td d= +W W γ% , it holds under Q 
 

2
2 1

, 2( ) tr '
' '

t t t t
t t d t t x t t t

t t t t

VS VS VS VS
dVS dt

t I
σ

  ∂ ∂ ∂ ∂  = + + − − +      ∂ ∂ ∂ ∂ ∂  
K θ x ΣΛ γ Λ Σ ΣΛ

x x x

   ,'
t

t x t
t

VS
d

∂
+
∂

ΣΛ W
x

% .    (Q) (c.2) 

    

The discounted variance-swap value follows under Q, 

 

 1 1( )t t t t t td B VS B dVS r VS dt− −= −    

 1
,(...)

'
t

t t t t x t
t

VS
B r VS dt d−  ∂

= − +    ∂ 
ΣΛ W

x
% , (Q) (c.3) 

 
in which the expression for the dots is given by the drift function in (c.2). Absence of 
arbitrage requires the drift of 1{ }t tB VS−  to be zero under Q. This leads to the following no-
arbitrage restriction  
          (c.4) 
 

         
2

2 1
, 2( ) tr '

' '
t t t t

t t t d t t x t t t
t t t t

VS VS VS VS
r VS

t I
σ

 ∂ ∂ ∂ ∂ = + + − − +     ∂ ∂ ∂ ∂ ∂ 
K θ x ΣΛ γ Λ Σ ΣΛ

x x x
. 

 
As in section 3.1, this restriction implicitly defines a parabolic PDE that the pricing function 

( , , )t tVS t I x  satisfies, with boundary condition 2[ ]TVS A SWσ= − . From (c.2), the 
arbitrage-free variance-swap value thus follows under Q, 

                                           
69 Notice that the covariance after the second equality is of the form cov[ ' , ]a Ay Ay , with a  and A  a 
vector and matrix of constants respectively, and y  a random vector with [ ] =y 0E . The third equality 
then follows from cov[ ' , ] cov[ , ' ' ]= =a Ay Ay Ay y A a [ '] 'A yy A aE .  
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 ,'
t

t t t t x t
t

VS
dVS r VS dt d

∂
= +

∂
ΣΛ W

x
% ,    (Q) (c.5)  

 

and under the market measure (using , , ,x t x t x td d= +W W γ% ),   

 

 , ,
1

' '
t t

t t t x t t t x t
t t t

VS VS
dVS r VS dt d

VS

  ∂ ∂
= + +  ∂ ∂  

ΣΛ γ ΣΛ W
x x

. (P) (c.6) 

 
Using equation (b.6), and following a similar analysis that leads to equation (b.7), shows 
that the volatility beta of the variance swap is given by , , (1 / )( / )VS x t t t tVS VS= ∂ ∂β x . 
The expected spot variance-swap return thus equals 
 

      ( ) ( )2
, , , , ,| ' 't

t t VS x t t x t t VS x t t
t

dVS
r dt r dt

VS
    = + = +      

β ΣΛ γ β ΣΛ γPE F . (c.7) 
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- III - 
 

A State Space Approach  
to the  

Estimation of the 
Multifactor Affine Stochastic Volatility  

Derivative Pricing Model 
 
 

 
 
 

1. Introduction 
 
In this chapter we propose a method for estimating the multifactor affine SV 
derivative pricing model. Given a sample of stock and option data that is 
generated  (or believed to be generated) by this model, we show how this sample 
may be used for parameter estimation and for unveiling the hidden volatilities 
underlying the data. We adopt a state space approach and base our technique on 
the Kalman filter and smoother.  
 
The chapter proceeds as follows. Section 2 discusses current estimation methods 
of SV models, with a specific focus on recently developed methods that combine 
stock and option data for estimation. We motivate why we advocate a state space 
approach, and provide a review of the linear state space framework. 
 
Section 3 derives a discrete-time linear state space representation from the 
multifactor affine SV derivative pricing model. We consider ways to extract 
information from stock returns, realized volatilities and call option prices. At 
several stages during the discussion we connect to the earlier literature and 
provide comparisons and explain differences. GARCH-type models and discrete-
time SV models with associated state space estimation methods get specific 
attention. We also provide an overview of different strands of research towards a 
recent novelty in financial econometrics, realized volatility. We propose a fast 
method for extracting information from option data that circumvents Monte Carlo 
simulation during estimation. Preliminary insight into the performance of the 
method is provided. Several possible state space models eventually result; we 
explain the differences and argue why we prefer one model above the other.  
 
Section 4 contains concluding remarks on estimation, parameter identification, 
and the inclusion of put options and multiple option series in the analysis. Some 
first remarks on more explicitly incorporating level-dependent volatility-of-
volatility in the state space framework are given as well. An appendix completes 
this chapter.  
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2.  Current estimation methods of SV models 
and the state space framework 

 
This section gives an overview of current estimation methods of SV models, and 
summarizes the linear state space framework. The SV literature is huge and still 
expanding. The largest part of this literature deals with SV in pure stock price 
models, rather than option pricing models. As a result, typically only stock price 
data is used for estimation. Section 2.1 discusses some general issues and 
complications that arise in estimating SV models. We consider current 
approaches, with an emphasis on methods that combine stock and option data for 
estimating SV option pricing models, as these are most relevant for our purposes. 
These techniques have only recently been developed. We discuss drawbacks of 
these methods, and motivate why we advocate a state space approach. Section 
2.2 reviews the linear state space framework, the Kalman filter and smoother, 
QML estimation, and diagnostic checking in state space models.  
 
2.1 Current methods and motivating the state space approach 
 
Recall the formula for the price of a European call option, as implied by our 
multifactor model: 2[ ( , , , , , )| ]t t t t t t tC BS S K r qτ σ= QE F . This price may be computed 
by Monte Carlo simulation, if the model parameters are known. In practice 
however, these parameters are unknown, and must therefore first be estimated 
from real-world data. Both stock and option prices contain complementary 
information in this respect. Stock prices contain information on the stock’s real-
world (P) distribution. Option prices in contrast, accommodate information on the 
stock’s risk-neutral (Q) distribution, and in particular, on the market price of 
volatility risk, which is a necessary input for pricing derivatives.  
 
Combining both sources of information for estimation is complicated however, for 
a number of reasons. As volatility is unobserved, no closed-form expression for 
the likelihood function exists (i.e., the transition density does not exist in closed-
form). Therefore, the volatility essentially needs to be “integrated out” during 
estimation. Moreover, as option prices can only be obtained by simulation and/or 
numerical integration, computationally very demanding procedures result, which 
make a fast practical implementation infeasible (so it seems).  
 
As a consequence, the earlier literature on estimating SV option pricing models 
has mainly focused on either the time-series information in stock prices, or the 
cross-section information in option prices, to estimate the diffusion parameters, 
but not both. 1 A drawback of using stock prices only is that the price of volatility 
                                                
1 Numerous estimation methods for SV models have been developed in the last decade, mainly in pure 
stock price settings. Early examples include various (generalized) method of moments (GMM)-based 
approaches, as employed in e.g. Scott (1987) and Taylor (1994). For many SV models however, a 
sufficient number of moments cannot be derived, such that a straightforward application of (G)MM is 
not always possible. This has led researchers as e.g. Wiggins (1987), Chesney and Scott (1989), Melino 
and Turnbull (1990), and notably Duffie and Singleton (1993), to simulate the unknown moments, and 
then apply GMM. This method is known as simulated method of moments. Shephard (1996) lists a large 
number of drawbacks of GMM for estimating SV models. Importantly, GMM does not deliver a volatility 
forecast, such that another technique is required for this. Moreover, it is commonly known that GMM 
can have poor finite-sample properties, especially when the moment conditions are strongly dependent. 
Improvements to GMM are discussed in Van der Sluis (1999), and include the efficient method of 
moments of Gallant and Tauchen (1996). Other estimation techniques for SV models include the indirect 
inference procedure of Gourieroux et al. (1993), and various Markov Chain Monte Carlo methods (e.g., 
Jacquier et al. (1994) and Kim et al. (1998)). Another branch of estimation methods that uses stock 
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risk cannot be estimated. A commonly employed estimation method that uses 
option data only, is (daily re-) calibration. 2 Calibration estimates the Q-
parameters by minimizing the sum of squared deviations between the theoretical 
and market-observed option prices (and thus requires simulation) of a cross-
section of options observed on a particular day. Although popular, this technique 
disregards the time-series dimension of the model completely, and is therefore 
inherently inconsistent with the dynamic principles of the model. Moreover, 
calibrated estimates depend on the information available on that particular day 
only; past information is not included. This does not seem a wise strategy to 
pursue in practice. Suppose for example, that today is an “extraordinary” day, 
leading to calibrated “extraordinary” estimates that differ much from the 
estimates obtained from exploiting the information in a full time series, i.e., the 
“time-series” estimates. If the calibrated model is subsequently used for pricing 
derivatives, it may well be the case that the resulting price differs greatly from 
the price obtained from the time-series estimates, which seems more reliable. 
Possible losses therefore seem more easily incurred –and hedging less reliable- if 
calibration is used, rather than an estimation strategy that uses time-series data. 
 
2.1.1  Combining stock and option data for estimation 
 
Combining stock and option data jointly in a dynamically consistent manner is 
important for a number of reasons (besides those just mentioned). First, the real-
world and risk-neutral stock price dynamics can be estimated simultaneously, and 
the market price of volatility risk can be isolated. Second, it is likely to result in 
more efficient parameter estimates as more information is used. This is important 
for more reliable pricing and hedging of exotic over-the-counter derivative 
products by a financial institution. Third, volatility forecasts may improve. 3 This 
is important for risk management purposes; e.g., the reliability of a measure as 
Value-at-Risk may be enhanced. If volatility is estimated from stock prices the 
estimate is based on historical data only. In contrast, implied volatilities obtained 
from option prices are generally considered as being market forecasts of future 
volatility in practice (see e.g. Hull (2003)). As such, combining both sources of 
volatility information may prove of additional value for predicting volatility.  
 
In recent years, progress has been made in combining stock and option data for 
the purpose of parameter estimation in 1-factor SV option pricing models. We 

                                                                                                                                       
prices only, explicitly recognizes that a latent process is driving the volatility, subsequently writes the 
model in linear state space form, and performs QML estimation. We refer to the main text and section 
3.2.1 for a discussion. However, as discrete-time SV models can often be considered as non-linear state 
space models, other state space methods for reliable and efficient estimation have been developed; see 
e.g. Durbin and Koopman (1997, 2000, 2001). Danielsson (1994) adopts a simulated maximum 
likelihood (SML) estimation approach, and Danielsson (1998) extends this to the multivariate discrete-
time SV case. Durham and Gallant (2002) also focus on a SML approach, but then for continuous-time 
SV models. Still, this is not a complete survey of all existing estimation methods. Earlier overviews 
include Taylor (1994), Shephard (1996) and Ghysels et al. (1996). See also Van der Sluis (1999), and  
the introduction of Bollerslev and Zhou (2002). Recent developments in SV models are discussed in  
e.g. Barndorff-Nielsen, Nicolato and Shephard (2002), Tauchen (2004) and Shephard (2005).  
See also Neil Shephard’s homepage for numerous articles on both SV (and RV): 
http://www.nuff.ox.ac.uk/users/shephard/. Studies that compare the information in stock and option 
prices are summarized in Bates (1996). Bates (2003) and Garcia, Ghysels and Renault (2003) provide 
overviews of option pricing research. 
2 Bates (1996b, 2000), Bakshi et al. (1997), Duffie et al. (2000) among others. Calibration is also 
popular in banking practice.  
3 A recent survey on volatility forecasting is Poon and Granger (2003). See Poon (2005) for a practical 
guide on volatility forecasting.  
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briefly discuss the estimation methods of Chernov and Ghysels (2000), Pan 
(2002) and Jones (2003) below.  
 
Chernov and Ghysels (2000) 
Chernov and Ghysels (2000) extend the efficient method of moments (EMM; 
Gallant and Tauchen (1996)) to estimate the Heston (1993) model, using both 
daily return and short-maturity ATM option data on the S&P500 index. EMM 
matches the scores of the likelihood function of an auxiliary model via simulation. 
EMM is asymptotically as efficient as maximum likelihood, if the auxiliary model is 
a good approximation to the distribution of the data. Chernov and Ghysels use 
reprojection to filter the latent volatilities. They do not perform a Monte Carlo 
study to investigate the finite-sample performance of their estimation method. 
 
Pan (2002) 
Pan (2002) proposes the implied-state GMM (IS-GMM) approach to estimate the 
parameters of the Heston (1993) and Bates (2000) models. 4 She uses weekly 
data on the S&P500 index and a short-dated near-the-money option series for 
estimation. The basic idea of IS-GMM is first to back out a proxy for the 
unobserved volatility from an option price, by inverting the option-pricing formula 
implied by the model (for a given set of parameter values). Using this proxy, one 
can directly focus on the dynamics of the state variables, being the stock price 
and variance. As the affine structure of the log-stock price and variance in both 
models allows for a joint closed-form conditional moment-generating function of 
stock returns and variance, moment conditions can be derived. Replacing the true 
volatility with the proxy in these moment conditions, conventional GMM can next 
be applied. IS-GMM differs from GMM as one of the state variables (the stock 
variance) is parameter-dependent. Pan reports results of a small Monte Carlo 
study for one set of parameters that indicate that IS-GMM seems to work well. 
 
Jones (2003) 
Jones (2003) fits the Heston, CEV and 2GAM models 5 to joint daily time series of 
S&P100-index returns and the “market volatility index” VIX 6, using a Bayesian 
perspective and Markov Chain Monte Carlo (MCMC) methods. Jones’s estimation 
strategy is briefly described as follows. To be able to extract information from 
option prices, Jones assumes a number of approximations. He first approximates 
the model-implied risk-neutral expected average variance over the life of the 
option (i.e., 2[ | ]t tσQE F  in our notation) by a tractable linear function of the 
current stock variance ( 2

tσ ). To implement this relation for estimation purposes, 
he next approximates 2[ | ]t tσQE F  by the observed Black-Scholes implied 
variance. To validate this approximation, Jones uses a Hull-White (1987)-type 
argument: If the stock and volatility process were independent, the option price 
would equal the Q-expected Black-Scholes price, with the random 2

tσ  as its 
argument. (Recall our option pricing formula.) Jones then argues that, since the 
BS formula is close to linear in its variance argument for short-term ATM options, 
approximating 2[ ( )| ]t tBS σQE F  by 2( [ | ]t tBS σQE F  may not result in large 
approximation errors, as the Jensen-inequality error will tend to be minor. Jones 
finally argues that the correlation between the stock and volatility processes is an 

                                                
4 The Bates (2000) model extends the Heston (1993) model to allow for jumps in stock prices. 
5 Jones (2003) develops the CEV (constant elasticity of variance) model, which is similar to the Heston 
model, but the square root in the volatility-of-volatility function is replaced by an arbitrary power that 
entails an extra free parameter. He also develops the 2GAM model. The cost of these generalizations is 
the loss of “closed-form” option pricing formulas. 
6  See http://www.cboe.com/micro/vix/faq.asp for details.   
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additional reason to invalidate the approximations, but says that the practical 
importance of correlation is unclear for ATM options. For a wide range of 
parameter values the validity of the approximation is verified, he mentions. To 
extract information from stock prices, Jones uses an Euler approximation of the 
stock price and variance processes. Jones does not perform a Monte Carlo study 
to investigate the performance of his estimation method. As will become apparent 
in section 3.4, the way Jones extracts information from option prices is related to 
our method. The (mathematical) foundations and justifications for our method are 
nonetheless more solid, given our specific derivative pricing model. 
 
Drawbacks of current methods 
Each of the estimation methods discussed above has its drawbacks. EMM for 
example, is not very transparent, not easy to implement, is simulation-based and 
computationally very demanding. Tauchen (2004) for example mentions “EMM 
requires very long simulations to obtain accurate numerical integrations [..]”. 
EMM does not generate a direct volatility forecast either; another method, 
reprojection, is needed for this. Besides, although EMM has desirable asymptotic 
properties, accumulating evidence from empirical studies indicates that the finite-
sample behavior of this estimation method can be very poor. Chernov and 
Ghysels (2000) mention that ‘the precision of the estimates is very poor [..]’, and 
that their result is consistent with previous findings as in e.g. Gallant, Hsieh and 
Tauchen (1997). Duffee and Stanton (2001), who apply EMM to estimate models 
of the term structure of interest rates, find that ‘EMM behaves extremely poorly in 
samples of the size and type usual in term structure estimation [..]’. When the 
dimensionality of the problem increases (i.e. multiple SV factors or including more 
option series), we expect that problems with EMM are even more likely to occur.  
 
Besides seeming computationally demanding, a major drawback of Pan’s method 
is that IS-GMM assumes the option series from which to back out the volatility 
proxy, to be measured without error. Different selected options will therefore 
most likely give different values for the volatility proxy, due to model error. So 
what option to use? As a model is never a complete description of reality, 
allowing for measurement error is important. 7 The Bayesian, MCMC estimation 
method of Jones (2003) is apparently computationally very intensive as well: 
Jones mentions that 600 000 iterations (!) of his estimation algorithms are 
needed to estimate the parameters using the joint data.  
 
2.1.2   Our approach and advantages of our approach 
 
Given the disadvantages of each of the estimation methods considered above, our 
aim is to develop a different, QML-based estimation technique that overcomes 
most of these drawbacks. The method we suggest is based on a state space 
approach of the problem, and the Kalman filter. Kalman filter-based QML 
estimation approaches for SV stock price models (thus not option pricing models) 
have previously been considered by e.g., Ruiz (1994), Harvey et al. (1994), 
Harvey and Shephard (1996), and recently by Alizadeh et al. (2002). (We refer to 
section 3.2.1 for a discussion.) Moreover, state space methods are commonly 
employed in the literature on the term structure of interest rates, to estimate a 
wide range of different interest rate models. State space estimation has not been 
applied in SV option pricing contexts yet (at least, to the best of our knowledge), 
the main reason probably being that it is unclear how to use this approach in this 
setting. This is in sharp contrast to an affine interest-rate model setting for 
                                                
7 See Renault (1997) for a discussion on the importance of option pricing errors.  
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example, where it is a natural way to proceed. Indeed, the inspiration for our 
method (and multifactor SV model as well) was found in the articles on affine 
term structure models, introduced by Duffie and Kan (1996), and explored in e.g. 
Lund (1997), de Jong (2000), Dai and Singleton (2000) and Duffee and Stanton 
(2001).  
 
Using a number of approximations, in section 3 we derive a discrete-time linear 
state space model (with time-varying coefficients) from our continuous-time 
multifactor affine SV derivative pricing model, that can be estimated by Kalman 
filter QML. The benefits of Kalman filter QML are its relative simplicity and 
consistency of estimates; a drawback is inefficiency of the estimates.  
 
The advantages of our approach include the following. First, the state space 
framework treats the multiple, unobserved volatility-driving factors as latent 
objects. It is therefore naturally suited for incorporation of these hidden factors. 
Second, the smoothed evolution of the factors and volatility is a direct by-product 
of the estimation output. Volatility forecast can be generated at the same time. 
Third, the joint simultaneous inclusion of time series on the underlying stock and 
several option series is easily dealt with, due to the panel-data (i.e. time-series 
cross-section) character of state space models. Fourth, our method naturally 
allows for measurement error in all option series, which may be caused by e.g. 
market microstructure effects or differences in liquidity. Fifth, our method 
circumvents simulation of option prices during estimation. Convergence is rapidly 
achieved. Our method is fast. This makes it particularly useful for practical 
(banking) purposes. Sixth, in the literature on the term structure of interest 
rates, Kalman filter QML estimation methods have proven to be rather robust 
(Lund (1997), de Jong (2000) and Duffee and Stanton (2001)). These methods 
tend to perform well in finite samples, even though some of the different sub-
methods deliver inconsistent estimates. The papers just mentioned contain Monte 
Carlo evidence showing the “inconsistency” (bias) to be small in finite samples.  
 
Before deriving a state space representation of our model, we first review the 
linear state space framework in the next section. For more extensive discussions 
see, e.g., Harvey (1989), Hamilton (1994) and Durbin and Koopman (2001).   
 
2.2 A review of the linear state space representation, the 

Kalman filter and smoother, and QML estimation 
 
A linear state space representation 
We consider the following linear state space representation of a dynamic system, 
which is particularly suited for our needs. The observation or measurement 
equation reads 
 
 't t t t t= + +y a H ξ w ;  ~ ( , )t 0w R ;  1,..,t T= . (2.1) 
 
Here, ( 1) tmx y  is a vector of observed variables at time t , where time is 
measured in some time unit. It is described in terms of a state vector ( 1)rx tξ , 
which r  state variables may be (partly) unobserved, and a vector white noise 
error term ( 1)mx tw . The transition or state equation describes the evolution of 
the state over time. The state is assumed to evolve as a vector autoregressive 
process of order 1, i.e. VAR(1). It reads 
 
 1 1t t t+ += + +ξ d Fξ v ;  1 ~ ( , )t + 0v Q ,              (2.2) 
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in which 1t +v  represents the time 1t +  state innovation. The innovation series 

1{ }t +v  behaves like white noise. The system matrices ( 1)mx ta  and ( )mxr 'tH , 
( ) , ( 1) , ( )mxm rx rxrR d F , ( )rxr Q  contain parameters. The parameters in ta  
and 'tH  are allowed to change over time, although only in a deterministic way. 
The disturbance series { }tw  and 1{ }t +v  are mutually uncorrelated at all time 
points: 
 

 1 1cov , ' , 1,..,t s t s t s T+ += = ∀ =       0Ew v wv .   (2.3) 
 
Finally, it is assumed that the initial state 1ξ  is uncorrelated with the series 

1{ }t +v , such that 1 1[ ']t + = 0E v ξ . Given these assumptions, it follows that the 
state innovation 1t +v  is uncorrelated with lagged values of the state. That is 

1 1[ '] ; 1,..,t t s s t+ + − = =0E v ξ . 
 
The Kalman filter and smoother 
The representation above can be analyzed by the Kalman filter and smoother, 
assuming that the numerical values of , , , ,t ta H R d F  and Q  are known. 8 
In particular, we are interested in the properties of the unobserved state variables 
in tξ . If both the initial state 1ξ  and the series 1{ , }t t +w v  are multivariate 
Gaussian 9, the Kalman filter may be motivated as a recursive algorithm for 
calculating the conditional mean and variance of the state at time 1t + , given the 
information set 1( ',.., ')'t t≡Y y y  at time t , i.e.  
 
 1| 1 |t t t t+ +≡   Eξ ξ Y ,   1| 1var |t t t t+ +≡   P ξ Y ,  (2.4) 

  
for 2,3,...,t T=  in succession, given some initial 1|0ξ  and 1|0P . In the Gaussian 
case it thus holds that 1 1| 1|| ~ ( , )t t t t t t+ + +ξ Y ξ PN . 1|t t+ξ  is labeled the filtered 
state and 1|t t+P  the filtered state variance matrix. Provided that the eigenvalues 
of F  are inside the unit circle so that the process for tξ  is covariance-stationary, 
the Kalman filter can be started with the unconditional mean and variance of 1ξ , 
 

 1
1|0 1 ( )r

−= = −   Iξ ξ F dE       (2.5)  

    ( ) ( ) 2

1
1|0 1vec vec var ( ) vec( )r

−
 = = −    ΙP ξ F F Q⊗ .   

 
We then iterate on 
 

| 1't t t t t t −= − −e y a H ξ ,  | 1't t t t t−= +E H P H R , (2.6) 
1

| 1t t t t t
−

−=K FP HE ,       't t t= −L F KH , 

1| | 1t t t t t t+ −= + +ξ d Fξ K e ,  1| | 1 't t t t t+ −= +P FP L Q . 1,..,t T= . 

 
Here 1( 1) [ | ]t t t tmx −= − Ee y y Y  is the prediction error or innovation in ty  given 

1t −Y , and ( ) var[ ]t tmxm =E e  is the prediction error variance. The ( )rxm  matrix 

tK  is known as the time- t  gain matrix. The equations for 1|t t+ξ  and 1|t t+P  are 
known as the prediction equations. Notice that the current filtered state is 
essentially computed as a weighted sum of the most recently filtered state, and 
the forecast error in the observed variables.  
 

                                                
8 The Kalman filter originated in the engineering literature, in the path-breaking work of Kalman (1960). 
9 In that case subsets of variables, given other subsets of variables, are all normally distributed; e.g., 

1 |t +ξ Y  is Gaussian as well.    
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The Kalman filter can be used for producing a forecast (or estimate) of the future 
state, given current data. In contrast, the Kalman smoother is particularly suited 
for obtaining an estimate of the state, given all observations. That is, for the 
smoothed state | [ | ]t T t T≡ξ ξ YE , and the smoothed state variance matrix 

| var[ | ]t T t T≡P ξ Y ; 1,..,t T= . They can be obtained from a backwards recursion 
which uses the output from the Kalman filter. The recursion starts with 
( 1) Trx = 0r , ( ) Trxr = 0N , and subsequently reads 
 
 1

1 't t t t t t
−

− = +r HE e L r , 1
1 ' 't t t t t t t

−
− = +N HE H L NL , (2.7) 

 | | 1 | 1 1t T t t t t t− − −= +ξ ξ P r , | | 1 | 1 1 | 1t T t t t t t t t− − − −= −P P P N P , 
 
for ,..,1t T= .  
 
In the Gaussian case, the filtered state 1|t t+ξ  is the minimum mean squared error 
(MMSE) estimator of the state 1t +ξ  given time- t  information, whereas the 
smoothed state |t Tξ  is the MMSE estimator of the state tξ  given the full 
information set TY . The Kalman filter and smoother recursions then provide us 
with conditional means and variances of the state vector.  
 
When the normality assumption does not hold this is no longer true. However, as 
discussed in e.g. Harvey (1989) and Hamilton (1994), in the non-Gaussian case 
the same Kalman filter and smoother recursions as above can still be used to 
compute linear least squares forecasts of tξ  given 1t −Y  (filtering), or TY  
(smoothing), together with the mean squared error matrices of their respective 
estimation errors. The Kalman filter then produces the linear projection of 1t +ξ  on 

tY  and a constant, as denoted by 1| 1
ˆ ˆ[ | ]t t t t+ += Eξ ξ Y  in Hamilton (1994), 

together with MSE matrix 1| 1 1| 1 1|
ˆ ˆˆ [( )( )']t t t t t t t t+ + + + +≡ − −EP ξ ξ ξ ξ  of the associated 

estimation error. The Kalman smoother then produces the linear projection |t̂ Tξ  
with associated MSE matrix |t̂ TP  of the estimation error. In the non-Gaussian 
case, the state estimators 1|t̂ t+ξ  (the filtered state) and |t̂ Tξ  (the smoothed state) 
are still optimal, in the sense that they minimize the MSE within the class of all 
linear estimators of the state vector. 10    
 
Estimation 
In practice, the numerical values of the parameters appearing in , , , ,t ta H R d  
F and Q  are typically unknown, and must be estimated from the observed data 

TY  at hand. If the initial state 1ξ  and the series 1{ , }t t +w v  are multivariate 
Gaussian, then the distribution of ty  conditional on 1t −Y  is Gaussian, 
 

 1 | 1| ~ ' ,t t t t t t t− − + y Y a H ξ EN ,     (2.9)  

 
from which the sample loglikelihood is constructed in a straightforward way. The 
loglikelihood can subsequently be maximized with respect to the unknown 
parameters, invoking the Kalman filter recursion. Kalman filter ML estimation 
yields consistent, asymptotically normal, and (asymptotically) efficient estimates. 
It should be noted however, that in the absence of sufficient restrictions on the 
parameters, not all parameters might be identified.  
 

                                                
10 The MMSE estimator is still the conditional expectation (as always), but is now generally a non-linear 
function of the data Y  and much more tedious to compute; in general by means of simulation. Recall 
that in case of Gaussianity 1|t t+ξ  and |t Tξ  have minimal MSE of all  estimators of the state, both 
linear and non-linear.  
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In the non-Gaussian case, the same loglikelihood (with | 1t t −ξ  replaced by | 1t̂ t −ξ  
and | 1t t −P  by | 1t̂ t −P ) may be maximized. This quasi-maximum likelihood (QML) 
estimation procedure still yields consistent and asymptotically normal (but 
inefficient) estimates of the parameters, provided that some mild regularity 
conditions are satisfied (see Watson (1989)). 11 Robust QML standard errors can 
be computed with the method of White (1982); see e.g. Hamilton (1994, p.145). 
 
Diagnostic checking 
Once the parameters have been estimated, correct econometric practice is to 
subject the estimated model to a number of diagnostic checks. Given the 
estimation output, the standardized prediction errors or innovations may be 
computed. These are defined as 

1
2

t
−

tE e , and equal   
          (2.10) 
( ) ( ) ( ) ( )

1 1
2 2

| 1 1 | 1 | 1' | ' 't t t t t t t t t t t t t t t t
− −

− − − −+ − = + − −   ξE  H P H R y y Y H P H R y a H  
 
If the model is well specified, the standardized innovations should form a mean-
zero, homoskedastic, serially uncorrelated series (hence white noise), with a 
variance equal to 1. 
 
The so-called smoothed disturbances or auxiliary residuals of the state space 
model yield additional information with respect to model misspecification. They 
represent the best (i.e., MMSE) estimates of the disturbances given the data. The 
smoothed disturbances associated with the measurement equation are given by 
 

|[ | ] 't T t t t t T= − − ξEw Y y a H ,     (2.11) 

 
whereas for the transition equation, they are given by 

 

1 1| |[ | ]t T t T t T+ += − −ξ ξE v Y d F .      (2.12) 
 

Durbin and Koopman (2001) point out that the auxiliary residuals are 
autocorrelated (in theory), but can be useful for detecting outliers and structural 
breaks, as they are the best estimators of the error terms given the data.  
 
 

3. Deriving a state space representation 
 
This section derives a linear state space representation from the multifactor affine 
SV derivative pricing model, which can be used for parameter and volatility 
estimation. Section 3.1 derives an exact discrete-time equivalent of the SDE for 
the latent factors. Section 3.2 explains how to extract information from daily 
stock returns. For illustrative purposes, we link to the earlier literature on 
estimating SV models using the Kalman filter. We also compare the 1-factor SV 
special case of the multifactor model with the GARCH(1,1) model for stock 
returns. Section 3.3 designs a strategy for extracting information from high-
frequency intraday stock price data, via realized volatilities. Section 3.4 considers 
information extraction from a time series of call option prices. Section 3.5 
comments on two possible resulting state space models, of which one is 
eventually chosen to work with in the remainder.  

                                                
11 Durbin and Koopman (2001) provide an extensive treatment and simulation-based estimation 
methodology for non-Gaussian state space models in which the distributions of the measurement and 
transition equation disturbances are known. Unfortunately, these distributions are unknown in all cases 
we will encounter, such that we resort to QML estimation.  
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In the coming sections, we need the following SDEs and expressions that appear 
in the multifactor affine SV option pricing model (see sections 2 and 3.2 of the 
previous chapter): 
 

Stock price:   ,t t t t t S tdS S dt S dWµ σ= +    (P) (3.1) 

Stock variance:  2
0 't tσ δ= + δ x      (3.2) 

Latent factors: ,( )t d t t x td dt d= − +x K θ x ΣΛ W        (P) (3.3) 

,( )t t t x td dt d= − +x K θ x ΣΛ W%% %   (Q) (3.4) 

Call price:     2( , , , , , )|t t t t t t tC BS S K r qτ σ =  QE F ,  (3.5) 

 
with the risk-neutral parameters given by 'd= +K K ΣΓ% B  and 1( )d

−= −θ K K θ ΣΓα% % , 
and where 1 1 ndiag[ ' ,.., ' ]t t n tα α= + +Λ β x β x .  
 
Given this continuous-time model, our object is to translate the model into the 
discrete-time state space representation from section 2.2, which can be used for 
estimation purposes. We assume the empirical data to consist of T  daily 
observations of stock returns, realized volatilities, and/or a (panel of) call option 
prices. We measure time t  in trading years, with 260 days per annum. The 
timing of the data points is denoted by , 2 ,..,t t t T t= ∆ ∆ ∆ , with 1 /260t∆ = .  
 
3.1 Tackling the SDE of the volatility-driving factors 
 
The unobserved volatility-driving factors x  will form (part of) the state of the 
state space model (2.1)-(2.2). To obtain a discrete-time equation from their  
SDE ,( )t d t t x td dt d= − +x K θ x ΣΛ W  under P, one could consider a (non-exact) 
Euler discretization. Fortunately, an exact discretization exists however, as we will 
now show. We first express t t+∆x  in terms of tx . To achieve this, consider the 
transformation 
 
 exp[ ]t d tt≡y K x ,       (3.6) 
 
where we define the exponent of a diagonal matrix as follows. If 

1( ) diag[ ,..., ]d nnxn a a=A  then 1exp[ ] diag[exp( ),...,exp( )]d na a≡A . Itô gives 
         

    ,exp[ ] exp[ ] exp( )[ ]t d d t d t d d t x td t dt t d t dt d= + = +y K K x K x K K θ ΣΛ W . (3.7) 

       
Integrating this SDE over the interval [ , ]t t t+ ∆  yields 
 

 ,exp[ ] exp[ ]
t t t t

t t t d d d u x u

t t

u du u d
+∆ +∆

+∆ = + +∫ ∫y y K K θ K ΣΛ W .  (3.8) 

  
Transforming back to t t+∆x , by premultiplying with exp[ ( )]d t t− + ∆K , yields 

          (3.9) 

,exp[ ] exp[ ( )] exp[ ( )]
t t t t

t t d t d d d u x u

t t

t t t u du t t u d
+∆ +∆

+∆ = − ∆ + − + ∆ − + − + ∆ −∫ ∫x K x K K θ K ΣΛ W

 

  ,exp[ ] ( exp[ ]) exp[ ( )]
t t

d t n d d u x u

t

t t t t u d
+∆

= − ∆ + − − ∆ + − + ∆ −∫K x I K θ K ΣΛ W . 
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Defining the factors in deviation from their mean, *
tx , as 

 

    *
t t t≡ − ∀x x θ ,       (3.10) 

and 

,exp[ ( )]
t t

t t d u x u

t

t t u d
+∆

+∆ ≡ − + ∆ −∫u K ΣΛ W ,   (P) (3.11) 

 
this equation can be simplified towards 
 
 * *exp[ ]t t d t t tt+∆ +∆= − ∆ +x K x u ,   ,..,t t T t= ∆ ∆ .  (P) (3.12) 

 
This equation already has the basic form we are looking for, if we interpret the 
random vector t t+∆u  as an error term. The state vector tξ  in the state space 
model (2.1)-(2.2) will (partly) be formed by the latent factors in deviation from 
their mean, * .t t= −x x θ  What remains to be checked, are the statistical 
properties of the series { }t t+∆u , ,...,t t T t= ∆ ∆ . The state space representation 
(2.1)-(2.2) requires this series to be white noise. In section 6 of appendix B we 
prove that this is indeed the case. Specifically, we find 
 

 ( )~ , ( ) 't t dt+∆ ∆u 0 G ΣM Σ⊙      (P) (3.13) 

with 
 

1 1 ndiag ' ,.., 'd nα α≡ + +  M β θ β θ ,     (3.14) 
 

( )nxn ( )t∆G  with 
1 exp[ ( ) ]

[ ( )] i j
ij

i j

k k t
t

k k

− − + ∆
∆ =

+
G , 

 
(see also appendix A for these definitions), and in which ⊙  denotes the 
Hadamard product; i.e., element-by-element multiplication. As [ | ]t t t+∆ =u 0PE F , 
it moreover follows that t t+∆u  is uncorrelated with the past { , ,..}t t t−∆x x , i.e. 
{ }t t+∆u  represents a true innovation series. The errors in t t+∆u  are interpreted as 
the unpredictable shocks to the volatility factors from day t  to day t t+ ∆ . 
 
The continuous-time process (3.3) thus implies that the factors evolve as a vector 
autoregressive process of order 1 (VAR(1)) in discrete time. Given that 

2 *
0 0' ' 't t tσ δ δ= + = + +δ x δ θ δ x , it is clear that the stock variance is essentially 

modeled as a sum of n  AR(1) processes, which may be correlated.  
 
3.2  Extracting information from stock returns 
 
Consider the SDE (3.1) for the stock price. An exact discrete-time discretization 
does not exist, not even for the log stock price (due to stochastic volatility). An 
Euler discretization over the interval [ , ]t t t+ ∆  yields 12 

 

t t t t t tr tµ σ η+∆ +∆= ∆ + ,      (P) (3.15) 

 
in which the stock return t tr +∆  and the Brownian increment t tη +∆  are defined as 
 

                                                
12 This Euler discretization is not exact. Nevertheless, for simplicity, we write an equality sign (=)  
instead of an approximately-equal sign ( ≈ ).   
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 t t t
t t

t

S S
r

S
+∆

+∆
−

≡ ,   , , ~ i.i.d. (0, )t t S t t S tW W tη +∆ +∆≡ − ∆N . (3.16) 

 
Given time- t  information, collected in the filtration tF , the returns are 
approximately normally distributed: 13 
 

 2| ( , )t t t t tr t tµ σ+∆ ≈ ∆ ∆NF .     (P) (3.17) 

 
The process 2{ }tσ  represents the (per-annum) conditional variance process of the 
stock returns. As 2{ }tσ  varies stochastically over time, periods of high and low 
volatility, featured by large and small stock returns (i.e., volatility clustering) are 
possible. The unconditional variance of the stock returns is constant, and given by 

2
0[ ] 'tσ δ= + δ θPE , per annum. 14 We are ultimately interested in the volatility 

process. As volatility clustering is associated with temporal dependence in 
second-order central moments, our focus is on squared returns in deviation from 
their mean, instead of the raw returns themselves, as these are not very 
informative on this. Consider then the equation 15 
 

 ( ) ( )2 21 1
|t t t t t t t t tr t r t

t t
µ µ ω+∆ +∆ +∆

 − ∆ = − ∆ + ∆ ∆ 
PE F , (P) (3.18) 

 
in which, by construction, the error term t tω +∆  has (conditional) mean zero. The 
conditional expectation in (3.18) equals 2 2 2 2[ | ]/ [ | ]/t t t t t t t tt tσ η σ η+∆ +∆∆ = ∆P PE EF F  

2
tσ= , in which the final equality uses the independent-increments property of 

Brownian motion. Substitution yields 
 

 ( )2 0
1

't t t t t tr t
t

µ δ ω+∆ +∆− ∆ = + +
∆

δ x ,    2~ (0, )t t ωω σ+∆ . (P) (3.19) 

   
This equation is linear in the latent factors. The state space representation (2.1)-
(2.2) requires the error series { }tω  to be white noise. We confirm this in the 
appendix where we also derive an explicit expression for 2

ωσ  , assuming the Euler 
discretization to be exact. As this is not the case however, we treat ωσ  as a free 
parameter in the estimations. We moreover show the errors { }tω  to be 
uncorrelated with the errors { }tu  in (3.12) at all points in time.  
 
Equation (3.19) serves to extract information from a series of stock returns. If 
the conditional mean-return process { }tµ  is assumed to be constant, such that 

tµ µ= , the sample average of returns may be substituted in (3.19) to make the 
left-hand side “observable”. If not, a possible empirical strategy is to take 
prewhitened returns in (3.19). We refer to the empirical analysis in section 2.1 of 
chapter IV for a motivation and discussion.  

                                                
13 As the Euler discretization is not exact, this only holds by approximation. For tµ µ=  and treating 
the Euler discretization as exact, it can moreover be shown that the returns are serially uncorrelated. In 
section 12 of appendix B, we show however that this only holds true by close approximation, due to SV.  
14 For the instantaneous stock return, it holds that 2/ | ~ ( , )t t t t tdS S dt dtµ σNF  exactly. It follows 
that var[ / ]t tdS S  = (var[ / | ]) var( [ / | ])t t t t t tdS S dS S+E EF F  = 2 2[ ] var[ ]t tdt dtσ µ+E  
=  2[ ]t dtσE . Hence, the variation in the t −F adapted conditional mean-return process { }tµ  has no 
“first-order effect” on the unconditional variance of the spot return. In a similar way, treating the Euler 
discretization as exact, we obtain 2 2var[ ] [ ] var[ ]t t t tr t tσ µ+∆ = ∆ + ∆E . For 1/260t∆ = , the 
variation in { }tµ  seems negligible.  
15 This equation boils down to ( )21 1[ | var [ | ]t t t t t t t t t tt tr r r ω+∆ +∆ +∆ +∆∆ ∆− = +P PE F F  (treating the 
Euler discretization as exact). Notice that the conditional expectation of the left-hand side equals 
1 var [ | ]t t tt r +∆∆ P F .  
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3.2.1  ARSV(1) model and relation with the earlier literature 
 
Let us relate our state space way of extracting information from returns with the 
ways others have previously done this in the literature, in the discrete-time 
ARSV(1) model. This model, introduced by Taylor (1986), is the most popular 
discrete-time SV model for stock returns. 16 Volatility is assumed to be driven by 
a latent Gaussian AR(1) process { }tx . Daily returns are generated according to 
 

  t t tr µ σ η= + ,                                    ~ i.i.d (0,1)tη N  (P) (3.20) 

 2 exp( )t txσ = ,   1 0 1 1t t tx x uφ φ+ += + + ,  2~ i.i.d (0, )t uu σN ,  
 
with tη  and su  independent ,t s∀ . 17 An alternative formulation of the variance 
process is 2 2

1 0 1 1ln lnt t tuσ φ φ σ+ += + + . Notice that the returns are conditionally 
Gaussian: 2| ~ ( , )t t tr σ µ σN . As mean daily returns are close to zero, the 
literature commonly assumes 0µ = . In order to derive a possible state space 
representation of (3.20), it follows from t t tr σ η=  that  2 2 2ln ln lnt t tr σ η= +   
= 2lnt tx η+ . As 2 2~ (1)tη χ , it holds that 2[ln ] 1.27tη = −E  and 2 2var[ln ] /2tη π= . 
Defining the mean-zero random variable 2 2ln [ln ]t t tω η η≡ − E , the state space 
representation becomes  
 

 2ln 1.27t t tr x ω+ = + ,   1 0 1 1t t tx x uφ φ+ += + + .   (3.21)  
 
Evidently, the distribution of the error term tω  is not Gaussian. If one is willing to 
assume that the distribution of tω  may be approximated by 2(0, /2)πN , the 
parameters can still be estimated by QML. This method for estimating the 
ARSV(1) model is due to Ruiz (1994) and Harvey, Ruiz and Shephard (1994). 
(See also Harvey and Shephard (1996)). Although QML generates consistent 
estimates, it is likely to have poor finite-sample properties in this case, as the real 
distribution of tω  is far from being Gaussian: It has a much longer (resp. shorter) 
left (resp. right) tail, and is thus not even symmetric.  
 
To improve on QML, Kim, Shephard and Chib (1998) propose to approximate the 
distribution of tω  by a mixture of normals, the number of normal distributions 
depending on the desired level of accuracy. Sandmann and Koopman (1998) also 
improve on QML, by decomposing the likelihood function into a linear Gaussian 
part constructed by the Kalman filter, and a remainder term, which expectation is 
evaluated by simulation. As the likelihood function can be approximated 
arbitrarily closely, their method is efficient. 
  
In the 1-factor SV special case of our multifactor model, the latent factor x  also 
follows an AR(1) process (recall (3.12)). The similarities and differences between 
(3.19) and (3.21) will be clear. It may well be the case that the finite-sample 
performance of our QML method for extracting information from squared returns 
will turn out to be poor.  
 
3.2.2  Relation with the GARCH(1,1) model for stock returns 
 
The way in which equation (3.19) extracts information from stock returns is 
related to the way the GARCH(1,1) model deals with this, if there is only one 
                                                
16 Some of the more recent references include Sandmann and Koopman (1998), Mahieu and Schotman 
(1998), Kim, Shephard and Chib (1998), Liesenfeld and Jung (2000), Carnero et al. (2001). 
17 The ARSV(1) model thus assumes no leverage effect. The asymmetric ARSV(1) model of Harvey and 
Shephard (1996) allows for negative correlation between tη  and 1tu +  (notice the timing). 
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factor driving the volatility. Since the GARCH(1,1) model is probably the most 
widely applied model for describing empirical daily stock returns, a brief 
discussion of some of the similarities and differences is in place.  
 
1-factor SV model with Heston (1993) volatility 
Let us first focus on the 1-factor SV special case of the multifactor model with 

2
t txσ =  and ,( )t t t x tdx k x dt x dWθ σ= − +  under P; i.e. Heston (1993) volatility 

(without leverage effect). (Properties of this SV process used below can be found 
in appendix B, section 14.) Recall from (3.17) that returns are approximately 
conditionally Gaussian, 2| ( , )t t t t tr t tµ σ+∆ ≈ ∆ ∆F N . Using (3.12), the stock variance 
at day t t+ ∆  is related to the stock variance of day t  by 
 

 2 21 exp( ) exp( )t t t t tk t k t uσ θ σ+∆ +∆= − − ∆ + − ∆ +     (P) (3.22) 

with 

 2 1 exp( 2 )
~ 0;

2t t
k t

u
k

σ θ+∆
 − − ∆ 
    

    (3.23) 

2 2 *1 exp( 2 ) exp( ) exp( 2 ))
| ~ 0;

2t t t t
k t k t k t

u x
k k

σ θ σ+∆
 − − ∆ − ∆ − − ∆   +        

F . 

 
The volatility shock t tu +∆  is unconditionally homoskedastic. Conditionally, it is 
heteroskedastic, with a variance depending on the current volatility-determining 
state *

tx , which illustrates the fact that the volatility-of-volatility is level-
dependent.  For 0k =  we have 2 2

t t t t tuσ σ+∆ +∆= + , such that the stock variance 
follows a random walk in discrete time. In that case, shocks have an everlasting, 
persistent impact on future volatility. For 0k > , the volatility is mean reverting. 
The volatility persistence is measured by exp( )k t− ∆ , on a daily basis. The closer 
k  is to 0, the more the volatility behaves as a random walk, the closer the 
persistence is to 1. The larger k , the faster the volatility reverts back to its mean 
θ . The half-life (in days) of a shock in the stock variance is given by ln2 / k t∆ . 
Using (3.10) and substituting (3.12) in (3.19), followed by rewriting, we find 
          (3.24) 

( ) ( )2 21 1
1 exp( ) exp( ) exp( ) .t t t t t t t t t tr t k t k t r t k t u

t t
µ θ µ ω ω+∆ −∆ +∆− ∆ = − − ∆ + − ∆ − ∆ + − − ∆ +  ∆ ∆

 
This equation shows that the squared returns are essentially modeled as an 
autoregressive moving-average (ARMA(1,1)) process, “plus” white noise. 
 
GARCH(1,1) volatility 
Consider next the Gaussian GARCH(1,1) model for daily returns, introduced by 
Bollerslev (1986): 18  
 

    t t tr µ σ η= + ,    2 2 2
0 1 1 2 1t t teσ φ φ φ σ− −= + + ,   ~ i.i.d. (0,1)tη N , (P)  (3.25) 

 
in which 1[ | ]t t t t t t te r r rσ η µ −≡ = − = − E F  and 0 1 20; , 0φ φ φ> ≥ . For 1 2 1φ φ+ < , 
the GARCH conditional variance process is stationary, and has unconditional 
variance 0 1 2/(1 )φ φ φ− − . As in our model and the ARSV(1) model, returns are 

                                                
18 There is a bewildering literature on GARCH-type models, both on the theoretical and applied side, 
starting with the seminal papers of Engle (1982) and Bollerslev (1986). Since then, literally hundreds 
papers have appeared on the subject. Overviews can be found in Bollerslev et al. (1992), Bera and 
Higgins (1993), Bollerslev et al. (1994), Engle (1995), and Franses and van Dijk (2000) among others. A 
recent, up-to-date survey of research on multivariate GARCH-type models is Bauwens et al. (2003).  
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conditionally Gaussian: 2
1| ~ ( , )t t tr µ σ−F N . Introducing the error term 

2 2
1[ | ]t t t te eς −≡ − E F  = 2 2

t te σ− , the variance process can be written as 
 

 2 2
0 1 2 1 1 1( )t t tσ φ φ φ σ φ ς− −= + + + ,      (3.26) 

with 
 ( )4~ 0,2 [ ]t tς σE ,      ( )4

1| ~ 0,2t t tς σ−F .    (3.27) 

 
In the GARCH model, the volatility persistence is measured by 1 2φ φ+ , and the 
half-life of a shock by 1 2ln2 / ln( )φ φ− + . If 1 2 1φ φ+ = , the integrated GARCH 
(IGARCH; Engle and Bollerslev (1986)) model results, with the variance showing 
random walk behavior. 19 The standard GARCH model does not model the 
leverage effect. 20 Notice from (3.27) that the GARCH volatility-of-volatility is 
level-dependent. If we substitute the expression 2 2

t t teσ ς= −  into the GARCH 
conditional variance process (3.25) and perform some rewriting, we obtain that 

2 2
0 1 2 1 2 1( )t t t te eφ φ φ ς φ ς− −= + + + − , or 

 

 ( ) ( )2 2
0 1 2 1 2 1( )t t t tr rµ φ φ φ µ ς φ ς− −− = + + − + − .   (3.28) 

 
This expression reveals that GARCH(1,1) models the squared returns as an 
ARMA(1,1) process.  
 
Notice the similarity between (3.15), (3.17), (3.22)-(3.24) on one side, and 
(3.25)-(3.28) on the other side. As (3.24) and (3.28) illustrate, the way the  
1-factor SV model and the GARCH(1,1) model model squared returns seems 
similar. There is one crucial difference however. In contrast to (3.28), (3.24) 
includes the extra white-noise error term tu , due to stochastic volatility. 
Moreover, although (3.22) and (3.26) look the same, the error t tu +∆  represents a 
true innovation in the variance process (3.22), whereas the error 1tς −  in (3.26) is 
determined from the history of the GARCH process. This observation touches the 
core of the difference between GARCH-type and SV models, and explains why 
GARCH models are so easy to estimate (by ML), as opposed to SV models. As the 
time- t  GARCH conditional variance is a deterministic function of the available 
information at time 1t − , true surprises in the time- t  variance do not occur. In 
contrast, our model  -and SV models in general- do allow for such unpredictable 
surprises, and that is precisely the reason for the additional error term tu  
showing up in (3.24) as opposed to (3.28). 21       
 
 
 

                                           
19 If we further restrict 0 0φ = , the exponentially weighted moving average (EWMA) model for volatility 
results, 2 2 2

2 1 2 1(1 )t t teσ φ φ σ− −= − + , which can be rewritten as 2 2
2 0 2 1(1 ) i

t i t ieσ φ φ∞
= − −= − ∑ . J.P. 

Morgan’s well-known RiskMetrics system  uses this model for calculating Value-at-Risk measures,  
assuming the decay-factor 2φ  to equal 0.94.  
20 The following extensions of the GARCH model model the leverage effect in different ways: 
Exponential GARCH (EGARCH; Nelson (1991)),  Threshold  ARCH (TARCH) also known as GJR-GARCH 
(Rabemananjara and Zokoian (1993) and Glosten et al. (1993)), Quadratic GARCH (QGARCH; Sentana 
(1995)), Volatility Switching GARCH (VS-GARCH; Fornari and Mele (1997)), and Smooth Transition 
GARCH (ST-GARCH; Gonzalez (1998)). 
21 It should be noted that despite this difference, there also exists an intimate connection between 
GARCH-type and SV models. Nelson (1990) shows that e.g. the GARCH(1,1) model can be seen as a 
discrete-time approximation of a certain continuous-time SV model. More specific, the GARCH(1,1) 
model converges weakly to an SV diffusion the finer the (intraday) time grid on which the GARCH model 
is sampled.  



- III - A State Space Approach to the Estimation of the Multifactor Affine Stochastic 
       Volatility Derivative Pricing Model 

 82

3.3 Extracting information from realized volatilities 
 
The squared return equation (3.19) can be used for information extraction from 
stock prices, if one has access to daily data. What if one has access to high-
frequency intraday data? Can we simply replace the squared returns by realized 
volatilities as we may intuitively expect? This section lays out the theoretical 
foundation for including high-frequency data in the state space analysis.  
 
Section 3.3.1 explains the concept of realized volatility (RV). Section 3.3.2 gives 
an overview of RV research. Section 3.3.3 motivates the measurement equation 
for RV (given in section 3.3.4), by considering a particular equation satisfied by 
the average variance over a day. Section 3.3.5 takes a closer look at the 
measurement equation for RV, and revisits the squared return equation (3.19).  
 
3.3.1   Realized volatility 
 
For 1 /260t∆ = , the interval [ , ]t t t+ ∆  corresponds to one trading day. Suppose 
that we divide this interval into I  intraday intervals of equal length /t t Iδ ≡ ∆ . 
Suppose further that we observe the stock price at the intraday time points 
, ,..,t t t t I t t tδ δ+ + = + ∆ . Define the so-called realized variance 2

,RV t tσ +∆  over 
day [ , ]t t t+ ∆ , as the annualized sum of squared intraday logreturns,  
 

 
2

2
,

( 1)1

1
ln

I
t i t

RV t t
t i ti

S
t S

δ

δ
σ +

+∆
+ −=

 
≡   ∆  

∑ .    (P) (3.29) 

 
22 Its square-root is labeled the realized volatility over that day. From the theory 
of quadratic variation 23, the realized variance converges in probability to the 
average variance over that day, if sampling becomes continuous: 
 

2
2

,
( 1)1

1
plim plim ln

I
t i t

RV t t
I I t i ti

S
t S

δ

δ
σ +

+∆
→∞ →∞ + −=

 
=   ∆  

∑    (P) (3.30) 

( ) ( )2 21 1 1
[ln ] [ln ] ln

t t t t

t t t u u

t t

S S d S du
t t t

σ
+∆ +∆

+∆= − = =
∆ ∆ ∆∫ ∫ . 

 

                                           
22 Our choice for equidistant intraday time points is a notational convenience, and is neither essential for 
the definition of realized variance, nor for the derivation of the measurement equation.   
23 From Itô’s lemma, the log stock price evolves as 21

,2ln ( )t t t t S td S dt dWµ σ σ= − +  under P. The 
quadratic variation [ln ]TS  of the logprice process over the interval [0, ]T  is defined as the mean-
square limit of the sum of squared logprice increments, for any sequence of partitions 

0 10 .. Nt t t T= < < < =  of [0, ]T , for which 1lim max( ) 0i i
N i

t t −
→∞

− = . That is, [ln ]TS  is defined 
such that 

( )1

2
2

1
lim ln ln ln 0

i i

N

t t TN i
S S S

−→∞ =

   − − =      
∑PE  

holds. In other words, the sum of squared logreturns converges in mean-square (and hence in 
probability) to the quadratic variation of {ln }tS  over [0, ]T , the more frequently we sample the 
logprice process. As {ln }tS  is a continuous semimartingale (i.e., ln tS  is the sum of a continuous 
martingale, 0 ,

t
t u S uM dWσ≡Ÿ , and a process of bounded variation, 21

0 2( )t
t u uA duµ σ= −Ÿ , the 

latter which has zero quadratic variation), its quadratic variation is only determined by the martingale 
part, and equals 2 2

0 0[ln ] ( ln )T T
T u uS d S duσ= =Ÿ Ÿ . Recall that for Brownian motion ,W [ ]TW T= . 
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Here, [ln ]uS  represents the quadratic variation of the logprice process 
{ln ; 0}tS t ≥  over the interval [0, ]u . Result (3.30) essentially means that, given 
an observed (i.e., realized) stock price path over a certain day, the implied latent 
average variance over that day, can arbitrarily well be approximated by 
computing the sum of squared intraday returns from that path; i.e., the realized 
variance. The approximation gets better for larger I , hence the more often the 
stock price is sampled during that day. The realized variance (3.29) is thus an 
estimator of the (ex-post) average variance.  
 
3.3.2  Overview of research on RV  
 
This section provides an overview of the research on realized volatility. 24 
Research on RV is fairly novel, but is rapidly expanding at an increasing rate. 
After a brief discussion of the early papers, rather than attempting to be 
complete, we will focus on current, leading main strands of research towards RV. 
 
Early papers and properties of empirical RV 
The work of notably Andersen and Bollerslev (1998) started a whole new area of 
research on the use of high-frequency data for measuring and forecasting 
financial volatility. At the time numerous studies suggested that ARCH and SV 
models provide poor volatility forecast, despite the good fit of these models. 
Evaluation of these forecasts was typically done by regressing daily squared 
returns on e.g. GARCH volatility forecasts, leading to R-squareds of only around 
3%. Andersen and Bollerslev showed however, that when evaluating these 
GARCH forecasts against realized volatilities, R-squareds of close to 50% result. 
As such, they concluded that squared returns are typically noisy volatility 
estimators, and that GARCH models provide much better volatility forecasts than 
was commonly suggested at that time.  
 
A series of papers, notably Ebens (1999), Andersen, Bollerslev, Diebold and 
Ebens (2001a,b) and Andersen, Bollerslev, Diebold and Labys (2001a,b) next 
investigated the empirical distribution of realized volatilities (computed using  
5-minute returns). Studying 60 stocks, 1 stock index and 2 exchange rates, these 
authors find the following. First, daily logreturns standardized by realized 
volatilities are approximately Gaussian. (This is in sharp contrast to the remaining 
excess kurtosis typically found in the standardized returns of an estimated 
GARCH-type or SV model.)  Second, the distribution of realized variances is right 
skewed and leptokurtic. Third, logarithmic realized volatilities are approximately 
Gaussian. Fourth, the dynamics of realized logarithmic volatilities are well 
approximated by a fractionally integrated long-memory (though still stationary) 
process. 
 
Direct modeling of RV for the purpose of volatility forecasting 
From the previous section it is clear that, if one believes that empirical stock 
prices are truly generated by an SV model in the continuous semimartingale class 
(hence no jumps), then RV provides a non-parametric, or model-free way of 
measuring ex-post volatility (see (3.29)-(3.30)). No full specification of a specific 
SV model is required for this, which makes RV a robust, ex-post volatility 
measure. Volatility essentially becomes “observable” (disregarding measurement 
error, and errors due to the fact that I  is finite). This sharply contrasts to 

                                           
24 In line with the literature, we will use the terms realized variance and realized volatility 
interchangeably, except there where the distinction is important.  
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measuring volatility using GARCH-type and SV models, which treat volatility as 
latent, and which make specific distributional assumptions regarding volatility.  
 
This observation has led researchers to directly model (log) realized volatilities 
using (non)linear (V)AR(FI)MA-type models, and investigate the forecasting 
performance of these models. (Accurate volatility forecasts are of obvious 
practical importance in all sorts of financial decision-making problems as e.g., 
asset allocation decisions.) The current conclusion of the papers in this area is 
that direct modeling of RV using ARMA-type models yields much better volatility 
forecasts than traditional GARCH and SV models. See e.g., Andersen, Bollerslev, 
Diebold and Labys (2003), Martens et al. (2003) and Koopman et al. (2005). 
 
Do not sample too frequently (5–30 minutes) 
Equation (3.30) demonstrates that the more frequent the stock price is sampled 
during a day, the better RV approximates the ex-post volatility over that day. In 
the limit for I → ∞ , RV is free of measurement error. In practice unlimited 
sampling is not possible however, given that transactions do not take place 
continuously. Moreover, given that very-high-frequency data tends to be 
contaminated by market-microstructure noise, as a result of e.g. infrequent 
trading, bid-ask bounce, and price discreteness, the sampling frequency should 
not be too large. Andersen and Bollerslev (1998), and Andersen, Bollerslev, 
Diebold and Ebens (2001a,b) argue that five-minute sampling should be the 
lowest frequency. The typical frequency used in the literature is in the range of  
5 to 30 minutes.  
 
RV is still a noisy estimator of quadratic variation 
Barndorff-Nielsen and Shephard (2001a) show that RV is normally distributed 
asymptotically, and thus has a variance. A simulation experiment by these 
authors shows that even with 2.5-minute sampling, the estimation error in the RV 
estimate is still rather large. So although RV means an obvious improvement to 
squared daily returns, ex-post volatility not truly becomes observable.  
 
Barndorff-Nielsen and Shephard have developed several asymptotic theories for 
RV-type measures recently. For a fairly general SV model, Barndorff-Nielsen and 
Shephard (2002, 2004b) establish a central limit theorem (CLT) for RV as I → ∞ . 
Barndorff-Nielsen and Shephard (2003, 2004a) show that a CLT also applies to 
measures based on powers of intraday returns (realized power variation) and 
products of powers of absolute returns (e.g. bipower variation). Barndorff-Nielsen 
and Shephard (2005) provide a joint asymptotic distribution theory for RV and 
bipower variation, and show how this distribution can be used for testing for 
jumps in speculative prices (see also below). 
 
Effects of market-microstructure noise on RV 
Another branch of research is currently studying the impact of market-
microstructure noise on RV, including Aït-Sahalia et al. (2005a, 2005b), Zhang et 
al. (2002), Zhang (2004), Bandi and Russel (2004), Hansen and Lunde (2004a, 
2004b) and Barndorff-Nielsen et al. (2004). These papers propose alternative 
estimators of quadratic variation that are robust to microstructure noise.  
 
Consider the papers of Aït-Sahalia et al. (2005a) and Zhang et al. (2002) for 
example. The idea of these papers is as follows. The observed, high-frequency 
transaction price is modeled as the sum of an unobserved, efficient price plus 
some noise component, due to adverse microstructure effects. The efficient price 



3.3 Extracting information from realized volatilities 

 85

follows a continuous diffusion with SV (no jumps), and the interest is in 
estimating the (ex-post) volatility of the efficient price. In the absence of noise, 
asymptotic theory suggests to sample the stock price intradaily as often as 
possible (recall (3.30)). In the presence of simple i.i.d. noise, Aït-Sahalia et al. 
(2005a) and Zhang et al. (2002) show that computing RV using e.g. second-by-
second data, results in an estimate of the variance of the noise term, and thus 
not of the realized quadratic variation.  
 
Their analysis confirms that RV should not be calculated by sampling too 
frequently. Sampling every five minutes only if tick-by-tick data is available, 
means however that a lot of information is thrown away. From an intuitive 
statistical point of view, there should be gains from exploiting all data. These 
authors propose to estimate ex-post volatility by two-scales realized volatility. By 
computing RV at two (or more) different frequencies 25, averaging the results, 
and taking some linear combination, results in a consistent estimator of the 
quadratic variation, which has a much smaller variance than RV. Aït-Sahalia et al. 
(2005b) deal with an extension, the case of dependent microstructure noise.  
 
Effects of jumps on RV 
The discussion so far has not included the effects of jumps on realized volatility. 
The realized variance 2

,RV t tσ +∆  converges to the (average) quadratic variation over 
day [ , ]t t t+ ∆  -which equals the average variance 21 t t

t ut duσ+∆
∆ Ÿ -, only if stock 

prices are generated by a semimartingale process with SV, but without jumps (as 
in our model). Now, suppose that the data-generating process (DGP) contains 
jumps in prices (but no microstructure noise). 26 What are the effects of jumps on 
the asymptotic properties of the RV measure?  
 
If the DGP contains rare jumps, then RV is an estimator of 21 t t

t ut duσ+∆
∆ Ÿ  plus a 

certain jump contribution (see e.g., Barndorff-Nielsen and Shephard (2004a)). 
Hence, whenever a jump has occurred in the interval [ , ]t t t+ ∆ , 2

,RV t tσ +∆  does not 
consistently estimate 21 t t

t ut duσ+∆
∆ Ÿ . Barndorff-Nielsen and Shephard (2004a) 

introduce a different, RV-related measure coined bipower variation (BV), which is 
a consistent estimator of 21 t t

t ut duσ+∆
∆ Ÿ . BV is thus robust to jumps in the DGP. 

They moreover show that for a process with no jumps, RV is a slightly better 
estimator of 21 t t

t ut duσ+∆
∆ Ÿ  then BV. Barndorff-Nielsen and Shephard (2005) 

propose a test for jumps in asset prices, based on the difference between RV and 
BV. Huang and Tauchen (2004) propose another test, based on the relative RV -
BV difference.  
 
Using RV for estimating parametric SV models 
Direct modeling of realized volatilities using ARMA-type models is useful for 
volatility forecasting; no specific parametric SV model is required for this, as we 
have seen. Nonetheless, Barndorff-Nielsen and Shephard (2002) and Bollerslev 
and Zhou (2002) consider ways to use the information in realized volatilities to 
estimate continuous-time SV stock price models. Bollerslev and Zhou (2002) 
match the sample moments of realized volatility to the population moments of 
integrated volatility for the Heston model, in a GMM-type estimation procedure. 

                                           
25 This means: Compute a first RV by sampling, e.g., every 5 minutes, using the 1, 6, 11,… minute 
returns. Then compute a second RV using the 2, 7, 12,… minute returns, etcetera.  
26 The modeling of jumps in prices seems particularly important for high-frequency data analysis. E.g., 
Andersen, Bollerslev and Diebold (2003) and Huang and Tauchen (2004) provide empirical evidence of 
jumps in high-frequency financial prices.  
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The state space approach of Barndorff-Nielsen and Shephard (2002) is discussed 
in section 3.3.4, after we have explained our own approach.  
 
Although in a pure stock price setting the estimation of SV models is perhaps not 
of so much use anymore, the use of RV for estimating option pricing models 
seems particularly useful: Eventually, the primary purpose of such a model in 
practice is to price and hedge exotic options. As RV is a less noisy estimator of 
ex-post volatility than the squared return, we expect efficiency gains from 
exploiting the information in high-frequency data.  
 
3.3.3   An equation for the average variance 
 
To derive a possible measurement equation for RV, we focus on the distributional 
properties of its probability limit, the average variance. The moments of the 
integrated variance are derived in sections 9 and 10 of appendix B. Consider the 
equation  
 

 2 2
,

1 1
|

t t t t

s s t RV t t

t t

ds ds
t t

σ σ ϖ
+∆ +∆

+∆

 
 = +

∆ ∆  
∫ ∫ �FPE   (P) (3.31)  

 *
0 ,

( )
' ' t RV t t

t
t

δ ϖ +∆
∆

= + + +
∆

D
δ θ δ x  

 ( ) ( )1 *
0 ,' ' exp[ ]d n d t RV t tt tδ ϖ−

+∆= + + ∆ − − ∆ +δ θ δ K I K x , 

 
in which the noise term ,RV t tϖ +∆  has (conditional) mean zero by construction. In 
words, we decompose the average variance over day [ , ]t t t+ ∆  into its optimal 
forecast given time- t  information 27, plus a random error term ,RV t tϖ +∆ , the 
estimation error. This equation is linear in the state variables *

t t= −x x θ . If this 
equation -in some slightly adjusted version- is to be incorporated into the linear 
state space representation (2.1)-(2.2), the error series ,{ }RV t tϖ +∆  ought to be 
white noise. Let us therefore check if this is indeed the case.  
 
The white noise property of ,{ }RV t tϖ +∆  
In a straightforward way, it follows that both the conditional and unconditional 
mean of ,RV t tϖ +∆  are zero under P: ,[ | ] 0RV t t tϖ +∆ =FPE  and ,[ ] 0RV t tϖ +∆ =PE . From 
appendix B, section 9, the conditional variance of ,RV t tϖ +∆  equals 
 

     2
,

1
var | var |

t t

RV t t t s t

t

ds
t

ϖ σ
+∆

+∆

 
   =  ∆  

∫F FP P     (3.32) 
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n

d i t n i i
i

t t
t =

 
 = ∆ + ∆  ∆   

∑δ N ΣM Σ β x I σ σ δ⊙ ⊙ ⊙⊗ I . 

 
(We refer to appendix A for the (complicated) definitions of the matrices  ( )t∆N  
and ( )t∆I .) The unconditional variance of ,RV t tϖ +∆  follows then as 
 

        , , 2

1
var var | ' ( ) 'RV t t RV t t t dt

t
ϖ ϖ+∆ +∆    = = ∆       ∆

δ N ΣM Σ δFP P PE ⊙ , (3.33) 

 

                                           
27 That is, its minimum MSE forecast or “estimator” given time- t  information, which is its conditional 
expectation. Technically, the estimation error is perpendicular or orthogonal  to the information set tF . 



3.3 Extracting information from realized volatilities 

 87

which reveals that the series is homoskedastic. The autocovariance of order 
1, 2,..p = .  equals  

 

 ( ), , ( 1) , , ( 1)cov , |RV t t RV t p t RV t t RV t p t tϖ ϖ ϖ ϖ+∆ − − ∆ +∆ − − ∆   =   FP P PE E  (3.34) 

 ( ), , ( 1)| 0RV t t t RV t p tϖ ϖ+∆ − − ∆ = = FP PE E ,  

 
such that the series is uncorrelated. Hence, the error series ,{ }RV t tϖ +∆  is indeed a 
white noise series.  
 
Investigating the correlation between ,{ }RV t tϖ +∆  and { }t t+∆u  
Appendix IIIb examines the correlation between the disturbances ,{ }RV t tϖ +∆  and 
the volatility-factor shocks { }t t+∆u . Although their non-contemporaneous 
correlation equals zero (for 1,2,..p =  , , ( 1)corr [ , ]RV t t t p tϖ +∆ − − ∆ =u 0P ), these errors 
are contemporaneously correlated with covariance 
 

  ( )1
,cov , ( ) ' ( ) 'RV t t t t d dt t

t
ϖ −

+∆ +∆  = ∆ − ∆    ∆
δ

u D 11 G K ΣM ΣP ⊙ , (3.35) 

 
and correlation vector 
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t

− 
∆ − ∆    ∆ 

δ
D 11 G K ΣM Σ⊙ . (3.36) 

 
These expressions are for the general multifactor SV model. To gain insight into 
the magnitude of this contemporaneous correlation, consider the 1-factor affine 
SV special case with 2

t txσ =  and   
 

 ,( )t t t x tdx k x dt x dWθ σ α β= − + + .    (P) (3.37)  

 
Invoking the matrix definitions stated in appendix A, we find for the covariance 
(3.35) between ,RV t tϖ +∆  and t tu +∆  
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whereas the variance of ,RV t tϖ +∆  in (3.33) becomes 
 

       
2
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2RV t t
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k t k tk t
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As the volatility shock has a variance of (see (3.13)) 
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we find for the contemporaneous correlation between ,{ }RV t tϖ +∆  and { }t tu +∆   
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This correlation depends on the mean-reversion parameter k  only. The three 
volatility-of-volatility parameters , ,σ α β  are clearly just scale factors. The mean 
stock variance θ  does not play a role either, which seems intuitively 
understandable, as both ,RV t tϖ +∆  and t tu +∆  measure deviations between random 
variables and their conditional expectations. Notice that the correlation has the 
same magnitude for the 1-factor affine, CIR ( 0, 1α β= = ), and Ornstein-
Uhlenbeck ( 1, 0α β= = ) SV specifications.  
 
Figure 3.1 shows how this correlation varies for [0.10; 25]k ∈ , which corresponds 
to a volatility persistence ( exp[ ]k t− ∆ ) in the range of 0.90832 (for 25k = ) and 
0.99962 ( 0.10k = ). The graph seems virtually linear. The magnitude of the 
contemporaneous correlation is substantial, around 0.86 . 
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Figure 3.1: Contemp. correlation between ,{ }RV t tϖ +∆  and { }t tu +∆  in the 1-factor affine/ 
CIR/OU SV model for [0.10; 25]k ∈ , i.e. a vol persistence in range [0.90832; 0.99962]. 
 
 
3.3.4    A measurement equation for realized volatilities  
 
Summarizing from the previous section, the following exact relation thus holds: 
 

      2 2
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1
plim |

t t

RV t t s t RV t t
I

t

ds
t

σ σ ϖ
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+∆ +∆
→∞

 
 = +
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∫ FPE    (P) (3.42) 

( ) ( )1 *
0 ,' ' exp[ ]d n d t RV t tt tδ ϖ−

+∆= + + ∆ − − ∆ +δ θ δ K I K x . 
 
The error series ,{ }RV t tϖ +∆  is white noise with variance given in (3.33). ,{ }RV t tϖ +∆  
is non-contemporaneously uncorrelated with the volatility-factor shocks { }t t+∆u , 
but contemporaneously correlated, with correlation vector given in (3.36).  
 
Given these results, we propose the following measurement equation for 
extracting parameter and volatility information from a series of observed realized 
variances: 

         (P) (3.43) 

( ) ( )12 *
, 0 ,' ' exp[ ]RV t t d n d t RV t tt tσ δ ω−
+∆ +∆= + + ∆ − − ∆ +δ θ δ K I K x , 

with 
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 2
, ,~ (0, )RV t t RVωω σ+∆ , 

,corr ,RV t t t tω +∆ +∆  = u cP ,    , ( 1)corr ,RV t t t p tω +∆ − − ∆  = u 0P , 1,2,..p = , 

       
for some real-valued 2

,RVωσ  and ( 1)nx c , and 0, ,..,( 1)t t T t= ∆ − ∆ . This 
measurement equation is not fully exact: As we take I  finite, the realized 
variance 2

,RV t tσ +∆  only approximates its probability limit, the average variance 
21 t t

t ut duσ+∆
∆ Ÿ  over the interval [ , ]t t t+ ∆ . Nonetheless, given that ,{ }RV t tϖ +∆  is 
white noise, and given its non-contemporaneous zero-correlation but 
contemporaneous nonzero-correlation with { }t t+∆u , it seems reasonable to 
assume these properties to hold for the error series ,{ }RV t tω +∆  as well. The next 
section elaborates further on the mean-zero assumption for ,RV t tω +∆ . When 
estimating the resulting state space model using (3.43), we choose to treat both 

2
,RVωσ  and c  as free (unrestricted) parameters. Hence, we neither impose the 

restriction that 2
,RVωσ  equals the variance of ,RV t tϖ +∆ , nor that c  equals 

,corr [ , ]RV t t t tϖ +∆ +∆uP , because the measurement equation is not fully exact. 
Treating 2

,RVωσ  and c  as free parameters, circumvents the possible bias incurred 
from imposing wrong restrictions. 
 
With regard to the correlation for example, simulation results for 48I =  for the 
1-factor OU and CIR SV models (to be discussed in coming chapters), show that 

,corr( , )RV t t t tuω +∆ +∆  is much smaller than the approximate value of 0.86 found for 

,corr( , )RV t t t tuϖ +∆ +∆  above. We find simulated values in the range [0.09, 0.33]. 
Evidently, the larger I , the closer ,corr( , )RV t t t tuω +∆ +∆  approaches 0.86 (although 
this goes very slowly; we need to increase I  till in the thousands.) In the other 
extreme case, i.e. for 1I =  (such that the realized variance reduces to the 
squared daily logreturn), this correlation is close to zero. 28  
 
Comparing the RV equation (3.43) with the squared return equation (3.19), there 
is one difference besides the contemporaneous correlation: the diagonal matrix 
( ) ( )1 exp[ ]d n dt t−∆ − − ∆K I K  multiplying the vector *

tx  in (3.43). This difference is 
caused by the fact that we used an Euler discretization to arrive at (3.19), 
whereas for (3.43), we used the theory of quadratic variation to first obtain  
an exact relation, and then perform an approximation. Nonetheless, as 
( ) ( )1 exp[ ]d n dt t−∆ − − ∆K I K  approximately equals the identity matrix nI  since 

0lim (1 exp[ ]) / 1a a a→ − − = , both equations are essentially the same. The earlier 
mentioned intuition of replacing squared returns with realized variances to obtain 
a measurement equation for RV is thus approximately right. However, although 
the contemporaneous correlation in case of squared returns seems negligible, this 
is not true when realized variances are considered. 
 
Barndorff-Nielsen and Shephard (2002) 
Before proceeding, let us discuss the state space approach of Barndorff-Nielsen 
and Shephard (2002) to estimating multifactor SV stock price models using  
RV. In particular, Barndorff-Nielsen and Shephard (2001b, 2002) model the stock 
variance 2

tσ  as a sum (or superposition) of n  unobserved, independent  

                                           
28 Recall the measurement equation for the squared returns (3.19), obtained from a non-exact Euler 
discretization. Treating this discretization as exact, there is a zero correlation between t tω +∆  and 

t t+∆u . The simulation results for 1I =  justify that the exact correlation is indeed close to zero.   



- III - A State Space Approach to the Estimation of the Multifactor Affine Stochastic 
       Volatility Derivative Pricing Model 

 90

pure jump non-Gaussian OU processes, which are driven by positive-increment 
Lévy processes: 29  
 

 2 't tσ = 1 x ,  , iit i it i k tdx k x dt d= − + , 1,..,i n= , (P) (3.44) 

 
Here ,{ ; 0}i t t ≥  are independent Lévy processes 30 with nonnegative 
increments, with ik  the memory (persistence) parameter. Barndorff-Nielsen and 
Shephard (2002) decompose the realized variance 2

,RV t tσ +∆  over day [ , ]t t t+ ∆  as 
 

    2 2
,

1 1
'

t t t t

RV t t u t t u t t

t t

du w du w
t t

σ σ
+∆ +∆

+∆ +∆ +∆= + = +
∆ ∆∫ ∫1 x ; 2~ (0, )t t ww σ+∆ ,  (3.45) 

 
with 21[ | ] 0t t

t t t utw duσ+∆
+∆ ∆ =PE Ÿ , and call t tw +∆  the realized volatility error. They 

show that { }t tw +∆  is a white noise series. The key feature is now that each 
t t
t iux du+∆Ÿ  admits an ARMA(1,1) representation. The sum of independent 

ARMA(1,1) processes can be cast into linear state space form (see e.g., Durbin 
and Koopman (2001)). The resulting unobserved ARMA components model can 
next be estimated by QML, as the error distributions involved are not known. The 
primary purpose of this is model-based volatility forecasting, which is particularly 
easy with the Kalman filter.  
 
Differences with our approach 
Our approach to extracting information from RV differs in several respects from 
Barndorff-Nielsen and Shephard (2002). Assume for simplicity that 0 0,δ = =δ 1 . 
First, our approach allows for correlated latent factors, whereas their approach 
requires independent factors. Second, in our model the driving processes are 
Brownian motions, whereas their model allows for more general Lévy processes, 
which imply that the volatility jumps from time to time. As such, their model can 
produce fatter-tailed stock return distributions. Third, our approach is based on a 
decomposition of the average variance 21 t t

t ut duσ+∆
∆ Ÿ  over [ , ]t t t+ ∆  into its optimal 

forecast given time- t  information (see 3.31) plus an error term, after which we 
apply an approximation; recall (3.42)-(3.43). In contrast, decomposition (3.45) 
of Barndorff-Nielsen and Shephard involves the full path of the latent factors x  
over the interval [ , ]t t t+ ∆ . More specific, our approach links 2

,RV t tσ +∆  to tx , 
which follows a VAR(1) process in discrete time. Barndorff-Nielsen and Shephard 
link 2

,RV t tσ +∆  to the integral 1 t t
t ut du+∆

∆ xŸ , of which each component follows an 
ARMA(1,1) process. Notice that in case of Brownian motion-driven, persistent 
volatility, the difference between tx  and  1 t t

t ut du+∆
∆ xŸ  may intuitively not be that 

large, as volatility then typically only changes slowly.  
 
3.3.5   A closer look at the measurement equation for RV  
 
The realized variance 2

,RV t tσ +∆  measures the average variance 21 t t
t ut duσ+∆

∆ Ÿ  (i.e. 
the quadratic variation of the process {ln }tS ) with error. Comparing the exact 
relation (3.42) to the measurement equation (3.43), reveals that this error is 
implicitly subsumed in the disturbance term ,RV t tω +∆ . We assumed ,RV t tω +∆  to 
have mean zero, as we intuitively expect the mean approximation error to be 

                                           
29 (NB: We use a notation close to our own, which facilitates a comparison.) See also Nicolato and 
Venardos (2002). Koopman et al. (2005) provide an empirical illustration in which they apply the state 
space estimation method of this model, as proposed by Barndorff-Nielsen and Shephard (2002).  
30 A Lévy process is a process with stationary and independent increments, and can be thought of as a 
random walk in continuous time. Prominent examples are Brownian motion and the Poisson process. 
Brownian motion is the only Lévy process that has continuous sample paths. See e.g. Protter (1990). 
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close to zero (and it gets closer to zero, the larger I ).  However, it will be clear 
that a substantial deviation from this assumption is likely to lead to bias in the 
state space estimates. Let us therefore better justify the mean-zero assumption 
for the disturbance term ,RV t tω +∆  by examining its true mean. The error ,RV t tω +∆  
can be written as 
 

 2 2
, , ,

1
t t

RV t t RV t t s RV t t

t

ds
t

ω σ σ ϖ
+∆

+∆ +∆ +∆= − +
∆ ∫ ,    (3.46) 

 
and has expectation   2

, , 0[ ] [ ] ( ' )RV t t RV t tω σ δ+∆ +∆= − + δ θP PE E . If the mean of the 
realized variance coincides with the mean 0 'δ + δ θ  of the average variance, then 
the mean of ,RV t tω +∆  equals zero. Evidently, this holds in the limit case for I → ∞ , 
hence 0tδ → . For finite I  however, which is typically the case when studying 
empirical data, the mean of ,RV t tω +∆  equals 
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Here we have used expression (c.9) in the appendix for 2

,[ ]RV t tσ +∆PE . (For 
simplicity that appendix assumes a constant stock price drift of t tµ µ= ∀ .) As it 
holds that 0lim ( ) /t t tδ δ δ→ =N 0 , 0lim ( ) /t nt tδ δ δ→ =D I  and 0lim ( )t tδ δ→ =D 0  (see 
appendix A), we expect the mean of ,RV t tω +∆  to be close to 0 for small tδ .  
 
To get more insight into its magnitude, consider the 1-factor SV specification 
(3.37). In that case 
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We choose I =48, meaning that we sample the stock price every 10 minutes 
during a trading day, which lasts for 8 hours. This implies 5/ 0.8 *10t t Iδ −= ∆ ≈ . 
Concerning parameter values, we restrict 0, 1α β= =  such that CIR volatility 
results. We take µ =0.0825; i.e., an annual mean rate of stock return of 8.25%. 
We plot the relative mean of ,RV t tω +∆  as a function of [0.75, 13.3]k ∈  (implying a 
persistence range of [0.95,0.9971]) and [0.10,0.80]σ ∈ , for two values of θ . We 
take 0.0225θ =  and 0.0625θ = , which correspond to an unconditional stock 
return volatility of (approximately) 15% and 25% respectively. All parameter 
values are empirically plausible, as will become apparent in later chapters.  
 
The 3-dimensional graphs in figure 3.2 plot the relative magnitude (in %) of the 
true mean of ,RV t tω +∆ , as a fraction of the mean realized variance; i.e. the 
quantity ,[ ]RV t tω +∆PE / 2

,[ ]RV t tσ +∆PE *100%. This quantity seems most suitable to 
examine for justifying our assumption that ,[ ] 0RV t tω +∆ =PE  in the measurement 
equation (3.43). Figure 3.2 plots the relative magnitude of the true mean of 

,RV t tω +∆  as a function of  k  and σ , for 0.0225θ =  and 0.0625θ =  respectively. 
We conclude that the magnitude of ,[ ]RV t tω +∆PE  is indeed very close to zero for 
empirically plausible parameter values. Assuming its value to equal zero in the 
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measurement equation (3.43) is not expected to result in any major bias in 
subsequent state space parameter estimates. 
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Figure 3.2: Relative magnitude (in %) of the true mean of ,RV t tω +∆  in case 48I = , as a 
fraction of the mean realized variance, for 0.0225θ = and 0.0625θ = . 
 
 
The measurement equation for the squared returns revisited 
Recall the mean-zero assumption for the disturbance t tω +∆  in the measurement 
equation (3.19) for the squared returns. This equation was obtained from a non-
exact Euler discretization, which discretization error is implicitly subsumed in 

t tω +∆ . By assuming [ ] 0t tω +∆ =PE , we implicitly assume the mean discretization 
error to be zero. Again, if this assumption is not reasonable, bias may result in 
subsequent state space estimates. Given the analysis in this section, we are now 
able to better justify the reasonability of this assumption.  
 
Notice first that for 1I = , the realized variance reduces to the (annualized) 
squared daily logreturn, which virtually equals the relative return, as 
ln( / )t t tS S+∆ ≈ ( ) /t t t t t tS S S r+∆ +∆− =  by a first-order Taylor series expansion. 
Figure 3.3 plots the relative magnitude (in %) of the true mean of ,RV t tω +∆  in 



3.4 Extracting information from option prices 

 93

case 1I =  (i.e. essentially of t tω +∆ ), as a fraction of the mean annualized squared 
logreturn, for the same parameter values as before. 
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Figure 3.3: Relative magnitude (in %) of the true mean of ,RV t tω +∆  in case 1I = , as a 
fraction of the mean annualized squared logreturn, for 0.0225θ =  and 0.0625θ = . 
 
 
Although the relative magnitude is -as expected- larger than in case 48I = , it is 
still close to zero. Assuming [ ] 0t tω +∆ =PE  in the measurement equation for the 
squared returns, seems therefore reasonable, and is not expected to affect 
subsequent state space estimates in any major way. Further investigation by 
Monte Carlo simulation is nevertheless required to examine if our expectations 
hold indeed true; we refer to the next two chapters for details.   
 
3.4 Extracting information from option prices  
 
This section outlines a strategy for extracting information from a time series of 
option prices that circumvents simulation during estimation. Section 3.4.1 
linearizes the Black-Scholes pricing function in such a way that a theoretical 
relationship is obtained that is linear in the latent volatility-driving factors. 
Section 3.4.2 explains how to use this relationship for estimation purposes in 
practice. Section 3.4.3 provides preliminary insight in the quality of the 
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linearization and explains how a Monte Carlo study can add to this insight. 
Section 3.4.4 discusses a different way of linearizing the BS pricing function. 
Section 3.4.5 considers higher-order approximations and proposes a measure to 
compare the relative merits of using a parabolic versus a linear approximation in 
a simulation environment.  
 
3.4.1   Linearizing the call price formula 
 
Reconsider the price of a European call option, 2[ ( , , , , , )| ]t t t t t t t tC BS S K r qτ σ= QE F , 
as implied by the multifactor SV model. 31 It is not clear how to translate this 
expression towards an equation that is linear in the latent factors, which can 
serve as a measurement equation for information extraction from option prices. 
An exact way does not exist. Below we propose an approximate method based on  
linearizing the Black-Scholes pricing function.  
 
As a prelude, recall the affine stock variance specification 2

0 't tσ δ= + δ x , with the 
factors evolving under the risk-neutral measure as ,( )t t t x td dt d= − +x K θ x ΣΛ W%% % ,  
in which 'd= +K K ΣΓ% B  and 1( )d

−= −θ K K θ ΣΓα% % . From the results of Duffie and 
Kan (1996), the risk-neutral expectation of the exponent of the integrated 
variance is an exponential-affine function of the latent factors, 32  
 

     ( )2 2
1 1exp | exp | exp ( ) ( )'

tT

u t t t t t t t

t

du Aσ τ σ τ τ
  

    = = +      
  
∫ B xQ QE EF F , (3.49) 

 
in which 1(.)A  is a deterministic function of the time to maturity t tT tτ = − , and 

1(.)B  is a deterministic ( 1)nx  vector function of tτ . These functions satisfy the 
following system of Ricatti ordinary differential equations (ODEs), 
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with boundary conditions 1(0) 0A = and 1(0) =B 0 . Notice that 1(.)A  and 1(.)B  
depend on the risk-neutral parameters K%  and θ% , and thus on the market price of 
volatility risk-determining parameters γ , which appear in 1diag[ ,.., ]nγ γ=Γ . In 
the Gaussian, multifactor Ornstein-Uhlenbeck SV special case for which 

,( )t t x td dt d= − +x K θ x Σ W%% %  and d=K K%  and 1
d
−= −θ θ K ΣΓ1% , these functions can 

                                           
31 From now on we add time-subscripts to the strike price K  and maturity date T  (hence ,t tK T  and 
thus t tT tτ = − ) of a call option, to explicitly denote that we may be dealing with different option 
contracts for each , 2 ,..,t t t T t= ∆ ∆ ∆ .  
32 Duffie and Kan (1996) model the short interest rate by 0 't tr δ= + δ x , with the latent factors x  
following the same SDE under Q as above. Given this set-up, they show that the time- t  price ( , )P t T  
of a zero coupon bond maturing at time T  is given by 

( , ) exp | exp[ ( ) ( )' ]
T

u t t

t

P t T r du A τ τ
  
  = − = +
  

  
∫ B xQE F ,  

in which T tτ ≡ −  and (.)A  and (.)B  satisfy a similar -but not exactly equal- system of ODEs as in 
(3.50). The ODE system (3.50) is obtained from a reparametrization. Indeed, the inspiration for our 
multifactor SV model arose when reading their and related papers in the literature on the term structure 
of interest rates.  



3.4 Extracting information from option prices 

 95

explicitly be solved for. For non-Gaussian models, the system can numerically be 
solved relatively easily with Euler’s or the Runge-Kutta method for example.   
 
To derive a measurement equation for option prices, we aim at exploiting result 
(3.50). Reconsidering the call price formula, 2[ ( , , , , , )| ]t t t t t t t tC BS S K r qτ σ= QE F , 
notice that, given time- t  information, all arguments of the Black-Scholes pricing 
function are known constants, except for the average variance 2 21 t

t

T
t ut duτσ σ= Ÿ  

over the remaining life tτ  of the option contract, which is random. Now, 2
tσ  may 

be considered a function of the exponent of the integrated variance, tY : 
 

 2 2 1
( ) lnt t t t

t
Y Yσ σ

τ
= = ,      ( )2 2exp exp

tT

t u t t

t

Y duσ τ σ
 
 ≡ =
 
 
∫ .  (3.51) 

 
Similarly, the Black-Scholes pricing function (.)BS  may be considered as a 
function (.)g  of tY , 
 

 ( )2( ) , , , , , ( )t t t t t t t tg Y BS S K r q Yτ σ≡ .     (3.52) 

 
The function (.)g  thus represents the BS pricing function rewritten in terms of the 
exponent of the integrated variance tY . For the crux of the argument, consider a 
first-order Taylor series expansion of the function (.)g  in some point t tY b= , 
 
 ( ) ( ) ( ) '( )t t t t t tg Y g b Y b g b HOT= + − + ,    (3.53) 
 
in which HOT  stands for higher-order terms. The arbitrage-free theoretical call 
value can then be written as 
 

 2( , , , , , ) |t t t t t t t tC BS S K r qτ σ =  QE F      (3.54) 

 ( )|t tg Y=   QE F   

 ( ) ( ) '( ) |t t t t t tg b Y b g b HOT= + − +  QE F  

 ( ) '( ) | '( ) |t t t t t t t tg b b g b Y g b HOT= − + +      Q QE EF F .   

Rewriting gives 
          (3.55) 

       1 1
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t t t t t t
t t t t t
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C g b b g b HOT
Y A

g b
τ τ

− + −
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Q
E EF

F .  

  
Taking logarithms yields  
 

 1 1
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t t t t t t
t t t

t

C g b b g b HOT
A

g b
τ τ

 − + −    = +  
 

B xQE F
. (3.56) 

 
This equation is linear in the latent factors tx . 

 
3.4.2   Using the theoretical relationship in practice 
  
Equation (3.56) is an exact theoretical relationship that linearly relates the call 
price to the latent factors. Some issues naturally arise if (3.56) is to be 
implemented for the practical purposes of parameter estimation and volatility 
extraction. Around which point *

tb  to linearize? What about the quality of the 
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linearization? Is the function (.)g  sufficiently well behaved to be adequately 
approximated by a linear function?  
 
Regarding the point of linearization, *

tb , we argue as follows. Consider the 
conventional Black-Scholes world with time-varying, but deterministic volatility 
(see section 3.2 of chapter II). The call price equals 2( , , , , , )det

t t t t t t tC BS S K r qτ σ=  
in that world, such that the Black-Scholes implied variance 33 2

,implied tσ  -which is 
defined implicitly as 2

,( , , , , , )det
t t t t t t implied tC BS S K r qτ σ≡ - equals the average 

variance over the remaining option’s life in that setting: 2 2
,implied t tσ σ= . Consider 

now our time-varying, random volatility world, where we view the Black-Scholes 
pricing function as a function of 2exp( )t t tY τ σ= . An arguably reasonable point of 
linearization may thus be * 2

,exp( )t t t implied tY b τ σ= ≡ , where 2
,implied tσ  is the  

BS implied variance associated with the call price as implied by the multifactor  
SV model. That is, 2

,implied tσ  is defined implicitly from the equality  
2[ ( , , , , , )| ]t t t t t t t tC BS S K r qτ σ= QE F 2

,( , , , , , )t t t t t implied tBS S K r qτ σ≡ . We perform this 
linearization for each ,..,t t T t= ∆ ∆ . For this specific choice of tb  it holds that  
 

      * 2 * 2
,( ) ( , , , , , ( )) ( , , , , , )t t t t t t t t t t t t t implied t tg b BS S K r q b BS S K r q Cτ σ τ σ= = = . (3.57) 

 

Neglecting higher-order terms, it then follows from (3.56) that  
 

 2 1 1
,

( ) ( )'t t
implied t t

t t

A τ τσ
τ τ

≈ +
B

x ,     (P) (3.58) 

 
as * 2

,ln t t implied tb τ σ= . 34 To implement this approximate relationship in practice, 
we introduce noise in the form of an additive white noise error term 2~ (0, )t εε σ . 
We add a constant term νµ  as well, reflecting that the error incurred from 
linearizing may not equal zero on average (see also below). We then obtain  
 

 2 1 1
,

( ) ( )'t t
implied t t t

t t

A
ν

τ τσ µ ε
τ τ

= + + +
B

x ,     2~ (0, )t εε σ . (P) (3.59)  

 
This equation will serve as the measurement equation for extracting information 
from option prices.  
 
Both tε  and νµ  serve to more or less compensate for the performed 
simplifications. Besides, the introduction of noise is well motivated by the fact 
that a model is never a complete description of reality. It moreover allows for 
measurement error in empirically observed option prices. Regarding the assumed 
statistical properties for the error series { }tε , these are admittedly rather ad hoc. 
In theory, the error incurred from linearizing is not random, but is instead some 
fixed quantity. Assuming { }tε  to be white noise is therefore mostly for 

                                           
33 In general, the (model-implied) Black-Scholes implied variance is defined as that variance, for which 
the model-implied call price is equal to the theoretical Black-Scholes call price. Different models thus 
yield different BS implied variances. In practice, the BS implied variance is determined from choosing 
the variance parameter 2σ   in the BS formula in such a way, that the theoretical BS call (or put) price 
equals the observed market price of the call (or put).  
34 The implied yield to maturity  ( , ) ln ( , ) /( )y t T P t T T t≡ − −  on a zero coupon bond in affine 
models of the term structure of interest rates (Duffie and Kan (1996); see the earlier footnote) satisfies 
the exact equation 

 
( ) ( )'

( , ) t
A

y t T
τ τ
τ τ

− = +
B

x , 

with T tτ = −  the bond’s maturity. For estimation purposes, a random error term is typically added in 
the literature; see e.g. de Jong (2000). Notice the clear analogy with our approach. 
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convenience. We will additionally assume that { }tε  is uncorrelated with the other 
error series that appear in the state space model, i.e., { }tω , ,{ }RV tω  and { }tu .  
 
Moneyness does not play a role 
One thing to notice about measurement equation (3.59) is that an option’s 
moneyness (i.e., /t tK S ) does not directly play a role in it: The functions 1(.)A  
and 1(.)B  depend on maturity only. Equation (3.59) can therefore not fully 
explain the volatility smile across same-maturity different-moneyness options. 
This is of minor importance if the aim is parameter estimation based on one 
option time series, characterized by options having approximately the same 
moneyness at each point in time (e.g., a near-the-money option series). Neither 
is it of importance if more than one option series is considered, in which each 
series has approximately the same moneyness (e.g., two near-the-money option 
series). If such is not the case however, and the aim is information extraction 
from more than one different-moneyness option series, then higher-order 
approximations of (.)g  may prove useful. See section 3.4.5 for more details. 
 
It should be noted however that it seems wisest to focus on (close-to) ATM option 
series to extract information from. The reason is twofold. First, near-the-money 
options are typically most liquid, and hence their prices seem most reliable. (See 
e.g. the empirical evidence in Cont and Fonseca (2002)). Second, ATM options 
have largest vega, and are thus most sensitive to volatility fluctuations. As such, 
these options are expected to contain the most valuable volatility information.  
 
Another rationale for the option equation: Jensen’s inequality 
Another rationale that leads to equation (3.59) is the following. The BS implied 
variance 2

,implied tσ  is defined implicitly as 2
,( , , , , , )t t t t t t implied tC BS S K r qτ σ= ,  

or, abbreviated, 2
,( )t implied tC BS σ= . As the BS pricing function is monotonically 

increasing in its variance argument, we may write 2 1
, ( )implied t tBS Cσ −= , and hence  

 

( )( )2 1 2
, ( ) |implied t t t tBS BS Yσ σ−  =  QE F ,    (3.60) 

 
in which we have abbreviated the call price 2[ ( , , , , , ( )| ]t t t t t t t t tC BS S K r q Yτ σ= QE F   
to 2[ ( ( ))| ]t t t tC BS Yσ= QE F , again for simplicity. Simulation shows that for ATM 
and near-the-money options, the (.)BS  function is concave (though still rather 
linear) in its variance argument, irrespective of maturity. Similar pictures as in 
figure 3.4 result. (For farther in-the-money and farther out-of-the-money  
options, convex graphs result.) From Jensen’s inequality, it thus holds that 

2 2[ ( ( ))| ] ( [ ( )| ])t t t t t tBS Y BS Yσ σ≤Q QE EF F , and hence 
  

2 2
, ( ) |implied t t t tYσ σ ≤  QE F .      (3.61) 

 
As 2 1( ) ln

t
t t tY Yτσ =  is concave in tY , applying Jensen’s inequality once again leads 

to   

 ( )2 1 1
,

( ) ( )'1
ln | t t

implied t t t t
t t t

A
Y

τ τ
σ

τ τ τ
≤ = +  

B
xQE F ,   (3.62) 

 
from which approximation (3.58), and measurement equation (3.59) may 
subsequently follow. Notice that this derivation shows that νµ  will be negative for 
near-the-money options.  
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3.4.3   Preliminary insight in the quality of the linearization 
 
Let us consider an illustrative example to get some insight into the quality of the 
linearization. The BS pricing function rewritten in terms of 2exp( )t t tY τ σ=  equals 

 
 1 2( ) exp( ) ( ) exp( ) ( )t t t t t t t t t t tg Y S q d Y K r d Yτ τ= − Φ − − Φ       ,  (3.63) 

with 

 
1
2

1 2 1

ln ( ) ln
( ) ; ( ) ( ) ln

ln

t

t

S
t t t tK

t t t t t t t
t

r q Y
d Y d Y d Y Y

Y

τ+ − +
= = − . (3.64) 

 
Suppose that the current stock price equals 100tS = . The stock pays an average 
dividend yield of 3.5%tq =  per annum over the option’s life, whereas the 
average risk-free interest rate equals 6.5%tr = . Consider an ATM call option with 
strike 100tK = , maturity 0.50tτ =  years, and price 7.63tC = . These data imply 
that the associated BS implied volatility of the call option equals 25%. We thus 
linearize the function (.)g  around the point  * 2

,exp( ) 1.032t t implied tb τ σ= = . Recall 
that 2exp( )t t tY τ σ= . The range of values for tY  for which we plot (.)g  corresponds 
to an average volatility over the option’s life in the range [5%,40%]tσ ∈ . Figure 
3.4 plots (.)g  and its linear approximation in *

t tY b=  as functions of tY . 
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Figure 3.4: Function (.)g  and its linear approximation in *

t tY b= . 
 
 
The pricing formula 2[ ( , , , , , ( )| ] [ ( )| ]t t t t t t t t t t tC BS S K r q Y g Yτ σ= =Q QE EF F  essentially 
implies that the call price equals a probability-weighted average of (.)g -values, 
each of which corresponds to a value that tY  can assume. Intuitively, we expect 
the most “probability weight” to be put on values of tY  around the point of 
linearization *

tb , where the error is smallest. The further away from the 
linearization point, the greater the errors, but the less weight these points are 
expected to have in the overall call value. 
 
Evidently, the current example is just one example. A ceteris-paribus analysis in 
which we only vary the option’s maturity between one month and one year 
reveals however, that similar pictures result. Similar concave pictures also result 
when we look at near-the-money options, i.e. [90,110]tS ∈ .  
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Gaining additional insight by Monte Carlo simulation 
This preliminary, rather qualitative analysis suggests that a linearization may 
perform reasonably well. A Monte Carlo study should nonetheless further clarify if 
this is quantitatively the case too. In particular, the magnitude of the error 
incurred due to linearizing (.)g  is of importance. Relatedly, the size of the 
“parameter” νµ  in (3.59) is also of significance.  
 
Reconsidering (3.54), the quantity [ | ]t tHOT FQE  represents the error incurred 
when the call price at time t  is approximated by a value obtained via a linear 
approximation of the function (.)g  in tb . Our choice of linearization point 

* 2
,exp( )t t implied tb τ σ=  implies that  

 

 ( )* *| '( ) |t t t t t tHOT g b b Y= −      Q QE EF F .    (3.65) 

 
For convenience, we will label this error the linearization error. To compute it, the 
derivative '(.)g  is needed. Since 2( ) ( , , , , , ( ))t t t t t t t tg Y BS S K r q Yτ σ= , it follows that 
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2 ln
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t
t tt t t

S q d YYBS
g Y

Y Y Y

τ φσ σ
σ σ
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= =
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,   (3.66) 

 
as 1/ exp( ) ( )t t t t t tBS q S dσ τ τ φ∂ ∂ = − , the conventional Black-Scholes vega. Given  
a simulated time-series dataset, the linearization error can be computed for each 

,..,t t T t= ∆ ∆ . Summary statistics of (the absolute value of) the relative 
linearization error over the sample (i.e. [ | ] /t t tHOT CQE F ) provide quantitative 
insight in how well the linearization performs.  
 
We want to stress however, that the interpretation of these statistics ought to be 
taken with some care, given measurement equation (3.59) that will be used for 
estimation. Recall that one of the reasons for introducing the constant term νµ  
and the error tε  is to more or less compensate for the negligence of the 
linearization error. Hence, we do not completely neglect this error. What we do 
neglect however, is the remaining model structure inherent in this error. 
 
Estimating “parameter” νµ  
Can we somehow approximate the introduced constant term vµ ? First of all, 
notice that from a theoretical point of view, vµ  is not really a parameter. Some 
additional analysis helps clarifying this. As *( )t tg b C= , it follows from (3.56) that 
 

 *
1 1*

|
ln ( ) ( )'

'( )
t t

t t t t
t

HOT
b A

g b
τ τ

   − = +  
 

B xQE F
.   (3.67) 

 
Using an infinite Taylor series expansion 35, the left-hand side can be written as 
 

 
2 1

* *
* * *

1

| |( 1)
ln ln

'( ) '( )

i
i

t t t t
t t

t t ti

HOT HOT
b b

ig b b g b

∞ −

=

      −   − = +      
   

∑Q QE EF F
. (3.68) 

 

As * 2
,ln t t implied tb τ σ= , we obtain from (3.67) 

 

                                           
35 Recall that an infinite Taylor series expansion of an infinitely differentiable function (.)f  in a point 
x x+ ∆  is given by ( )1

1 !( ) ( ) ( ) ( )k k
k kf x x f x f x x∞
=+ ∆ = + ∆∑ . If ( ) ln( )f x x=  then 

( ) 1( ) ( 1) ( 1)! , 1,2,..n n nf x n x n− −= − − = such that 
1( 1)

1ln( ) ln ( )
k k k

k kx x x x x
−−∞ −

=+ ∆ = + ∆∑ .  
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2 1 1

, * *
1

|( ) ( )' 1 ( 1)
.

'( )

ii
t tt t

implied t t
t t t t ti

HOTA
i b g b

τ τ
σ

τ τ τ

∞

=

  −  = + +   
 

∑B
x QE F

 (3.69) 

 
Given time- t  information, the summation term in (3.69) is a non-random, fixed 
quantity. (Notice that it depends implicitly on the option’s moneyness, the latent 
factors, maturity and the BS implied variance itself in a highly non-linear way.)  
In essence, our estimation method thus boils down to assuming that this 
deterministic summation term can be approximated by the sum of a constant  νµ , 
and a random (white noise) error term tε . 
 
As argued before, introducing randomness is a sound argument for using our 
model and method in practice. 36 In a simulation environment however, where 
model and reality coincide, assuming that the fixed summation term can be 
replaced by a constant νµ  and a random tε  seems somewhat strange. 
Nonetheless, we may still pretend if this is possible, and examine the 
performance of our estimation method by simulation.  
 
An “estimate” of the “parameter” νµ  is then obtained as follows. Our method 
assumes the summation term in (3.69) to equal the sum tνµ ε+ . Given the 
assumption that 2~ (0, )t εε σ  such that 1 0T t

t t tT ε∆
=∆ ≈∑ , an estimate of νµ  can then 

be obtained from averaging the summation terms for ,..,t t T t= ∆ ∆  over the 
simulated sample.  
 
In coming chapters we discuss the results of several Monte Carlo studies. The 
remarks made here are important to keep in mind.  
 
3.4.4    Linearizing around the integrated variance instead 
 
We linearized the BS pricing function around the exponent of the integrated 
variance 2exp( )t t tY τ σ=  to be able to invoke analytical result (3.50). If we 
linearize around the integrated variance 2 2tT

u t tt duσ τ σ=Ÿ  instead and follow a 
similar analysis and reasoning, we arrive at the approximate relationship 
 

 2 2 2
,

1
| |

tT

implied t u t t t
t t

duσ σ σ
τ

 
   ≈ =   
 
∫Q QE EF F ,   (3.70) 

 
after which noise could again be introduced, and so forth. As 2

0 't tσ δ= + δ x  and 
as the latent factors follow a Markov diffusion, the expectation in (3.70) depends 
on the current factor value tx  only in principle (and not on its past). Deriving an 
explicit analytical expression for this expectation in terms of tx  in the general 
multifactor case seems difficult however, as the mean-reversion matrix K%  under 
Q is not diagonal. Section 9 of appendix B derives an expression for this 
conditional expectation in case the mean-reversion matrix is diagonal (which, 
under Q, is only the case in the multifactor OU SV case). That derivation builds on 
the results of section 2 in appendix B, which explicitly exploit the diagonality of 
the mean-reversion matrix. Section 10 of appendix B derives the conditional 
moment-generating function (cMGF) of the integrated variance for general, non-
diagonal mean-reversion matrices, by generalizing the results of Duffie and Kan 
(1996). As computing the cMGF involves solving a system of ODEs numerically in 
the general case, the cMGF (which, recall, is unique) does not seem to easily 

                                           
36 In the end, it remains a choice between misspecified models anyway in practice.  
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allow for computing an explicit expression for the expectation in (3.70) in terms 
of tx  either. 
 
We therefore opt for linearizing around 2exp( )t t tY τ σ=  instead of 2 21 t

t

T
u t tt duτ σ τ σ=Ÿ , 

allowing us to invoke the convenient result (3.50). Moreover, regarding the Black-
Scholes pricing function as a function of tY  allows for an easy consideration of 
higher-order approximations of the call price: As section 10 of appendix B shows, 
it namely holds that m

m m[ | ] exp[ ( ) ( )' ], m 1,2,..t t t t tY A τ τ= + =B xQE F .   
 
Will it matter much? 
One may wonder if it might make a large difference, linearizing either around 

2exp( )t t tY τ σ=  or 2
t tτ σ  (assuming one has succeeded in deriving an explicit 

expression for 2[ | ]t tσQE F  in terms of tx ). A second motivation for an options 
measurement equation based on (3.70) follows again from Jensen’s inequality, 
see (3.61). To arrive at (3.62) which, recall, may be seen as a second motivation 
for measurement equation (3.59), involves an extra application of Jensen’s 
inequality. Linearizing around 2exp( )t t tY τ σ=  instead of 2

t tτ σ  thus involves an 
additional “convexity effect”. Nonetheless, intuitively we do not expect this effect 
to be large however, as both the linear function 1( )f x x=  and the exponential 
function 2( ) exp( )f x x=  have equal slope 1 in 0x = , and as 2

t tτ σ  typically 
assumes values close to zero. (E.g., suppose the option’s maturity is 2 months 
and the average volatility is 20%. Then 2

t tτ σ =0.0067 and tY = 1.0067.) Figure 3.5 
seems to confirm these thoughts. For three different option maturities, i.e. 1.5 
months, 6 months and 1 year, we have plotted 2exp( )t t tY τ σ=  against 2

t tτ σ  for 
[5%,70%]tσ ∈ . The graphs seem virtually linear. As such, intuitively, we do not 

expect it to matter much if either around the exponent of the integrated variance 
is linearized, or around the integrated variance itself (assuming an explicit 
expression is available for 2[ | ]t tσQE F  in terms of tx ).   
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Figure 3.5: Plots of 2exp( )t t tY τ σ=  against 2

t tτ σ  for maturities tτ = 0.125 (1.5 month; 
upper plot), tτ = 0.50 (6 months) and 1τ = 1 (1 year), for [5%,70%]tσ ∈ .  
 
 
In independent, concurrent work, Jones (2003) essentially extracts information 
from option prices using equation (3.70), in which he approximates the 
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conditional expectation 2[ | ]t tσQE F  by a tractable linear function of 2
tσ  and 

moreover adds noise. Jones considers estimation of the 1-factor SV models of 
Heston (1993), and his own CEV and 2GAM models. We refer to section 2.1 for 
more details.  
 
Interpreting Black-Scholes implied volatilities 
Equation (3.70) yields a convenient interpretation of Black-Scholes implied 
volatilities. A BS implied volatility may be interpreted (by approximation) as the 
average future stock volatility over the remaining option’s life, under the risk-
neutral measure. 37 In practice, BS implied volatilities are generally considered as 
being market forecasts of future stock volatility (under measure P); see e.g. Hull 
(2003). We observe that this latter interpretation is actually only correct if 
volatility risk is not priced, as in that case the volatility processes under P and Q 
coincide. This is an important observation.  
 
3.4.5   Higher-order approximations 
 
If it turns out that a linearization performs poorly, or if improved accuracy is 
desired, higher-order approximations of the function (.)g  may be considered, 
which include curvature. These may also be considered if the aim is information 
extraction from different-moneyness option series, though this has its drawbacks, 
as explained earlier.  
 
Consider for example a parabolic approximation of the function (.)g  in the point 

* 2
,exp( )t t t implied tY b τ σ= = :  

 

 * * * 2
0 1 2( ) ( ) ( ) ( ) 2t t t t t t tg Y q b q b Y q b Y HOT= + + + ,   (3.71) 

with   
* * * * * 2 *1

0 2( ) ( ) '( ) ( ) ''( )t t t t t tq b g b b g b b g b≡ − +     (3.72) 

 * * * *
1( ) '( ) ''( )t t t tq b g b b g b≡ −  

 * *1
2 2( ) ''( )t tq b g b≡ , 

 
and in which 2HOT  stands for the higher-order terms. An expression for '(.)g  is 
given in (3.66). The second-order derivative of (.)g  equals  
 

    1 1
1
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exp( ) [ ( )] ( ) 1 1
''( ) ( )

( ) 2 ln2 ln
t t t t t t t

t t t
t t t t t tt t

S q d d Y dd Y
g Y d Y

dd Y dY Y Y YY Y

τ φ
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  −
= − +    

   
 

1
1

( ) 1 1
'( ) ( )

2 ln
t t

t t t
t t t t

dd Y
g Y d Y

dY Y Y Y

 
= − + + 

 
   (3.73) 

with  

3
2

1
ln 2[ln ( ) ]( )

4 (ln )

t

t

S
t t t tKt t

t t t

Y r qdd Y
dY Y Y

τ− + −
= .    (3.74) 

 
(Here we used  1 1 1 1[ ( )] / ( ( )) ( ) [ ( )]t t t t t t t td d Y d d Y d Y d Yφ φ= − .) To obtain some preli-
minary insight into the quality of a quadratic approximation, and its relation to a 
linear approximation, consider the earlier discussed example (see also figure 3.4). 

                                           
37 Assuming that real-world option prices obey the Hull and White (1987) model, Ghysels, Harvey and 
Renault (1996) arrive at the following approximation regarding the BS implied volatility of ATM options: 

, [ | ]implied t t tσ σ≈ QE F . Their approximation is based on the fact that the Gaussian cumulative 
distribution function is roughly linear around zero. 
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Figure 3.6 plots the function (.)g , its tangent and its parabolic approximation in 
*

t tY b= . 
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Figure 3.6: Function (.)g  and its linear and parabolic approximations (see also figure 3.4) 
 
 
Although the linear approximation is consistently larger than (.)g , the parabolic 
approximation exceeds (.)g  for *

t tY b<  and is smaller for *
t tY b> . As it should, it 

picks up part of the curvature of (.)g  around *
tb , and performs better in the 

neighborhood of the expansion point. Nevertheless, the differences do not seem 
very large in that area.   
 
To derive a possible measurement equation based on a parabolic approximation, 
using (3.71), the call price [ ( )| ]t t tC g Y= QE F  can be written as 
 

       * * * 2
0 1 2( ) ( ) | ( ) | 2 |t t t t t t t t t tC q b q b Y q b Y HOT = + + +       Q Q QE E EF F F   

       * *
0 1 1 1( ) ( )exp ( ) ( )'t t t t tq b q b A τ τ= + +  B x    

 *
2 2 2( )exp ( ) ( )' 2 |t t t t t tq b A HOTτ τ+ + +      B x QE F , (3.75) 

 
where the second equality follows from the cMGF of the integrated variance; see 
section 10 of appendix B for details. The deterministic functions (.)A

m
 and 

( 1)nx (.)B
m

 satisfy the following system of Ricatti ODEs for 1,2=m : 
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K B Σ B β δ%m
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m ;  (0) =B 0

m
, 

 
which can be solved for numerically. In the multifactor OU SV special case 
analytical expressions exist for these functions.  
 
Equation (3.75) cannot further be rewritten in terms of an expression that is 
linear in the latent factors tx . Nor can it be rewritten in terms of an equation that 
involves 2

,implied tσ  on the left-hand side. The same holds if cubic or even higher-
order approximations are considered. This is in clear contrast with the linear 
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approximation. If we neglect the higher-order terms in [ 2 | ]t tHOTQE F  and 
introduce noise as before, a measurement equation results that is non-linear in 
the state variables *

t t= −x x θ .  
 
This non-linearity ensures that the conventional Kalman filter techniques cannot 
be applied straight away. Nonetheless, as suggested by Harvey (1989), a 
practical solution is to first linearize the measurement equation around a suitable 
estimate of the state, and then proceed with the linearized model as usual, as the 
linearized measurement equation fits again in the linear state space framework. 
Harvey (1989) proposes to linearize around the filtered state, *

| 1t t −x . Durbin and 
Koopman (2001) also propose to linearize the measurement equation, but 
advocate a more sophisticated method: Their idea is to match the conditional 
modes of the state variables given the data, of the original non-linear and the 
linear approximating models. Evidently, the performance of these approaches 
depends on the degree of non-linearity, and on the accuracy of e.g. the filtered 
state *

| 1t t −x  as an estimator of the true underlying state *
tx .  

 
Relative merits of a parabolic versus a linear approximation 
Both approaches of Harvey (1989) and Durbin and Koopman (2001) require the 
necessary additional computations. Moreover, the complexity of the computations 
involved increases as well. We may therefore wonder if considering a parabolic 
approximation is really worth the extra effort. Stated differently, do we lose a 
considerable amount of information by using a linear rather than a parabolic 
approximation, or may a linearization be considered sufficient? It would 
particularly be convenient if we had some measure that provides an indication of 
the relative merits of using a parabolic instead of a linear approximation, without 
a priori having to implement the associated non-linear state space model. 
 
Reconsidering (3.75), we label [ 2 | ]t tHOTQE F  the parabolic error. It represents 
the error incurred from approximating the call price by a value obtained via a 
parabolic approximation of the function (.)g . Some algebra shows that the 
parabolic error can be written in terms of the linearization error as 
          (3.77) 

    ( )* *2 * 21
22 | | ''( ) 2 | |t t t t t t t t t ttHOT HOT g b b b Y Y = − − +            Q Q Q QE E E EF F F F .

  
The parabolic error thus establishes some correction to the linearization error. Its 
magnitude can be investigated by simulation. Given a simulated time-series 
dataset for  ,..,t t T t= ∆ ∆ , the summary statistics of (the absolute value of) the 
relative parabolic error, [ 2 | ]/t t tHOT CQE F , provide information on how well the 
quadratic approximation performs.  
 
To investigate the relative merits of using a parabolic rather than a linear 
approximation, the difference between the mean absolute relative linearization 
and parabolic errors seems a useful measure:  
 

    Relative merits = 
[ | ] [ 2 | ]1

*100%
T t

t t t t

tt t

HOT HOT

T C

∆

=∆

 −
 
 
 
∑ Q QE EF F

. (3.78)   

 
We expect this measure to be positive. If this relative merits measure is close to 
zero, it may not be considered worthwhile to use a parabolic approximation (if the 
single aim is improved accuracy), given the additional computations and 
increased complexity of implementation. However, if the aim is fitting the model 
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to different-moneyness option series (i.e. to the volatility smile over time), a 
parabolic approximation should effectively be taken into account. The Monte Carlo 
studies in coming chapters report the magnitude of the relative merits measure 
based on simulated data.  
 
3.5  Possible state space models 
 
Given the discrete-time equations derived from the continuous-time multifactor 
affine SV option pricing model, several possible state space models can be 
considered for estimation. Section 3.5.1 first collects these equations together. 
Next, each of the sections 3.5.2 and 3.5.3 discusses two possible state space 
models in case either return – option, or RV – option data is considered for 
estimation. We explain their differences, and discuss why we favor one model 
above the other. 
 
3.5.1   Refresher 
 
As a refresher, recall the general linear state space representation from section 
2.2. The measurement and transition equations are given by 
 
 't t t t t= + +y a H ξ w , ~ ( , )t 0w R ,         (3.79) 
 t t t t t+∆ +∆= + +ξ d Fξ v , ~ ( , )t t+∆ 0v Q , ,..,t t T t= ∆ ∆ , 
 
with the white noise error series { }tw  and { }t t+∆v  being mutually uncorrelated 
at all points in time. For future reference, we will refer to this representation as 
the unconditional state space model.   
 
In the foregoing sections, we derived the following discrete-time equations from 
the continuous-time multifactor SV model (recall that *

t t= −x x θ  denotes the 
factors in deviation from their mean):  
 
Latent factors: 
 

 * *exp[ ]t t d t t tt+∆ +∆= − ∆ +x K x u ,  ( )~ , ( ) 't t dt+∆ ∆u 0 G ΣM Σ⊙  (3.80) 
 
Squared returns: 
 

 ( )2 0
1

'ˆt t t t t tr t
t

µ δ ω+∆ +∆− ∆ = + +
∆

δ x      (3.81) 

 *
0 ' ' t t tδ ω +∆= + + +δ θ δ x ,  2~ (0, )t t ωω σ+∆  

 
Realized volatilities: 
 

( ) ( )12 *
, 0 ,' ' exp[ ]RV t t d n d t RV t tt tσ δ ω−
+∆ +∆= + + ∆ − − ∆ +δ θ δ K I K x ,  (3.82) 

         2
, ,~ (0, )RV t t RVωω σ+∆     

 
BS implied volatilities (call options): 
 

 2 1 1
,

( ) ( )'t t
implied t t t

t t

A
ν

τ τ
σ µ ε

τ τ
= + + +

B
x     (3.83) 

 *1
1 1

( )'1
( ) ( )' t

t t t t
t t

Aν
τ

µ τ τ ε
τ τ

= + + + +  
B

B θ x ,   2~ (0, )t εε σ . 
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Regarding the co-dependence between the various disturbance series the 
following. The series { }tu  and { }tω  are mutually uncorrelated (based on an Euler 
discretization of the stock price SDE). The errors { }tu  and ,{ }RV tω  are 
uncorrelated at different points in time, but are contemporaneously correlated 
with correlation vector ,corr [ , ]RV t tω =u cP . By assumption, the option error series 
{ }tε  is uncorrelated with all other error series. 
 
3.5.2   System matrices for return - option data  
 
Suppose the aim is extracting information from a series of daily stock returns and 
a time series of daily call option prices. Equations (3.80), (3.81) and (3.83) can 
be cast into the unconditional linear state space representation (3.79) in two 
different ways, each characterized by its own system matrices. A logical first set 
up is defining the system matrices as: 
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0
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 
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R     = 0d   (3.84) 

 
     exp d t= − ∆  KF                t t t t+∆ +∆= uv    ( ) 'dt= ∆G ΣM ΣQ ⊙ .  

 
In this set up the state variables tξ  are formed by the n  unobserved volatility-
driving factors (in deviation from their mean), *

tx . Representation (3.84) is fine if 
the single aim is parameter estimation. If a second aim is forecasting of future 
volatilities, this set up is of no use however. Kalman filter QML estimation of 
(3.84) implies that the BS implied variance observed at time t , but the squared 
return observed at time t t+ ∆  are used to predict the latent factors 
at time t t+ ∆ . To be more specific, the Kalman filter produces the linear 
projection ˆ ˆ[ | ] [ | , ,..]t t t t t t t t+∆ +∆ −∆=E Eξ Y ξ y y , which for (3.84) boils down to 

( )2* 21
,

ˆ[ | , ,...]ˆt t t t t implied tt r tµ σ+∆ +∆∆ − ∆xE . Hence, set up (3.84) uses time- t t+ ∆  
information to predict a time- t t+ ∆  quantity. This is obviously not what we mean 
by true forecasting.  
 
As a second possible set up, representation (3.85) circumvents this by using  
only time- t  information in 2 21

,[ ( ) , ]'ˆt t t t implied tt r tµ σ−∆∆= − ∆y , to predict the state 
variables at time t t+ ∆ . As a result, the state in (3.85) differs from the state in 
(3.84). The state is now defined as 2 *1[ ( ) , ']'ˆt t t t tt r tµ −∆∆= − ∆ xξ , and contains 
besides the latent factors also the squared returns. A second consequence is that  
the first equation of the measurement equation 't t t t t= + +y a H ξ w  in (3.85) is 
now a trivial identity.  
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0 '
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 
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δ
0 K
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+∆
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0
0 G ΣM Σ

Q
⊙

. (3.85) 

 
Given that set up (3.85) allows for parameter estimation and volatility forecasting 
at the same time, and is therefore arguably most relevant in practice, we will use 
representation (3.85) in our Monte Carlo study and empirical work in coming 
chapters.  
 
3.5.3   System matrices for RV - option data  
 
Suppose now that the aim is extracting information from a time series of realized 
volatilities and a time series of daily call option prices. Similar as in the return – 
option case, an intuitively logical first way of casting equations (3.80), (3.82) and 
(3.83) into the unconditional state space representation (3.79) seems perhaps: 
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,
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0
RVω

ε

σ

σ

 
=  
  

R     = 0d  exp[ ]d t= − ∆KF    

 
t t t t+∆ +∆= uv            ( ) 'dt= ∆G ΣM ΣQ ⊙ .    

 
Besides the fact that this set up does not allow for true volatility forecasting, 
there is one important caveat to take into account: Set up (3.86) does not exactly 
fit into framework (3.79), as the disturbances ,{ }RV tω  and { }tu  are 
contemporaneously correlated. The error series { }tw  and { }t t+∆v  are therefore 
correlated as well.  
 
The Kalman filter and smoother equations given in section 2.2 are based on the 
assumption of uncorrelated { }tw  and { }t t+∆v . If this assumption is violated, 
these equations do no longer apply. In case of contemporaneous correlation, they 
may nevertheless be adjusted to take this correlation into account; see e.g., 
Harvey (1989) for details. 38 Alternatively, Koopman (1993) and Koopman, 
Shephard and Doornik (1999) for example, prefer to start off with a general state 
space representation different from (3.79), in which there is an overall 
disturbance vector for the measurement and transition equation errors, and to 
work with selection matrices. In that case the correlation shows up as correlation 
between errors within that single disturbance vector. As a result, there is no need 
to adjust the Kalman filter equations that hold in that setting, as the possibility of 
contemporaneous correlation has already been accounted for from the outset.  
 

                                           
38 It should be noted that the original versions of the Kalman filter that appeared in the engineering 
literature (e.g. Kalman (1960)) already assumed correlated measurement and transition equation errors. 
See also the book of Anderson and Moore (1979).  
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In the remainder we will work with a set up different from (3.86), as it does not 
allow for real volatility prediction. The following representation of the system 
matrices bypasses this: 
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Similar as in (3.85), a trivial identity for the realized variance 2

,RV tσ  appears in 
the measurement equation of the resulting state space model. The equation for 

2
,RV tσ  is incorporated in the transition equation. Notice that the correlation 

between ,RV t tω +∆  and t t+∆u  is subsumed in the transition equation disturbance 

t t+∆v . Set up (3.87) does fit in the unconditional linear state space framework 
(3.79), since the error series { }tw  and { }t t+∆v  are again uncorrelated at all 
points in time, as required. As such, (3.87) can be analyzed by the regular 
Kalman filter and smoother equations given in section 2.2.  
 
The Kalman filter generates the linear projection of the state vector t t+∆ξ  at time 
t t+ ∆  on the observed data tY  until time t , as usual. In this case the Kalman 
filter thus produces a forecast of both the realized variance and the latent factors  
at time t t+ ∆ , given the observed series of realized and BS implied variances up 
to and including time t . Forecasts of future stock volatilities can next be obtained 
from the formula 2 *

0 0' ' 't t tσ δ δ= + = + +δ x δ θ δ x .  
 
 

4.   Concluding remarks 
 
For the unconditional state space models considered in section 3.5, the full 
distributions of the error series { }tw  and { }t t+∆v  are not known. As explained in 
section 2.2, we therefore estimate the parameters by Kalman filter QML. Apart 
from potential distortions as a result of the various approximations that we 
carried out to arrive at a linear state space representation, this procedure yields 
consistent and asymptotically normal estimates (though not efficient).  
 
The state space formulations in section 3.5 suppose that only one call option 
series is analyzed besides the stock price series. Generalizing the formulations to 
incorporate more than one call option series simultaneously, is more or less 
obvious. It may then be assumed that the error terms belonging to each call 
option series have their own variance, and perhaps be cross-sectionally 
contemporaneously correlated, but uncorrelated over time. Incorporating put 
option series in the analysis is easily dealt with by exploiting the put-call parity. 



Appendix 

109  

Hence, first compute the prices of the corresponding artificial call options by 

,exp( )( )t t t t t T tC P r F Kτ= + − − , and then perform state space estimation as usual.  
 
Prior to estimation, there is one caveat to take into account however. In the 
absence of sufficient parametric restrictions, not all of the parameters may be 
identified. The identification problem is contingent on both the specific SV process 
that is considered, and the type of data that is used for estimation; that is, only 
return, RV or option data, or combinations of these. For each specific SV case that 
we will consider in subsequent chapters, we take up the identification problem 
separately.  
 
The unconditional state space representation (3.79) (and hence the set ups 
(3.84)-(3.87)) takes the unconditional distribution of the latent factors x  into 
account only. Although the multifactor SV model allows for level-dependent 
volatility-of-volatility, this feature is not fully exploited in the state space 
formulations above. The fact that the volatility-of-volatility is level-dependent is 
clear, in discrete time, from the conditional variance of the volatility-factor shocks 

t t+∆u . This implies that when confronting the unconditional state space model 
with empirical data characterized by level-dependent volatility-of-volatility, that 
not full advantage is being taken of the structure in the data. A loss of 
information is likely to result, which in turn may imply less efficient estimates. 
Evidently, in that case there is just more information in the data than the 
unconditional state space model can pick up.  
 
The unconditional state space model is nevertheless still useful to investigate for 
the following reasons. First, it may serve as a convenient benchmark or reference 
point when considering more complicated models. Second, in case the volatility is 
driven by a multifactor OU SV process, which implies that the volatility-of-
volatility is level-independent, the conditional and unconditional distribution of the 
volatility-factor shocks t t+∆u  coincide, and hence the filter is exact (apart from 
the various performed approximations). Considering the OU SV case allows us to 
fully focus on the consequences regarding estimation bias, resulting from the 
diverse approximations that we carried out to arrive at a linear state space 
model.     
 
In chapter V we propose a different state space formulation, labeled the 
conditional state space model, which is more explicitly designed to take level-
dependent volatility-of-volatility into account. We then resort to the Extended 
Kalman filter for QML estimation. But first, in the next chapter, we study the 
performance of the unconditional state space model in the OU SV case.   
 
 

Appendix  
 
IIIa.  Proof of { }tω  being white noise and uncorrelated with { }t t+∆u  
 
This appendix proves that the series { }tω  is a white noise series. We also show  
that { }tω  is uncorrelated with the daily volatility-factor shocks { }t t+∆u . For simplicity we 
treat the Euler discretization of the stock price SDE as exact in the derivations below; i.e., 

t t t t t tr tµ σ η+∆ +∆= ∆ +  with , ,t t S t t S tW Wη +∆ +∆= − . 
 
From (3.18), t tω +∆  can be written as 
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2

2 2 21
1t t

t t t t t t tr t
t t

η
ω µ σ σ +∆

+∆ +∆

 
= − ∆ − = −  ∆ ∆ 

.    (a.1) 

 
From decomposition (3.18), by construction { }tω  has conditional –and hence 
unconditional- mean zero under P: [ | ] 0 [ ]t t t t tω ω+∆ +∆= =P PE EF . The variance of t tω +∆  
equals 

 
2 22 2

4 4var 1 1t t t t
t t t tt t

η η
ω σ σ+∆ +∆

+∆

          = − = −              ∆ ∆      
P P P PE E E , (a.2) 

 
in which the latter equality exploits the independence between tσ  and t tη +∆ . Now, 
 

 
22 4 2 2

2 2
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1 2 1 2 1 2t t t t t t t t

t t tt t

η η η+∆ +∆ +∆
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P PE  E , (a.3) 

 

as 4 2[ ] 3t t tη +∆ = ∆PE . Also, 
 

         ( )24
0 't tσ δ   = +    
δ xP PE E ( )2

0 02 ' ' var 'tδ δ= + + +  δ θ δ x θθ δP . (a.4) 

 
Section 5 of appendix B shows that the unconditional variance of the factors equals 
 

 var 't d=  x J ΣM ΣP ⊙ ,      (a.5) 

 
in which J  is an ( )nxn  matrix having its ij − element equal to  [ ] 1 /( )ij i jk k= +J  (see 
also appendix A). The symbol ⊙  represents the Hadamard product; i.e., element-by-
element multiplication. The variance of t tω +∆  then equals 
 

 ( )2
0 0var 2 4 ' 2 ' ' 't t dω δ δ+∆ = + + +   δ θ δ J ΣM Σ θθ δP ⊙ .  (a.6) 

 
The series { }tω  is thus homoskedastic. Consider next the autocovariance of order 

1,2,...p = , 
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Here we exploited the fact that the variance process 2{ }tσ  is independent of { }tη  and 
that ~ i.i.d. (0, )t t tη +∆ ∆N  under P. The series { }tω  is thus serially uncorrelated. To 
conclude, we find { }tω  to be a white noise series.  
 
Regarding the correlation between the error series { }tω  and the daily volatility-factor 
shocks { }t t+∆u , we find for their covariance, ,t s∀ : 
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such that these series are uncorrelated at all points in time. The argument is as follows. 
Both the error term s t+∆u  and the stock variance 2

tσ  are only determined from the 
Brownian motion xW , and not from the Brownian motion driving the stock price, SW , 
which determines t tη +∆  completely. Therefore, the product 2

t s tσ +∆u  is independent of 

t tη +∆  as xW  and SW  are independent, from which the result follows.  
 
 
IIIb. Investigating the correlation between ,{ }RV t tϖ +∆  and { }t t+∆u  
 
This appendix proves that the series ,{ }RV t tϖ +∆  is non-contemporaneously uncorrelated, 
but contemporaneously correlated, with the series { }t t+∆u  of daily volatility-factor shocks.  
 
Non-contemporaneous correlation 
Concerning the non-contemporaneous correlation between the error series ,{ }RV t tϖ +∆  and  
{ }t t+∆u ,  their covariance of order 1,2,..p =  equals 
 

 ( ), ( 1) , ( 1)cov , |RV t t t p t RV t t t p t tϖ ϖ+∆ − − ∆ +∆ − − ∆   =   u u FP P PE E   (b.1) 

 ( ), ( 1)|RV t t t t p tϖ +∆ − − ∆ = = u 0FP PE E , 

 
such that the errors at different points in time are mutually uncorrelated.  
 
Contemporaneous correlation 
To derive their contemporaneous correlation, ,corr [ , ]RV t t t tϖ +∆ +∆uP , recall first from 
(3.11) - (3.12) that the factors in deviation from their mean evolve in discrete time under 
P as * *exp[ ]t t d t t tt+∆ +∆= − ∆ +x K x u  with   

         (P) (b.2) 

      , ,exp[ ( )] ( , )
t t t t
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+∆ +∆

+∆ = − + ∆ − = + ∆∫ ∫u K ΣΛ W C ΣΛ W .  

 
(See also appendix A for a definition of the matrix function (.,.)dC .) Notice next that, by 
appendix B, (9.5) and (9.17), the error ,RV t tϖ +∆  can be written as 
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t s u x u
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t t

+∆ +∆
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δ δ

u D ΣΛ W , 

 
in which the expression for the integrated disturbance term ,

t t
t t sds+∆ uŸ  in the last 

equality follows from appendix B, (9.6). The first steps in deriving the covariance between 

,RV t tϖ +∆  and t t+∆u  then become 39 
 

 ,cov ,RV t t t tϖ +∆ +∆  uP        (b.4) 
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u x u d u x u

t t

u t t d u t t d
t

+∆ +∆ 
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∫ ∫

δ
D ΣΛ W C ΣΛ WP  

                                           
39 The second equality in this derivation follows from the fact that it can be shown that for two arbitrary 
random vectors 1v  and 2v  and vector of constants a  (of equal length as 1v ), it holds that the 
column vector of covariances 1 2cov[ ' , ]a v v  can be written as 1 2cov[ ' , ] =a v v      

2 1 2 1 2 1 2 1cov[ , ' ] [ ' ] [ ] [ ' ] cov[ , ]= − =v v a v v a v v a v v aE E E . Notice that it furthermore holds 
that  1 2 2 1cov[ , ] (cov[ , ])'=v v v v . 
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In order to further simplify, think about the two Itô integrals in the latter expression as 
(limits of) discrete sums of weighted Brownian increments, each with respect to the same 
Brownian motion. When multiplying these sums with each other, cross-terms disappear,  
as non-overlapping Brownian increments are independent, such that their product equals 
zero. 40 We then obtain 
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The second equality uses , , 'x u x u nd d du=W W I , which holds due to the fact that the 
individual Brownian motions in the vector standard Brownian motion xW  are independent. 
The third equality uses 2

1 1 n[ ] diag[ ' ,.., ' ]t n dα α= + + =Λ β θ β θ MPE , see appendix A. 
The final equality invokes the lemma stated in appendix A, such that 

( , ) ' ( , ) ( , ) ' ( , ) 'd d d du t t u t t u t t u t t+ ∆ + ∆ = + ∆ + ∆C ΣM Σ D C 11 D ΣM Σ⊙ . Before procee-
ding, let us tackle the integral in the latter expression first: 
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40 Think also about the Itô isometry to compute the variance of an Itô integral. Alternatively, one may 
generalize the results in section 4.4 of Etheridge (2002) to the multivariate case, to see that this first 
simplification indeed holds.  
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with ( , ) (0, ) ( )t t t t t+ ∆ = ∆ = ∆G G G  (see appendix A again). In the first equality we used  
( , )u t t+ ∆ =D 1( exp[ ( )])d n d t t u− − − + ∆ −K I K 1( exp[ ( )])n d dt t u −= − − + ∆ −I K K , which is 

allowed as all matrices involved are diagonal. By changing the integration variable from u  
to  v t t u≡ + ∆ − , such that dv du= − , the integral in the latter expression becomes 
 

  
0

0

exp[ ( )] exp[ ] exp[ ] ( )
t t t

d d d

t t

t t u du v dv v dv t
+∆ ∆

∆

− + ∆ − = − − = − = ∆∫ ∫ ∫K K K D . (b.7)  

 
Collecting together, we find for the ( 1)nx  covariance vector between ,RV t tϖ +∆  and t t+∆u :  
 

( )1
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δ

u D 11 G K ΣM ΣP ⊙ . (b.8) 

 
Using (3.13) and (3.33), the ( 1)nx  contemporaneous correlation vector between the 
series ,{ }RV t tϖ +∆  and { }t t+∆u  then finally follows as  
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The contemporaneous correlation is not equal to zero.  
 
 

IIIc. The expected value of the realized variance 2
,RV t tσ +∆  

 
This appendix calculates the mean of the realized variance 2

,RV t tσ +∆  if a finite number of 
intraday time points I  is considered, in the general multifactor SV model. For simplicity 
we assume the mean rate of stock return to be constant: t tµ µ= ∀ .  
 
Recall the definition of the realized variance over [ , ]t t t+ ∆ :  
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To compute its expected value, we first focus on the logreturn t tR δ+  over the interval 
[ , ]t t tδ+  of length /t t Iδ = ∆ . From Itô’s lemma, the log stock price follows the SDE 

21
,2ln ( )t t t S td S dt dWµ σ σ= − +  under P, such that 
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The squared logreturn over [ , ]t t tδ+  can be written as 
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We are interested in its expected value. We first compute the expected value of the five 
integrals occurring in (c.3). The integrated variance has an expected value of  
 

 2 2
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σ σ δ δ
+ + 

  = = +
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∫ ∫ δ θP PE E  ,   (c.4)  

 
whereas the expectation of the second (i.e., the Itô) integral is simply 0.  The expected 
value of the squared integrated variance equals 
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The second equality follows from the moments of the integrated variance; see section 9 in 
appendix B. By conditioning on the σ − field generated by the Brownian motion driving the 
stock variance ( xW ) over the interval [ , ]t t tδ+ , it follows that 
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Finally, from the Itô isometry, the mean of the fifth integral in (c.3) equals 
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Collecting the intermediate results and rearranging yields the expected value of the 
squared logreturn over [ , ]t t tδ+ : 
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The expected value of the realized variance then becomes 
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in which the second equality uses / 1 /I t tδ∆ = .  
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Notice that the realized variance 2
,RV t tσ +∆  is a biased estimator of the mean stock return 

variance 2[ ]tσPE  = 0 'δ + δ θ . Hence, it is also a biased estimator of the mean average 
variance 21[ ]t t

t ut duσ+∆
∆PE Ÿ , which equals 0 'δ + δ θ  as well. However, as it can be shown 

that 0lim ( ) /t t tδ δ δ→ =N 0 , 0lim ( ) /t nt tδ δ δ→ =D I  and 0lim ( )t tδ δ→ =D 0  (see 
appendix A), it is clear that this bias disappears for 0tδ →  (i.e., I → ∞ ):  
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This is conform our intuitions. Hence, the mean realized variance only coincides with the 
mean average variance if I → ∞  (or 0tδ → ).  
 
A related way of clarifying the same issue is as follows. Recall the stochastic convergence 
of the random variable 2

,RV t tσ +∆  towards the random average variance over [ , ]t t t+ ∆ ,    
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Taking expectations yields 
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which clarifies that in the limit for I  approaching infinity (or tδ  approaching 0), the 
realized variance is an unbiased estimator of 0 'δ + δ θ . In our earlier explanation we first 
took expectations and then limits, whereas here it is the other way round. The operators 
may thus be interchanged here.  
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- IV - 
 

Monte Carlo and Empirical Results  
for Ornstein-Uhlenbeck SV: 

Examining UK Financial Markets 
 

 
 
 
 
 

1.  Introduction 
 
In this chapter we consider a special case of the multifactor affine SV option 
pricing model, in which the volatility is driven by one or more Ornstein-Uhlenbeck 
(OU) processes. This implies that the volatility-of-volatility is constant, i.e., the 
volatility-of-volatility does not depend on the current volatility level itself.  
 
We first examine the performance of the unconditional state space model as a 
method for parameter estimation and volatility filtering by Monte Carlo 
simulation, for 1-factor OU SV. We then confront the OU model to real-world 
financial markets data. We study the major stock index from the United Kingdom, 
the FTSE100 index, and the European option contract traded on that index. The 
data consists of daily index returns, and three at-the-money call option series of 
various maturities: a short, medium and long-maturity series.  
 
An obvious drawback of the Gaussian OU assumption is that the stock variance 

2
tσ  can become negative. Although fitting the model to empirical data is not 

expected to pose problems in this respect, in a simulation environment in which 
multiple paths of 2{ }tσ  are generated, sample paths may well turn negative.  
 
Although the possibility of sampling negative stock variances is theoretically 
inconsistent, there are a number of reasons why we think investigating the OU SV 
case is still of value. First, the OU assumption yields large analytical tractability. 1 
In our multifactor SV estimations considered below in which multiple option series 
are included, this tractability is very convenient. Second, suppose we find that the 
volatility is driven by more than one hidden factor. If all factors are modeled as 
OU factors, diagnostic checking allows us to examine which factors feature level-
dependent volatility-of-volatility and which do not.  
 
Last and important, as the unconditional and conditional distributions of the 
volatility-factor shocks { }tu  coincide in the OU case, the associated unconditional 
linear state space model is excellently suited for estimation. Apart from the 
various approximations that we carried out to arrive at linear measurement 

                                           
1  Similarly, in the interest-rate literature the Gaussian OU assumption has often been used as a model 
for the short interest rate, see e.g. Vasicek (1977), Langetieg (1980), the Ho and Lee (1986) model and 
de Jong (2000). Stein and Stein (1991) and Scott (1987) assume a 1-factor OU process for stock 
volatility, not the least because of its analytical tractability. More recently, Bakshi and Kapadia (2003) 
also assume an OU process for the stock volatility in their proposition 2.   
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equations, Kalman filter QML generates consistent estimates in this case. So if 
any large estimation bias is found, this seems more attributable to the performed 
approximations, rather than the state space estimator as such, given its 
asymptotic properties. For SV processes featuring level-dependent volatility-of-
volatility, the conditional state space model to be discussed in the next chapter is 
more suited for estimation. However, this model will be estimated by Extended 
Kalman filter QML, which is a priori known to generate inconsistent estimates. So, 
whenever we are to find a large bias in the estimates there, it is less clear if this 
is either caused by Extended Kalman filter QML, or the various approximations 
that we carried out to arrive at linear measurement equations, or both. The OU 
SV case thus serves as a convenient benchmark or reference point.  
 
The remainder of this chapter proceeds as follows. Section 2 discusses and 
explores the FTSE100-index data. Special attention is devoted to the complex 
empirical dynamics of the at-the-money volatility term structure over time.  
 
Section 3 performs a Monte Carlo study towards the 1-factor OU SV model. We 
simulate option data which characteristics largely match the observed, short-
maturity FTSE100-index option data. To prevent stock variance paths from 
turning negative during simulations, the parameters are chosen in such a way 
that chances are virtually negligible that this will occur. We study the quality of 
the various approximations that we carried out to arrive at linear measurement 
equations, the assumptions regarding the error terms of the state space model, 
and the performance of our estimation method. We compare this performance for 
several types of data used for estimation. Although RV data is not considered in 
the empirical analysis of the FTSE100-index market (we lack this data), we do 
consider 10-minute realized volatilities in the Monte Carlo study. It appears that 
using squared returns only for estimation performs worst. Although RV data 
performs much better, option data is even more informative. The combination of 
RV and option data performs best.  
 
Section 4 assumes the FTSE100-index data to have been generated by the  
1-factor OU SV option pricing model. We initially estimate the model using only 
squared returns, only short-maturity option data, and a combination of these. We 
interpret the estimation results, compare the SV with GARCH volatilities and the 
“observed” BS implied volatilities, and consider compensation for FTSE100-index 
volatility risk. We find a volatility risk premium of –15% per annum, which implies 
an expected short-maturity ATM FTSE100-index straddle return of –174% per 
annum. It appears that the 1-factor SV model overprices the longer-dated options 
out of sample. Additional evidence pointing towards insufficient capability of 
describing the observed volatility term structure movements next comes from 
estimating the 1-factor OU model using all data jointly.  
 
Section 5 therefore extends to multiple OU SV factors. Although two SV factors 
yield a considerable improvement in fit, three factors are needed to obtain an 
adequate description of the volatility dynamics observed in the joint data. A first 
interpretation of the factors concerns their role in the volatility evolution, i.e., 
long-term, medium-term and short-term volatility trends. A second interpretation 
concerns their role in the shape dynamics (i.e., level, slope and convexity) of the 
volatility term structure over time. Each factor impacts differently on the prices of 
options of different maturity. The long-term volatility-trend factor impacts on all 
options similarly; the short-term trend factor virtually influences short-maturity 
options only. We interpret the risk premia associated with each of the factors, by 
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considering expected straddle returns. Diagnostic checks reveal that the 3-factor 
OU SV model can be improved upon in several ways, one of which concerns the 
modeling of level-dependent volatility-of-volatility.  
 
Section 6 summarizes the main results of this chapter on OU stochastic volatility. 
An appendix concludes.  
 
  

2.   FTSE100-index data: An explorative analysis 
 
This section introduces the FTSE100-index data that provides the basis for the 
empirical analysis in this chapter and the next. Section 2.1 details the data 
collection and construction. An explorative analysis of the data motivates why we 
will not use all data for estimation. Section 2.2 examines the shape and complex 
dynamics of the at-the-money volatility term structure observed in the sample. 
 
2.1 Data collection and construction  
 
We examine daily data on the most important stock index of the United Kingdom, 
the FTSE100 index, and the European call option contract traded on that index. 
The FTSE100 index tracks changes in the value of a hypothetical portfolio of 100 
major U.K. shares, listed on the London Stock Exchange. 2 The original dataset 
covers 9 years of data for the period 4 Jan 1993 till 28 Dec 2001.  
 
Stock-index and index-option data 
The source of the index data is DataStream, which records the daily closing prices 
of the index. Trading at the London Stock Exchange ends at 4.30 pm. We use the 
closing prices to compute daily index returns. The left panel of figure 2.1 plots the 
FTSE100 index and its daily returns.  
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Figure 2.1: Left: FTSE100 index and its daily returns. Right: Index-futures prices and call 
prices associated with the SM option series.  

                                           
2 Stock dividends are not included in the computation of the index, and hence are not reinvested. The 
index merely tracks the capital gains and losses of the hypothetical portfolio. In terms of our model, 
{ }tS  thus represents the FTSE100 index (and not { }r

tS , which is the reinvestment portfolio). 
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Volatility clustering is clearly present. Table 2.1 reports summary statistics for the 
daily returns for the period Oct 1997 – Dec 2001. (As motivated below, this is the 
sample we will eventually use for estimation.) The return distribution is slightly 
negatively skewed and has somewhat fatter tails than the normal distribution: Its 
skewness equals –0.14, its kurtosis 3.67.  
 
The source of the index option data is the London International Financial Futures 
and Options Exchange (LIFFE). 3 The dataset consists of daily closing prices on a 
wide range of different call and put options, for a total of 902,445 observations. 
Specifically, for each observation the dataset contains the date, call/put flag, 
strike price, option price, expiry month, open interest, volume, and the daily 
settlement price in the FTSE100-index futures contract that has the same 
maturity as the option contract. The daily settlement time of the futures contract 
is at 4.30pm; option trading ends at 4.30pm as well. As we select at-the-money-
forward (ATMF 4) options only, which are typically most liquid, we expect possible 
non-synchronicity between daily settlement times to be least a problem. For 
simplicity, we assume non-synchronicity biases between index-futures prices, the 
FTSE100 index, and the index option prices to be negligible. 
 
With regard to the available option contracts, on any given trading day European 
index options are traded with expiry months March, June, September, December, 
and additional months such that the 3 nearest calendar months are always 
available for trading. The options expire on the third Friday of the expiration 
month. On each day, there are 6 different-maturity contracts traded. This implies 
that the maximum maturity of all contracts ranges in between 9 and 12 months 
on any given day. 5 For each maturity, a wide range of options trades that differ 
in strike prices.  
 
Selecting a SM, MM and LM option series 
We select three close-to ATMF call option series from the database: a short-
maturity (SM), a medium-maturity (MM), and a long-maturity (LM) series. As 
ATM options are typically most actively traded, and have maximal vega, we 
expect the prices of these options to contain the most valuable information. The 
maturity of the SM series ranges from 20 to 44 trading days, and averages at 1.4 
months. For the MM series, the maturity range is 4.5 - 7 months (average 6 
months). For the LM series this is 9 – 12 months (average 10.5 months). The 
average moneyness ( /F K ) of each of these series is 1.000, and has a small 
standard deviation. 6 Table 2.1 reports summary statistics on the maturity and 
moneyness for the SM, MM and LM option series.  

                                           
3 We thank Joost Driessen from the Finance Department of the University of Amsterdam for the option 
data. See http://www.liffe.com for a complete description of the data.  
4 “Forward-”moneyness is defined here as /F K , with F  the futures price in the futures contract that 
has the same expiry date as the option, which has strike .K  ATMF means that F K= ; i.e. / 1F K = .   
5 To understand this, consider e.g. a day in March just before expiration. Contracts that mature in 
March, April, May, June, September and December trade on that day, so that the maximum maturity of 
all traded contracts equals 9 months. Consider next the first day in March after expiration. The contracts 
that mature in April, May, June, September and December still trade. LIFFE now issues new contracts 
that mature in next year’s March, so that the maximum maturity instantly changes from 9 to 12 months. 
6 We extracted the option series from the database as follows. Consider e.g. the SM call series. Having 
separated the calls from the puts, for each day, we selected the calls with a maturity of at least (but at 
the same time closest to) 20 trading days. From these calls, on each day, we next selected that call 
which is closest ATMF by minimizing | ln( / )|ti iF K , where iK  is the strike price of call i  and tiF  is 
the current futures price of the index-futures contract that has the same maturity as call i . (Following 
Hull (2003), we assume forward and futures prices to be equal.) We minimize | ln( / )|it iF K  rather than 
| / 1|it iF K −  because (“forward”-)moneyness may be defined as either /it iF K  or /i itK F . Now 
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Figure 2.1 plots the call prices of the SM series; figure 2.2 shows its maturity and 
moneyness over time. Although ATM, the average call price is substantially higher 
from Oct 1997 onwards. The reason is the increased FTSE100-index volatility 
from Oct 1997 onwards, which is apparent from the graph of the index returns. 
Figure 2.1 also shows the futures price associated with SM option series. Not 
surprisingly, it closely tracks the FTSE100 index. 
 

1994 1996 1998 2000 2002

3000

4000

5000

6000

7000
STRIKE PRICE  (SM) 

1994 1996 1998 2000 2002

0.100

0.125

0.150

MATURITY (SM) 

1994 1996 1998 2000 2002

0.995

1.000

1.005

MONEYNESS F/K  (SM) 

1994 1996 1998 2000 2002

0.04

0.05

0.06

0.07

LIBOR INTEREST RATE  (SM) 

 
Figure 2.2: Series associated with the SM option series: strike price, maturity (in years), 
moneyness ( /F K ), and LIBOR risk-free interest rate (per annum).  
 
 
Computing the SM, MM and LM BS implied volatility series 
To compute the BS implied volatilities associated with each of the SM, MM and LM 
option series, we use the BS formula expressed in terms of the forward price. 
Daily estimates of the average dividend yield tq  are therefore not needed. 7 
Specifically, we solve for 2

,implied itσ  from 2
, ,( , , , , )

itit t T it it it implied itC BS F K rτ σ=  
numerically, for , ,i SM MM LM=  and ,..,t t T t= ∆ ∆ . This requires for each option 
i  on each day t  an estimate of the average risk-free interest rate itr  over the 
remaining option’s life. We estimate itr  by performing linear interpolation 
between the two nearest (in terms of maturity) continuously compounded London 
Interbank Offer Rates (LIBOR) on that day, which are typically considered risk 
free. The daily LIBOR rates for terms of 1 month, 2 months up to 12 months are 
taken from DataStream. For our sample period, these fluctuate between 3.8% 
and 7.7%. Figure 2.2 shows the interest rate series associated with the SM option 
series. It averages at 6.1%. (The MM and LM series also average at 6.1%.) 
                                                                                                                         
searching for an option for which | / 1|it iF K −  is closest to 0, may yield another option than 
searching for an option for which | / 1|i itK F −  is closest to 0. Minimizing | ln( / )|ti iF K  circumvents 
this, which is equal to minimizing | ln( / )|i itK F . This eventually left us with the SM-ATMF call option 
series, which counts 2258 daily observations, and for which the maturity range turned out to be 20 – 44 
trading days. We extracted the MM-ATMF and LM-ATMF option series in similar ways; both contain 2258 
observations as well. We carefully ensured that the characteristic series (i.e. price, strike, maturity, 
LIBOR interest rate, FTSE100 index, futures price etc.) associated with the 3 option series contain as 
many observations, and that all observation dates are fully synchronous. (Data on 20 trading days are 
missing in the original database. Furthermore, the data for 1-10-1997 is incomplete and the data for 28-
5-1998 contains obvious errors, such that we have discarded these dates.) 
7 Using the data and forward price formula , exp[( )( )]t T t t tF S r q T t= − − , we estimate the avera-
ge continuously compounded FTSE100-index dividend yield at 3.53% per annum (for Jan 93 – Dec 01).  
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Squared returns 21 ( )ˆt t tt r tµ+∆∆ − ∆  used in state space estimations 
According to our model, the FTSE100 index evolves according to the SDE 

,t t t t t S tdS S dt S dWµ σ= + . We did not explicitly specify the drift process 
( , , )t t tt Sµ µ= x  in our theoretical discussion. Our estimation method nonetheless 

requires a prior estimate of tµ  at each point in time; recall the squared  
return equation 21

0( ) 'ˆt t t t t tt r tµ δ ω+∆ +∆∆ − ∆ = + +δ x . How can we obtain such an 
estimate? From an Euler discretization, it holds by approximation that 

2| ~ ( , )t t t t tr t tµ σ+∆ ∆ ∆F N . t tµ ∆  thus basically represents the conditional mean 
daily index return, for which we require an estimate. Estimating an AR(2) model 
for the index returns results in residuals that are not significantly autocorre- 
lated. 8 We therefore propose to estimate the conditional mean t tµ ∆  by the fitted 
returns from this AR(2) regression. 9 The (uncorrelated) residuals of this 
regression are known as the prewhitened returns. 10 The squared prewhitened 
returns thus form the input to the squared return equation.  
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Figure 2.3: Annualized squared daily (prewhitened) FTSE100-index returns, and the Black-
Scholes implied variance series associated with the SM option series.  
 
 
Analysis of the squared returns and BS implied volatilities 
Figure 2.3 shows the squared returns 21 ( )ˆt t tt r tµ+∆∆ − ∆  and the SM BS implied 
variances 2

,implied tσ  in one graph. A clear increase in the average volatility level 
and the volatility-of-volatility is visible after the third quarter of 1997. The impact 
on global financial markets of the Asian crisis is apparent (fall 1997). The near-

                                           
8 Our model implies that non-overlapping returns are (virtually) uncorrelated (see section 12 of 
appendix B). The fact that we find the empirical index returns to be significantly autocorrelated is 
generally believed to be caused by non-synchronous trading effects associated with the individual stocks 
that together compose the FTSE100 index; see e.g. Campbell et al. (1997). 
9 Doing so, our estimation procedure thus essentially boils down to two-step estimation and volatility 
extraction of the parameters of the model 2

0 1 2| ~ ( , )t t t t t t tr r r tφ φ φ σ+∆ −∆+ + ∆F N  in which tσ  is 
the annualized stochastic volatility. In the first step we estimate the conditional mean parameters 

0 1 2, ,φ φ φ ; in the second step we estimate the parameters governing the stochastic volatility and 
moreover extract the latent volatility series. Notice the clear analogy with an AR(2)-GARCH(1,1) model 
for daily stock returns. But recall the important difference: In our model we have true stochastic 
volatility, whereas in the GARCH model today’s volatility is a deterministic function of yesterday’s 
information set. See also section 3.2.2 of chapter III.  
10 E.g. Andersen et al. (2002) also prefilter the data prior to estimation to get rid of the autocorrelation.  
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collapse of hedge fund Long-Term Capital Management, the influence of the 
Soviet Union crisis and the uncertainty about the European Monetary Union (i.e., 
the introduction of the euro) is clearly visible too (fall 1998). The aftermath of 
September 11, 2001 and the war on terrorism are also obvious. 11 These events 
have led to increased fluctuations in financial markets in recent years.   
 
Plots of the SM, MM, and LM BS implied volatility series (figure 2.4) confirm that 
the volatility seems to evolve in two very different “regimes” during 1993 – 2002. 
To a priori avoid model misspecification as much as possible, we opt to use data 
for the period 6 Oct 1997 – 28 Dec 2001 only in all our estimations, for a total of 
1058 observations. For the period till Oct 1997 for example, an estimate of the 
unconditional stock volatility (computed as the average of the annualized squared 
returns) equals 11.4%, after Oct 1997 it equals 20.3%. If volatility is driven by a 
1-factor OU process (for which the unconditional volatility equals θ ), this would 
imply that θ  has more than tripled after Oct 1997. Using all data would lead to 
obvious biases in this case. 
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Figure 2.4: The Black-Scholes implied volatility series associated with the short-maturity, 
medium-maturity and long-maturity call option series.  

 
 
Negative market price of volatility risk?  
Summary statistics for Oct 1997–Dec 2001 are in table 2.1. The average  
BS implied volatility of 23.70% is substantially larger than the just-mentioned 
20.3% unconditional stock volatility. Moreover, the SM BS implied volatility series 
fluctuates most, the LM series least. As our SV model implies that 

2 2
, [ | ]implied t t tσ σ≈ QE F  (see (3.70) in the previous chapter), the first data 

characteristic may be interpreted as a preliminary indication that measures P and 
Q diverge, with the market price of volatility risk being negative. The second 
characteristic is understood if there is mean reversion in the volatility.  
 
                                           
11 The peak of 0.86 in the annualized squared FTSE100 return at September 11, 2001 has been cut off 
at 0.6 to enhance the visual quality of the graph.  
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Table 2.1: Summary statistics FTSE100-index data for the period Oct 1997 – Dec 2001 

 Returns Sq.returns SM series: MM series: LM series: 

   BS impl.vol. BS impl.vol. BS impl.vol. 
Mean 0.0000     0.0413 23.25% 23.93% 23.89% 
Median 0.0003     0.0151 21.84% 22.96% 23.22% 
Std.deviation 0.0126     0.0676  5.73%  4.68%  4.35% 
Skewness -0.14  4.23 1.33 1.36 1.28 
Kurtosis  3.67 37.73 4.94 5.18 4.68 

   Moneyness Moneyness Moneyness 
Mean   1.000 1.000 1.000 
Std.deviation   0.002 0.005 0.005 
   Maturity Maturity Maturity 
Mean   0.116 0.500 0.872 
Std.deviation   0.025 0.074 0.072 
Minimum   0.077 0.377 0.750   
Maximum   0.169 0.638 1.015 
The table reports summary statistics for the daily (prewhitened) FTSE100-index returns, 
the annualized squared (prewhitened) index returns 21 ( )ˆt t tt r tµ+∆∆ − ∆ , and the SM, MM, 
and LM index option series, for 6 Oct 1997 – 28 Dec 2001. Moneyness is defined here as 
the ratio of futures price and strike price ( /F K ). Maturity is reported in years.  
 
 
 
2.2 Analyzing the volatility term structure 
 
In real-world financial markets, BS implied volatilities of options written on the 
same underlying typically differ across strikes and maturity (see e.g. Hull 
(2003)). If the Black-Scholes model were true, the implied volatility surface 
should be flat at any moment in time: each moneyness-maturity combination 
should reveal the same BS implied volatility. Instead, for a given maturity, one 
typically observes a smile or skew-shaped pattern across implied volatilities, 
known as the volatility smile or skew. This pattern tends to be less pronounced 
the longer the maturity of the options. For given moneyness, one observes a 
variety of shapes of the so-called volatility term structure, which plots the implied 
volatilities against term-to-maturity of the options. The implied volatility surface 
serves an important function in practice: Traders use it as a sophisticated inter-
polation tool for pricing vanilla options consistently with the market. 12 Moreover, 
traders typically quote an option price in terms of its BS implied volatility.  
 
We focus on the relation between BS implied volatilities and maturity. Our 
interest is in the shape and dynamics of the ATM volatility term structure (VTS) 
over time. Given the three ATM option series, the VTS of ATM options can have 
four possible shapes on each of the 1058 days in our sample. It may either be 
upward sloping, exhibit a hump shape, be downward sloping, or display an 
inverted hump shape. Table 2.2 reports the shape frequencies (in percents), and 
assigns each possible shape a number for later reference. The ATM VTS is upward 
sloping on almost 50% of the days; the inverted hump shape occurs seldom.   
 
 
 

                                           
12 That is, European call and put options. Exotic derivatives cannot be priced with the surface, unless 
the exotic can be decomposed into a combination of vanilla options. European call and put options 
written on the same underlying with the same strike and maturity, have identical implied volatility (this 
follows from the put-call parity). As such the surface can be used to price both call and put options. 
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Table 2.2: Shape frequencies volatility term structure ATMF options (Oct 1997 – Dec 2001) 
Shape of vol. 
term structure 

1: upward    
  sloping 

2: hump 
   shape 

3: downward 
sloping 

4: inverted 
hump shape 

Frequency 48.7% 27.5% 18.3% 5.5% 
 
 
VTS changes shape often 
As option prices change through time, so does the shape of the implied volatility 
surface. To explore the daily dynamics in the ATM volatility term structure, figure 
2.5 provides two matrices. The first matrix reports the number of VTS shape 
transitions, as a percentage of the total number of transitions, 1057. For 
example, of all transitions, 9.4% entailed a shape change from upward sloping to 
hump shape from one day to the next, and in 14.4% of the cases the shape 
remained downward sloping. The second matrix reports the empirical shape 
transition “probabilities”, with each row adding to 100%. Given that the VTS has 
a particular shape today, it is most likely that it has equal shape tomorrow.  
 
 
Shape transition frequencies (in %)                Shape transition “probabilities” (in %) 
     t+1 
t      

1 2 3 4 
 

 
 

      t+1 
t 

1 2 3 4 

1 37.2   9.4  0.9 1.2  1 76.4 19.3   1.8  2.5 
2   9.9 14.9  1.7 1.0  2 36.0 54.0   6.2  3.8 
3   0.4   2.1 14.4 1.5  3   2.1 11.3 78.4   8.2 
4   1.2   1.2   1.3 1.7  4 22.4 22.4 24.1 31.1 

Figure 2.5: Day-to-day dynamics in the shape of the ATMF volatility term structure (Oct 97 
– Dec 01). Left: transition frequencies in % of total number of transitions. Right: empirical 
transition “probability” matrix (in %). Shape codes are reported in table 2.2.     
 
 
Shifts in the VTS: 34% is non-parallel 
We define a parallel shift in the VTS as one in which the SM, MM and LM BS 
implied volatilities either jointly go up from one day to the next, or go down, but 
not necessarily by the same amount. Table 2.3 shows that parallel shifts occur 
66% of the time; 34% of the shifts are non-parallel.  
 
 
Table 2.3: Daily shifts in the ATMF volatility term structure (Oct 97 – Dec 01) 
 Upward Downward Total 
Parallel shifts 32% 34% 66% 
Non-parallel shifts   34% 
  Total: 100% 
 
 
Dynamics of level, slope and curvature of the VTS 
Additional evidence showing that the empirical VTS evolves in complex ways is in 
figure 2.6, which plots the evolution of the level, slope and curvature (or 
convexity) of the VTS over time. We define its general level as the average BS 
implied volatility: tlevel ≡ , , , , , ,( ) /3implied SM t implied MM t implied LM tσ σ σ+ + . We define its 
slope as the difference between the LM and SM implied volatility, divided by the 
maturity difference: tslope ≡  , , , , , ,( ) /( )implied LM t implied SM t LM t SM tσ σ τ τ− − . We define 
its curvature as , , , , , ,t t implied LM t t implied MM t t implied SM tcurvature a b cσ σ σ≡ + + , where 

1 1 22 /[ ( )],t t t ta h h h= +  2 1 22 /[ ( )],t t t tc h h h= +  t t tb a c= − − , 1 , ,t LM t MM th τ τ= −  and 

2 , , .t MM t SM th τ τ= −  As explained in the appendix, this convexity measure 
essentially represents a numerical approximation of the second-order derivative 
of a smooth function in a certain point, computed using three coordinate pairs.  
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Figure 2.6: Evolution of level, slope and curvature of the volatility term structure.  
 
 
Figure 2.6 shows that when the general volatility level is high (low), the slope is 
typically negative (positive). This suggests volatility mean-reversion, and illus-
trates why traders attach forecasting power to BS implied volatilities. The slope 
numbers reveal that the VTS can be steep: a slope of e.g. –0.10 implies a BS 
implied volatility difference of roughly –7.5% between the LM and SM series.  
 
Is one SV factor enough? 
It is clear that the empirical VTS evolves over time in complicated manners. A 
realistic model must be capable of reproducing these complex dynamics. 
Evidently, the question is if one SV factor is sufficient in this respect. Recalling 
that our model implies that  
 

     2 1 1
,

( ) ( )'t t
implied t t

t t

A τ τ
σ

τ τ
≈ +

B
x , ,( )t d t t x td dt d= − +x K θ x ΣΛ W ,     (P)    (2.1) 

 
reveals that, by approximation, the VTS is driven by an affine function of the 
underlying hidden volatility-driving factors x . Equation (2.1) is indicative of why 
1-factor SV option pricing models are found to be misspecified in practice. 13 If 
(2.1) held with equality, in the 1-factor SV case, all BS implied variances of a 
given moneyness would be perfectly correlated. 14 That is, 1-factor SV could only 
describe parallel shifts in the VTS in that case: A volatility shock would either 
simultaneously raise all implied volatilities, or lower them. We find 34% of all 

                                           
13 Meddahi (2002), Chernov et al. (2003) and Tauchen (2004) argue that one of the reasons for the 
poor fit of 1-factor SV diffusion models is that this one factor cannot simultaneously fit both the fat tails 
of the return distribution and the volatility persistence. Introducing a second volatility factor (or adding 
jumps) breaks this link. Eraker et al. (2003) argue that as the extracted volatility from 1-factor SV 
models (without jumps) is found to be so persistent, it cannot change rapidly enough during periods of 
market stress. A second volatility factor allows for faster changing volatility.  
14 Notice the analogy with affine models of the term structure of interest rates (Duffie and Kan (1996)). 
In those models, yields of arbitrary maturity are an exact affine function of the factors. This implies that 
1-factor models can only generate parallel shifts in the yield curve, as all yields are perfectly correlated 
in that case. This is not realistic in practice. Moreover, it is by now commonly known that 1-factor 
models cannot describe –in a satisfactory way- the rich number of yield-curve shapes typically observed.  



3. A Monte Carlo study to the 1-factor OU SV model 

 127

shifts in the empirical FTSE100 VTS to be non-parallel. Although (2.1) does not 
hold with equality, it seems unlikely that 1-factor SV is able to describe the rich 
dynamics observed in the joint FTSE100-index data sufficiently well.  
 
 

3.  A Monte Carlo study to the 1-factor OU SV model 
 
This section performs a Monte Carlo study towards the 1-factor OU SV option 
pricing model. Section 3.1 states its main equations, and considers some implied 
properties of the volatility process. Section 3.2 outlines the simulation strategy, 
and discusses the assumptions underlying the simulated squared return, RV and 
option data. These assumptions are largely based on the information in the 
FTSE100-index data. Section 3.3 discusses the state space model associated with 
1-factor OU SV, and considers parameter identification. Section 3.4 discusses the 
simulation results.  
 
3.1 The 1-factor OU SV option pricing model 
 
If there is one OU factor driving the volatility, the main ingredients of the 
multifactor model read (see section 2 and 3.2 of chapter I for more details): 15 
 

Stock price: ,t t t t t S tdS S dt S dWµ σ= +   (P) (3.1) 

Stock variance:  2
t txσ =      (3.2) 

Latent factor: ,( )t t x tdx k x dt dWθ σ= − +   (P)  (3.3) 

 ,( )t t x tdx k x dt dWθ σ= − +% %%   (Q) (3.4) 

Risk-neutral parameters:    , /k k kθ θ σγ= = −% %    (3.5) 
Market price of vol. risk: ,x tγ γ=      (3.6)  

Volatility risk premium: σγ       (3.7) 

Call price (strike tK ,mat. tτ ) 2
,( , , , , )|t t T t t t t tC BS F K rτ σ =  QE F   (3.8) 

2
, , 1 2( , , , , ) exp( ) ( ) ( )t T t t t t t t t T t t tBS F K r r F d K dτ σ τ  = − Φ − Φ 

 

, 21
2

1 2 1

ln
;

t T
t t

t
t t t t t

t t

F
K

d d d
σ τ

σ τ
σ τ

+
= = −  

 
Forward price (maturity tτ ): , exp ( )t T t t t tF S r q τ= −   .   (3.9) 

 
The model is fully determined by four parameters, , ,kθ σ  and γ  with , , 0kθ σ >  
and γ ∈ R . Recall that 2{ }tσ  represents the per-annum conditional variance 
process of the instantaneous stock return, /t tdS S . The unconditional stock 
return variance equals 2[ ] [ ]t txσ θ= =P PE E  per annum, such that the 
unconditional stock volatility equals θ . From the properties of the OU process 
(see appendix B, section 13), the invariant distribution of the stock variance 
equals 2 2~ ( , /2 )t kσ θ σN . The volatility-of-the-variance thus equals 2( /2 )kσ . 
The mean-reversion parameters k  and k%  coincide under P and Q. The volatility 
persistence is measured by exp[ ]k t− ∆  with 1 /260t∆ = . The half-life (measured 

                                           
15 This special case is obtained from imposing 1n = , 1α =  and  0β =  in the general multifactor 
model. For identification reasons, we moreover a priori impose 0 0, 1δ δ= =  such that 2

t txσ = . 
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in days) of a volatility shock is given by ln2 /( )k t∆ . The market price of volatility 
risk equals γ , whereas the volatility risk premium is given by σγ . Both are 
constant over time in the OU case.  
 
3.2   Simulating from the 1-factor OU SV option pricing model  
 
3.2.1   Assumptions 
 
As usual, we assume 260 trading days per annum and denote the timing of  
the daily data points by , 2 ,..,t t t T t= ∆ ∆ ∆ , with 1 /260t∆ = . We simulate for a 
total of T = 1058 daily observations, corresponding to the UK data used in  
our empirical work. We assume 0 5300S = , 8.25%tµ µ= = , 3.5%tq q= =  and 

6%tr r= = . (These values correspond to the information in the FTSE100-index 
data for the period 6 Oct 1997 – 28 Dec 2001.)  
 
We simulate time series of squared returns, realized volatilities and short-
maturity (close-to) ATMF call options. The maturity and moneyness of the option 
series exactly match those of the empirical short-maturity ATMF FTSE100-index 
option series, for each t . The average option maturity is 1.4 months. (See 
section 2.1 for details.) This permits a consistent comparison between the real-
world and simulated call data.  
 
What can we do to prevent stock variance paths from turning negative during 
simulations? The parameters with which to simulate data with, should be chosen 
in such a way that chances are negligible that this will occur: θ  and k  must be 
chosen large enough, σ  small enough, and γ  enough negative. 16 At the same 
time however, we want their values to be as “realistic” as possible. This tradeoff 
results in the following choice: 
 

0.16θ =   (unconditional stock volatility of 40%) 
5.25k =   (persistence in daily stock variance of 0.98) 
0.10σ =  (volatility-of-volatility parameter) 
1γ = −   (market price of volatility risk). 

 
The implied risk-neutral parameters equal  5.25k =%  and 0.179θ =% , and the 
volatility risk premium –10%. (See table 4.1 for further motivation of this choice.) 
 
To keep the amount of computations to a reasonable level, we simulate a total of 
100 datasets for this set of parameter values. 
 
3.2.2   Set up of the Monte Carlo experiment 
 
Below we outline (in chronological order) the different steps in the Monte Carlo 
experiment, to obtain one simulated dataset from the 1-factor OU SV option 
pricing model. Repeating these steps a 100 times yields the 100 datasets.  
 
Step 1: Simulate a stock price and volatility path under P;  
    compute squared returns and realized volatilities.  
The first step consists of simulating a sample path of { }tS  under P over the 
interval [0, ]T t∆ , given 0 5300S = ; see (3.1). As the stock price is governed by 
independently evolving stochastic volatility, a simulated P-path of 2{ }t txσ =  is 

                                           
16 An alternative “solution” seems perhaps a reflecting barrier at 2 0t txσ = = . However, if this barrier 
is hit too often, sample paths result that can no longer be considered as (approximate) OU paths 
anymore. Distorted simulated data results, which does not provide a reliable basis for investigating the 
performance of our estimation method. 
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needed first. We simulate both { }tS  and { }tx  on 48I =  intraday time points. As 
a trading day lasts for approximately 8 hours in practice, this means that we 
sample a value every 10 minutes. (For a discussion on the intraday sampling 
frequency for RV, see section 3.3.2 of the previous chapter.) The discretization 
step ( tδ ) of the continuous-time processes then equals /t t Iδ = ∆ 58.0 *10−= . 
 
Rather than sampling 0x  from its invariant distribution (which does not preclude 
negative values), we assume the initial value of { }tx  to equal its invariant mean, 

0x θ= . From equations (6.1), (6.2) and (13.29) in appendix B, for the 1-factor 
OU SV process it holds under P that 
 

   ,exp[ ]( )t t t t t tx k t x uδ δθ δ θ+ += + − − + , 2
,

1 exp[ 2 ]
~ 0,

2t t t
k t

u
kδ

δσ+
 − − 
  

  
N  (3.10) 

 
This result leads to the following scheme for obtaining the desired sample path: 
  

[0]x θ=             (P)      (3.11) 

 2
[( 1) ] [ ]

1 exp[ 2 ]
exp[ ]( )

2i t i t i
k t

x k t x
kδ δ

δ
θ δ θ σ+

− − 
= + − − +  

 
e ,  

  
in which ~ . . . (0,1); 0,.., 1i i i d i TI= −e N . The end-of-day factor values are given 
by [0] [ ] [ ] [ ] [ ], ,..,t I t T t TI tx x x x xδ δ∆ ∆= = . In contrast to a conventional Euler 
approximation scheme of the factor SDE (3.3), this discrete-time process has the 
advantage that at each (discrete) point in time, it has exactly the same 
distribution as the continuous-time process it approximates. As such, (3.11) is 
preferable to a naïve Euler approximation scheme of (3.3), for which this only 
holds by approximation (as long as 0tδ ≠ ). Although sample paths of (3.11) may 
turn negative, this did not happen for the 100 datasets that we simulated.  
 
A sample path of { }tS  under P is next obtained as follows. First, recall that due to 
SV, an exact solution of the stock price SDE does not exist. We therefore need to 
resort to discrete-time processes that approximate the distribution of { }tS  at 
each point in time; e.g. an Euler approximation. Considering the SDE of the log 
stock price, 21

,2ln ( )t t t S td S dt dWµ σ σ= − + , adding the increments over [ , ]t t tδ+ , 
and then transforming back to tS  yields 
 

21
,2exp

t t t t

t t t u u S u

t t

S S t du dW
δ δ

δ µ δ σ σ
+ +

+

 
 = − +
  

∫ ∫ .  (P) (3.12) 

 
Approximating the Riemann and Itô integrals in this expression by the product of 
their respective integrands observed at the begin point of the interval, and the 
increment in the integrator over [ , ]t t tδ+ , yields the following approximation 
scheme of { }tS  on the interval [0; ]T t∆ : 17 
 

 [0] 0S S=        (P) (3.13) 

 1
[( 1) ] [ ] [ ] [ ]2exp ( )i t i t i t i t iS S x t x tδ δ δ δµ δ δ η+

 = − +  ,  

 

                                           
17 Notice that the scheme (3.13) means an improvement to a conventional Euler scheme of the stock 
price SDE obtained from ,

t t t t
t t t t u t u u S uS S S du S dWδ δ

δ µ σ+ +
+ − = +Ÿ Ÿ : As the integrand of the Itô 

integral in (3.12) will tend to vary less over [ , ]t t tδ+  than the one in the latter equation, the 
approximation in (3.13) will generally be better; especially when tS  is large. 
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in which ~ . . . (0,1), 0,.., 1i i i d i TIη = −N . From the end-of-day stock prices [0],S  

[ ] [ ] [ ] [ ],..,t I t T t TI tS S S Sδ δ∆ ∆= = , the simulated annualized squared returns in 
deviation from their mean, 2

[ ]( ) / ; 1,..,j tr t t j Tµ∆ − ∆ ∆ = , can next be computed. 
Here, the daily stock return is given by [ ] [ ] [( 1) ] [( 1) ]( ) /j t j t j t j tr S S S∆ ∆ − ∆ − ∆= − . Given 
the simulated intraday path of { }tS , the associated daily 10-minute realized 
variance over day [ , ]t t t+ ∆  is calculated as 
  

 
2

[ ]2
,[ ]

[ ( 1) ]1

1
ln

I
t i t

RV t t
t i ti

S

t S
δ

δ
σ +

+∆
+ −=

 
=   ∆  

∑ ,    (P) (3.14) 

 
and so for all 0, ,..,( 1)t t T t= ∆ − ∆ .  

 
Step 2: Simulate forward prices and option strike prices 
The forward prices for delivery on the option maturity dates are first computed by 

[ , ] [ ] exp[( ) ]; ,..,t T t tF S r q t t T tτ= − = ∆ ∆ . Here, { }tτ  is the maturity series of the 
empirical SM FTSE100-index option series. We next simulate the option strike 
prices { }tK  such that the moneyness of the simulated and observed option series 
exactly coincide for all t . 18 This results in a simulated SM close-to ATMF call 
option series, which maturity and moneyness exactly match those of the 
empirical SM FTSE100-index option series. 
 
Step 3: Simulate call prices 
Given r , q , the simulated [ ]tx , [ ] [ , ], ,t t T tS F K , and tτ , we next simulate the 
theoretical call price tC  for each , 2 ,..,t t t T t= ∆ ∆ ∆ . Given time- t  information, 
the only random quantity in the pricing formula 2

,[ ( , , , , ) | ]t t T t t t tC BS F K rτ σ= QE F  
is the average variance 2 21 t

t

T
t ut duτσ σ= Ÿ  over the remaining option’s life t tT tτ = − . 

Hence, to compute tC , we essentially only need to simulate a large number of 
2
tσ ’s under measure Q, given the initial stock variance 2

t txσ =  at time t  under 
measure P (!). From appendix B, section 13.1, the conditional distribution of 2

tσ  
under Q is Gaussian, 
          (3.15) 

( )
2

2 1 exp[ ] 1 exp[ ] 1 exp[ 2 ]
| ~ ; 2

2
t t t

t t t t
t t

k k k
x

k k k k

τ τ τσσ θ θ τ
τ τ

     − − − − − − + − − +              

% % %
% %

% % % %

Q
F N

 
which makes simulating 2

tσ ’s fairly easy. (3.15) requires as input for tx  its 
simulated value under P obtained in step 1.  
 
As its distribution is Gaussian, it is possible to sample a negative 2

tσ . This will 
mainly occur if tx  is close to zero under P; i.e., if the current stock volatility is 
close to zero. This is obviously something that we want to circumvent as much as 
possible. Our parameter choice for , , ,k θ σ γ  aids in this respect, but does not 
fully preclude negative sampled 2

tσ ’s. To deal with this, we choose to cut off both 
the negative tail of the distribution of 2 |t tσ F , and that part of the positive tail 

                                           
18 This is done as follows. Recall that, in order to extract a SM ATMF call series from the FTSE100-index 
database, we minimized the quantity mt = ,| ln( / )|t T tF K . To obtain simulated strike prices from this 
mt  series (given the simulated forward prices), we consider two possible cases to correctly deal with 
the absolute value function |..|. If the observed ,t TF  is larger than or equal to the observed tK , the 
simulated tK  is computed as [ , ] exp( )t t T tK F m= − , with [ , ]t TF  the simulated forward price. 
Instead, the simulated tK  is computed as [ , ] exp( )t t T tK F m= . (The resulting simulated strike prices 
are not necessarily integer numbers.)  
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that has the same probability as the negative tail. 19 This procedure seems more 
reasonable than just discarding the negative tail, as both the mean and symmetry 
of the sampling distribution remain in tact in this way (although the variance 
changes of course). Regarding the 100 datasets that we simulated, it only 
happened for 1 dataset that 0.000045% of the average variances initially drawn, 
fell into the a priori excluded tails; for the 99 other datasets this never happened. 
This indicates that the simulated data is (virtually) not distorted by this specific 
procedure. (The 0.000045%  is based on 2000 simulated 2

tσ ’s for each t .) 
 
Having simulated N  average variances at time t , which we denote by 

2
[ ]( ); 1,..,t i i Nσ = , we proceed as follows. Each of these 2

[ ]( )t iσ ’s corresponds to a 
simulated Black-Scholes call price value, 2

[ , ] [ ]( , , , , ( ))t T t t tBS F K r iτ σ . By the weak 
law of large numbers, the average of these values converges in probability to the 
true call price at time t : 20 

 2
[ , ] [ ]

1

1
( , , , , ( ))

N p

t T t t t t
i

BS F K r i C
N

τ σ
=

→∑ .     (3.16) 

Given this result, we approximate the call price tC  at day t  by the left-hand side 
of (3.16), and denote this simulated value by [ ]tC . Obviously, the approximation 
improves for larger N , but comes at the cost of increased computing time. We 
choose 2000N =  in our simulations. This is trade-off between computational 
burden and a sufficiently small Monte Carlo standard error of the simulated call 
price. (The average Monte Carlo standard error as a percentage of the call price 
equals 0.11% (std.dev. 0.02%) only over all 100*1058 simulated call prices.) 
Repeating this procedure for each ,..,t t T t= ∆ ∆ , yields the desired simulated call 
price series [ ] [2 ] [ ]{ , ,.., }t t T tC C C∆ ∆ ∆ .  
 
Step 4: Obtain the Black-Scholes implied variance series 
Given the call price series [ ]{ ; ,.., }tC t t T t= ∆ ∆ , we obtain the associated Black-
Scholes implied variance series 2

,[ ]{ ; ,.., }implied t t t T tσ = ∆ ∆  from numerically 
solving for 2

,[ ]implied tσ  , from the equation 2
[ ] [ , ] ,[ ]( , , , , )t t T t t implied tC BS F K rτ σ= . As the 

Black-Scholes function is monotonically increasing in its variance argument, this 
results in a unique 2

,[ ]implied tσ  for each t .  
 
3.3 State space model 
 
Depending on the specific data used for estimation, the state space model 
associated with the 1-factor OU SV option pricing model has several forms. For 

,...,t t T t= ∆ ∆ , each model consists of a selection of the following components: 21  
 
Return data: 

2 *1
( )ˆt t t t t tr t x

t
µ θ ω−∆ −∆− ∆ = + +

∆
, 2~ (0, )t ωω σ    (3.17) 

                                           
19 More specific: Write 2 ( , ) ( )t t t t txσ µ τ σ τ ε= +  where ~ . . . (0,1)t i i dε N  and ( , )t txµ τ  and 

2( )tσ τ  are as in (3.15). If ( , ) / ( )t t t txε µ τ σ τ< −  we draw a negative 2
tσ , which we want to 

prevent. Therefore, we exclude this tail and do not allow for sampling tε ’s in that area. We also discard 
tε ’s for which ( , ) / ( )t t t txε µ τ σ τ>  (these would lead to average variances in the far positive tail). 

20 That is, to be precise, if we are willing to assume that [ , ] ,t T t TF F=  and 2 2
[ ]t tσ σ=  for the moment. 

21 For the general multifactor model, these equations and the resulting system matrices of the 
unconditional state space model are given in section 3.5 of the previous chapter. Recall that we choose 
representations (3.85) and (3.87) for estimation. In the 1-factor OU case, the functions 1(.)A  and 

1(.)B  have explicit expressions; see (13.38) in appendix B, although the expressions there need to be 
tailored to the risk-neutral measure Q. The option equation (3.19) has been rewritten in terms of  
the P-parameters k and θ  by substituting  k k=%  and  / kθ θ σγ= −% . 
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RV data: 
2 *

, ,
1 exp( )

RV t t t RV t
k t

x
k t

σ θ ω−∆
− − ∆

= + +
∆

,  2
, ,~ (0, )RV t RVωω σ    (3.18) 

 
Option data: 
 

2
2

, 2

1 exp( ) 1 exp( ) 1 exp( 2 )
1 1 2

22
t t t

implied t
t t t

k k k
k k k kk

ν
τ τ τσ σσ µ θ γ

τ τ τ
    − − − − − −

= + + − + − +         

      *1 exp( )t
t t

t

k
x

k
τ

ε
τ

− −
+ + ,       2~ (0, )t εε σ    (3.19) 

Latent factor: 

* *exp( )t t t tx k t x u−∆= − ∆ + , 2 1 exp( 2 )
~ 0,

2t
k t

u
k

σ − − ∆ 
 
 

.   (3.20)

          
The error series { }tω , ,{ }RV tω  and { }tu  are white noise and mutually 
uncorrelated, except that ,{ }RV tω  and { }tu  are contemporaneously correlated 
with correlation ,corr[ , ]RV t tu cω = . The option error series { }tε  is assumed white 
noise, and mutually uncorrelated with the other errors.    
 
Parameter identification 
Depending on the data used for estimation, not all parameters can either be 
estimated or may be identified. For example, if only return or RV data is used, the 
market price of volatility risk γ  cannot be estimated. In those cases, the problem 
becomes one of estimating the parameters of an SV stock price model, given by 
equations (3.1)-(3.3). 
 
The appendix to this chapter considers the identification problem in detail. Here 
we summarize the results. In case only return data is analyzed, all four 
parameters , ,k ωθ σ  and σ  that can potentially be estimated, are identified. In 
case only RV data is used, parameters ,, , ,RVk ωθ σ σ , c  can potentially be 
estimated. Although θ  and k  can be identified, , ,RVωσ σ  and c  cannot separately 
be identified. As soon as one of these parameters is restricted, both others can be 
identified. An incorrect restriction may lead to bias in the other estimates. When 
working with empirical RV data in practice, it seems most natural to restrict 

0c = , given its small magnitude in the simulations (see below) and our specific 
interest in the volatility-of-volatility parameter σ .  
 
In case only option data is analyzed, potential parameters to be estimated are 

, , , , kνµ θ γ σ  and εσ , of which ,k σ  and εσ  can be identified. Importantly, 
information on the other three parameters , ,νµ θ γ  can only be derived from the 
mean BS implied variance over the sample. Parameters νµ  and θ  cannot 
separately be identified; only their sum is identifiable. As the simulation results 
below show that νµ  is close to zero, it is most natural to restrict 0νµ = . The 
market price of volatility risk γ  is then still left to be identified. The term 
multiplying γ  in (3.19) knows time variation through the option maturity tτ , 
which varies over t . This variation will nonetheless be rather limited if one 
analyzes one e.g. short-maturity option series. Therefore, although theoretically 
identified, the empirical identification of γ  may appear weak. 22 Data information 
on γ  may moreover “intermingle” with information on the sum νµ θ+ . 23  

                                           
22 Theoretically, we expect γ  to be more easily identifiable empirically, if the maturity-variation in the 
option series is increased; i.e. by including a second, longer-maturity option series for estimation. The 
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In case a combination of return–option data is analyzed, all potential parameters 
, , , , , ,k ν ω εθ σ γ µ σ σ  can be identified. A similar story for γ  holds nonetheless. If 

a combination of RV-option data is used for estimation, all potentially to-be-
estimated parameters ,, , , , , , ,RVk cν ω εθ σ γ µ σ σ  can be identified. But again, 
possible weak empirical identification of γ  remains in place.     
 
3.4  Simulation results for 1-factor OU SV 
 
This section discusses the simulation results for the 1-factor OU SV option pricing 
model. Before investigating the performance of the estimation method, we first  
pay attention to the various approximations and assumptions made, to arrive at a 
linear state space model.  
 
Section 3.4.1 examines the quality of the linear and parabolic call price 
approximations, the magnitude of the parameter νµ , and the relative merits 
measure. Section 3.4.2 examines the statistical properties assumed for the error 
terms of the state space model. Section 3.4.3 investigates the performance of the 
estimation method, based on different types of data. Central is the issue what 
type of data yields the most reliable estimation results.  
 
3.4.1   Quality of the call price approximations 
 
Linearization and parabolic errors 
Recall the call price formula 2[ ( , , , , , ) | ]t t t t t t t tC BS S K r qτ σ= QE F , as implied by our 
multifactor model. In section 3.4  of the previous chapter, we linearized the 
function 2( ) ( , , , , , ( ))t t t t t t t tg Y BS S K r q Yτ σ=  with 2exp( )t t tY τ σ=  around the point 

* 2
,exp( )t t t implied tY b τ σ= = , to arrive at the rewritten call price formula 

 
 * * * *( ) '( ) | '( ) |t t t t t t t t tC g b b g b Y g b HOT= − + +      Q QE EF F ,  (3.21) 

 
in which 1 1[ | ] exp[ ( ) ( )' ]t t t t tY A τ τ= + B xQE F . To subsequently arrive at an 
equation that is linear in the unobserved factors tx , we proposed to neglect the 
linearization error [ | ]t tHOTQE F . In a similar way, considering a parabolic 
approximation of the function (.)g , we obtained the following rewritten call price: 
 
    * * * 2

0 1 2( ) ( ) | ( ) | 2 |t t t t t t t t t tC q b q b Y q b Y HOT = + + +       Q Q QE E EF F F , (3.22) 

 
and dubbed the quantity [ 2 | ]t tHOTQE F  the parabolic error.  
 
Section 3.4.5 of the previous chapter provided some preliminary, graphical insight 
into the quality of the linear and parabolic approximations of the function (.)g . 
The simulated data of the 1-factor OU model allows for a more quantitative 
examination of the magnitude of the linear and parabolic errors. 
 
Table 3.1 contains summary statistics of the (absolute value of the) relative 
linearization and parabolic errors, over the full sample of 100*1058 observations. 
Regarding the magnitude of the simulated call option prices tC  over the full 

                                                                                                                         
empirical results in section 4 show however, that the 1-factor SV model is heavily misspecified for the 
joint data. Thus,although theoretically an appealing strategy, in practice it is not due to misspecification. 
23 By this we mean that if the option maturity tτ  were constant over the sample, none of the 
parameters ,νµ θ  and γ  would be separately identified. Hence, in case of little variation in tτ , clear 
empirical identification (i.e. based on data) may still appear to be hard to establish.  
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sample: The average call price equals 318 (std.dev. 213). (The mean simulated 
stock price tS  over the sample equals 5850 (std.dev. 3749)).  
  
 
Table 3.1: Summary statistics (absolute value of) relative linearization and parabolic errors 

 [ | ]/t t tHOT CFQE  | [ | ] / |t t tHOT CFQE [ 2 | ]/t t tHOT CFQE | [ 2 | ]/ |t t tHOT CFQE
Mean -0.13% 0.14%     -0.0013%   0.087% 
Std.dev.   0.12% 0.10%  0.11%   0.068% 
Minimum -1.49% 0.00% -0.67% 0.00% 
Maximum   0.44% 1.49%  0.57% 0.67% 

 
 
The errors are small in general, suggesting that the linear and parabolic 
approximations provide accurate approximations of the true call price. The 
linearization error is typically negative, indicating that a linearization typically 
over-estimates the true call price. The parabolic errors more evenly spread 
around zero. Figure 3.1 shows the relative errors for a typical simulated dataset. 
The errors seem rather randomly distributed.  
 
 

0 100 200 300 400 500 600 700 800 900 1000

−0.50

−0.25

0.00

0.25 REL. LINEARIZATION ERROR 

0 100 200 300 400 500 600 700 800 900 1000

−0.25

0.00

0.25

REL. PARABOLIC ERROR 

 
Figure 3.1: Relative linearization errors [ | ]/ *100%t t tHOT CFQE , and relative parabolic 
errors [ 2 | ]/ *100%t t tHOT CFQE , for a typical simulated dataset. 
 
 
“Parameter” νµ   
From Jensen’s inequality, we showed in section 3.4.2 of the previous chapter that 

2 1
, 1 1[ ( ) ( )' ]

t
implied t t t tAτσ τ τ≤ +B x . This result provided a second rationale for the  

options measurement equation as 2 1
, 1 1[ ( ) ( )' ]

t
implied t t t t tAν τσ µ τ τ ε= + + +B x , with 

2~ (0, )t εε σ . We outlined how to estimate the “parameter” νµ  based on a 
simulated sample of T  observations.  
 
Summary statistics of the 100 estimates of νµ  are in table 3.2. As expected, νµ  
is negative for all datasets. Its magnitude is very close to zero. Its relative 
magnitude (i.e. νµ  as percentage of the average 2

,implied tσ  over the sample) is 
also small, on average only –0.25%. This suggests that restricting 0νµ =  prior to 
estimation may not result in any major bias in the other estimates, though may 
possibly lead to an improved empirical identification of the market price of 
volatility risk, γ . (Recall the identification discussion in section 3.3.)   
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Table 3.2: Summary statistics of the 100 νµ -estimates and relative merits measures 

          νµ  νµ  as % of mean 

BS impl.var. 

Relative merits 
measure 

Mean -0.00041 -0.25% 0.056% 
Std.dev.  2.1*10-5    0.023%   0.0084% 
Minimum -0.00047 -0.32% 0.040% 
Maximum -0.00036 -0.20% 0.093% 

 
 
Relative merits of using a parabolic vs. a linear approximation 
In section 3.4.5 of the previous chapter, we introduced the relative merits 
measure as an indicative measure to investigate if a parabolic (rather than a 
linear) approximation is really worth the additional complexity in the 
computations. We defined it as 1 | [ | ] / | | [ 2 | ] / |T

t t t t t t tT HOT C HOT C − ∑ Q QE EF F  
*100%, i.e. as the percentual difference between the mean absolute relative 
linearization and parabolic errors.  
 
Table 3.2 shows that the average of the 100 relative merits measures equals 
0.056% only. This suggests that the improved accuracy obtained from using a 
parabolic rather than a linear approximation may be expected to be limited 24, 
and hence does not seem worth the extra effort. (In practice, simple is better.) 
 
3.4.2   Disturbance terms of the state space model 
 
The validity of the Kalman filter equations depends on the white noise assumption 
for the different disturbance terms that appear in the state space model; i.e. 
{ }tu , ,{ }RV tω , { }tω  and { }tε . We were able to prove that the volatility-factor 
shock series { }tu  is indeed white noise. But what about the other error terms?  
 
Error series ,{ }RV tω  (RV equation) 
Recall section 3.3 on RV of the previous chapter. In deriving the equation for  
the average variance as 2 21 1

,[ | ]t t t t
t u t u t RV t tt tdu duσ σ ϖ+∆ +∆

+∆∆ ∆= +PE FŸ Ÿ  over day 
[ , ]t t t+ ∆ , we proved that the series ,{ }RV tϖ  is white noise. Based on this 
equation, we next proposed a measurement equation for RV in which we assumed 
its associated error series ,{ }RV tω  to be white noise: 2

, ,~ (0, )RV t RVωω σ . Although 
reasonable, this remains an assumption, as 2

,RV t tσ +∆  measures 21 t t
t ut duσ+∆

∆ Ÿ  with 
error. The simulated data allows us to examine this assumption. 
 
The simulated data confirm that considering the series ,{ }RV tω  as white noise is 
indeed reasonable: The average mean of ,{ }RV tω  over all 100 datasets equals  
–1.6*10-5, and the series are neither significantly autocorrelated nor heteroske-
dastic unconditionally. 25  
 
Recall that we proved the series ,{ }RV tϖ  and { }tu  to be contemporaneously 
correlated only, with approximate correlation coefficient 0.86. Based on this 
result, we allow for contemporaneous correlation between ,{ }RV tω  and { }tu  in 
the state space model. The simulated data supports this assumption: The average 
contemporaneous correlation coefficient between ,{ }RV tω  and { }tu  over the 100 

                                           
24 If we only use one e.g. ATMF option series for estimation, or multiple series that have approximately 
the same moneyness (e.g. 3 ATMF series). Incorporating different-moneyness option series requires a 
parabolic approximation as explained in section 3.4.5 of the previous chapter.  
25 We checked this for several simulated datasets. The empirical analysis was done in EViews. To save 
space we prefer to summarize our findings verbally. 
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datasets equals 0.086 (with a standard deviation of 0.031, a maximum of 0.17, 
and a minimum of 0.016). As the number of intraday sampling points I  equals 
48 only (and not infinite), the simulated correlations are much smaller than 0.86.  
 
Error series { }tω  (Squared return equation) 
Treating the Euler discretization of the stock price SDE as exact, we proved that 
{ }tω  is white noise, and is uncorrelated with { }tu . However, as the discretization 
is not fully exact, these are actually merely assumptions.  
 
We find that the mean of the simulated { }tω  series averaged over the 100 
datasets equals 1.2*10-4, which is close to zero. The non-autocorrelatedness and 
homoskedasticity assumptions are generally supported by the simulated data as 
well. The white noise assumption for { }tω  seems therefore reasonable (though its 
distribution is largely asymmetric 26). Cross-correlograms between { }tω  and { }tu  
show that these series are indeed generally non-contemporaneously uncorrelated. 
The average contemporaneous correlation coefficient between the hundred { }tω  
and { }tu  series equals 0.011 (and hence centers close to zero), with a standard 
deviation of 0.033, a minimum of –0.084 and a maximum of 0.083. Assuming 
{ }tω  and { }tu  to be uncorrelated seems therefore reasonable.  
 
Option error series { }tε  
The reason for assuming the option error series { }tε  to be white noise is mainly 
for convenience (see section 3.4.2 of the previous chapter). Recall that in theory, 
our method for extracting information from option prices essentially boils down to 
replacing a deterministic summation term with the random sum tνµ ε+  (recall 
(3.69)). This is clearly strange if we believe our theoretical model to exactly hold 
in practice. It is not strange however if we acknowledge that a model is never a 
complete description of reality.  
 
In a simulation environment (where theory and reality coincide), we can compute 
the “random” error series { }tε , and examine if it at least resembles white noise. 
The average mean of the 100 { }tε -series over all datasets equals 1.0*10-20, 
whereas the average standard deviation equals 0.00036. Graphs of the { }tε -
series show that the homoskedasticity assumption seems reasonable. The series 
appears to be slightly autocorrelated. The first five autocorrelation coefficients, 
averaged over all datasets, equal 0.034, 0.034, 0.031, 0.025, 0.020 (with 
standard deviations 0.037, 0.040, 0.033, 0.033, 0.037).  
 
And what about the assumed zero-correlation between { }tε  and the other errors 
{ }tω , ,{ }RV tω  and { }tu ? Inspection of the cross-correlograms reveals that this 
assumption seems reasonable. Specifically, we find for the various cross-
correlation coefficients (averaged over all 100 datasets): corr( , ) 0.00085t tε ω = , 
corr( , ) 0.00188t t tε ω −∆ = , 2corr( , ) 0.00664t t tε ω − ∆ = − , ,corr( , ) 0.00324t RV tε ω = , 

,corr( , ) 0.00151t RV t tε ω −∆ = − , , 2corr( , ) 0.00275t RV t tε ω − ∆ = − , corr( , ) 0.03132t tuε = , 
6corr( , ) 2.75 *10t t tuε −

−∆ =  and 2corr( , ) 0.00061t t tuε − ∆ = .  
 
As an illustration, figure 3.2 shows the error series { }tω , ,{ }RV tω  and { }tε  for a 
typical dataset (i.e., the same dataset as used in figure 3.1). The error series 

,{ }RV tω  and { }tε  seem to largely resemble white noise. The series { }tω  

                                           
26 The distribution of { }tω  is skewed to the right as we extract information from squared returns; see 
also figure 3.2. Hence, although { }tω  may be close-to white noise, as its distribution is not symmetric 
(and hence deviates a lot from the Gaussian distribution), we a priori may perhaps expect the quasi 
maximum likelihood procedure to perform poorly. (See also section 3.2.1 of the previous chapter.)  
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associated with the squared return equation may look heteroskedastic. This is 
deceptive however: Running a regression of tω  on a constant and its lag results 
in an insignificant coefficient, and a White test does not reject homoskedasticity 
of the residuals. 
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Figure 3.2: The simulated error terms { }tω , ,{ }RV tω  and { }tε  for a typical dataset.  
 
 
We conclude that the properties of the errors { }tω , ,{ }RV tω  and { }tu  closely 
correspond to the assumptions underlying the linear state space framework, and 
on which the Kalman filter equations are built. For the option error series { }tε  
this holds by approximation only, due to its small positive autocorrelation. This 
may possibly lead to estimation bias when estimating the state space model. The 
next section investigates this further.   
 
3.4.3    Performance of the state space estimation method 
 
Our goal here is to explore the performance of our Kalman filter QML estimation 
method for the 1-factor OU SV option pricing model. If we are willing to ignore 
the small autocorrelation in the { }tε -series, the state space model derived from 
the OU SV option pricing model fits exactly into the (unconditional) linear state 
space framework. We know that Kalman filter QML yields consistent and 
asymptotically normal estimates in that framework. Hence, apart from examining 
its finite-sample behavior in our specific context, why should we bother about 
investigating its performance, if we already know that the method yields 
consistent estimates?   
 
The main reason why this is still important has, of course, mostly to do with how 
we derived the measurement equations for the squared returns, RV and the 
options. All three equations were obtained from approximations, with mainly the 
option equation obtained in a far from trivial way. The issue thus boils down to 
the question if the approximations perform reasonably well.  
 
Are the estimates obtained from our method close to their true values? Are the 
stock volatilities extracted by the Kalman smoother close to the underlying true 
stock volatilities? What data yields the best results in these respects?  
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For parameter set 0.16, 5.25, 0.10, 1kθ σ γ= = = = − , we estimate the uncon-
ditional state space model (3.17)-(3.20) using the 100 simulated datasets from 
the 1-factor OU model. We consider estimation based on the following types of 
data: only squared return data, only RV data, only (short-maturity ATMF) option 
data, both return and option data, and the combination RV – option data. (We 
refer to section 3.3 for a discussion on identification.) In the latter two cases, we 
also consider restricting 0νµ =  prior to estimation: As the simulations show that 

νµ  is close to zero, restricting 0νµ =  may possibly lead to an improved empirical 
identification of the market price of volatility risk γ , as explained earlier.   
 
 
Table 3.3: Estimation results 1-factor OU SV based on 100 simulated datasets. 

 Sq.return
data 

RV data 
( 0)c =  

Option 
data 

( 0)νµ =  

Sq.return 
& option 

data 

Sq.return 
& option 

data 
( 0)νµ =  

RV & 
option 
data 

RV & 
option 
data 

( 0)νµ =  

0.16θ =   0.160 
 (0.012) 

 0.160 
 (0.009) 

 0.159 
 (0.008) 

 0.160 
 (0.011) 

 0.159 
 (0.009) 

 0.160 
 (0.009) 

 0.159 
 (0.009) 

Bias -3e-4 -4e-4 -7e-4 -3e-4 -7e-4 -5e-4 -6e-4 
MSE  1e-4  8e-5  8e-5  1e-4  8e-5  8e-5  8e-5 

5.25k =  13.74 
(18.28) 

6.74 
(2.59) 

5.42 
(0.79) 

5.41 
(0.75) 

5.41 
(0.75) 

5.30 
(0.49) 

5.29 
(0.48) 

Bias  8.49 1.49 0.17 0.16 0.16 0.05 0.04 
MSE    406 8.95 0.64 0.59 0.59 0.24 0.23 

0.10σ =  0.149 
(0.139) 

 0.103 
 (0.013) 

 0.100 
 (0.004) 

0.100 
(0.004) 

0.100 
(0.004) 

0.099 
(0.003) 

0.099 
(0.003) 

Bias 0.049  0.003 -2e-4 -2e-4 -2e-4 -8e-4 -8e-4 
MSE 0.022 2e-4  2e-5  2e-5  2e-5  1e-5  1e-5 

1γ = −  - - -1.00 
 (0.55) 

-1.00 
 (0.55) 

-1.00 
  (0.55) 

-1.00 
 (0.54) 

-0.97 
 (0.51) 

Bias - -  0.00  0.00   0.00  0.00  0.03 
MSE - -  0.30  0.30   0.30  0.30  0.26 

νµ 4e-4≈ −  - 
 

- 0 
 

-3.7e-4 
(0.0067) 

0 -2.0e-4 
(0.0017) 

0 
 

c 0.086≈  - 0 - 
 

- 
 

- 0.085 
(0.031) 

0.085 
(0.031) 

RMSPE 
in % 

8.38 
(1.31) 

3.30 
(0.26) 

0.60 
(0.31) 

1.92 
(1.33) 

0.58 
(0.29) 

0.41 
(0.15) 

0.35 
(0.12) 

MAPE 
in % 

6.54 
(0.91) 

2.59 
(0.18) 

0.47 
(0.23) 

1.81 
(1.31) 

0.46 
(0.22) 

0.34 
(0.15) 

0.28 
(0.10) 

The Kalman filter QML estimation results are summarized over the 100 simulated datasets jointly. The 
state space model (3.17)-(3.20) was estimated using different types of data. The average estimates 
of , , ,kθ σ γ  are reported (std.dev. in parentheses), with associated sample bias and MSE. The 
average estimates of ,cνµ  (std.dev. in parentheses) ought to be compared with their average 
simulated values of νµ 4e-4≈ −  and c 0.086.≈  The average RMSPE and MAPE for comparing the 
smoothed and true volatilities are also reported (std.dev. in parentheses).    
 
 
Table 3.3 reports the main estimation results, averaged over all datasets. The 
average estimates of , , ,kθ σ γ  are reported in boldface (standard deviations in 
parentheses), together with the sample bias and mean squared errors (MSE). As 
the exact values of νµ  and ,corr[ , ]t RV tc u ω=  are not known, these may be 
contrasted to their average simulated values. The root mean squared percent 
error (RMSPE) and mean absolute percent error (MAPE) for comparing the 
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smoothed stock volatilities (obtained from the Kalman smoother at the optimum) 
with the true underlying volatilities are given in the bottom part. 27 
 
Squared returns perform worst, RV – option data best 
Using squared returns only for estimation performs worst. Although θ  
(unconditional stock volatility) is estimated well, the estimates of the mean-
reversion ( )k  and volatility-of-volatility ( )σ  parameters are heavily biased and 
have large standard deviations. The smoothed and true volatilities deviate most 
in this case. The results confirm why squared returns are typically considered 
noisy estimators of the stock variance (see e.g., Andersen and Bollerslev (1998)).  
 
As expected, using 10-minute RV data instead, leads to a substantial 
improvement in bias, MSE and volatility evaluation criteria. 28 Figure 3.3 
illustrates the fact that squared returns contain far less precise information than 
RV. It plots the squared returns 2( ) /tr t tµ− ∆ ∆ , the realized variances 2

,RV tσ  and 
the true underlying stock variances 2

t txσ =  in one graph, for a typical dataset. 
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Figure 3.3: Squared returns  2( ) /tr t tµ− ∆ ∆ , realized variances 2

,RV tσ , and true 
underlying stock variances 2

t txσ =  for a typical dataset.  
 
 
In turn, option data outperforms RV on all criteria. The bias and MSE of the 
estimates are small, and the RMSPE and MAPE indicate that the smoothed and 
true volatilities are close. Option data is clearly very informative. Figure 3.4 
visualizes the dramatic increase in volatility information, obtained from 
subsequently using squared returns, RV, and options data for estimation. Option 
data contains the strongest signal on the hidden underlying volatilities.  
 
Combining return and option data performs somewhat better than only option 
data; at least if νµ  is restricted to zero. Remarkably, although restricting 0νµ =  
does not impact on estimation bias and MSE (which is understood given its small 

                                           

27 To remind: 
2

|

1

ˆ1
RMSPE *100%

T
t t T

tt
T

σ σ
σ

=

− 
=   

 
∑ , |

1

ˆ1
MAPE *100%

T
t t T

tt
T

σ σ
σ

=

−
= ∑ .  

28 Using only RV data, but imposing the restriction that ,corr[ , ]t RV tc u ω=  equals its dataset-specific 
simulated value, leads to virtually the same results. The evident reason is that the simulated c ’s are 
generally close to 0 (i.e. they average at 0.086). 
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magnitude), the RMSPE and MAPE are much lower than if νµ  is not restricted. 
This result suggests that restricting 0νµ =  is preferable. 29  
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Figure 3.4: Smoothed and true underlying stock volatilities, in case only squared return 
data (upper), only RV data (middle), or only option data (lower) is used for estimation.  
 
 
The best results are obtained from using both RV and option data for estimation. 
The bias is very small for all estimates, it performs best on the MSE criterion, and 
the smoothed and underlying true volatility series are particularly close. As 
expected, there are efficiency gains from using RV-option data as opposed to e.g. 
return-option data. As in the return-option case, the results suggest that 
restricting 0νµ =  prior to estimation is preferable. This combination of data 
contains the most precise information. As such, if this data is available in practice 
its use is to be advocated for obtaining the most reliable estimates. 
 
Market price of volatility risk γ  
Although there is no estimation bias associated with the market price of volatility 
risk (γ ), the precision of the estimates is poor. This is irrespective of the data 
used for estimation. Precise information on γ  is thus difficult to distill. Restricting 

0νµ =  does not help in this respect. 30  
 
We conclude the following from this Monte Carlo study towards the 1-factor OU 
SV option pricing model. Although we have considered one (rather realistic) 
parameter set only, the results suggest that our QML estimation strategy 
performs well for this model if option data is included. This is partly attributed to 
the volatility factor being Gaussian in the OU SV case, resulting in QML estimation 
being “close to” ML estimation. Apparently, our option price approximation works 
very well in this case. (In the next chapter, in which modeling of level-dependent 
volatility-of-volatility is taken into account, we perform a simulation study for the 
(non-Gaussian) 1-factor CIR SV model, for five different sets of parameters. 
There, we do not have the problem of sampling negative stock variances.) 

                                           
29 The only modest improvement obtained from using both return and option data, as opposed to using 
option data only, is attributed to the inherent noisiness of squared returns.  
30 See footnote 22 for remarks about including a second, longer-maturity option series for estimation.  
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4.  FTSE100-index data: Results for 1-factor OU SV 
 
This section presents estimation results for the 1-factor OU SV option pricing 
model based on the FTSE100-index data, for the period Oct 1997 – Dec 2001. 
Initially, in section 4.1, we estimate the model using three types of data: only 
squared returns, only the SM option data, and a combination of these. We 
interpret the results and contrast them to GARCH estimates. Section 4.2 
compares the SV with GARCH volatilities and the BS implied volatilities, and 
considers the in-sample fit of the state space model. Section 4.3 considers the 
compensation for FTSE100-index volatility risk that is implicitly present in the 
data. Section 4.4 considers diagnostic checking. Special attention is given to the 
out-of-sample overpricing of the longer-maturity options. In section 4.5, we 
estimate the 1-factor OU model using the four time series of squared returns and 
ATM options jointly. The model appears considerably dynamically misspecified.  
 
4.1  Parameter estimates 
 
We estimate the 1-factor OU SV model using three types of data: only squared 
return data, only SM option data, and both squared return – SM option data. 
Given the Monte Carlo evidence reported in the previous section, we restrict 

0νµ =  prior to estimation. 31  We also estimate a Gaussian GARCH(1,1) model  
for the daily (prewhitened) FTSE100-index returns. 32 As both our model  
and the GARCH model do not allow for the leverage effect, this permits a 
consistent comparison. The GARCH(1,1) conditional stock variance follows 

2 2 2
0 1 2( )t t t tr tσ ϕ ϕ µ ϕ σ+∆ = + − ∆ + . We find  

 

 2 2 2

(4.8e 6) (0.028) (0.05)
9.9e 0.6 0.086 ( ) 0.85ˆt t t tr tσ µ σ+∆

−
= − + − ∆ + ,   (4.1) 

  
with robust standard errors in parentheses. For the GARCH model, the volatility 
persistence is measured by 1 2ϕ ϕ+ , the half-life of a volatility shock by 

1 2ln2 / ln( )ϕ ϕ− + , and the per-annum unconditional stock volatility may be 
approximated by 0 1 2/[(1 ) ]tϕ ϕ ϕ− − ∆ . To obtain a rough estimate of the per-
annum volatility-of–the-variance, we compute the standard deviation of the 
estimated daily GARCH variance series, after multiplication by 260.  
 
Table 4.1 reports the estimation results, with robust White (1982) QML standard 
errors in parentheses. If only return or return–option data is used, the 
unconditional stock volatility ( )θ  is estimated rather close to its method-of-
moments estimate of ŜqRθ =  20.3%, computed as the root sample average of 
the squared returns. GARCH implies an identical value. If only option data is 
used, θ  is seemingly estimated too large. Restricting θ  to ŜqRθ  prior to 
estimation, leads to virtually the same results, except for the market price of 
volatility risk γ , which is then estimated negative. (Notice the very marginal 
reduction in the quasi-loglikelihood.) This illustrates our remarks made in section 

                                           
31 Restricting νµ = 0 leads to better results in the Monte Carlo study. Moreover, leaving νµ  unrestricted 
in case of return-option data, results in an estimate of 0.0174 with a standard error of 0.0030. From the 
Monte Carlo study and Jensen’s inequality, we know that νµ  ought to be very close to zero but 
negative, if the data were truly generated by the 1-factor OU model. However, we a priori believe that 
such is not the case. The misspecification partly translates itself in this estimate of νµ : As this 
parameter appears as a constant term in just one place in the state space model (the option equation), 
it easily picks up such misspecification. Restricting 0νµ =  yields more plausible results. 
32 Notice that this essentially boils down to 2-step estimation of an AR(2)-GARCH(1,1) model for the  
non-prewhitened returns. Note the analogy with our state space method; see footnote 9. 
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3.3 on the difficult empirical identification of θ  and γ , if only option data is used 
that features little maturity variation. In that case, information on θ  and γ  seems 
to intermingle and hard to distinguish from each other. Section 4.3 interprets the 
magnitude of the market price of volatility risk.  
 
 
Table 4.1: Estimation results 1-factor OU SV (FTSE100-index data; Oct 1997 – Dec 2001) 
 Sq.return 

data 
SM option 

data 
SM option 

data 

ŜqRθ θ=  

Sq.return & 
SM option 

data 

GARCH 

θ  0.0409 
(0.0052) 

0.0572 
(0.0136) 

0.0413 
 

0.0450 
(0.0317) 

 

k  16.3 
(6.93) 

7.12 
(5.05) 

7.00 
(5.00) 

1.85 
(1.78) 

 

σ  0.164 
(0.049) 

0.211 
(0.056) 

0.210 
(0.056) 

0.151 
(0.022) 

 

γ     - 0.128 
(0.541) 

-0.437 
(0.176) 

-0.967 
(0.527) 

 

ωσ  0.0612 
(0.0056) 

- - 0.0657 
(0.0062) 

 

εσ   - 0.0029 
(0.0018) 

0.0029 
(0.0018) 

0.0038 
(0.0018) 

 

Vol. returns 20.2% 23.9% 20.3% 21.2% 20.3% 
Vol-of-var. 0.0287 0.0558 0.0560 0.0785 0.0175 
Persistence 0.939 0.973 0.973 0.993 0.937 
Half-life (days) 11 25 26 98 11 
Std.dev. tu  0.0099 0.0129 0.0128 0.0093  

Loglikelihood 1394 3408 3407 4761 3165 
Parameter estimates are in boldface, with robust White (1982) QML standard errors in 
parentheses. We estimated the state space model (3.17)-(3.20) using only return data, 
only SM option data, only SM option data under the restriction ˆ 0.0413SqRθ θ= = , and both 
return - SM option data. Also reported are the unconditional stock volatility θ , the 
volatility-of-the-variance 2 /2kσ , the volatility persistence exp[ ]k t− ∆ , the half-life (in 
days) of a volatility shock ln2 / k t∆ , the QMLE of the standard deviation of the daily 
volatility shock tu , and the maximized quasi-loglikelihood value. The last column shows 
comparable quantities for the estimated Gaussian GARCH(1,1) model (4.1).  
 
 
The volatility persistence ( exp[ ]k t− ∆ ) is estimated smallest (or the mean-
reversion quickest) in case only return data is analyzed. The persistence of 0.939 
corresponds to the value implied by the GARCH model. This is not surprising 
given that both the 1-factor SV and GARCH(1,1) models can be rewritten as 
ARMA(1,1) models for the squared returns. (See section 3.2.2 of the previous 
chapter). Using only option data, the estimated persistence of 0.973 is larger, but 
not as large as the 0.993 implied by the combination return-option data. A 
persistence of 1 would imply random walk behavior for the stock volatility. 
Assuming (for the moment) that the 1-factor OU model is correctly specified, and 
taking the Monte Carlo results into account, finding an estimated persistence from 
the (noisy) squared return data that is so much smaller makes sense.  
 
4.2  Volatilities and in-sample fit 

 
Consider the estimation results obtained from using return and SM option data 
jointly. Figure 4.1 shows the smoothed stock volatilities ( *

| |:t T t Txσ θ= + ) 
obtained from the Kalman smoother at the optimum, the annualized GARCH 
volatilities obtained from (4.1), and the “observed” SM BS implied volatilities. The 
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smoothed volatilities will be referred to as the SV volatilities below. The GARCH 
volatilities were annualized by multiplying the daily volatilities with 260 . 
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Figure 4.1: Smoothed stock volatilities ( *

| |t T t Txσ θ= + ) obtained from state space 
estimation using return and SM option data, annualized GARCH volatilities, and the 
Black-Scholes implied volatilities associated with the SM option series. 
 
 
GARCH versus SV volatilities 
The pattern in the three volatility series is roughly similar, although the GARCH 
series looks somewhat smoother and does not peak as much as the other series. 
Moreover, in contrast to the SV volatilities, the GARCH volatilities seem to obey 
some lower barrier, which is virtually never exceeded. The SV volatilities pick up 
fast-changing patterns in the data better than GARCH does.  
 
The smoother behavior of GARCH may be caused by the fact that the impact of a 
time- t  shock in the conditional mean return (i.e., tr tµ− ∆ ) on the time- t t+ ∆  
GARCH variance is given by 1ϕ  times the squared shock 2( )tr tµ− ∆ , which 
 is typically small. The SV model in contrast, allows for an autonomous shock 

t tu +∆  that fully impacts on the SV conditional variance of time t t+ ∆ : 
2 2[1 exp( )] exp( )t t t t tk t k t uσ θ σ+∆ +∆= − − ∆ + − ∆ + . This also explains why SV tracks 

sudden changes in the data better than GARCH does. The virtual lower barrier in 
the GARCH series is probably due to the fact that shocks 2

1( )tr tφ µ− ∆  to the 
GARCH variance are always positive, whereas shocks t tu +∆  to the SV variance can 
also be negative.   
 
BS implied volatilities and the market price of volatility risk 
Figure 4.2 plots the differences between the three volatility series (notice the 
scale). The observed BS implied volatilities are generally larger than the SV 
volatilities. Hence, the market consistently seems to expect a future volatility 
larger than the current, “true” volatility; the BS implied volatilities seem to be 
biased upward. They are also generally larger than the GARCH volatilities, though 
this is less so in the second part of the sample. The difference between the SV 
and GARCH volatilities fluctuates more around zero (but can be substantial).  
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These observations are understood as follows. For ATM options, our model implies  
2 2

, [ | ]implied t t tσ σ≈ QE F . If volatility risk is not priced, then 2 2
, [ | ]implied t t tσ σ≈ PE F . 

We therefore attribute the fact that the BS implied volatilities are found to be 
larger than the “true” (i.e., SV P-) volatilities to the negative market price of 
volatility risk ( γ ), as this implies a risk-neutral mean volatility larger than the 
mean P-volatility. This also explains why the difference between the SV and 
GARCH (which are both P-) volatilities centers more near zero. The lower barrier 
of GARCH explains why the BS implied volatilities are less large than GARCH in 
the second part of the sample. Finally, observe that the common practical 
interpretation of BS implied volatilities being forecasts of future (P) volatility (see 
e.g. Hull (2003)) should clearly be taken with care if volatility risk is priced. 
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Figure 4.2: Differences between: SM BS implied and SV volatilities (upper graph),  
SM BS implied and GARCH volatilities (middle), and SV and GARCH volatilities (lower). 
 
 
GARCH vs. SV volatilities obtained from squared returns 
The SV volatilities obtained from state space estimation using return data only, 
seem more directly comparable with the GARCH volatilities, as both are based on 
information in stock returns only. Figure 4.3 plots these volatilities and their 
difference. Although both series track each other rather well, the GARCH 
volatilities lag behind the SV volatilities. Moreover, the volatility-of-volatility is for 
GARCH less (see table 4.1).  
 
This confirms that GARCH does not as quickly respond to news as SV does, as 
GARCH does not allow for unpredictable news, but instead models today’s 
volatility as a deterministic function of yesterday’s information, in a recursive 
manner. Comparing figure 4.1 with 4.3, reveals that the SV volatilities obtained 
from the return data only, evolve much smoother than those extracted from the 
joint return – SM option data. This is as expected, given the less precise 
information in squared returns. 
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Figure 4.3: The SV volatilities obtained from estimating the state space model using 
return data only, the annualized GARCH volatilities, and their difference. 
 
 
 
Relation between shape VTS and current volatility 
Table 2.2 reported the shape frequencies of the volatility term structure observed 
in the sample. But when does a particular shape occur most often? Figure 4.4 
plots the distribution (i.e. boxplots) of the SV volatilities (obtained from return – 
option data) for each of the four shapes the VTS can have on each day. An 
upward (resp. downward) sloping VTS is generally associated with a low (high) 
current stock volatility. This observation supports volatility mean reversion and 
the notion that traders attach forecasting value to BS implied volatilities.  
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Figure 4.4: Distribution (boxplots) of the smoothed stock volatility (obtained from return - 
SM option data) for each of the four VTS shapes (1 = upward sloping, 2 = hump shape,  
3 = downward sloping, 4 = inverted hump shape). 
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In sample fit 
Consider again the estimated state space model based on the combination return 
- SM option data. Figure 4.5 shows the extent in which the model fits the data. 
The upper graph displays the squared returns and their inherent signal, the 
smoothed stock variances 2 *

| |t T t Txσ θ= +  (which equal the fitted squared returns). 
The lower graph shows the observed SM BS implied variances and their fitted 
(smoothed) counterparts, computed from equation (3.19) as 2

,implied t tσ ε− .  
 
The model seems to fit the data well. Regressing the squared returns on a 
constant and the fitted squared returns yields an R-squared of 0.11. (This rather 
low value is attributed to the noisiness of the squared returns.) The observed and 
fitted BS implied variances are virtually indistinguishable in the graph. A similar 
regression yields an R2 of 0.99634, which is very close to the perfect-fit value 1. 
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Figure 4.5: Observed and fitted squared returns and SM BS implied variances. 
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Figure 4.6: Upper plot: Smoothed states *

| |t T t Tx x θ= −  obtained from using the return 
data only, and the joint data. Lower: Smoothed states obtained from the SM option data 
(under the restriction that ŜqRθ θ= ), and the joint data.  
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Option data dominates 
Comparing the different smoothed states *

| |t T t Tx x θ= −  obtained from state space 
estimation using the three types of data reveals that the option data dominates 
the estimation results. The upper plot in figure 4.6 shows the state based on 
return data only, together with the state obtained from the joint data. The states 
deviate much from time to time. The lower graph plots the state extracted from 
the SM option data, together with the joint-data state. These states track each 
other much better. As was also apparent from the Monte Carlo results, the 
information in the option data dominates the estimation results when both return 
and option data are used for estimation. Again, squared returns contain far less 
precise information, and much less pronounced structure than option data.  
 
4.3 Compensation for volatility risk and straddle returns 
 
What do the estimation results imply for the FTSE100-index volatility risk 
premium? Consider a general, path-independent European-style derivative F . 
From chapter II, section 5.2, in the 1-factor OU SV case, the spot return an 
investor is expected to earn on this derivative equals 
 

 ( ) ( ), , , , ,|t
t t F S t t S t F x t

t

dF
r

F
β σ γ β σγ

   = + +    
PE F ,   (4.2) 

 
in which ,F Sβ  and ,F xβ  are the derivative’s stock and volatility beta respectively, 

,t S tσ γ  is the stock risk premium, and σγ  is the volatility risk premium.  
 
The joint return - SM option data yields an estimate of 0.967−  for the market 
price of volatility risk γ . As γ  differs significantly from zero, this suggests that 
investing in FTSE100-index derivatives yields a (negative) premium for bearing 
the volatility risk in the index. Market volatility risk thus seems systematic. The 
volatility risk premium is negative, which agrees with the consumption-insurance 
or hedging motive. Investors thus pay for the uncertainty in the FTSE100-index 
volatility. Our findings are in line with the empirical evidence that has recently 
appeared in the literature; see section 6.3.1 of chapter II.  
 
Volatility risk premium: -15% per annum 
Our results imply a volatility risk premium of σ γ =(0.151)(-0.967) = -14.6% per 
annum for the FTSE100 index over 1997-2001. The long-run FTSE100-index 
volatility level equals 21%. To recall: Pan’s (2002) results on the Heston model 
imply an average volatility risk premium of -10.4% for the S&P500 index over 
1989-1996, with an associated long-run S&P500 volatility of 11.7%. Jones’s 
(2003) Heston-model results imply an average S&P100 volatility risk premium of 
-27% over 1988 - 2000, with associated long-run S&P100 volatility of 18.7%. 
 
Straddle return: -174% per annum 
What do our results imply for the expected return to be earned on a short-
maturity ATM FTSE100-index straddle? Such a straddle is virtually spot delta 
neutral (and hence , , ,( / ) 0Str S t t t Str tS Strβ = ∆ ≈ ), such that its expected return 
equals   

( ), ,|t
t t Str x t

t

dStr
r dt

Str
β σ γ

 
 ≈ +   

 
PE F     (4.3) 

 
by approximation, in the 1-factor OU SV case. To compute this return, an 
approximation of the straddle volatility beta , , ,(1 / )Str x t t Str tStrβ = V  is needed.   



- IV - Monte Carlo and Empirical Results for Ornstein-Uhlenbeck SV:  
         Examining UK financial markets 
 

 148

Using the SM ATM call option series and its associated data on ,{ , , , , }t t t t t TC r K Fτ , 
we exploit the put-call parity ,exp( )( )t t t t t t TP C r K Fτ= + − −  to first construct a 
virtual short-maturity ATM straddle price series, by t t tStr C P= + . As 2

t txσ = , the 
straddle vega equals  

 

, ,2 2 2

1
2 2 2t t t t t t

Str t C t
t t t tt t t

Str Str C C C
x

σ
σ σ σσ σ σ

∂ ∂ ∂ ∂ ∂ ∂
= = = = = =

∂ ∂ ∂∂ ∂ ∂
 V V .  (4.4) 

 
Our model implies that /t tC σ∂ ∂  can only be obtained by simulation. However, as 
Hull (2003, p.318) points out, the vega (which Hull defines as /t tC σ∂ ∂ ) of an SV 
model is very similar in magnitude to the Black-Scholes vega (which is defined as 

/tBS σ∂ ∂ ). As such, we approximate /t tC σ∂ ∂  in (4.4) by the BS vega, 
 

, 1exp( ) ( )t
t t t T t t

t

C
r F dτ τ φ

σ
∂

≈ −
∂

,     (4.5) 

 
in which we substitute the smoothed volatility |t Tσ  (obtained from the Kalman 
smoother) in the expression for 1td . 33 We next compute , ,Str x tβ  as   
 

 , , 1
, ,

|

exp( ) ( )Str t t t t T t t
Str x t

t t T t

r F d

Str Str

τ τ φ
β

σ
−

= ≈V .    (4.6) 

 
By subsequently computing ( ), ,t Str x tr β σ γ+  for each t , a time series of (approxi-
mated) expected straddle returns (per annum) is obtained, which we average.  
 
This procedure implies an average expected SM ATM FTSE100-index straddle 
return of –174% per annum. On a monthly (resp. weekly) basis, this return 
equals –14.5% (–3.34%). (We multiply the annual statistic by 1/12, resp. 1/52).  
 
This result is in close correspondence to what other researchers have found, 
regarding empirical (i.e., realized) straddle returns. Driessen and Maenhout 
(2003) use the same FTSE100-index dataset as we do, though their results 
concern March 1992 - Dec 2001. They find an average monthly empirical return 
of –13.1% on short-maturity ATM FTSE100-index straddles. Coval and Shumway 
(2001) find an average weekly empirical return of –3% on delta-neutral  
S&P500-index straddles (period 1990-1995).  
 
Magnitude of straddle price, vega, and volatility beta 
To get an idea of the magnitude of the other quantities: The average straddle 
price equals 366, the average straddle vega ( 2

, /t tStr t Str σ= ∂ ∂V ) equals 4161, and 
the average straddle volatility beta equals 12.3. The average /t tStr σ∂ ∂  equals 
1592, which implies that a 1-percent increase in the stock volatility raises the 
straddle price with approximately 1592. As the average straddle price is 366, this 
confirms that ATM straddles are true bets on volatility. 34 
 
The message is clear: Although in terms of expected returns, it seems particularly 
valuable to write short-maturity at-the-money index straddles in practice, there is 
also considerable risk involved with this investment strategy.  

                                           
33 Bakshi and Kapadia (2003) follow a comparable practice with GARCH volatilities. 
34 See also section 6.2.1 of chapter II. Some more numbers: The average SM call price equals 182 for 
the sample Oct 97 – Dec 2001, the average SM call delta (approximated by the Black-Scholes delta) 
equals 0.51. The average Black-Scholes (call and put) vega ( /t tBS σ∂ ∂ ) equals 796. The average  
call stock beta  equals 17.4, and the average call volatility beta  equals 12.4.  
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4.4  Diagnostic checking 
 
This section considers diagnostic checking. We focus on the model estimated 
using the joint return – SM option data. (See section 2.2 of the previous chapter 
for commonly applied diagnostic checks in linear state space models.) 
 
Figure 4.7 shows the standardized prediction errors or innovations in the squared 
returns and BS implied variances. A well-specified model requires these 
innovations to be white noise, with unit variance. Their standard deviations equal 
0.993 and 1.000 respectively. Both series are clearly heteroskedastic. As 
evidenced by table 4.2, both series are significantly autocorrelated as well. E.g., 
the p-value associated with the Ljung-Box Q-statistic for testing the null 
hypothesis of no autocorrelation up to order 5 equals 0.000 for both series. The 
autocorrelation may be interpreted as a preliminary indication of neglected 
dynamics; i.e. the 1-factor SV assumption is possibly not realistic.  
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Figure 4.7: Standardized innovations in the squared returns and SM BS implied variances.  
 
 
Table 4.2: Autocorrelations in the standardized innovations 
Std. innovations in squared returns:            Std.innovations in SM BS implied variances: 
Order AC Q-Stat Prob   Order AC Q-Stat Prob  

1 0.08    6.84 0.01   1  0.04    1.58 0.21  
2 0.06 10.2 0.01   2 -0.15 25.9 0.00  
3 0.13 28.9 0.00   3 -0.11 38.1 0.00  
4 0.11 42.6 0.00   4  0.04 40.1 0.00  
5 0.05 45.2 0.00   5  0.01 40.1 0.00  

The table reports the autocorrelation coefficients (AC) up to order 5 and the Ljung-Box Q-statistics (Q-
stat) for testing the null of no autocorrelation up to a certain order with associated p-values (Prob).  
 
 
The smoothed disturbances of the state space model yield additional information 
regarding misspecification. They represent the best estimates of the errors given 
the data. Figure 4.8 shows the smoothed errors { }tω  and { }tε  associated with 
the squared return and option equations. There is clear evidence of conditional 
heteroskedasticity. (The asymmetric pattern in the { }tω -series is a logical conse-
quence of the course of the squared returns over time; recall figure 2.3.) 
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Figure 4.8: Smoothed { }tω -series and { }tε -series.  
 
 
Level-dependent volatility-of-volatility 
Figure 4.9 shows the smoothed state *{ }t tx x θ= −  and the daily volatility shocks 
{ }tu ; recall that 2 2[1 exp( )] exp( )t t t t tk t k t uσ θ σ+∆ +∆= − − ∆ + − ∆ + . When the level of 

*
tx  is high (resp. low), the volatility shock tu  is generally large (small) in 

absolute value. As the state determines the stock variance ( 2 *
t txσ θ= + ), this 

means that volatility shocks are larger (smaller) if the current stock variance is 
large (small). This is clear evidence of level-dependent volatility-of-volatility. The 
1-factor OU SV assumption does not allow for this effect, and is thus additionally 
misspecified in this sense.  
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Figure 4.9: Smoothed state *{ }tx , and daily volatility shocks { }tu . 
 
 
Option pricing errors and fit of the VTS 
To what extent is the 1-factor OU SV model capable of fitting the observed option 
prices, and in particular, those of the longer-maturity options out of sample? As 
traders quote option prices in terms of BS implied volatilities, we express the 
option pricing errors in terms of deviations between “observed” and fitted Black-
Scholes implied volatilities.  
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Based on the options measurement equation (for the general multifactor affine SV 
derivative pricing model), we compute fitted SM, MM and LM BS implied 
volatilities according to 
 

 *1 1
, 1 1 1( ) ( )' ( )'ˆ

it it
implied it it it it tAτ τσ τ τ τ= + +  B θ B x ,   (4.7) 

 
for ,..,t t T t= ∆ ∆  and , ,i SM MM LM= , in which we substitute the parameter 
estimates and smoothed state *

tx . 35 The option pricing errors (expressed in 
percents BS implied volatility) are then given by  
 
 , ,error ˆit implied it implied itσ σ= − .      (4.8) 

 
The left panel of figure 4.10 shows the observed and fitted SM, MM and LM BS 
implied volatilities in one graph; the right panel shows the pricing errors.  
 
1-factor SV: Out-of-sample overpricing of longer-dated options 
The 1-factor OU SV model generally overfits the longer-maturity BS implied 
volatilities out of sample. Hence, the predicted option prices are typically larger 
than the observed market prices. The overpricing seems to get worse the longer 
the option maturity. Table 4.3 reports the mean and standard deviation of the 
three option pricing error series. The overpricing can be substantial.  
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Figure 4.10: Fit of the VTS: In-sample fit of the SM BS implied volatility series and out-of-
sample fit of the MM and LM series. Left: “observed” and fitted BS implied volatilities for 
each maturity. Right: their difference, the option pricing errors. 
 
 
Table 4.3: Summary statistics option pricing errors (1-factor OU, return – SM option data)  
 Error in SM impl.vol. Error in MM impl.vol. Error in LM impl.vol. 
Mean   -0.0069% -3.38% -5.66% 
Std.deviation 0.31%  1.89%  2.38% 
 

                                           
35 We avoid computationally intensive Monte-Carlo simulations here, to first obtain the model-implied 
call prices, and then transform them to BS implied volatilities. We use our easy-to-use approximation 
instead, for which the Monte Carlo results have shown that it is rather accurate.  
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Chernov and Ghysels (2000) reach a similar conclusion (irrespective of 
moneyness) when assessing the out-of-sample pricing performance of the Heston 
(1993) model. Pan (2002) also reports the severe out-of-sample overpricing of 
long-dated near-the-money options by the Heston model. She attributes this to 
the fact that her estimation results imply an explosive risk-neutral volatility 
process. Our results imply a stationary volatility process under Q  (i.e., 1.85k =%  
and 0.124θ =% ), as do the results of Chernov and Ghysels. Hence, the overpricing 
seems to occur irrespective of a stationary or explosive Q-volatility process.  
 
 
4.5 1-factor OU SV: Estimation results using return, SM, MM and 

LM option data jointly 
 
The previous section presented evidence of misspecification of the 1-factor OU SV 
model estimated with return - SM option data. Before moving to a richer model 
structure, this section presents further evidence by providing estimation results 
based on the joint return, SM, MM and LM option data. As we will use all data in 
subsequent multifactor SV estimations, a comparison with these results later 
yields insight in the contribution of each additional SV factor.  
 
The state space model now consists of the squared return equation (3.17), the 
equation for the OU factor (3.20), and three equations like (3.19), one for each 
option series. As the SM, MM and LM call option series are all ATMF, it seems 
reasonable to assume an equal parameter νµ  for each series. (Recall that the 
maturity effect is explicitly incorporated in the options measurement equation.) 
Given the Monte Carlo evidence, we restrict νµ  equal to zero (but see  
also footnote 36). We allow for contemporaneous correlation between the three 
option error series { }itε , but assume a zero-correlation at other points in time.  
Cross-sectional heteroskedasticity is allowed for as well; i.e., each option error 
series may have its own variance.  
 
 
 
Table 4.4: Results 1-factor OU SV using return, SM, MM and LM option data jointly 
θ  0.0475 

(0.0408) 
 

, ,corr( , )SM t MM tε ε  0.950 
(0.0122) 

k  0.321 
(0.0714) 

 
, ,corr( , )SM t LM tε ε  0.895 

(0.0482) 
σ  0.0639 

(0.0063) 
 

, ,corr( , )MM t LM tε ε  0.781 
(0.0770) 

γ     0.00389 
(0.206) 

 Loglikelihood 13,135 

ωσ  0.0704 
(0.0057) 

 Vol. Returns 21.8% 

,SMεσ   0.0193 
(0.00124) 

 Vol-of-var. 0.0799 

,MMεσ   0.00728 
(0.00089) 

 Persistence 
Half-life 

0.9988 
2.2 (years) 

,LMεσ   0.00394 
(0.00071) 

 
Std.dev. tu  0.0040 

Parameter estimates are in boldface; robust White (1982) QML standard errors are in 
parentheses. The state space model was estimated using all data (under the restriction 
that 0νµ =  for all option series), allowing for contemporaneous correlation between the 
three { }itε -series. Also reported are: the unconditional volatility of returns θ , the 
volatility-of-the-variance 2 /2 ,kσ the volatility persistence exp[ ]k t− ∆ , the half-life of a 
volatility shock ln2 / k t∆ , and the QMLE of the std.dev. of the daily volatility shock tu .  
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Table 4.4 reports the estimation results for Oct 1997 – Dec 2001. 36 Comparing 
the estimates to those obtained from using return – SM option data, the following 
stands out. The volatility persistence is estimated even larger, and particularly 
close to the random walk value of 1. The market price of volatility risk is 
estimated near zero. The contemporaneous correlation between the three option 
error series { }tε  is substantial (which seems to suggest misspecification). 
However, as the model is heavily misspecified, these estimates should not be 
taken too seriously.  
 
A first indication of the model’s incapability of adequately describing the full set of 
empirical data is that, if the model were correctly specified, roughly the same 
estimates for , , , ,k ωθ σ γ σ  and ,SMεσ  should have resulted as when using only 
return - SM option data. This is obviously not the case.  
 
Figure 4.11 shows the in-sample fit of the model, i.e. the observed and fitted 
(smoothed) data. The LM option series is fitted best, which is also apparent from 
the estimate of ,LMεσ , which is smallest among the option error standard 
deviations.  
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Figure 4.11: In-sample fit (1-factor OU SV): Observed and fitted data. 
 
 
Figure 4.12 plots the standardized innovations in the squared returns, SM, MM 
and LM BS implied variances, table 4.5 provides summary statistics. A well-
specified model requires these innovations to have mean zero, be serially  
and mutually uncorrelated, and be homoskedastic with unit variance. The 
misspecification is obvious. In particular, there is considerable autocorrelation in 
each series. This indicates that one SV factor is insufficient to describe the 
volatility dynamics present in the joint data sufficiently well. 
 

                                           
36 Leaving νµ  unrestricted yields the following results: 0.021νµ = , 0.027θ = , 0.318,k =  

0.0640σ = , 0.0252γ = , similar values for the correlations, and a quasi-loglikelihood of 13,181. 
As in the return - SM case, νµ  is estimated positive (and large), though on theoretical grounds it ought 
to be negative (and small; if the model were correctly specified). As before, νµ  seems to pick up part 
of the misspecification (recall footnote 31). Note that although k  and σ  are estimated similar in 
magnitude as when imposing 0νµ = , θ  and γ  are most affected by leaving νµ  free (which is as 
expected; recall the identification discussion). θ  assumes a less plausible value in the latter case.  
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Figure 4.12: Standardized innovations (1-factor OU SV).   
 
 
Table 4.5: Summary statistics standardized innovations (1-factor OU SV) 
 Std.inn.  

sq. return 
Std.inn.  

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.28 -0.21  0.05 -0.17 
Std.deviation  0.96  0.95  0.99  1.03 
AC(1)  0.14  0.40  0.62  0.43 
AC(2)  0.12  0.35  0.53  0.37 
AC(3)  0.18  0.30  0.44  0.26 
AC(4)  0.17  0.25  0.42  0.34 
AC(5)  0.11  0.28  0.37  0.33 
Cont.correlation  1.00  0.09  0.05  0.34 

matrix   1.00 -0.02 -0.04 
    1.00  0.03 
     1.00 
The table reports the mean, standard deviation, autocorrelation coefficients (AC) up to 
order 5, and the contemporaneous correlation matrix of the standardized innovations.  
 
 

1998 1999 2000 2001 2002

0.0

0.5

OMEGA 

1998 1999 2000 2001 2002

0.0

0.1

EPSILON_SM 

1998 1999 2000 2001 2002

−0.025

0.000

0.025

0.050 EPSILON_MM 

1998 1999 2000 2001 2002

0.00

0.02

EPSILON_LM 

1998 1999 2000 2001 2002

−0.02

0.00

0.02 U 

 
Figure 4.13: Smoothed disturbances of the state space model (1-factor OU SV). 
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Figure 4.13 shows the smoothed disturbances of the state space model. The 
misspecification is most apparent from the graphs of the three option error series, 
which ought to look like white noise approximately. They clearly do not.  
 
In sample fit of the volatility term structure 
How does the 1-factor OU SV model fit the ATMF volatility term structure in 
sample? 37  Following a similar practice as before, we compute fitted SM, MM and 
LM BS implied volatilities by (4.7), and option pricing errors by (4.8). Figure 4.14 
shows the observed and fitted series, and the errors. The errors can be 
substantial. Table 4.6 reports their means and standard deviations (also for the 
absolute errors). On average, the 1-factor OU model predicts somewhat higher 
prices than those observed in the market.  
 
The short end of the volatility term structure is generally fitted worst, and the 
long end best. We get back to this observation later in section 5.3.4. 
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Figure 4.14: Fit (in-sample) of the VTS (1-factor OU SV). Left: observed and fitted BS 
implied volatilities for each maturity. Right: their difference, the option pricing errors. 
 
 
Table 4.6: Summary statistics (absolute) option pricing errors (1-factor OU SV) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean -1.01% -0.22% -0.20% 2.62% 0.93% 0.53% 
Std.dev.  3.33%  1.31%  0.70% 2.30% 0.95% 0.51% 
 
 
We expect that fitting the Heston (1993) model to a similar dataset incorporating 
more than one option series would lead to similar conclusions as found here. To 
the best of our knowledge this has not been pursued so far in the literature. We 
pursue this extension in section 5.2 of the next chapter.   
 
We conclude by noting that the findings in this section are similar in spirit to what 
de Jong (2000) finds in his empirical analysis of the US bond market. Fitting 

                                           
37 Obviously, figures 4.11 and 4.13 already provide a clue, but then in terms of less easy-to-interpret BS 
implied variances, instead of implied volatilities. 
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various 1-factor affine models of the term structure of interest rates (Duffie and 
Kan (1996)) to monthly US zero-coupon yields of four different maturities, de 
Jong concludes that these models are considerably misspecified. In particular, 
they fail to give a good fit of the yield curve at the short end, and do not describe 
the yield curve dynamics very well.  
 
 

5. FTSE100-index data: Results for multifactor OU SV 
 
The main defect of the 1-factor OU SV model seems its incapability of capturing 
most of the observed VTS movements. This section therefore extends to multiple 
OU SV factors. Section 5.1 discusses the associated state space model. Not all 
parameters can be identified such that certain restrictions need to be imposed 
prior to estimation. Section 5.2 presents estimation results for 2-factor OU SV. 
Two factors still appear insufficient. Section 5.3 extends to three OU factors, 
which appear to provide an adequate description of the dynamics present in the 
joint data. We interpret the factors in two ways, explain how each impacts on the 
prices of options and consider their associated risk premia. Specification tests 
next reveal how the 3-factor OU SV model can still be improved upon.  
  
5.1 The model in case of multifactor OU SV 
 
In case of multifactor OU SV, the SV specification reads 2 't tσ = 1 x  (we impose 

0 0,δ = =δ 1  for identification reasons), with  
 

 ,( )t d t x td dt d= − +x K θ x Σ W ,     (P) (5.1) 

,( )t t x td dt d= − +x K θ x Σ W%% % ,   1,d d
−= = −K K θ θ K ΣΓ1%% , (Q) (5.2) 

 
in which 1diag[ ,.., ]nγ γ=Γ  contains the market prices risk associated with the SV 
factors. The stock variance is driven by a sum of n  OU factors, which are 
independent if ( )nxn Σ  is diagonal. We refer to section 13 of appendix B for the 
implied statistical properties of the factors and volatility. 
 
State space model 
Using all data for estimation, extracting information from the stock returns occurs 
via 

 2 * 21
( ) ' ' , ~ (0, )ˆt t t t t t tr t

t ωµ ω ω σ−∆ −∆− ∆ = + +
∆

1 θ 1 x ,  (5.3) 

 
and from the option series via  
 

    2 * 21
, 1 1

( )'1
( ) ( )' , ~ (0, )it

implied it it it t it it i
it it

Aν ε
τ

σ µ τ τ ε ε σ
τ τ

= + + + +  
B

B θ x , (5.4) 

 
for ,..,t t T t= ∆ ∆  and , ,i SM MM LM= . The n − factor OU SV assumption yields the 
closed-form expressions (13.15)-(13.16) in appendix B for the functions 

1(1 1) (.)x A  and 1( 1) (.)nx B . These functions depend on the risk-neutral 
parameters. Rewritten in terms of the P-parameters, they become 
  

 ( )1 1
1 2( ) ' ( ) ' ( ) 't t n t d tA τ τ τ τ−= − − +      1 I D θ K ΣΓ1 1 N ΣΣ 1⊙   (5.5) 

 1( ) ( )t tτ τ=B D 1 , 
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in which 1( ) diag[ ( ),.., ( )]t t n td dτ τ τ=D  with ( ) [1 exp( )] / ; 1,..,i t i t id k k i nτ τ= − − = , 
and the matrix ( ) ( )tnxn τN  has ij − th element equal to 
 

 
1 exp[ ( ) ]1( ) ( ) ( ) i j t

i j i j

k k
ij t t i t j tk k k kN d d

ττ τ τ τ − − +
+

 = − − +  
.    (5.6) 

 
Using these results, the options measurement equation can be rewritten as 
 

2 1
,

( ) 1
' ' ' ( ) '

2
it

implied it n d it
it it

ν
τ

σ µ τ
τ τ

− 
= + + − +     

 

D
1 θ 1 I K ΣΓ1 1 N ΣΣ 1⊙  

*( )
' it

t it
it

τ
ε

τ
+ +

D
1 x ;  2~ (0, )it iεε σ .  (5.7) 

 
As before, we take νµ  the same for each option series as they are all ATMF. 
Given the Monte-Carlo evidence, we next set νµ  equal to 0. We allow for possible 
contemporaneous correlation between the option error series ,{ }SM tε , ,{ }MM tε  
and ,{ }LM tε , and allow for cross-sectional heteroskedasticity. In discrete time, the 
factors evolve as  
 
   * *exp[ ]t t d t t tt+∆ +∆= − ∆ +x K x u , ~ [ ; ( ) '] ~ |t t t t tt+∆ +∆∆u 0 G ΣΣ u �FN ⊙ , (5.8) 
 
in which [ ( )] (1 exp[ ( ) ]) /( )ij i j i jt k k t k k∆ = − − + ∆ +G . The distribution of the daily 
volatility-factor shocks { }tu  is both conditionally and unconditionally Gaussian, as 
level-dependent volatility-of-volatility is not modeled by n − factor OU SV. The 
system matrices of the state space model are given in the appendix.   
 
Parameter identification 
Not all parameters of the n -factor OU SV model are identified. The parameters 

1,.., nθ θ  cannot separately be identified; only their sum is identifiable. We 
therefore choose to leave 1θ  unrestricted, and restrict  2 .. 0nθ θ= = =  prior to 
estimation. The parameters ; , 1,..,ij i j nσ =  appearing in matrix Σ  cannot all be 
identified either. However, if Σ  is diagonal (i.e., independent factors), or if Σ  is 
lower (or upper) diagonal (which means correlated factors), then all parameters 
can be identified. Both cases are considered in the estimations below.  
 
5.2 Estimation results for 2-factor OU SV 
 
This section presents estimation results for 2-factor OU SV. As dynamic misspeci-
fication still remains, we keep the discussion short. We consider two sets of a 
priori imposed restrictions to deal with the identification problem. Restrictions (a) 
considers independent factors, with zero mutual option error correlation. 
Restrictions (b) allows for factor and contemporaneous option error correlation.  
 
Table 5.1 reports the results. Allowing for two OU factors instead of one raises the 
quasi-loglikelihood from 13,135 to more than 14,300. Allowing for correlated 
rather than independent factors does not seem to improve the fit dramatically. 
The factor correlation is estimated at 0.166 and seems significant (as 21σ  differs 
significantly from zero). The option error series { }itε  are not significantly con-
temporaneously correlated. The unconditional stock return volatility, '1 θ , is 
estimated near the 20.3% obtained from averaging the squared returns. The two 
volatility factors differ in their characteristics. The first factor has similar 
properties as the factor distilled from the joint data in the 1-factor OU case. Its 
persistence 1exp( )k t− ∆  is close to the random walk value of 1, with a half-life 

1ln2 / k t∆  of about 1.45 years. Shocks in this factor die out slowly. The second 
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factor shows much quicker mean reversion with a half-life of about a month. The 
market prices of factor risk do not differ significantly from zero (neither jointly).   
 
 
 
 
Table 5.1: Estimation results 2-factor OU SV model using all data 

 Restrictions 
(a) 

Restrictions 
(b) 

 Restrictions 
(a) 

Restrictions 
(b) 

1θ  0.0431 
(0.0342) 

0.0408 
(0.0386) 

, ,corr( , )SM t MM tε ε 0 0.548 
(0.342) 

1k  0.516 
(0.080) 

0.445 
(0.076) 

, ,corr( , )SM t LM tε ε  0 -0.089 
(0.548) 

2k  6.72 
(0.731) 

8.71 
(1.37) 

, ,corr( , )MM t LM tε ε 0 -0.516 
(0.658) 

11σ  0.0602 
(0.0046) 

0.0669 
(0.0058) 

Vol. returns 20.8% 20.2% 

12σ  0 
 

0 Vol-of-var. 0.0804 0.0858 

21σ  0 0.0612 
(0.0216) 

Std.dev. 1tx  0.059 0.071 
 

22σ  0.199 
(0.018) 

0.146 
(0.035) 

Std.dev. 2tx  0.054 0.038 

1γ  0.116 
(0.258) 

0.090 
(0.241) 

1 2corr( , )t tx x  0 0.166 

2γ  -0.330 
(0.467) 

-0.661 
(0.595) 

Persistence 1x  0.9980 0.9983 

ωσ  0.0671 
(0.0057) 

0.0672 
(0.0056) 

Persistence 2x  0.9745 0.9671 

,SMεσ  1.59*10-5 

(2.10*10-5) 
0.00306 
(0.00158) 

Half-life 1x  1.3 years 1.6 years 

,MMεσ  0.00201 
(0.00016) 

0.00205 
(0.00069) 

Half-life 2x  27 days 21 days 

,LMεσ  0.00206 
(0.00027) 

0.00165 
(0.00038) 

Std.dev. 1tu  0.0037 0.0041 

 
Loglik. 

 
14,305 

 
14,363 

Std.dev. 2tu  0.0122 0.0097 

The table reports (restricted) parameter estimates (in boldface) with robust White (1982) QML 
standard errors in parentheses, resulting from estimating the state space model associated with the 
2-factor OU SV assumption using the combination of return, SM, MM and LM option data, under two 
sets of restrictions (see main text), together with the QMLEs of some other quantities of interest. For 
identification reasons, we restrict 2 0θ =  and 12 0σ =  such that Σ is lower diagonal.  
 
 
 
Fit of the volatility term structure 
For further investigation and diagnostic checking, we concentrate on the least 
restricted model (Restrictions (b)).  
 
Figure 5.1 shows the observed and fitted SM, MM and LM Black-Scholes implied 
volatilities, and the corresponding option pricing errors. Comparing this figure to 
figure 4.14 (1-factor OU) reveals that although the error graphs have “improved”, 
they still do not seem to be randomly distributed over time. 
 
Table 5.2 reports the mean and standard deviation of the (absolute value of the) 
option pricing errors. Comparing this table to table 4.6 (1-factor OU), reveals a  
substantial increase in fit obtained by allowing for two volatility factors. The 
biggest improvement is obtained for the SM option series. The pricing errors 
concentrate around zero now, irrespective of maturity. The average fit is similar 
for all series, though the LM series is still fitted somewhat best.  
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Figure 5.1: Fit of the VTS (2-factor OU SV, Restrictions (b)). Left: observed and fitted 
BS implied volatilities for each maturity. Right: their difference, the option pricing errors. 
 
 
Table 5.2: Summary stat. (absolute) option pricing errors (2-factor OU SV, Restr.(b)) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean 0.00% 0.00% 0.00% 0.23% 0.24% 0.19% 
Std.dev. 0.34% 0.33% 0.28% 0.25% 0.24% 0.20% 
 
 
Specification tests 
Figure 5.2 shows the smoothed factors (in deviation from their mean) 

*
i i ix x θ= − , and the daily volatility-factor shocks 1u  and 2u . Level-dependent 

volatility-of-volatility is present in both series, a feature not accounted for.  
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Figure 5.2: Smoothed factors in deviation from their mean ( *

1tx  and *
2tx ), and smoothed 

state equation errors 1tu  and 2tu  (2-factor OU SV, Restrictions (b)). 
 
 
Table 5.3 provides summary statistics for the standardized innovations. Recalling 
table 4.5 (1-factor OU), the 2-factor assumption evidently provides a much better 
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description of the data. Especially prominent is the dramatic reduction in 
autocorrelation in three of the four series. The dynamics in the MM option series 
are however still not well captured by this model. 38 Figure 5.3 shows the 
smoothed disturbances. A comparison with figure 4.13 confirms the improved 
data description. But again, these pictures seem to indicate a lack of dynamics. 
 
 
Table 5.3: Summary statistics standardized innovations (2-factor OU SV, Restr. (b)) 
 Std.inn. 

sq. return 
Std.inn.  

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.19  -0.01 -0.01  0.01 
Std.deviation  0.98   1.00  1.01  0.99 
AC(1)  0.09   0.08   0.40  0.05 
AC(2)  0.06  -0.02  0.23  0.02 
AC(3)  0.14  -0.03  0.20 -0.10 
AC(4)  0.11  -0.02   0.19  0.07 
AC(5)  0.05   0.01  0.21  0.02 
Cont.correlation 1.00    0.07   0.00  0.22 

matrix    1.00  0.00  0.02 
    1.00  0.02 
     1.00 
The table reports the mean, standard deviation, the autocorrelation coefficients (AC) up to 
order 5, and the contemporaneous correlation matrix of the standardized innovations.  
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Figure 5.3: Smoothed disturbances of state space model (2-factor OU SV, Restr.(b)). 
 
 
5.3 Estimation results for 3-factor OU SV 
 
This section extends to three OU factors. As not all parameters can be identified 
we consider two sets of a priori imposed restrictions, which are similar as in the 
2-factor case. Restrictions (a) assumes independent factors and zero correlation 
between the option errors { }itε . Restrictions (b) assumes correlated factors and 
contemporaneous option error correlation.  
 
                                           
38 Based on the Ljung-Box Q-statistic, we reject the null hypothesis of zero autocorrelation up to order 5 
at 5% significance for each innovation series, except for the SM series.  
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Table 5.4 presents the results. Allowing for three instead of two OU factors 
increases the quasi-loglikelihood from more than 14,300 to more than 14,500. 
Permitting for factor and option error correlation does not seem to further raise 
the quasi-loglikelihood very much. It does however introduce much additional 
uncertainty in most estimates, as evidenced by the larger standard errors 
(relative to the estimates). There are obvious opportunity costs associated with 
this larger flexibility. We feel most confident with the results of Restrictions (a), 
the independent-factors case, such that in the remainder we focus on those. 39  
 
 
 
Table 5.4: Estimation results 3-factor OU SV model using all data 

 Restrictions 
(a) 

Restrictions
(b) 

 Restrictions 
(a) 

Restrictions 
(b) 

1θ   0.0392 
(0.0417) 

0.0412 
(0.0990) 

, ,corr( , )SM t MM tε ε 0 0.59 
(0.47) 

1k  0.023 
(0.029) 

0.167 
(0.388) 

, ,corr( , )SM t LM tε ε  0 0.14 
(0.50) 

2k  3.32 
(0.29) 

1.22 
(3.40) 

, ,corr( , )MM t LM tε ε 0 -0.16 
(0.84) 

3k  15.7 
(2.5) 

13.6 
(2.98) 

Vol. returns 19.81% 20.30% 

11σ  0.0402 
(0.0036) 

0.171 
(0.626) 

Std.dev. 1tx  0.189 0.295 

21σ  0 
 

-0.266 
(0.679) 

Std.dev. 2tx  0.057 0.181 

22σ   0.147 
(0.013) 

0.097 
(0.132) 

Std.dev. 3tx  0.031 0.041 

31σ   0 
 

0.129 
(0.149) 

1 2corr( , )t tx x  0 -0.61 

32σ  0 
 

0.047 
(0.185) 

1 3corr( , )t tx x  0  0.13 

33σ  0.176 
(0.035) 

0.161 
(0.037) 

2 3corr( , )t tx x  0 -0.27 

1γ  -0.034 
(0.177) 

-0.165 
(0.231) 

Persistence 1x  0.9999 0.9994 

2γ  0.266 
(0.481) 

  0.243 
(0.475) 

Persistence 2x  0.9873 0.9953 

3γ  -1.47 
(0.77) 

-1.29 
(0.73) 

Persistence 3x  0.9413 0.9490 

,SMεσ  0.00096 
(0.00090) 

0.00274 
(0.00151) 

Half-life 1x  31 years 4.2 years 

,MMεσ  0.00140 
(0.00013) 

0.00129 
(0.00095) 

Half-life 2x  54 days 147 days 

,LMεσ  0.00182 
(0.00024) 

0.00137 
(0.00043) 

Half-life 3x  11 days 13  days  

ωσ  0.0669 
(0.0059) 

0.0673 
(0.0059) 

Std.dev. 1tu  0.0025 0.0106 

Loglik.h. 14,500 14,560 Std.dev. 2tu  0.0090 0.0175 
Vol-of-var. 0.2000 0.2355 Std.dev. 3tu  0.0106 0.0128 
The table reports (restricted) parameter estimates (boldface) with robust White (1982) QML standard 
errors in parentheses, resulting from estimating the state space model associated with the 3-factor 
OU SV assumption using the combination of return, SM, MM and LM option data under two sets of 
restrictions (see main text), together with the QMLEs of some other quantities of interest. For 
identification reasons, we restrict 2 3 0θ θ= =  and 12 13 23 0σ σ σ= = =  such that Σ is lower diag. 

 
 
                                           
39 The outcome and interpretation of the diagnostic checks only marginally differ for both cases. 
Moreover, the evidence in Cont and Fonseca (2002) seems to  support this choice further. 
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5.3.1  Decomposing stock volatility: long-memory, medium-term  
     and short-term volatility trends 

 
The upper graph of figure 5.4 plots the smoothed stock volatilities obtained from 
the 3-factor OU model. The middle graph plots this series again, but together 
with the volatilities obtained from the 1-factor OU model (estimated using return 
- SM option data (recall figure 4.1)). The lower graph shows that their difference 
can be substantial. A close inspection reveals that mainly in times of sudden rises 
in the volatility (fall 1997 and September 11, 2001), the 3-factor volatilities 
respond quicker than the 1-factor volatilities, which makes sense intuitively. 
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Figure 5.4: Upper graph: Stock volatilities obtained from 3-factor OU SV, Restrictions (a). 
The middle graph plots these again, together with the volatilities obtained from 1-factor 
OU estimated using return – SM option data. Their difference is plotted in the lower graph. 
 
 
The 3-factor model decomposes the hidden volatility evolution into three different 
dynamic components. Table 5.4 shows that the volatility factors distilled from the 
data differ greatly in their features. Factor 1x  is extremely persistent: it has very 
long memory and behaves almost like a random walk. Shocks to this factor have 
close-to permanent effects. (This explains why the standard deviation of 1x  is 
much larger than for the other factors.) Factor 2x  reverts much faster to its 
mean, with a half-life of about 2.5 months. Factor 3x  is quickest mean reverting. 
It takes about 11 days for a shock in this factor to lose half its impact.  
 
The estimates indicate that 1x  may be interpreted as determining the long-term 
volatility trend. The long-term trend averages at 20%. Factor 2x  seems more 
associated with medium-term volatility movements; factor 3x  determines the 
very short-term volatility fluctuations. Both average at zero (due to the imposed 
identification restrictions).  
 
Figure 5.5 plots the smoothed factors *{ }itx  and the daily shocks to these factors, 
{ }itu . Note the scales on the vertical axes, and in particular the graph of 3{ }tu . 
Factor 3x  is clearly responsible for large volatility changes in short time periods. 
This is confirmed by the fact that its instantaneous volatility, 33σ , is largest, and 
the fact that the shocks 3tu  to this factor have largest variance.   
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Figure 5.5: Smoothed factors in deviation from their mean *

1tx , *
2tx  and *

3tx , and daily 
volatility-factor shocks 1tu , 2tu  and 3tu  (3-factor OU SV, Restrictions (a)). 
 
 
 
5.3.2   Another interpretation: Level, slope and curvature factors 
 
A second interpretation of the factors concerns the impact of each factor on the 
prices of options, i.e., on the shape and dynamics of the volatility term structure.  
 
Reconsidering the options measurement equation in the general multifactor 
model, i.e. 2 *1 1

, 1 1 1( ) ( )' ( )'
t t

implied t t t t t tAν τ τσ µ τ τ τ ε= + + + +  B θ B x , reveals that the 
functions 1 (.) /(.); 1,..,jB j n=  may be interpreted as reaction coefficients, or 
volatility-factor loadings. Each of these coefficients measures the instantaneous 
ceteris-paribus response of the BS implied variance to a change in one of the 
factors: 2

, 1/ ( ) /implied t jt j t tx Bσ τ τ∂ ∂ = . These reaction coefficients depend on the 
option maturity. Options of different maturity -and hence the VTS- respond 
differently to changes in each of the volatility factors. To examine how a certain 
shock affects each option, it is natural to take into account that the factors have 
different variances. As var [ ] 't d=x J ΣM ΣP ⊙ , the direct impact of a one-standard-
deviation shock in each of the factors on the BS implied variance of an option 
with maturity tτ  is given by the vector 1 /2

1( 1) ( ') ( ) /n d t tnx τ τI J ΣM Σ B⊙ ⊙ . In the 
OU case, the factor loadings are given by 1 ( ) / (1 exp[ ]) /j t t j t j tB k kτ τ τ τ= − −  for 

0tτ ≥ . If the OU factors are independent, then 2var [ ] /2jt jj jx kσ=P .  
 
Figure 5.6 shows the reaction coefficients as a function of maturity, and the 
instant responses of BS implied variances of all maturities to 1-standard-deviation 
shocks in the factors, as implied by our estimation results. These pictures yield 
clear insight in how the VTS is affected by such shocks. 40  
 

                                           
40 Equal-maturity equal-strike call and put options have identical BS implied volatility. Moreover, the 
vega of such a call and put coincide, such that they respond equally to volatility changes. (This follows 
from the put-call parity.) Figure 5.6 thus plots the instant response of the BS implied variance (read: call 
or put option price) of both call and put option to factor shocks, as a function of maturity. 
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Figure 5.6. Upper plot: Reaction coefficients 1 (.) /(.); 1,2,3jB j =  as a function of option 
maturity (in years). Lower plot: Instantaneous responses of the BS implied variances to 
1-standard-deviation shocks in each of the factors, as function of maturity. (3-factor OU)  
 
 
Impact of factors on option prices and the VTS 
A shock to factor 1x  has similar impact on all options, irrespective of maturity. 
Ceteris paribus, this factor seems to cause parallel shifts in which all implied 
volatilities increase with approximately the same amount. We attribute this to its 
persistent character, with inherent shocks that die out very slowly. As such, it 
mainly influences the general level of the volatility term structure. Factor 1x  may 
be interpreted as a VTS level factor.  
 
A shock to factor 2x  affects options of all maturities as well, but by different 
amounts. Short-maturity option prices respond most, and the response gradually 
diminishes the longer the maturity of the option.  
 
Shocks to factor 3x  have biggest impact on the implied volatilities (and hence  
prices) of short-maturity options. Its effect quickly wears off as the option 
maturity increases. Shocks to 3x  do not virtually seem to affect options with a 
maturity longer than a half year. As this factor is so fast mean-reverting, this 
makes sense: The longer the maturity, the more often 3x  tends to revert back to 
its mean, the closer its average value 3tx  over the option’s lifetime will be to its 
mean, the less a current shock has an impact on this mean. As this average value 
is a major determinant of the option price (i.e. 2[ ( , , , , , ) | ]t t t t t t t tC BS S K r qτ σ= QE F  
with 2

1 2 3t t t tx x xσ = + + ), it is clear that shocks to 3x  have virtually no effect on 
sufficiently long-dated options. Shocks to 3x  tend to “average out”.  
 
VTS level, slope and curvature factors 
Given this analysis, and given that 1x  seems mainly associated with parallel 
shifts in the level of the VTS, it makes intuitively sense that factors 2x  and 3x  
will largely be responsible for (or associated with) dynamic changes in the slope 
and curvature of the VTS over time (recall section 2.2).  
 
The left panel of figure 5.7 plots the dynamics of the level, slope and convexity of 
the VTS through time (see also figure 2.6). The right panel shows the smoothed 
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factors * *
1 2,x x−  and *

3x . (Given the plot of the instant responses in figure 5.6, we 
expect a negative relation between 2x  and the slope of the VTS.) Especially the 
correspondences between *

1x  and ,level  and *
3x  and curvature  are striking.  
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Figure 5.7. Left: Evolution of level, slope and curvature of the ATMF volatility term 
structure through time. Right: Smoothed * *

1 2,x x−  and *
3x . (3-factor OU SV) 

 
 
 
Factor 1x  may indeed be interpreted as mainly a VTS level factor: The correlation 
between 1x  and the general level of the VTS equals 0.86. Given that the impact 
of a shock to 2x  only gradually becomes less the longer the option maturity, it is 
not surprising that 2tx  and tlevel  are also rather correlated (correlation 0.68). In 
contrast, the correlation between 3tx and tlevel  is only –0.08. Factor 2x  tracks 
changes in the slope of the VTS rather well. As expected, the slope is negatively 
correlated with 2x , with coefficient –0.60. In contrast, the correlation between 

1tx  and tslope  is only –0.02. Not surprisingly, the correlation between 3tx  and 
our slope measure is also rather large, -0.62. However, factor 3x  even more 
closely follows the movements of the curvature in the VTS. The correlation 
between tcurvature  and 3tx  is substantial, 0.82, whereas the  correlation 
between tcurvature  and 1tx  (resp. 2tx ) is only –0.07 (resp. 0.19). 
 
We conclude the following. The persistent, long-memory factor 1x  is mainly 
responsible for the level dynamics of the VTS. The dynamics of factor 2x  are 
largely associated with changes in the slope. Dynamic changes in the convexity of 
the VTS are mainly driven by the very fast mean-reverting factor 3x . 41  

                                           
41 Similar results are found in empirical implementations of affine models of the term structure of 
interest rates (Duffie and Kan (1996)). The term structure of interest rates plots the yield on default-
free zero-coupon bonds as a function of the maturity of the bonds. Implementations of affine models 
show that more than one short interest rate-driving factor is necessary to obtain a good fit of empirical 
zero-coupon bond data. Three (correlated) factors seem needed; see e.g. de Jong (2000), Dai and 
Singleton (2000) and Andersen and Lund (1997). Though the interest rate setting is very different, the 
factors have similar interpretations as in our stock option pricing setting under SV. 
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5.3.3   Risk premia, straddle returns and consumption smoothing 
 
Each volatility factor jx  has an associated market price of risk jγ . Table 5.4 
reports the estimates; notice the large standard errors. None of the jγ ’s differs 
significantly from zero, neither do they jointly. 42 Prominent however is that 3γ  is 
“close-to significant”. 43 Given the Monte Carlo evidence in section 3, the 
estimation imprecision is not so surprising. Pan (2002) reports similar difficulties 
in obtaining precise estimates of the market prices of volatility and jump risk. As 
such, some care seems in place when (numerically) interpreting the results.   
 
Compensation for volatility risk 
Compensation for volatility risk decomposes in three parts now. For the  
3-independent-factors OU SV model, the spot return an investor is expected to 
earn when investing in an arbitrary path-independent European-style derivative 
F  equals   

      (5.9) 

( ) ( ) ( ) ( )
3

, , , , , , , , , ,
1

| 't
t t F S t t S t F x t t F S t t S t F j t jj j

t j

dF
r dt r dt

F
β σ γ β σ γ β σ γ

=

      = + + = + +        
∑β ΣγPE F

 
in which the risk premium associated with factor jx  is given by jj jσ γ . (See 
section 5.2 of chapter II.) The derivative price sensitivity towards factor j  is  
given by , , cov [ / , | ] / var [ | ] (1 / )( / )F j t t t jt t jt t t t jtdF F dx dx F F xβ = = ∂ ∂P PF F , i.e. by 
volatility-factor beta j . 
 
The estimation results show that each factor is priced differently in the FTSE100-
index market. Table 5.5 reports the factor risk premia (per annum). The risk-
premium associated with long-memory factor 1x  is negative, but equals 0.14%−  
only. This does not seem large at all. However, we know from figure 5.6 that 
option prices are most sensitive to this factor, irrespective of maturity. This may 
possibly result in large betas associated with 1x , and may hence still yield a 
considerable expected-return component. The risk premium on factor 2x  is 
estimated at 3.9%. We lack an intuition on why it is estimated positive. The very 
fast mean-reverting factor 3x  knows a substantial risk premium of –26%.  
 
SM, MM and LM at-the-money FTSE100-index straddle returns 
To better be able to interpret the magnitude of these risk premia, consider the 
expected return on an ATM straddle:  
 

 ( )
3

, ,
1

|t
t t Str j t jj j

t j

dStr
r dt

Str
β σ γ

=

  
 ≈ + 
    

∑PE F .    (5.10) 

 
To compute this expectation requires the straddle factor betas ,Str jβ , which can 
only be obtained by simulation in principle. These betas may nonetheless be 
approximated as follows. The straddle price equals t t tStr C P= + , in which the call 
price is given by 2

,[ ( , , , , ) | ] ( , , )t t T t t t t t t tC BS F K r C t Sτ σ= = xQE F , i.e., a function 
(.)C  of time, stock price tS , and tx  only (and not of its past; recall chapter II). 

From the put-call parity ,exp( )( )t t t t t t TP C r K Fτ= + − − , it next follows that 
/ /t jt t jtC x P x∂ ∂ = ∂ ∂ . Moreover, the model-implied Black-Scholes implied variance 

                                           
42 The Wald test statistic for testing their joint significance equals 6.0, which is smaller than the 95% 
(resp. 90%) critical value of 7.82 (resp. 6.25) of its asymptotic chi-squared(3) distribution.     
43 Indeed, this is an abuse of language, though the meaning should be clear. 
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is defined implicitly as 2
, ,( , , , , )t t T t t t implied tC BS F K rτ σ= , such that tC  may also be 

considered as a function of 2
,implied tσ  (or, equivalently, 2

,implied tσ  may directly be 
considered a function of tx , as 2 1 1

, ( ) ( ( , , ))implied t t t tBS C BS C t Sσ − −= = x ). These 
observations allow the straddle factor beta to be written as  44 
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1 1 1
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t jt t jt t jtimplied t
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∂∂ ∂ ∂
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∂ ∂ ∂∂
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with           (5.12) 
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2 2
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r F dC BS BS BSσ τ τ φ
σ σ σ σσ σ σ

∂ −∂ ∂ ∂ ∂
= = = =

∂ ∂∂ ∂ ∂

 
in which we used the expression for the conventional BS vega (which needs to be 
evaluated in the BS implied volatility). From our options measurement equation,  
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τ τ
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,    (5.13)  

 
in which the equality follows from the OU SV assumption. The ATM straddle factor 
betas can thus be approximated by:  
 

      , 1
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,
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; 1,2,3j = . (5.14) 

 
Given the three FTSE100-index option series with associated data, we can 
construct a virtual, near-the-money SM, MM and LM straddle price series in a 
similar way as before. Using our estimation results, nine time series of straddle 
factor betas (for each maturity three), can next be computed using approximation 
(5.14). This subsequently allows us to compute three time series of expected SM, 
MM, and LM ATM straddle returns using (5.10). 
  
Table 5.5 reports the so-constructed volatility-factor betas and the expected 
straddle returns for each maturity, averaged over the 1058T =  daily 
observations. As expected, the pattern in the betas confirms figure 5.6. The SM 
straddle has largest exposure to the fast mean-reverting factor 3x  and this 
exposure quickly wears off the longer the straddle maturity. The exposure 
towards the persistent factor is similar for all maturities. Note that table 5.5 yields 
insight in the magnitude of the different straddle return components. 
 
Fitting the 1-factor OU SV model using squared return – SM option data only, we 
found an average expected SM straddle return of –174% per annum, which 
closely agrees with empirical straddle returns found in the literature. Now we find 
an expected return of –90% “only”. This may be attributed to the larger 
parameter imprecision. Remarkably, the implied expected MM and LM straddle 

                                           
44 Although perhaps tempting at first sight, the following approximation is not correct (as there are 

2n ≥  factors):  
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, 

as it does not  hold that tC  can be (re)written as a function of 2 't tσ = 1 x  directly; i.e., 
2ˆ( , , ) ( , , )t t t t tC C t S C t S σ= ≠x . This is immediately intuitively clear as well, since this latter 

approximation would imply that the call price has equal sensitivity /t jtC x∂ ∂  towards all factors, 
whereas from figure 5.6 we know that that is not true. (Recall the earlier footnote in chapter II.) 
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returns are much smaller in absolute value, but again, the magnitudes ought to 
be taken with care.  
 
 
 
Table 5.5: Implied expected SM, MM and LM ATM straddle returns (3-factor OU, Restr.(a))  

 SM  
ATM straddle 

MM  
ATM straddle 

LM  
ATM straddle 

 

Risk premium 
per annum 
( jj jσ γ ): 

Volatility-factor 
beta: 

Volatility-factor 
beta: 

Volatility-factor 
beta: 

Factor 1x  -0.14% 10.7  (4.3) 9.5  (3.1)   9.4  (2.9) 
Factor 2x   3.91%  8.9  (3.6) 4.7  (1.5) 3.1  (1.0)  
Factor 3x     -26%  5.0  (2.1) 1.2  (0.4) 0.7  (0.2) 
 Av. exp. return: 

(per annum) 
   -90%    -9.0%   -1.1% 

The table reports the implied factor risk premia, the averaged expected SM, MM and LM 
ATM straddle returns, and the averaged straddle factor betas (std.dev. in parentheses).  
 
 
 
Long-term and short-term consumption smoothing 
The risk premium associated with factor 3x  is much more negative than for factor 

1x . 45 In particular, SM straddles seem to earn a much more negative return than 
LM straddles. Apart from the fact that SM straddles seem riskier, is there a 
possible additional economic explanation for this large difference?  
 
First, recall our consumption-insurance argument as a theoretical justification for 
why we expect a negative volatility risk premium in practice: To smooth 
consumption over time, investors are willing to pay a premium for assets that pay 
off in times of increased volatility, as, arguably, such times are typically perceived 
as bad states of the world. Second, we have decomposed volatility risk into three 
components, the first associated with long-term volatility trends (driven by 1x ), 
the second with medium-term ( 2x ), and the third with short-term trends ( 3x ).  
 
Consider then a typical investor whose portfolio consists mainly of long stock and 
bond positions. According to the permanent-income hypothesis, this investor aims 
at consumption smoothing. As explained in chapter II, to achieve his goal he may 
well want to invest in delta-neutral positive-vega derivatives like ATMF straddles, 
which pay off if volatility increases.  
 
Let us suppose that the investor is primarily interested in long-term (LT) 
consumption smoothing, but does not worry too much about short-term (ST) 
consumption fluctuations. For him the most important component of volatility risk 
is the LT volatility trend, 1x . Figure 5.6 reveals that this LT-investor may choose 
either a SM or a LM straddle to achieve his goal: Factor 1x  has similar impact on 
all option prices and hence straddles, irrespective of maturity.   
 
Consider next an investor who wants to smooth his consumption no matter what. 
This investor cares about ST consumption fluctuations as well. For him all 
volatility-risk components are important. From figure 5.6, to achieve his goal he 

                                           
45 One may perhaps expect the factor that most negatively correlates with the FTSE100-index returns 
(i.e., the one that has “biggest leverage”) to have the largest negative premium. This is not the case 
however. Based on the smoothed series, we find: 2corr[ , ] 0.66t

t

dS
t Sdσ = −  (leverage effect), and 

1corr[ , ] 0.47t

t

dS
t Sdx = − , 2corr[ , ] 0.69t

t

dS
t Sdx = − , 3corr[ , ] 0.38t

t

dS
t Sdx = − . 
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had better choose a SM straddle. A LM straddle is much less suitable, as a LM 
straddle responds to ST volatility fluctuations to a much lesser extent. A LM 
straddle is therefore expected not to be as valuable to him as a SM straddle.  
 
Although the LT-investor has many straddles to choose from, the ST-investor has 
not. It is thus not unreasonable to think that the ST-investor is willing to pay a 
higher price for a SM straddle, whereas the LT-investor picks whatever straddle is 
cheapest. As high straddle prices mean a low expected return, this may perhaps 
additionally explain (besides its larger risk) why we find a far more negative risk 
premium associated with the ST volatility trend than for the LT trend.  
 
We want to stress however that this reasoning is not meant to be conclusive at all 
for why 3x  seems to have a far more negative risk premium associated with it 
than 1x  has. Instead it merely represents some initial thoughts on this finding. 
(For example, data on the number of ST and LT investors and on the amount of 
SM and LM straddles that are traded in the market (i.e. demand - supply data) is 
lacking.) Obviously, more remains to be learned about how investors are exactly 
compensated for the different components of volatility risk. We leave this for 
future research. Note that the finding of negative expected ATM straddle returns 
agrees with negative (total) volatility-risk compensation however.   
 
Short-term volatility risk versus jump risk in stock prices 
Our results may be interpreted as being more or less in line with Pan’s (2002) 
results, although the estimated models clearly differ. Recall that the Bates (2000) 
model (with 1 SV factor) adds price jumps to the Heston (1993) model, such that 
there are two risk factors (besides stock price risk): SV and jumps. When fitting 
this model to time series on stock returns and SM options, Pan finds that the 
jump risk premium dominates by far the volatility risk premium.  
 
With a bit of imagination Pan’s findings are essentially similar to what we find, as 
factor 3x  mainly accommodates fast changes in brief periods of time. What is 
different however, is that the nature of the risk factors is fundamentally different, 
i.e., jumps in price shocks versus “jumps” in volatility. 46 So at first sight, it may 
seem that either risk factor picks up the patterns in the data. However, this is not 
to say that one may be indifferent between either including price jumps or an 
extra volatility factor. Pan mentions that it is likely that multiple SV factors are 
needed to obtain a better description of the VTS. Our results do precisely confirm 
this, something which cannot be “solved” by including price jumps only it seems. 
As the diagnostic checks have shown, we really need additional, extended 
dynamics. (We refer to section 7.2.1 of the next chapter for more discussion.) 
 
5.3.4   Fit of the volatility term structure 
 
Consider next the fit of the VTS achieved by allowing for three OU factors. Figure 
5.8 shows the observed and fitted BS implied volatilities, and the errors. In 
contrast to figures 4.14 and 5.1 for the 1-factor and 2-factor OU models, there 
does not seem any systematic pattern left in the error series. The improvement in 
fit is also apparent from table 5.6. The pricing errors concentrate around zero and 
are typically small. The average absolute errors seem small as well. The SM 
option series is now fitted best.  
 
                                           
46 Obviously, this should not be taken literally; 3x  has continuous sample paths. It will nonetheless be 
clear what we mean.  
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Figure 5.8: Fit of the VTS (3-factor OU SV, Restrictions (a)). Left: observed and fitted BS 
implied volatilities for each maturity. Right: their difference, the option pricing errors.  
 
 
Table 5.6: Summary stat. (absolute) option pricing errors (3-factor OU SV, Restr. (a)) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean 0.00% 0.00% 0.00% 0.03% 0.15% 0.19% 
Std.dev. 0.05% 0.19% 0.29% 0.03% 0.13% 0.22% 

 
 
A logical pattern has emerged 
If we subsequently compare the absolute errors in table 4.6 (1-factor OU) with 
those in table 5.2 (2-factor OU) and table 5.6 (3-factor OU), the observed pattern 
is logically understood, given our factors interpretation and analysis so far.  
 
1-factor SV 
Fitting the 1-factor SV model to the joint data, resulted in distillation of the 
overall volatility trend from the data; i.e., essentially the long-memory or VTS-
level factor. Due to its high persistence, it cannot respond fast enough to sudden 
changes in short time periods, which (given that figure 5.6 shows that it is 
especially SM options that are prone to these changes) resulted in the SM series 
fitted worst. Not surprisingly, the LM series was fitted best: Intuitively, short-term 
fluctuations tend to “average out” the further one looks into the future.  
 
2-factor SV 
Moving from one to two SV factors, yielded the biggest improvement in fit for the 
MM and especially the SM option series: The second factor in the 2-factor SV 
model is much faster mean-reverting, and therefore more easily picks up sudden 
changes. The increase in fit of the LM series was rather modest, which may again 
be explained by the averaging-out effect.  
 
3-factor SV 
Going from two to three SV factors, resulted in distillation of an additional, very 
fast mean-reverting factor. It will now be clear why we observed the biggest 
improvement for the SM series. Taking the averaging-out effect into account once 
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more, it also makes sense why the fit of the LM series remained virtually constant 
when going from two to three factors.  
 
5.3.5   Diagnostic checking  
 
As opposed to the 2-factor model, is the 3-factor OU SV model dynamically well 
specified? If yes, in what respects can the model be improved upon? 
 
Level-dependent volatility-of-volatility 
Figure 5.9 shows the standardized innovations. Conditional heteroskedasticity is 
still present in all series, with biggest fluctuations in times of largest volatility 
(see figure 5.4). This may possibly be attributed to the fact that OU SV does not 
model level-dependent volatility-of-volatility. Other evidence that supports the 
presence of volatility feedback comes from figure 5.5: Fluctuations in the daily 
shocks { }jtu  to the volatility-driving factors are generally largest when the (abso-
lute) level of the factors is largest. If the model were correctly specified these 
shocks ought to (more or less) resemble white noise instead. Figure 5.5 also 
suggests that for each of the factors, volatility feedback needs to be modeled. 
 

1998 1999 2000 2001 2002

0

5

10

STD.INN.  SQUARED RETURNS 

1998 1999 2000 2001 2002

−5

0

5

10 STD.INN.  SM BS IMPL.VAR. 

1998 1999 2000 2001 2002

−5

0

5

STD.INN.  MM IMPL.VAR. 

1998 1999 2000 2001 2002

−5

0

5

STD.INN.  LM BS IMPL.VAR. 

 
Figure 5.9: Standardized innovations (3-factor OU SV, Restrictions (a)).   
 
 
Table 5.7: Summary statistics standardized innovations (3-factor OU SV, Restr. (a)) 
 Std.inn. 

sq. return 
Std.inn.  

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.13 -0.01  0.00  0.00 
Std.deviation  1.00  0.97  1.04  0.99 
AC(1)  0.10  0.04  0.13  0.09 
AC(2)  0.06 -0.01 -0.02  0.02 
AC(3)  0.14 -0.03 -0.04 -0.10 
AC(4)  0.11 -0.04 -0.04  0.06 
AC(5)  0.05 -0.01  0.03  0.02 
Cont.correlation  1.00   0.09  0.02  0.19 

matrix   1.00 -0.06  0.10 
    1.00 -0.03 
     1.00 
The table reports the mean, standard deviation, autocorrelation coefficients (AC) up to 
order 5, and the contemporaneous correlation matrix of the standardized innovations.  
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Table 5.7 reports summary statistics for the standardized innovations. Allowing 
for three factors removes most autocorrelation. Note the substantial decrease in 
autocorrelation in the MM series, as compared to the 2-factor case (table 5.3). 
Although most autocorrelations are near zero now, the Ljung-Box Q-test still 
rejects the null hypothesis of no serial correlation up to order 5 for all but the SM 
series, with respective p-values of 0.00, 0.40, 0.00 and 0.00. Remember 
however, that this test assumes homoskedasticity of the underlying series, and 
this is obviously violated.  
 
Figure 5.10 draws the smoothed disturbances. They more closely resemble white 
noise than in the 1 and 2-factor OU cases. Still, also in these pictures, some 
effect of neglected level-dependent volatility-of-volatility seems present.  
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Figure 5.10: Smoothed disturbances of state space model  (3-factor OU SV, Restr.(a)). 
 
 
Leverage effect 
One issue left largely unaddressed in this chapter, is the possible presence of a 
leverage effect in the FTSE100-index data. The multifactor affine SV derivative 
pricing model does not describe this effect: stock price and volatility changes 
occur independently from each other. Looking back at the evolution of the 
FTSE100 index over time (figure 2.1) and taking the course of the smoothed 
volatilities in figure 5.4 into account, it seems that when markets go down, 
volatility goes up. The correlation between the FTSE100-index returns and 
smoothed daily stock-variance changes equals –0.66. The leverage effect seems 
thus indeed present.  
 
However, it seems unlikely that this misspecification invalidates most of our 
findings, given that our analysis is based on ATM options only. In chapter VI on 
the Heston (1993) model, we show by simulation that the VTS of ATM options is 
hardly affected by the leverage effect. (In contrast, leverage does impact much 
on the prices of in and out-of-the-money options.) 
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6.  Summary 
 
This chapter considers a special case of the multifactor affine SV derivative 
pricing model: OU SV. In the OU case, the volatility is driven by one or multiple 
Gaussian OU processes, such that the volatility-of-volatility is level-independent.  
 
OU SV yields large analytical tractability. Moreover, as the conditional and 
unconditional moments of the daily volatility-factor shocks { }tu  coincide, the 
unconditional state space model is excellently suited for estimation.  
 
Monte Carlo study based on the 1-factor OU SV model 
For the 1-factor OU SV model, we conduct a Monte Carlo study for one set of 
(rather realistic) parameter values. We simulate time series of daily returns,  
10-minute realized volatilities (i.e., 48 intraday points) and short-maturity at-the-
money options. Our main findings are summarized as follows.  
 
Regarding the quality of the linear and parabolic call price approximations that we 
carried out to arrive at a linear options measurement equation, the following. The 
linearization error is small and negative. The parabolic error is somewhat smaller, 
but centers around zero. Both approximations seem to provide accurate 
approximations of the true call price. The relative merits measure is very small. 
This suggests that using a parabolic approximation for improved accuracy does 
not outweigh the associated, additional implementation cost of increased 
computational complexity (at least, if one or multiple option series are analyzed 
characterized by approximately the same moneyness). “Parameter” νµ  (which we 
introduced in the options measurement equation to allow for a non-zero average 
approximation error) is negative, but very close to zero.  
 
Regarding the white noise assumption for the errors { }tω , ,{ }RV tω  and { }tε  
associated with the squared return, RV, and options measurement equations 
respectively, the simulated data supports the reasonability of these assumptions.  
On average, the errors { }tε  appear to be slightly positively autocorrelated 
however. As such, one of the assumptions on which the Kalman filter equations 
are built is strictly speaking violated.  
 
We estimate the state space model associated with the 1-factor OU SV model 
using five different types of simulated data: only squared return data, only RV 
data, only (short-maturity ATM) option data, both return - option data, and both 
RV and option data. Investigating the performance of our state space method in 
recovering the true parameters and volatility paths underlying the simulated data 
reveals the following. 
  
Squared return data performs worst: The bias and MSEs are largest, mainly with 
regard to the mean-reversion and volatility-of-volatility parameters. Moreover, 
the smoothed and true underlying volatilities deviate most. The results confirm 
why squared returns are generally considered as noisy estimators of the stock 
variance: They do not contain very precise information. Consistent with the 
literature, QML performs poorly in this case. Using RV data instead, yields a 
substantial improvement in bias, MSE and volatility evaluation criteria.  
 
In turn, option data alone outperforms RV on all criteria: both the bias and MSEs 
are small, and the smoothed and true volatilities are close. Option data is clearly 
very informative.  
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Combining squared return and option data performs somewhat better than option 
data alone. Imposing the restriction 0νµ =  prior to estimation is preferable in this 
case: Although the parameter estimates remain virtually the same, it leads to 
better volatility filtering. 
 
Combining RV and option data provides the best results: The estimation bias is 
small for all parameters, it performs best on the MSE criterion (i.e. yields the 
most efficient estimates), and the smoothed volatility series is particularly close 
to the underlying true volatility series. The combination RV – option data contains 
the most precise information, and is therefore preferable for estimation. As in the 
squared return–option case, restricting νµ  to 0 leads to somewhat better results.  
 
The results further show that, although the estimation bias in the market price of 
volatility risk is small, the precision of the estimates is poor, irrespective of the 
data used for estimation. (This underwrites empirical findings in the literature.) 
Information on this parameter in either type of data seems particularly weak.  
 
Empirical results OU SV based on the FTSE100-index data 
We next confront the OU model to empirical FTSE100 stock-index and option 
data. The data consists of time series of daily index returns, a SM, MM and LM  
at-the-money index call option series. 
 
Explorative data analysis shows that the level and fluctuations in the index 
volatility have substantially increased from the fall of 1997 onwards. Augmented 
market uncertainty due to e.g. the Asian crisis and the war on terrorism are held 
accountable for this. We therefore only use the data for Oct 97–Dec 2001 in the 
further analysis. Examination of the ATM VTS reveals its different shapes, and its 
complex evolution over time. 34% of its shifts is non-parallel. A realistic model 
must obviously be capable of reproducing these observed, complicated dynamics. 
As, by approximation, a 1-factor SV model implies parallel shifts in the VTS only, 
one SV factor is likely to be insufficient in this respect. 
 
Initially, we assume there to be only one OU factor driving the volatility. 
Comparing the results obtained from using squared return data only with GARCH 
results, shows that although the volatility persistence (0.94; half-life 11 days) 
and unconditional volatility (20%) are estimated similar, the GARCH volatilities do 
not fluctuate as much, and do not respond as fast to news as the SV volatilities.  
 
Using return - SM option data jointly, the persistence is estimated much larger, at 
0.993 (half-life 98 days). The option data dominates the estimation results, being 
much more informative than the return data. The observed BS implied volatilities 
are typically larger than the “true” underlying hidden volatilities. We attribute this 
to the negative market price of volatility risk. This illustrates that the common 
market interpretation of BS implied volatilities being forecasts of future volatility 
should be taken with care if volatility risk is priced.  
 
Investing in FTSE100-index derivatives yields a negative premium for volatility 
risk of –15% per annum. In line with our theory, investors thus pay for 
consumption insurance, which can be achieved by investing in delta-neutral 
positive-vega derivatives. Investing in SM ATM straddles yields an expected 
return of –174% per annum. This closely agrees with average empirical SM ATM 
index-straddle returns that other researchers have found. Hence, although writing 
straddles is expected to yield a large return, we show that this investment 
strategy entails considerable risk, and is a true bet on volatility.  
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The misspecification of the 1-factor OU model estimated using return - SM option 
data seems rather modest at first sight. The main deficiency seems negligence of 
volatility feedback (apart from the leverage effect). However, the estimated 
model leads to substantial out-of-sample overpricing of the longer-dated options. 
 
When the model is estimated using all (return, SM, MM and LM option) data 
jointly, the most important misspecification of the 1-factor OU model appears to 
be insufficient dynamics. The VTS is fitted worst at the short end and best at the 
long end. 
 
We next investigate the contribution of each additional SV factor to the fit of the 
data. Although two OU factors yield a considerable increase in fit, dynamic 
misspecification still remains. The fit of the three option series is now similar.   
 
Extending to three OU factors appears sufficient to satisfactorily describe the 
dynamics observed in the four joint time series. Allowing for correlation between 
the factors seems to not much further increase the fit, though does introduce a 
lot of additional parameter uncertainty. We therefore choose to analyze the  
independent-factors results further.  
 
Comparing the smoothed stock volatilities obtained from the 1-factor model 
(estimated using return – SM option data) to those obtained from the 3-factor 
model, reveals that especially in times of sudden increases in financial markets 
uncertainty, the latter ones respond quicker. This makes sense: Decomposing the 
volatility in different dynamic components allows the volatility to respond quicker. 
 
The three OU factors distilled from the data differ greatly in their characteristics. 
Factor 1x  is extremely persistent. It has a daily persistence of 0.9999, with 
shocks that have close-to permanent effects on its future evolution; they seem to 
last for years. Factor 2x  is much quicker mean reverting (persistence 0.9873) 
with shocks that have a half-life of about 2.5 months. Factor 3x  is very fast 
mean-reverting (persistence 0.9413). Shocks to 3x  lose half their impact in 11 
days, and have moreover largest variance. This factor clearly governs large 
volatility changes in relatively brief periods of time.  
 
We interpret the factors in two ways. The first interpretation is that 1x , 2x  and 

3x  determine the long, medium and short-term volatility trends respectively. As 
such, they influence the prices of options of different maturities in different ways. 
Factor 1x  impacts on all options similarly, irrespective of maturity. Factor 2x  
affects all options as well, but gradually by smaller amounts the longer the 
option’s lifetime. Short-maturity options are especially prone to shocks in factor 

3x . The impact of 3x  quickly diminishes as the option maturity increases. As 3x  
is so rapidly mean reverting, its shocks tend to average out over a sufficiently 
long time span, resulting in an only marginal impact on long-dated options.  
 
Our second interpretation of the factors concerns their impact on the shape and 
dynamics of the volatility term structure. 1x  is mainly responsible for changes in 
the general level of the VTS. 2x  is largely associated with changes in the slope. 

3x  is surprisingly closely related to dynamic changes in the convexity of the VTS.  
 
Consistent with the literature, and not surprising given the Monte Carlo results, 
the market prices of risk associated with the SV factors are estimated 
imprecisely. Only 3x  seems to have a price of risk significantly different from 
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zero. We do not have an intuition for why the price of risk of 2x  is estimated 
positive; both others are negative. The risk premium associated with fast mean-
reverting factor 3x  is much more negative (-26% per annum) than the premium 
for the long-memory factor 1x  (-0.14%). The results imply that SM ATM 
straddles earn a much more negative return than LM ATM straddles on average. 
This agrees with the fact that investing in SM straddles seems riskier. (The 
differences are substantial however.)  
 
The fit of the VTS obtained by allowing for three OU factors is good. The option 
pricing errors concentrate around zero, are typically small, and do not reveal any 
systematic pattern left. The SM series is fitted somewhat best. Comparing, in 
succession, the pricing errors from the 1, 2 and 3-factor models yields a pattern 
that is logically understood, given our previous analysis.  
 
Specification tests of the 3-factor OU SV model reveal that the dynamics in the 
data are satisfactorily captured. We also find evidence of the presence of the 
leverage effect and level-dependent volatility-of-volatility. The multifactor OU SV 
model does not model both data features.  
 
It seems unlikely however, that these misspecifications invalidate most of our 
findings. Given that our analysis is based on ATM options only, we expect the 
effects of negligence of the leverage effect to be modest. (In chapter VI on the 
Heston (1993) model, we show by simulation that the ATM VTS is hardly affected 
by the leverage effect.) Level-dependent volatility-of-volatility mainly concerns 
conditional heteroskedasticity. As such, it is less associated with the time-series 
dimension (the dynamics) of the volatility.  
 
The next chapter allows for volatility feedback in the SV-driving processes. We 
then resort to a different state space model (the conditional state space model) 
and estimation method: Extended Kalman filter QML.  
 
 
 

Appendix  
 
IVa. Parameter identification in the OU SV case 
 
This appendix considers parameter identification in the 1-factor OU SV special case. The 
identification problem is contingent on the data used for estimation. 
 
Using only RV data for estimation 
Using only RV data for estimation, the state space model reduces to  
 

     2 *
, ,

1 exp( )
RV t t t RV t t

k t
x

k t
σ θ ω+∆ +∆

− − ∆
= + +

∆
,   2

, ,~ (0, )RV t t RVωω σ+∆ , (a.1) 

         * *exp( )t t t t tx k t x u+∆ +∆= − ∆ + ,                2 1 exp( 2 )
~ 0,

2t t
k t

u
k

σ+∆
− − ∆ 

 
 

, 

 
for 0, ,.., ( 1)t t T t= ∆ − ∆ , in which ,{ }RV t tω +∆  and { }t tu +∆  are non-contemporaneously 
uncorrelated, but contemporaneously correlated with ,corr [ , ]RV t t t tu cω +∆ +∆ =P . To 
examine parameter identification, the Kalman filter recursions could explicitly be worked 
out in principle. This is a tedious exercise however, even for this simple model.  
 



Appendix 

 177

We therefore attempt another strategy. We focus on the method-of-moments estimators 
(MMEs) of the parameters. We construct the MMEs only from the mean and autocovariance 
function of the observed RV series 2

,{ }RV t tσ +∆ ; we do not take higher-order moments into 
account. Why not? Intuitively, it is only the mean and autocovariance function of the 
observed data from which Kalman filter (Q)ML extracts information, and bases its 
estimates on. To better justify this intuition, the following. { }t tu +∆  is a (discrete-time) 
Gaussian process in the 1-factor OU case. Now, suppose that ,{ }RV t tω +∆  were Gaussian as 
well (though we know it is not). Then the whole system would be Gaussian, and the RV 
series would follow a Gaussian process. Now, a Gaussian process is completely specified by 
its expectation and covariance function; all other moments are fixed constant numbers 
which do not depend on parameters. Hence, a sound estimation strategy (and thus 
certainly Kalman filter ML, as for given parameter values, the Kalman filter delivers the 
MMSE estimator of the state vector in the Gaussian case) should only extract information 
from the sample mean and covariance function of the observed data, and not from other 
(higher-order) moments. Therefore, to be able to “transfer” the identification problem 
encountered here with Kalman filter QML towards a similar (but easier manageable) 
identification problem for MM estimation, it seems that we should only focus on the mean 
and autocovariance function of the observed RV series, and not on its higher moments.  
 
Having motivated our strategy, let us examine what it brings us. First, for simplicity 
introduce the parameter , ,cov [ , ] [1 exp( 2 )] /2RV t t t t RVu c k t kωρ ω σ σ+∆ +∆≡ = − − ∆P . 
From (a.1),  

  2
,RV t tσ θ+∆  = PE ,      (a.2) 

 
such that θ  can essentially be identified from the sample mean of the RV data. The 
variance of the realized variance, 0γ , equals 
 

 
22

2 2
0 , ,

1 exp[ ]
var

2RV t t RV
k t

k k t ω
σγ σ σ+∆

− − ∆  ≡ = +   ∆ 
P ,   (a.3) 

 
in which we used * 2var [ ] var[ ] /2t tx x kσ= =P , see appendix B, section 13.1. The first-
order autocovariance tγ ∆  equals 
 

 2 2
, ,cov ,t RV t t RV tγ σ σ∆ +∆ ≡  P        

1 exp[ ] 1 exp[ ]* *
, ,cov ,k t k t

t RV t t t t RV tk t k tx xω ω− − ∆ − − ∆
+∆ −∆∆ ∆

 = + + P  

( )21 exp[ ] 1 exp[ ]* * *
,cov , cov ,k t k t

t t t t RV tk t k tx x x ω− − ∆ − − ∆
−∆∆ ∆

   = +   P P  

( )21 exp[ ] 1 exp[ ]* * *
,cov , cov exp[ ] ,k t k t

t t t t t t RV tk t k tx x k t x u ω− − ∆ − − ∆
−∆ −∆∆ ∆

   = + − ∆ +   P P  

( )21 exp[ ] 1 exp[ ]* *cov ,k t k t
t t tk t k tx x ρ− − ∆ − − ∆

−∆∆ ∆
 = + P  

22 1 exp[ ] 1 exp[ ]
exp[ ]

2
k t k t

k t
k k t k t

σ ρ− − ∆ − − ∆ = − ∆ + ∆ ∆ 
,  (a.4) 

 
where the final equality uses * * 2cov [ , ] /(2 )exp[ ]t t tx x k k tσ−∆ = − ∆P ; see appendix B, 
(7.1). The second-order autocovariance 2 tγ ∆  equals 
 

 2 2
2 , ,cov ,t RV t t RV t tγ σ σ∆ +∆ −∆ ≡  P      (a.5) 

 1 exp[ ] 1 exp[ ]* *
, 2 ,cov ,k t k t

t RV t t t t RV t tk t k tx xω ω− − ∆ − − ∆
+∆ − ∆ −∆∆ ∆

 = + + P  
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 ( )21 exp[ ] 1 exp[ ]* * *
2 ,cov , cov ,k t k t

t t t t RV t tk t k tx x x ω− − ∆ − − ∆
− ∆ −∆∆ ∆

   = +   P P . 

 
By (7.1) in appendix B, 
 

 * * * *
2cov , exp[ ]cov ,t t t t t tx x k t x x− ∆ −∆   = − ∆   P P ,   (a.6) 

and  

 * *
, ,cov , cov exp[ ] ,t RV t t t t t RV t tx k t x uω ω−∆ −∆ −∆   = − ∆ +   P P   (a.7) 

*
,exp[ ]cov ,t t RV t tk t x ω−∆ −∆ = − ∆  P  

 *
2 ,exp[ ]cov exp[ ] ,t t t t RV t tk t k t x u ω− ∆ −∆ −∆ = − ∆ − ∆ + P  

 exp[ ]k t ρ= − ∆ , 

such that 

 ( )21 exp[ ] 1 exp[ ]* *
2 exp[ ]cov , exp[ ]k t k t

t t t tk t k tk t x x k tγ ρ− − ∆ − − ∆
∆ −∆∆ ∆

 = − ∆ + − ∆ P  

 ( )21 exp[ ] 1 exp[ ]* *exp[ ] cov ,k t k t
t t tk t k tk t x x ρ− − ∆ − − ∆

−∆∆ ∆
  = − ∆ +   

P  

exp[ ] tk t γ ∆= − ∆ .       (a.8) 
 
A similar analysis shows that 3 2exp[ ]t tk tγ γ∆ ∆= − ∆ , and so forth. For general 2,3,..p = , 
the autocovariance of order p  thus equals 
 
 ( 1)exp[ ]p t p tk tγ γ∆ − ∆= − ∆       (a.9) 

 exp[ ( 1) ] ; 2,3,..tp k t pγ ∆= − − ∆ =  
 
(Note that the autocorrelation function of 2

,{ }RV t tσ +∆  declines geometrically towards zero, 
which is as expected, since the RV series is covariance-stationary.) 
 
We now return to the identification problem. As θ  has already been identified, this leaves 

,, , , RVk ωσ ρ σ  to still be identified. The sample autocovariance function computed from the 
RV data yields estimates of 0 2 3, , , ,..t t tγ γ γ γ∆ ∆ ∆ . Parameter k  can next be identified from 
e.g. 3 tγ ∆  and 2 tγ ∆ . As 3 2exp[ ]t tk tγ γ∆ ∆= − ∆ , 3 2ln( / ) /t tk tγ γ∆ ∆= − ∆ . 47 This yields 
three parameters ,{ , , }RVωσ ρ σ  left to identify, but only two quantities to still be able to 
extract information from: Since 0 0 ,( , , )RV kωγ γ σ σ=  and ( , , )t t kγ γ σ ρ∆ ∆=  it follows that 

,, RVωσ σ  and ρ  (and hence parameter c ) are not separately identified. As soon as one of 
these parameters is restricted to a certain value, the other two parameters can be 
identified. (Keep in mind that an incorrect restriction will probably lead to estimation bias 
in both other parameters. 
 
Using other types of data for estimation 
Consider next the state space model estimated using only squared return data. The model 
reduces to equations (3.17) and (3.20). The parameters that can potentially be estimated 
are , ,k ωθ σ  and σ . The identification problem is similar as in case of RV data. However, 
as corr[ , ] 0t tuω = , all four parameters can be identified.  
 
Consider next using only option data for estimation. The state space model reduces to 
(3.19)-(3.20). Potential parameters to be estimated are , , , , kνµ θ γ σ  and εσ . 
Regarding ,k σ  and εσ , a close comparison reveals that the problem is similar as in the 

                                           
47 Notice that higher-order sample autocovariances provide additional information on k  but not directly 
on the other parameters. Therefore, rather than basing the estimate of k  on just the sample analogues 
of 3 tγ ∆  and 2 tγ ∆ , a more efficient GMM estimate of k  can in principle be obtained by taking these 
higher-order sample autocovariances into account. 
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RV case with 0c = , such that these can be identified. Information on , ,νµ θ γ  can only 
be derived from the mean BS implied variance over the sample. As such, the parameters 

νµ  and θ  cannot separately be identified; only their sum is identifiable. Hence, either of 
these parameters ought to be restricted. γ  is theoretically identified as the option maturity 

tτ  differs over t .  
 
Consider next using the combination return-option data for estimation. The state space 
model reduces to equations (3.17), (3.19) and (3.20) and has parameters 
, , , , , ,k ν ω εθ σ γ µ σ σ . From the analysis on using either only squared return or option 

data, it follows that all parameters can be identified.  
 
Consider finally using both RV – option data for estimation. The state space model 
reducing to (3.18)-(3.20), and has parameters ,, , , , , , ,RVk cν ω εθ σ γ µ σ σ . From the 
analysis on using either only RV or option data, some thinking reveals that in this case all 
parameters can be identified. Specifically, the option data provides information on σ , after 
which  ,RVωσ  and c  can also be identified from the RV data. As θ  can be identified from 
the RV data, νµ  is now identifiable as well.  
 
 
IVb. Curvature measure of the volatility term structure 
 
This appendix provides a rationale for the convexity or curvature measure of the volatility 
term structure, as discussed in section 2.2.  
 
The VTS plots the BS implied volatilities as a function of maturity. On each day we observe 
three BS implied volatilities, a SM, MM and LM Black Scholes implied volatility. The way 
these volatilities are located with respect to each other determines the shape and hence 
the curvature of the VTS. (Think about three points on the graph of a smooth function.) 
 
Consider then an at least twice differentiable function (.)f . The aim is to obtain an 
approximation of the curvature of this function in a certain point y , given three 
coordinate-pairs + +1 1[ , ( )], [ , ( )]y h f y h y f y  and 2 2[ , ( )]y h f y h− − , with 1 2, 0h h > . 
The second-order derivative of (.)f  evaluated in the point y , i.e. ''( )f y , determines this 
curvature. As such, our goal is to determine the coefficients ,a b  and c  such that 
 
 1 2''( ) ( ) ( ) ( )f y a f y h b f y c f y h≈ + + + − .    (b.1) 
 
Second-order Taylor series approximations lead to 
 
 21

1 1 12( ) ( ) '( ) ''( )f y h f y h f y h f y+ ≈ + +     (b.2) 
 
 21

2 2 22( ) ( ) '( ) ''( )f y h f y h f y h f y− ≈ − + .    (b.3) 
 
Substitution into (b.1), followed by rewriting gives  
 
 2 21

1 2 1 22''( ) ( ) ( ) ( ) '( ) ( ) ''( )f y a b c f y ah ch f y ah ch f y≈ + + + − + + . (b.4) 
 
This leads to the following restrictions 
  
 + + ≡ − ≡ + ≡2 21

1 2 1 220, 0, ( ) 1a b c ah ch ah ch ,   (b.5) 
 
which yield 
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 = = = − −
+ +1 1 2 2 1 2

2 2
, , .

( ) ( )
a c b a c

h h h h h h
   (b.6) 

 
These coefficients together with (b.1) determine the approximate curvature in the point 
[ , ( )]y f y . Notice in particular that if 1 2( ) ( ) ( )f y h f y f y h+ = = −  (i.e. the function is flat), 
the curvature is zero, as it ought to be. Note moreover that if 1 2h h h= = , the convexity 
approximation reduces to the well-known formula  
 

2

( ) 2 ( ) ( )
''( )

f y h f y f y h
f y

h

+ − + −
≈ .     (b.7) 

 
In our application, the role of function (.)f  is played by the BS implied volatilities 
considered as a function of maturity, i.e., by the volatility term structure. The maturity of 
the MM series ,MM tτ  is associated with y , 1h  equals the maturity difference between the 
LM and MM series, and 2h  equals the maturity difference between MM and SM series. As 
these differences are not equal (and vary over time as well) we approximate the curvature 
of the VTS by equations (b.1) and (b.6) leading to our curvature measure as defined as 

, , , , , ,t t implied LM t t implied MM t t implied SM tcurvature a b cσ σ σ≡ + +  in the main text in which 

1 1 22 /[ ( )],t t t ta h h h= +  2 1 22 /[ ( )],t t t tc h h h= +  t t tb a c= − − , 1 , ,t LM t MM th τ τ= −  and 

2 , , .t MM t SM th τ τ= −  This curvature measure thus represents a numerical approximation of 
the second-order derivative of a smooth function in a certain point, computed using three 
coordinate pairs. 
 
 
IVc. System matrices state space model for multifactor OU SV  
 
The state space model associated with the multifactor affine OU SV derivative pricing 
model, in which both the squared returns and the three option series are jointly used for 
estimation, reads 
 
 't t t t t= + +y a H ξ w  ~ ( , )t 0w R      ,...,t t T t= ∆ ∆          (c.1) 
 t t t t t+∆ +∆= + +ξ d Fξ v  ~ ( , )t t+∆ 0v Q , 
 
in which the error series { }tw  and { }t t+∆v  are both serially and mutually uncorrelated at 
all points in time, and in which the system matrices read 48 
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48 For notational convenience we index the option series with 1, 2 and 3 instead of SM, MM, and LM. 
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Matrix ( ) ( )nxn t∆G  has ij − th element [ ( )] (1 exp[ ( ) ]) /( )ij i j i jt k k t k k∆ = − − + ∆ +G . 
Notice that we adopt a state space form that is suitable for volatility forecasting (with 

0 0,δ = =δ 1  imposed), as explained in section 3.5.2 of chapter III. We estimate the 
state space model by Kalman filter QML.  
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- V- 
 

Exploiting 
Level-Dependent Volatility-of-Volatility: 

 

An Extended Kalman Filter Approach 
to the Estimation of the 

Multifactor Affine SV Derivative Pricing  
Model 

 
 
 
 

1.   Introduction 
 
The estimation results presented in the previous chapter show that an empirical 
shortcoming of the OU SV specification is its inability to describe level-dependent 
volatility-of-volatility, also known as volatility feedback. Although OU SV is able to 
describe volatility clustering, it can do that to some extent only. OU SV cannot 
describe the periods of heavy clustering observed in the FTSE100-index data 
sufficiently well. We expect improved results to be obtained by allowing the 
volatility-of-volatility to change over time.  
 
Data that features volatility feedback is characterized by volatility shocks which 
depend on the current level of the volatility. As such, more efficient use of 
information is made if the conditional distribution of the volatility-factor  
shocks { }tu  is explicitly taken into account in the estimation procedure. The 
unconditional state space model so far worked with is based on the unconditional 
distribution of { }tu  only. Although in the OU SV case the unconditional and 
conditional distributions of the shocks coincide, this does not hold for the general 
case. Therefore, in this chapter we extend our estimation method to better deal 
with volatility feedback-featuring SV processes. We present a somewhat different 
state space model, labeled the conditional state space model, which can be 
estimated by quasi maximum likelihood based on the Extended Kalman filter.  
 
The outline is as follows. Section 2 briefly reviews the model and highlights the 
main traits of the multifactor affine SV process in discrete time. Section 3 
explains how to incorporate the conditional distribution of the volatility-factor 
shocks { }tu  in the state space framework. We discuss the estimation method, 
comment on the inconsistency of QML based on the Extended Kalman filter, and 
provide the system matrices of the conditional state space model.  
 
Section 4 reports the results of a Monte Carlo study towards the 1-factor CIR SV 
option pricing model, which is the Heston (1993) model without leverage effect. 
Central is the issue what data yields the best estimation results. As in the 1-factor 
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OU SV case, using squared returns only performs worst, the combinations of 
squared return and option data, and RV – option data best.  
 
Section 5 confronts the 1-factor CIR SV model and associated estimation method 
to the FTSE100 stock-index and option data. As for the 1-factor OU SV model, we 
initially estimate the model using either only squared returns, or SM option data, 
or both. We contrast the results to the 1-factor OU results, and focus on the main 
differences. We consider compensation for FTSE100-index volatility risk, straddle 
returns, and perform a specification analysis. We show that modeling volatility 
feedback by 1-factor CIR SV is still not sufficient to capture the occasional periods 
of fast-changing volatility present in the data. Moreover, the model overprices the 
longer-maturity options out of sample. Estimating the 1-factor CIR SV model 
using all data shows that the model lacks sufficient volatility dynamics.  
  
Section 6 presents estimation results for various 2-factor affine SV specifications. 
Estimating a specification with 1 OU and 1 affine SV factor reveals that the OU 
assumption is misspecified. The first factor also features volatility feedback. This 
contrasts to the findings of Chernov et al. (2003). Subsequently estimating a  
specification with 1 CIR and 1 affine SV factor yields a considerable improvement 
in fit. However, the model still lacks sufficient volatility dynamics.  
 
Section 7 extends to 3-factor affine SV specifications. A specification with 1 OU 
and 2 affine SV factors appears misspecified: The long-memory, OU factor is 
characterized by level-dependent volatility as well. The most suitable model for 
the joint FTSE100 stock-index and option data within the affine class appears to 
be a 3-factor SV model with 1 CIR and 2 affine independent volatility factors. Not 
surprisingly, the interpretations of the factors are similar as in the 3-factor OU SV 
case, covered in the previous chapter. Nonetheless, extensive diagnostic checks 
reveal that the 3-factor affine SV derivative pricing model can still be improved 
upon in several ways. Section 8 summarizes. An appendix concludes this chapter.  
 
 

2. Recap of the model 
 
Let us review the main ingredients of the multifactor affine SV derivative pricing 
model. (See section 2 of chapter II for a full discussion.) The characteristic model 
equations are 1 
 

Stock price:   ,t t t t t S tdS S dt S dWµ σ= +   (P) (2.1) 

Stock variance:   2 2' , 't t t td dσ σ= =1 x 1 x    (2.2) 

Latent factors:  ,( )t d t t x td dt d= − +x K θ x ΣΛ W  (P) (2.3) 

    ,( )t t t x td dt d= − +x K θ x ΣΛ W%% %  (Q) (2.4) 

    1 1diag ' ,.., 't t n n tα α = + + Λ β x β x  (2.5) 

No leverage effect:      ( , ')'S xW=W W  is a standard P-Brownian motion 

Risk-neutral parameters:   1', ( )d d
−= + = −K K ΣΓ θ K K θ ΣΓα%% %B  (2.6) 

Market price of vol risk:      ,x t t=γ Λ γ      (2.7) 

                                           
1 To simplify discussion, we already impose the identification restrictions 0 0,δ = =δ 1  in the stock 
variance equation 2

0 't tσ δ= + δ x  here.  
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Call option price:     2
,( , , , , )|t t T t t t t tC BS F K rτ σ =  QE F   (2.8)  

Forward price:   , exp ( )t T t t t tF S r q τ= −   .   (2.9)  
 
Properties of the SV process 
Given that we deal with our most general affine SV specification in this chapter, 
let us highlight some of the main discrete-time features of the stock variance 
process. Appendix B gives a more complete description. The unconditional mean 
and variance of the stock variance equal 
 

 2 'tσ  =  1 θPE ,  2var ' 't dσ  =     1 J ΣM Σ 1P ⊙ ,   (2.10) 

 
in which ( )nxn J  with [ ] 1 /( )ij i jk k= +J  and 1 1diag[ ' ,.., ' ]d n nα α= + +M β θ β θ . 
(See also appendix A for the various matrix definitions). Suppose we live at  
day t . The best forecast of tomorrow’s stock variance (i.e., at day t t+ ∆ ) given 
today’s information equals 
 

 2 *| ' 'exp[ ]t t t d ttσ +∆
  = + − ∆  1 θ 1 K xPE F .    (2.11) 

 
Equation (2.11) implies that the best forecast of the stock variance in the 
indefinite future equals '1 θ , the mean stock variance. This is a consequence of 
stationarity of the stock variance process. The conditional variance of tomorrow’s 
stock variance equals  
          (2.12) 

         { }( )2 *

1

var | ' ( ) ' ' ( ) '
n

t t t d i t n i i
i

t tσ +∆
=

 
   = ∆ + ∆      

∑1 G ΣM Σ β x I σ σ 1HP F ⊙ ⊙ ⊙⊗ , 

 

in which matrix ( ) ( )nxn t∆G  has [ ( )] (1 exp[ ( ) ]) /( )ij i j i jt k k t k k∆ = − − + ∆ +G , and 
2

1( ) ( ) [ ( )',.., ( )']'nn xn t t t∆ = ∆ ∆H H H , in which the pq − th element of the individual 
matrix ( )nxn ( ), 1,..,j t j n∆ =H  equals  
  

 
exp[ ] exp[ ( ) ]

( ) j p q
j pq

p q j

k t k k t
t

k k k

− ∆ − − + ∆
 ∆ =  + −
H .   (2.13) 

 
The vector ( 1)nx iσ  in (2.12) represents the i -th column of Σ  ( 1,..,i n= ), such 
that Σ  is partitioned as 1[ ,.., ]n=Σ σ σ .  
 
The stock variance process is homoskedastic unconditionally. Conditionally it is 
heteroskedastic, except in the OU case for which i i= ∀β 0 . Under OU SV periods 
of low and high volatility are possible, but the volatility-of-volatility is constant. In 
the general SV specification the volatility-of-volatility depends on the level of the 
volatility factors (see (2.12)). This typically allows for more extreme volatility 
clustering than under OU SV.  
 
3. The conditional state space model and  

Extended Kalman filter QML 
 
This section discusses the way in which we extract information from stock and 
option prices. We explain how we explicitly actuate level-dependent volatility-of-
volatility in the state space framework, and discuss the estimation method, 
Extended Kalman filter QML. We also provide the system matrices of the 
conditional state space model.  
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3.1 Extracting information from stock and option data 
 
The measurement equations for the squared returns, realized volatilities and BS 
implied volatilities are the same as before. To repeat, for ,..,t t T t= ∆ ∆ , we 
extract information from stock returns via  
 

 2 * 21
( ) ' ' , ~ (0, )ˆt t t t t t tr t

t ωµ ω ω σ−∆ −∆− ∆ = + +
∆

1 θ 1 x ,        (3.1) 

 
and from realized volatilities via 
 

   ( ) ( )12 * 2
, , , ,' ' exp , ~ (0, )RV t d n d t t RV t RV t RVt t ωσ ω ω σ−

−∆= + ∆ − − ∆ +  1 θ 1 K I K x . (3.2) 

 
From the option series , ,i SM MM LM= , we extract information via 
 

     2 * 21
, 1 1

( )'1
( ) ( )' , ~ (0, )it

implied it it it t it it i
it it

Aν ε
τ

σ µ τ τ ε ε σ
τ τ

= + + + +  
B

B θ x .  (3.3) 

 
Other than for OU SV, the general SV specification does not yield closed-form 
expressions for the maturity functions 1(1 1) (.)x A  and 1( 1) (.)nx B , which depend 
on the risk-neutral parameters K%  and θ% . 2 The system of Ricatti ODEs that they 
satisfy,  

    
21 1

1 12
1

( )
' ' ( ) ' ( )

n

ii
i

dA
d
τ

τ τ α
τ =

= +   ∑θ K B Σ B% %         (3.4) 

   
21 1

1 12
1

( )
' ( ) ' ( )

n

ii
i

d
d

τ
τ τ

τ =

= − + +  ∑B
K B Σ B β 1% , 

 
can be solved numerically using the boundary conditions 1(0) 0A = and 1(0) =B 0 . 
We use Euler’s method, which replaces differentials with differences. 3 As before, 
we take νµ  the same for each option series as they are all ATMF. Given the Monte 
Carlo evidence discussed in section 4 (and in chapter IV), we next set νµ  equal to 
zero. Cross-sectional heteroskedasticity is modeled by allowing the option error 
series ,{ }SM tε , ,{ }MM tε , ,{ }LM tε  to have their own variance. We may also allow for 
possible non-zero contemporaneous correlation between these series. We assume 
{ }itε  to be uncorrelated with the other error series that appear in the state space 
model, i.e. with ,{ },{ }t RV tω ω  and { }tu . 
 
Exploiting level-dependent volatility-of-volatility 
In discrete time, the hidden factors in deviation from their mean evolve as 
  

* *expt t d t t tt+∆ +∆= − ∆ +  x K x u ,     (3.5) 
 
in which ( 1)nx t t+∆u  is interpreted as the vector of unpredictable shocks to the 
volatility factors from day t  to day t t+ ∆ . Both the unconditional and conditional 
distribution of t t+∆u  is non-Gaussian, except in the OU case. Unconditionally, the 
volatility-factor shocks are white noise with 
 

 ( )~ , ( ) 't t dt+∆ ∆u 0 G ΣM Σ⊙ ,      (3.6) 

                                           
2 This even holds for the 1-factor CIR SV case. We refer to section 14 of appendix B for a discussion.  
3 To be more specific, for each iteration of the loglikelihood optimization we evaluate these functions on 
the interval 

,
[0,max ]it

i t
τ  using a grid of 5000 intermediate points.  
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whereas their conditional distribution satisfies (see appendix B, section 6) 
 
    |t t t+∆ =  u 0�FPE ,       (3.7) 

 { }( )*

1

var | ( ) ' ' ( ) '
n

t t t d i t n i i
i

t t+∆
=

 = ∆ + ∆    ∑u G ΣM Σ β x I σ σFP ⊙ ⊙ ⊙⊗ H . 

 
Moreover, recall the assumptions cov [ , ] ,t s t sω = ∀u 0P , ,cov [ , ]t RV s t sω = ∀ ≠u 0P  
and ,corr [ , ]t RV tω =u cP .  
 
The unconditional state space models stated in section 3.5 of chapter III and so 
far worked with, are based on the unconditional moments of t t+∆u . As such, they 
ignore the fact that the magnitude of tomorrow’s volatility-factor shocks is linked 
to the level of the factors today, which is clear from (3.7). Observed periods of 
volatility clustering yield a rich source of information on the conditional dynamics 
of the volatility process. Hence, more efficient use of information is made if the 
conditional SV dynamics are explicitly acknowledged in the estimation method.    
 
3.2 Conditional state space model and Extended Kalman filter 
 
So how can we incorporate the conditional SV dynamics? In more general terms, 
how can one exploit conditional distributions in the linear state space framework? 
Recall first the general linear (unconditional) state space representation discussed 
in section 2.2 of chapter III. For ,..,t t T t= ∆ ∆  it reads 
 
 't t t t t= + +y a H ξ w , ~ ( , )t 0w R ,   (3.8) 
 t t t t t+∆ +∆= + +ξ d Fξ v ,    ~ ( , )t t+∆ 0v Q , 
 
in which ( 1) tmx y  contains the observable variables, ( 1) trx ξ  is the (partly) 
unobserved state vector, and in which the white noise error series { }tw  and 
{ }t t+∆v  are uncorrelated at all points in time. This representation can be analyzed 
by the Kalman filter, which yields the linear projection of the state vector on the 
data. Estimation is by Kalman filter QML. No further knowledge on the conditional 
distributions of either { }tw  or { }t t+∆v  is required for this.  
 
For our specific purposes however, we would like to incorporate and exploit in this 
framework, the following additional information on the conditional distribution of 
the state innovation t t+∆v , 
 

| ~ ( , )t t t t+∆ 0v QF ,       (3.9) 
 
in which ( )t t t=Q Q ξ  is state dependent. (Notice that [ ]t= EQ Q , i.e., the 
unconditional innovation variance is its expected conditional variance.) We will 
refer to the dynamic system (3.8)-(3.9) as the conditional state space model. In 
order to achieve this, write  
 

 
1
2 , ( 1) | ~ ( , ) ~t t t t t t t r t tt rx+∆ +∆ +∆ +∆≡ ζ ζ 0 I ζFv Q .   (3.10) 

 
Now notice that if tQ  were not state dependent but instead deterministic, we 
would effectively be back in the original framework (3.8) with t=Q Q ; that is, 
the unconditional and conditional variance would coincide in that case.  
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Extended Kalman filter 
However, tQ  is state dependent. As Harvey (1989, p.161) argues, obtaining an 
optimal filter for this type of model is not possible in general. Nevertheless, one 
may resort to an approximate filter known as the Extended Kalman filter. In  
our conditional volatility dynamics setting, the Extended Kalman filter essentially 
amounts to replacing the matrix Q  with the matrix tQ  at time t  in the  
Kalman filter and smoother recursions (2.6) and (2.7), given in section 2.2 of 
chapter III. 4 The state tξ  that appears in ( )t t t=Q Q ξ  is estimated by the 
contemporaneously filtered state |t tξ . In the Gaussian state space framework, 

|t tξ  is defined as | [ | ]t t t t≡ξ ξ YE  and has associated contemporaneously filtered 
state variance matrix | var[ | ]t t t t≡P ξ Y . Unlike the regular filtered state | 1t t −ξ ,  
which uses information until time 1t −  to predict the state at time t , the 
contemporaneously filtered state |t tξ  uses information up to and including time 
t . Harvey (1989, p.162) mentions that the quality of the Extended Kalman filter 
depends on the accuracy of |t tξ  as an estimator of the state tξ .  
 

|t tξ , |t tP  and tQ  can be computed by extending the Kalman filter recursion (2.6) 
in section 2.2 of chapter III with the following equations: 
 

1
| | 1 | 1

1
| | 1 | 1 | 1'

t t t t t t t t t

t t t t t t t t t t t

−
− −

−
− − −

= +

= −

ξ ξ P HE e

P P P H E H P
    (3.11) 

 |( )t t t t=Q Q ξ . 
 
These equations ought to be computed just prior to the prediction equations 
(which calculate 1|t t+ξ  and 1|t t+P ). The equations for |t tξ  and |t tP  are known as 
the updating equations. 
 
Estimation 
The conditional state space model can be analyzed by the Extended Kalman filter 
if the model parameters are known. It generates an estimate of the latent state 
vector given the data. If the parameters are unknown, they may be estimated by 
quasi maximum likelihood as before, but by using the Extended Kalman filter 
equations. We will refer to this method as Extended Kalman filter QML.  
 
Inconsistency of Extended Kalman filter QML 
Recall that in linear Gaussian state space models, the Kalman filter ML estimator 
is consistent, asymptotically normal and (asymptotically) efficient. In linear non-
Gaussian state space models 5 such as (3.8), the Kalman filter QML estimator still 
yields consistent and asymptotically normal estimates (under sufficient regularity; 
see e.g. Hamilton (1994)). The estimates are not efficient however. The Extended 
Kalman filter QML estimator of the linear non-Gaussian conditional state space 
model (3.8)-(3.9) is not even consistent. The reason is that the state tξ  in 

( )t tQ ξ  is not known exactly, but is estimated by |t tξ , and is therefore measured 
with error.  
 
The obvious issue is how large the inconsistency of the Extended Kalman filter 
QML estimator is in our specific setting. Exact results seem impossible to derive. 
As mentioned in chapter III, to estimate affine models of the term structure of 
interest rates, Extended Kalman filter QML has frequently been advocated as a 
favorable estimation method; see e.g., Lund (1997), de Jong (2000) and Duffee 

                                           
4 The unconditional variance matrix Q  is however still needed to initialize the Kalman filter recursion.  
5 See Durbin and Koopman (2001) for numerous examples and an extensive discussion of these models.  
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and Stanton (2001). The Monte Carlo results reported in de Jong (2000) confirm 
the results of Lund (1997), who suggests that for the typical parameter values 
found in estimates of affine interest rate models, the bias in this estimator is 
small. Duffee and Stanton (2001) report similar evidence.  
 
Although we are not dealing with affine interest rate models here, our affine SV 
setting and estimation method show obvious similarities. There is one important 
difference however: Unlike in the interest rate setting, in our SV setting we had to 
perform several approximations to arrive at a linear state space model. This 
motivates the investigation of the bias induced by the approximations, by 
performing a Monte Carlo study towards the 1-factor CIR SV model in section 4.  
 
3.3 System matrices of the conditional state space model 
 
The set up of the conditional state space model (3.8)-(3.9) is given in general 
terms. The measurement equations (3.1)-(3.3) used for information extraction 
and the equations for the discrete-time volatility-factors evolution (3.5)-(3.7) can 
be cast in this framework. The resulting system matrices of the conditional state 
space model are identical to those of the unconditional model; we refer to (3.85) 
and (3.87) in section 3.5 of chapter III for details. The difference lies in the 
introduction of an additional system matrix, var [ | ]t t t t+∆= P FQ v .  
 
If squared returns are included for estimation 
In case squared returns or the combination squared return - option data is used 
for estimation, tQ var [( , ')' | ]t t t t tω +∆ +∆= uP F . The expression for var [ | ]t t t+∆u FP  is 
given in (3.7). Based on an Euler discretization of the stock price SDE, it follows 
that 4 2

0var [ | ] 2 2( ' )t t t t tω σ δ+∆ = = + δ xP F  (and hence 4var [ ] 2 [ ]t tω σ=P PE ), which is 
non-linear in tx . As this is not an exact result however, we choose to leave 
var [ | ]t t tω +∆ FP  unrestricted and take it equal to 2

ωσ  for simplicity, which (using a 
similar argument) we took to be equal to var [ ]tωP . Hence, we assume that 

2var [ | ] var [ ]t t t t tωω σ ω+∆ +∆= =P PF . Given that t tω +∆  represents measurement error 
in the squared returns which are noisy, we expect this simplification to not have 
any major impact, though it evidently simplifies matters greatly. Based on an 
Euler discretization, cov [ , | ]t t t t tω +∆ +∆ =u 0FP . The Monte Carlo evidence reported 
in section 4.3.2 shows that this is a reasonable assumption. The matrix tQ  then 
becomes 

2 '
var |t

t t t

ωσ

+∆

 
=  

    

0
0 uP F

Q .      (3.12) 

 
The appendix states the system matrices in case the squared returns, the SM, MM 
and LM ATMF option series are jointly used for estimation.  
 
If RV data is included for estimation 
In case RV data or the combination RV - option data is used for estimation, 

tQ ,var [( , ')' | ]RV t t t t tω +∆ +∆= uP F , with var [ | ]t t t+∆u FP  given in (3.7). As the 
measurement equation for realized volatility is not exact, we make the following 
(dramatically) simplifying assumptions, 2

, , ,var [ | ] var [ ]RV t t t RV RV t tωω σ ω+∆ +∆= =P PF  
and , ,corr [ , | ] corr [ , ]RV t t t t t RV t t t tω ω+∆ +∆ +∆ +∆= =u c uP PF , such that  
 

    
( )

( )

1
2

1
2

2
, ,

,

' var |

var | var |

RV RV n t t t
t

RV n t t t t t t

ω ω

ω

σ σ

σ

+∆

+∆ +∆

    =  
        

c I u

I u c u

P

P P

F

F F
Q

⊙

⊙

. (3.13) 
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(Note that although the conditional correlation is assumed constant, the condi-
tional contemporaneous covariance between ,{ }RV tω  and { }tu  is time varying.) 
 
 

4.    A Monte Carlo study to the 1-factor CIR SV model 
 
This section performs a Monte Carlo study towards the 1-factor CIR SV option 
pricing model. Section 4.1 considers the 1-factor CIR SV specification and 
discusses some implied properties of the volatility process. Section 4.2 discusses 
the assumptions underlying the simulated data, and outlines the simulation 
strategy. Section 4.3 considers the quality of the linear and parabolic call price 
approximations, and investigates the assumptions underlying the error terms of 
the state space model. Section 4.4 examines the performance of the estimation 
method based on (combinations of) squared return, RV and option data.  
 
4.1 1-factor CIR SV specification 
 
In the 1-factor CIR SV case, the SV specification (2.2)-(2.6) reduces to 6 
 

  2
t txσ =         (4.1) 

 ,( )t t t x tdx k x dt x dWθ σ= − +     (P)   

 ,( )t t t x tdx k x dt x dWθ σ= − +% %% ,    (Q)  
 

in which the risk-neutral parameters are given by k k σγ= +%  and /( )k kθ θ σγ= +% . 
In contrast to the OU case, the market price of volatility risk (2.7) is now time-
varying and given by ,x t txγ γ= . The volatility risk premium equals txσ γ  and 
averages at σ γ θ . The SV option pricing model is fully determined by four 
parameters only: , ,kθ σ  and γ .  
 
The 1-factor CIR SV specification precludes negative stock variances if 

2
0, , 0k θ σ > . As Brownian sample paths are continuous, so are the paths 2{ }tσ  

follows. The stock variance therefore first has to become zero for it to possibly 
become negative. But if it becomes zero, then the diffusion component of the SDE 
drops out, and hence there is temporarily no stochastic variation in the stock 
variance. As both the mean θ  of the process, and the mean-reversion parameter 
k  are positive, the process will then naturally be pulled away from zero towards 
θ . As such, the stock variance will never become negative. If the Feller condition 

22kθ σ≥  holds (Feller (1951)), the upward drift in the CIR factor is sufficiently 
large for the factor to never exactly reach zero.  
 
The main properties of the CIR SV process are the following (see also section 14 
of appendix B). The mean stock variance is given by 2[ ] [ ]t txσ θ= =P PE E ,  
such that the unconditional volatility of returns equals θ  (per annum, as  
we measure time in years). Moreover, 2 2var [ ] var [ ] /2t tx kσ σ θ= =P P . The 
(unconditional) distribution of 2{ }tσ  is non-Gaussian, and has fatter tails than the 
normal distribution. Parameter k  governs the speed at which the stock variance 
reverts back to its mean θ . Using 2 *

t t tx xσ θ= = +  and from (3.5) 

                                           
6 The square root  process was first imported in finance by Cox et al. (1985), who proposed it as a 
model for the short interest rate. Heston (1993) was the first to adopt this process as a model for stock 
volatility. The 1-factor CIR SV model is obtained from imposing 1n = , 0α =  and 1β =  in the 
general multifactor SV model.  
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* *exp( )t t t tx k t x u−∆= − ∆ + , the stock variance at day t t+ ∆  is related to the stock 
variance of day t  via  
  

 2 21 exp( ) exp( )t t t t tk t k t uσ θ σ+∆ +∆= − − ∆ + − ∆ +   .   (P) (4.2) 

 
If 0k =  then 2 2

t t t t tuσ σ+∆ +∆= + , such that the stock variance follows a random 
walk in discrete time, with shocks that persist for ever. The volatility persistence 
is measured by exp( )k t− ∆  on a daily basis. The half-life (in days) of a shock in 
the stock variance is given by ln2 / k t∆ . In equation (4.2), t tu +∆  represents the 
unpredictable shock in the stock variance from day t  to day t t+ ∆ . In the CIR SV 
case it holds that 7 
 

    2 1 exp( 2 )
~ 0;

2t t
k t

u
k

σ θ+∆
 − − ∆ 
    

   (P) (4.3) 

2 2 *1 exp( 2 ) exp( ) exp( 2 ))
| ~ 0;

2t t t t
k t k t k t

u x
k k

σ θ σ+∆
 − − ∆ − ∆ − − ∆   +        

F . 

 
The volatility shock t tu +∆  is thus unconditionally homoskedastic, but conditionally 
heteroskedastic, with a variance that depends on the current volatility-
determining state *

tx . The volatility-of-volatility is indeed level-dependent.   
 
4.2    Simulating from the 1-factor CIR SV option pricing model 
 
Assumptions  
As usual, we assume 260 trading days per annum and denote the timing of  
the daily data points by , 2 ,..,t t t T t= ∆ ∆ ∆ , with 1 /260t∆ = . We simulate for a 
total of T = 1058 daily observations, corresponding to the UK data used in  
our empirical work. As before, we assume 0 5300S = , 8.25%tµ µ= = , 

3.5%tq q= =  and 6%tr r= = . (These values correspond to the information in 
the FTSE100-index data for the period 6 Oct 1997 – 28 Dec 2001, and were also 
used in the 1-factor OU SV Monte Carlo study.)  
 
We simulate time series of squared returns, 10-minute realized volatilities (i.e. 48 
intraday time points per trading day of eight hours) and short-maturity (close-to) 
ATMF call options. The maturity and moneyness of the simulated option series 
exactly match those of the empirical short-maturity ATMF FTSE100-index option 
series, for each t . The average option maturity is 1.4 months. (See section 2.1 of 
chapter IV for details.) Besides permitting a consistent comparison between the 
real-world and simulated call data, in practice, short-maturity ATMF calls are 
typically most liquid, are expected to suffer least from non-synchronicity biases, 
have maximal vega, and hence contain the most valuable volatility information. 
Recall that we advocate the use of such a series if our estimation method is to be 
used in practice. (Again, this is similar as in the OU Monte Carlo study.) 
 
A decision needs to be made on the parameter values with which to simulate  
data from the 1-factor CIR SV model. We consider five “realistic” parameter sets, 
numbered I – V, given in table 4.1. The values are largely based on empirical 
estimates of the Heston (1993) model found in the literature. (The 1-factor CIR 
SV model coincides with the Heston (1993) model, except that it does not model 

                                           

7 In contrast, in the 1-factor OU SV case:   2 1 exp( 2 )
~ | ~ 0;

2t t t t t
k t

u u
k

σ+∆ +∆
 − − ∆ 
    

F . 
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the leverage effect.) We refer to section 5.1 of the next chapter for a more 
complete motivation of these values.  
 
 
Table 4.1: Parameter sets 

Parameter set: I II III IV V 
θ  0.04 0.04 0.04 0.04 0.02 
k  1.50 2.61 5.25 7 7 
σ  0.20 0.30 0.45 0.60 0.30 
γ  -4 -5 -6 -7 -20 
Volatility of returns 20% 20% 20% 20% 14.14% 
Persistence 0.9942 0.9900 0.9800 0.9734 0.9734 
Std.dev. tx  0.0231 0.0263 0.0278 0.0321 0.0113 

k%  0.700 1.11 2.55 2.80 1.00 

θ%  0.0857 0.0941 0.0824 0.100 0.140 
Av.vol. risk premium -3.2% -6% -10.8% -16.8% -12% 
The table reports five parameter sets with implied quantities that will be used for si-
mulating data from the 1-factor CIR SV model (which assumes no leverage effect).  
 
 
Set IV closely corresponds to the empirical estimates we find in section 5.1 for 
the 1-factor CIR SV model. We choose θ  (mean stock variance) the same for 
parameter sets I - IV. We intuitively expect the bias of its estimate to be only 
weakly dependent on its magnitude. This allows us to focus (when moving from 
set I to IV) on the effects on bias of a gradual increase in mean-reversion (k ), 
accompanied by increasing volatility-of-volatility (σ ), which is often observed in 
practice (e.g., Jones (2003)). Set V largely corresponds to Pan’s (2002) findings.  
 
Set up of the Monte Carlo experiment 
To save space, details on the set up of the Monte Carlo experiment are given in 
section 5.1.2 of the next chapter, which outlines how to obtain a simulated data-
set of the Heston (1993) model. As imposing the restriction 0ρ =  (no leverage 
effect) in the Heston (1993) model results in the 1-factor CIR SV model, the steps 
to follow are readily obtained. We therefore refrain from duplication here.  
 
To keep the amount of computations to a reasonable level, we simulate a total of 
150 datasets for each set of parameter values I - V. (To simulate 150 datasets 
takes 41 hours with the program Ox on a Pentium-III computer. Again, see 
section 5.1.2 of the next chapter for additional discussion.)  
 
4.3  Simulation results for 1-factor CIR SV:  
          Call price approximations and error terms state space model 
 
Section 4.3.1 examines the quality of the linear and parabolic call price 
approximations, the magnitude of νµ  and the relative merits measure. Section 
4.3.2 examines the statistical properties assumed for the error terms of the state 
space model. We emphasize what a possible consequence is of the correlation 
found in the option error series regarding diagnostic checking in practice.  
 
4.3.1  Quality of the call price approximations 
 
Linearization and parabolic errors 
From section 3.4 of chapter III, recall the linearized call option price formula: 

* * * *( ) '( ) | '( ) |t t t t t t t t tC g b b g b Y g b HOT= − + +      Q QE EF F . To arrive at a linear 
options measurement equation, we proposed to neglect the linearization error 
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[ | ]t tHOTQE F . We labeled [ 2 | ]t tHOTQE F  the parabolic error. This error appears 
in expression * * * 2

0 1 2( ) ( ) | ( ) | 2 |t t t t t t t t t tC q b q b Y q b Y HOT = + + +       Q Q QE E EF F F , 
being a parabolic approximation of the call price.  
 
Table 4.2 provides the means of the (absolute value of the) relative linearization 
and parabolic errors with standard deviations in parentheses, over the full sample 
of 150*1058 observations, for each parameter set. To interpret the percentages 
in perspective: The average simulated call price equals 163 (std.dev. 68), 164 
(std.dev. 71), 169 (std.dev. 71), 173 (std.dev. 76) and 132 (std.dev. 44) for 
parameter sets I, II, III, IV and V respectively. 8  
 
 
Table 4.2: Summary statistics (absolute value of) relative linearization and parabolic errors 

 [ | ] /t t tHOT CQE F  | [ | ] / |t t tHOT CQE F [ 2 | ] /t t tHOT CQE F | [ 2 | ] / |t t tHOT CQE F

I -0.55% (0.40%) 0.55% (0.40%) 0.02% (0.23%) 0.18% (0.15%) 
II -1.13% (0.70%) 1.13% (0.70%) 0.07% (0.34%) 0.26% (0.22%) 
III -1.89% (0.86%) 1.89% (0.86%) 0.21% (0.45%) 0.38% (0.32%) 
IV -2.94% (1.17%) 2.94% (1.17%) 0.53% (0.64%) 0.64% (0.52%) 
V -1.42% (0.59%) 1.42% (0.59%) 0.12% (0.37%) 0.30% (0.24%) 
The table reports the mean and standard deviation (in parentheses) of the (absolute value 
of the) relative linearization and parabolic errors, for each parameter set I - V.   
 
 
The errors seem rather small in general. (Of course, it is difficult to define what 
exactly is “small” in this context. The ultimate test is eventually how our state 
space estimation method performs.) The linearization error is typically negative, 
the parabolic error positive. A linearization thus typically overestimates the true 
call price, a parabolic approximation generally underestimates the call price. The 
pattern in the errors seems to indicate that the errors become larger the less the 
volatility persistence, and the more the volatility fluctuates (recall table 4.1). 
 
“Parameter” νµ   
From Jensen’s inequality, we showed in section 3.4.2 of chapter III that 

2 1
, 1 1[ ( ) ( )' ]

t
implied t t t tAτσ τ τ≤ +B x . This result provided a second rationale for the  

options measurement equation as 2 1
, 1 1[ ( ) ( )' ]

t
implied t t t t tAν τσ µ τ τ ε= + + +B x , with 

2~ (0, )t εε σ . We outlined how to estimate “parameter” νµ  based on a simulated 
sample of T  observations.  
 
 
Table 4.3: Summary statistics of the 150 νµ -estimates and relative merits measures   
            νµ  νµ  as % of mean 

BS impl.var. 
Relative merits measure 

    Mean      (std.dev.)  Mean     (std.dev.)      Mean     (std.dev.) 
I. -0.00035    (1.1e-5) -0.89%   (0.22%) 0.37%   (0.12%) 
II. -0.00073    (2.6e-5) -1.78%   (0.37%) 0.87%   (0.19%) 
III. -0.00138    (5.3e-5) -3.16%   (0.40%) 1.51%   (0.16%) 
IV. -0.00226    (9.5e-5) -4.91%   (0.56%) 2.31%   (0.17%) 
V. -0.00066    (1.8e-5) -2.54%   (0.22%) 1.11%   (0.09%) 
 
 

                                           
8 The average Monte Carlo standard error of the simulated call price as a percentage of the call price 
equals 0.23% (std.dev. 0.07%), 0.32% (std.dev. 0.09%), 0.43% (std.dev. 0.09%), 0.53% (std.dev. 
0.11%) and 0.37% (0.06%) for sets I–V respectively. Moreover, the mean simulated stock price tS  
equals 6134 (std.dev. 1841), 6135 (std.dev. 1822), 6143 (std.dev. 1832), 6159 (std.dev. 1850) and 
6197 (std.dev. 1381) for sets I-V respectively.  
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Summary statistics of the 150 estimates of νµ  for each parameter set I – V are in 
table 4.3. As expected, νµ  is negative for all datasets. (We checked this for all 
datasets). Its magnitude is close to zero. Its relative magnitude (i.e. νµ  as a 
percentage of the average 2

,implied tσ  over the sample) seems also rather modest.  
 
Relative merits of using a parabolic vs. a linear approximation 
In section 3.4.5 of chapter III, we introduced the relative merits measure as an 
indicative measure to examine if a parabolic (rather than a linear) approximation 
is really worth the additional complexity in the computations. We defined it as 
1 | [ | ] / | | [ 2 | ] / |T

t t t t t t tT HOT C HOT C − ∑ Q QE EF F  *100%, i.e. as the percentual 
difference between the mean absolute relative linearization and parabolic errors.  
 
As table 4.3 shows, the average of the 150 relative merits measures for each of 
the parameter sets I-V does not seem particularly large, except perhaps for 
parameter set IV. Although this indicates that it may be worthwhile to consider a 
parabolic approximation, in the remainder we focus on the simpler, linear 
approximation, and leave the parabolic approximation for future research. 
 
4.3.2  Disturbance terms of the state space model 
 
The validity of the Kalman filter equations depends on the white noise assumption 
for the different disturbance terms that appear in the state space model, i.e. 
{ }tu , ,{ }RV tω , { }tω  and { }tε . We were able to prove that the volatility-factor 
shock series { }tu  is indeed white noise. But what about the other error terms?  
 
Error series ,{ }RV tω  (RV equation) 
Recall section 3.3 of chapter III on RV. In deriving the equation for  
the average variance as 2 21 1

,[ | ]t t t t
t u t u t RV t tt tdu duσ σ ϖ+∆ +∆

+∆∆ ∆= +PE FŸ Ÿ  over day 
[ , ]t t t+ ∆ , we proved that the series ,{ }RV tϖ  is white noise. Based on this 
equation, we next proposed a measurement equation for RV in which we assumed 
its associated error series ,{ }RV tω  to be white noise: 2

, ,~ (0, )RV t RVωω σ . Although 
reasonable, this remains an assumption, as 2

,RV t tσ +∆  measures 21 t t
t ut duσ+∆

∆ Ÿ  with 
error. The simulated data allows us to examine this assumption. 
 
The simulated data confirm that considering ,{ }RV tω  as white noise is indeed 
reasonable. Table 4.4 reports the mean of ,RV tω  over all 150 datasets for each set 
I-V. The means are virtually equal to zero. The ,{ }RV tω -series appear neither 
significantly autocorrelated, nor heteroskedastic unconditionally in general.9  
 
 
Table 4.4: Statistics associated with error series ,{ }RV tω  (RV equation)   

 Mean ,{ }RV tω  ,corr( , )RV t tuω  ,corr( , )RV t t tuω −∆  , 2corr( , )RV t t tuω − ∆  

I. 1.9e-6 0.14 (0.04) 0.00 (0.03)  0.00 (0.04) 
II. 1.5e-5 0.19 (0.04) 0.00 (0.04)  0.00 (0.04) 
III. 1.9e-5 0.27 (0.04) 0.00 (0.04)  0.00 (0.04) 
IV. 2.0e-5 0.33 (0.05) 0.00 (0.05)  0.00 (0.04) 
V. 4.6e-6 0.26 (0.04) 0.00 (0.04)  0.00 (0.04) 
The table reports the mean of ,{ }RV tω , the contemporaneous and “lagged” correlations between  

,{ }RV tω  and { }tu , averaged over all 150 datasets (std.dev. in (.)), for each parameter set I - V. 
 
 
We proved the series ,{ }RV tϖ  and { }tu  to be contemporaneously correlated only, 
with approximate correlation coefficient 0.86. Based on this result, we allow for 
                                           
9 We checked this in EViews for several datasets. To save space we summarize our findings verbally.  
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contemporaneous correlation between ,{ }RV tω  and { }tu  in the state space 
model. As table 4.4 shows, the simulated data supports this assumption. The 
average contemporaneous correlations are much smaller than 0.86, because the 
number of intraday sampling points I  equals 48 only (and not infinity). 
 
Error series { }tω  (Squared return equation) 
Treating the Euler discretization of the stock price SDE as exact, we proved that 
{ }tω  is white noise, and is uncorrelated with { }tu . However, as the discretization 
is not fully exact, these are actually merely assumptions.  
 
The simulated data confirm that considering { }tω  as white noise is indeed 
reasonable. Table 4.5 reports the mean of tω  over all 150 datasets, for each 
parameter set I-V. The means are close to zero. The non-autocorrelatedness and 
homoskedasticity assumptions appear generally supported by the simulated data 
as well. Table 4.5 also reports the contemporaneous, and first and second-order 
lagged correlation coefficients between { }tω  and { }tu , averaged over all 150 
datasets, for each set I-V. The contemporaneous correlation coefficients center 
near zero; the lagged correlations at zero. Assuming { }tω  and { }tu  to be 
uncorrelated seems reasonable.  
 
 
Table 4.5: Statistics associated with error series { }tω  (Squared return equation)   

 Mean { }tω  corr( , )t tuω  corr( , )t t tuω −∆  2corr( , )t t tuω − ∆  

I. -0.00026 0.02 (0.03) 0.00 (0.03) 0.00 (0.04) 
II. -0.00010 0.03 (0.04) 0.00 (0.04) 0.00 (0.04) 
III. -0.00010 0.04 (0.04) 0.00 (0.04) 0.00 (0.04) 
IV. -0.00004 0.05 (0.04) 0.00 (0.04) 0.00 (0.04) 
V. -0.00011 0.04 (0.03) 0.00 (0.04) 0.00 (0.04) 
The table reports the mean of { }tω , the contemporaneous and lagged correlations between { }tω  
and { }tu , averaged over all 150 datasets (std.dev. in parentheses), for each parameter set I - V. 
 
 
Option error series { }tε  
The reason for assuming the option error series { }tε  to be white noise is mainly 
for convenience (see section 3.4.2 of chapter III). In theory, our method for 
extracting information from option prices essentially boils down to replacing a 
deterministic summation term with the random sum tνµ ε+  (recall (3.69) in 
chapter III). This is obviously strange if we believe our theoretical model to 
exactly hold in practice. It is not strange however if we acknowledge that a model 
is never a complete description of reality. In a simulation environment (in which 
theory and reality coincide), we can compute the theoretical “random” error 
series { }tε , and examine if it at least resembles white noise.  
 
As table 4.7 shows, the mean of { }tε  equals zero. Plots of the { }tε -series reveal 
that the homoskedasticity assumption seems reasonable. The series appear to be 
autocorrelated however, as evidenced by table 4.6. This observation is important 
for the following reason. Suppose reality would exactly coincide with the 1-factor 
CIR SV option pricing model, and suppose we apply our state space method for 
extracting information from option prices based on a linearization (assuming one 
SV factor). We know that the theoretical (deterministic) option error series { }tε  is 
“autocorrelated”, whereas the state space model assumes this series to be white 
noise. The issue is now, if this autocorrelation translates into remaining 
autocorrelation in the standardized innovations of the estimated state space 
model, or not.  
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If it does, it will be clear that the ACF of the standardized innovations forms an 
inappropriate guide to judge if one SV factor is enough to describe the dynamics 
in the data. (For example, suppose we find the ACF of the standardized options 
innovations to be 0.20, 0.15, 0.10,… This would lead us to falsely conclude that 
one SV factor is not enough, whereas we know the data was generated by a  
1-factor SV model.) If no autocorrelation is found, the ACF of the standardized 
options innovations of the estimated state space model can be used as usual, to 
examine if the model is dynamically well specified. 
 
 
Table 4.6: Autocorrelation coefficients in the option error series { }tε  

 AC(1) AC(2) AC(3) AC(4) AC(5) 
I. 0.12 (0.04) 0.08 (0.03) 0.05 (0.03) 0.03 (0.03) 0.00 (0.03) 
II. 0.21 (0.05) 0.15 (0.04) 0.10 (0.04) 0.07 (0.04) 0.03 (0.03) 
III. 0.32 (0.05) 0.25 (0.05) 0.20 (0.05) 0.15 (0.04) 0.11 (0.04) 
IV. 0.45 (0.05) 0.38 (0.05) 0.32 (0.05) 0.27 (0.05) 0.22 (0.05) 
V. 0.26 (0.03) 0.20 (0.04) 0.14 (0.03) 0.10 (0.03) 0.05 (0.03) 
The table reports the first five autocorrelation coefficients (AC) of the { }tε -series, 
averaged over all 150 datasets (std.dev. in parentheses), for each parameter set I–V.  
 
 
Therefore, in the next section (which deals with the performance of the 
estimation method), we will also report the ACF of the standardized options 
innovations of the estimated state space model, to examine if the  
“autocorrelation” in the option error series { }tε  found here results in 
autocorrelation in the standardized innovations.  
 
And what about the assumed zero-correlation between { }tε  and the other errors 
{ }tω , ,{ }RV tω  and { }tu ? Table 4.7 shows the reasonability of these assumptions.  
 
 
Table 4.7: Statistics associated with option error series  { }tε  (Options equation)   

 Mean{ }tε  corr( , )t tε ω  corr( , )t t tε ω −∆  2corr( , )t t tε ω − ∆  ,corr( , )t RV tε ω  

I.   1.4e-20 0.01 (0.04)   0.00 (0.03) 0.00 (0.04)  0.00 (0.03) 
II.   2.4e-20 0.00 (0.04)   0.00 (0.04) 0.00 (0.04) -0.01 (0.04) 
III.   5.9e-20 0.00 (0.04)   0.00 (0.04) 0.00 (0.04) -0.02 (0.04) 
IV.  6.6e-20 0.00 (0.04)   0.00 (0.04) 0.00 (0.04) -0.04 (0.04) 
V.  1.5e-20 0.01 (0.04)   0.00 (0.04) 0.00 (0.04) -0.02 (0.03) 
 

 ,corr( , )t RV t tε ω −∆  , 2corr( , )t RV t tε ω − ∆ corr( , )t tuε  corr( , )t t tuε −∆  2corr( , )t t tuε − ∆

I. 0.00 (0.04) 0.01 (0.04) -0.01 (0.03) 0.00 (0.03) 0.00 (0.03) 
II. 0.00 (0.04) 0.00 (0.04) -0.03 (0.03) 0.00 (0.04) 0.00 (0.03) 
III. 0.00 (0.04) 0.00 (0.04) -0.07 (0.03) 0.00 (0.04) 0.00 (0.03) 
IV. 0.00 (0.04) 0.00 (0.04) -0.10 (0.03) 0.00 (0.04) 0.00 (0.03) 
V. 0.00 (0.04) 0.01 (0.04) -0.06 (0.03) 0.00 (0.03) 0.01 (0.03) 
Besides the mean of { }tε , the table reports the contemporaneous and lagged correlations 
between { }tε  and { }tω , ,{ }RV tω  and { }tu , averaged over all 150 datasets (std.dev. in 
parentheses) for each parameter set I–V.  
 
 
For illustration, figure 4.1 shows the error series { }tε , { }tω , ,{ }RV tω  and the 
stock volatility series { }tσ  for a typical simulated dataset, for parameter set III. 
As expected, the effect of level-dependent volatility-of-volatility is visible in the 
graphs of { }tω  and ,{ }RV tω  through conditional heteroskedasticity. (The series 
are unconditionally homoskedastic however.) 
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Figure 4.1: Simulated error terms { }tε , { }tω , ,{ }RV tω  and stock volatility series { }tσ  
for a typical simulated dataset, for parameter set III.  
 
 

4.4   Simulation results for 1-factor CIR SV:  
Performance of the state space estimation method 

 
This section examines the performance of the estimation method. How close are 
the estimates obtained by Extended Kalman filter QML to their true values? Are 
the smoothed and true underlying volatility series close? What data yields the 
best results in this respect? As motivated in the previous section, we pay 
separate attention to the standardized options innovations.    
 
There are several causes of likely bias in the estimates. First, although (Q)ML 
yields consistent estimates, (Q)ML typically exhibits finite-sample bias. Bias is 
therefore likely to be introduced by assuming the time series in each simulated 
dataset to consist of 1058T =  daily observations only (corresponding to the 
FTSE100-index data). This finite-sample bias could in principle be reduced by 
increasing .T  Second, Extended Kalman filter (Q)ML generates inconsistent 
estimates, and may therefore lead to additional finite-sample bias. An obvious 
third source of bias is introduced by the various approximations that we carried 
out to arrive at a linear state space model (i.e., the return, RV and options 
measurement equations). A fourth source is formed by using approximating 
discrete-time processes to simulate from the continuous-time processes. The 
issue of course is, how large the cumulative bias in the estimates is. Is this bias 
parameter dependent? Does it depend on the specific data used for estimation?  
 
4.4.1  Results using squared returns for estimation 
 
Table 4.8 reports the main estimation results if only squared return data is used 
for estimation. Parameter γ  cannot be estimated using return data only.  
 
The bias in the estimates is large. The volatility evaluation criteria RMSPE (root 
mean squared percent error) and MAPE (mean absolute percent error) for 
comparing the smoothed with the true underlying volatility series indicate a poor 
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extraction from the data. As the standard deviations indicate, the estimates of  
mean-reversion and volatility-of-volatility parameters k  and σ  fluctuate wildly.  
 
 
Table 4.8: Estimation results 1-factor CIR SV based on squared return data 

 I II III IV V 
θ    0.039 

  (0.012) 
  0.035 
  (0.014) 

  0.031 
  (0.016) 

 0.022 
 (0.018) 

 0.018 
 (0.005) 

Bias -0.001 -0.005 -0.009 -0.018 -0.002 
MSE   1.4e-4   2.2e-4   3.3e-4   6.6e-4   3.3e-5 

k    6.8 
(17.5) 

17.8 
(41.9) 

32.8 
(68) 

64.9 
(90) 

27.4 
(45.3) 

Bias  5.3 15.2 27.6 57.9 20.4 
MSE 336 1989 5383 11484 2468 
σ   0.41 

(1.22) 
1.26 
(3.16) 

2.98 
(9.98) 

  6.56 
(13.9) 

0.95 
(1.72) 

Bias  0.21 0.96 2.53   5.96 0.65 
MSE      1.5 10.9 106 228 3.4 

RMSPE 
% 

14.4 
(5.1) 

22.3 
(10.3) 

30.2 
(10.2) 

43.3 
(12.4) 

23.2 
(6.5) 

MAPE 
% 

10.6 
(3.8) 

15.8 
(8.6) 

20.9 
(9.5) 

29.5 
(12.3) 

16.9 
(5.8) 

For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The conditional state space model was estimated using squared return 
data only. The average estimates of  θ , k , σ  are reported (std.dev. in parentheses), 
with associated sample bias and MSE. The average RMSPE and MAPE, for comparing the 
smoothed with the true volatilities, are also reported (std.dev. in parentheses).     
 
 
Further investigation reveals what precisely is going on. Figure 4.2 plots the 
estimates of , ,kθ σ  for parameter set III, for which the true values are 0.04θ = , 

5.25k =  and 0.45σ = . It often occurs that θ  is estimated close to zero, which is 
generally accompanied by very large estimates of k  and σ . The other parameter 
sets show similar results, and they become worse when subsequently going from 
set I to IV (as also evidenced by increasing bias and standard deviations).  
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Figure 4.2: Estimates for parameter set III (squared return data), for which 0.04θ = , 

5.25k = , 0.45σ = . 
 
As a possible remedy, we restrict θ  to its method-of-moments estimate ŜqRθ  
(computed as the average of the annualized squared returns in deviation from 
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their mean) prior to estimation. Table 4.9 reports the restricted estimation 
results. Although imposing ŜqRθ θ=  leads to a large bias reduction in the k  and 
σ -estimates, the bias is still very large. Moreover, the volatility evaluation 
criteria have barely improved. Figure 4.3 plots the estimates of , kθ  and σ  for 
set III. As compared to figure 4.2, although extreme estimates of k  and σ  occur 
less frequently and are generally less large, they are still quite common.  
 
 
Table 4.9: Estimation results using squared return data, under the restriction ŜqRθ θ=  

 I II III IV V 
θ   0.040 

 (0.012) 
 0.041 
 (0.011) 

 0.040 
 (0.009) 

 0.040 
 (0.009) 

0.020 
(0.003) 

Bias 0.000  0.001 0.000 0.000 0.000 
MSE 1.4e-4  1.3e-4 7.6e-5  7.8e-5  9.4e-6 

k    5.08 
  (8.36) 

10.8 
(29.9) 

20.9 
(38.7) 

26.8 
(42.7) 

24.6 
(42.2) 

Bias 3.6  8.2 15.6 19.8 17.6 
MSE 83 961 1738 2211 2086 
σ  0.30 

(0.24) 
0.64 
(0.99) 

1.17 
(1.35) 

1.73 
(1.61) 

0.69 
(0.86) 

Bias 0.10 0.34 0.72 1.13 0.39 
MSE 0.07 1.10 2.34 3.86 0.88 

RMSPE 
% 

14.2 
(3.5) 

20.7 
(6.6) 

28.2 
(7.3) 

40.9 
(11.0) 

22.6 
(5.0) 

MAPE 
% 

10.3 
(1.9) 

14.2 
(4.0) 

18.7 
(5.0) 

24.1 
(5.4) 

16.2 
(4.0) 

See table 4.8 for further explanatory legend.  
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Figure 4.3: Restricted estimates for parameter set III (squared return data), for which 

0.04θ = , 5.25k = , 0.45σ = . From top to bottom: ŜqRθ  and  k , σ -estimates.  
 
 
The simulation results confirm that squared returns are generally noisy estimators 
of the stock variance. It typically appears hard to discriminate between what 
should be interpreted as true noise, and what as a true signal in the data 
regarding the data-generating process. Moreover, the results confirm the 
expectation that QML performs poorly in case only squared returns are used for 
estimation, given that the distribution of { }tω  is asymmetric and heavily skewed 
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to the right, and hence departs much from the symmetric, Gaussian distribution. 
(See section 3.2.1 of chapter III for similar findings in the literature.)  
 
We conclude that the use of squared returns only for QML estimation is generally 
not to be advocated, not even if we restrict θ  to its moment estimate prior to 
estimation. We refer to section 3.2.1 of chapter III for SV estimation methods 
based on squared returns that are likely to improve on our method, such as the 
Monte Carlo maximum likelihood procedure of Sandmann and Koopman (1998).  
 
4.4.2  Results using realized volatilities for estimation 
 
Table 4.10 reports estimation results if 10-minute realized volatility data is used 
for estimation. Parameter γ  cannot be estimated in this case. The correlation 
parameter corr [ , ]t t t tc uω +∆ +∆= P  is not identified; we restrict its value to zero.  
 
 
Table 4.10: Estimation results 1-factor CIR SV based on RV data 

 I II III IV V 
θ   0.035 

 (0.014) 
 0.029 
 (0.015) 

 0.022 
 (0.011) 

   0.018 
  (0.010) 

   0.016 
  (0.004) 

Bias -0.005 -0.011 -0.018 -0.022 -0.004 
MSE   2.1e-4   3.4e-4   4.2e-4   5.8e-4   2.7e-5 

k  6.02 
(7.67) 

8.96 
(5.69) 

16.9 
  (5.70) 

15.4 
  (5.54) 

16.5 
  (6.34) 

Bias 4.5 6.4 11.6  8.4  9.5 
MSE 79 73 168 101 130 
σ  0.374 

(0.290) 
0.622 
(0.297) 

1.01 
(0.20) 

1.15 
(0.11) 

0.536 
(0.166) 

Bias      0.17     0.32 0.56 0.55     0.24 
MSE 0.11     0.19 0.36 0.32     0.08 

RMSPE 
in % 

5.8 
(2.4) 

8.0 
(2.5) 

11.5 
  (1.8) 

14.1 
  (1.3) 

8.8 
(2.0) 

MAPE 
in % 

4.5 
(1.9) 

6.2 
(2.0) 

8.9 
(1.4) 

10.6 
 (0.7) 

6.9 
(1.6) 

For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The conditional state space model was estimated using 10-minute  
RV data only. The average estimates of θ , k  and σ  are reported (std.dev. in 
parentheses), with associated sample bias and MSE. The average RMSPE and MAPE, for 
comparing the smoothed and true volatilities, are also reported (std.dev. in parentheses).     
 
 
Although using RV data means a substantial reduction in bias and MSE with 
regard to the k  and σ -estimates as opposed to using squared returns, the bias 
and MSEs are still large. The bias in θ  is larger than if squared returns are used. 
The volatility is much better filtered out in the RV case however. 
 
Also in this case it sometimes happens that θ  is estimated near zero, though less 
frequently than in the squared return case. Plots of the estimates of k  and σ  
show less extreme peaks, and display more constant variation. Figure 4.4 graphs 
the 150 estimates of , kθ  and σ  for parameter set III, for which the true values 
are 0.04θ = , 5.25k = , and 0.45σ = . 
 
Table 4.11 reports estimation results based on RV data only, but with θ  restricted 
to its RV-based moment estimate R̂Vθ  for each dataset, computed as the mean 
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realized variance. 10 Imposing R̂Vθ θ=  leads to a large bias and MSE reduction in 
the estimates of θ  and k , but only modestly affects the estimates of σ . 
Surprisingly, it has virtually no effect on the volatility evaluation criteria.  
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Figure 4.4: Estimates for parameter set III (RV data), for which 0.04θ = , 5.25k = , 

0.45σ = . From top to bottom: θ , k ,σ -estimates. 
 
 

Table 4.11: Estimation results based on RV data , under the restriction R̂Vθ θ=  

 I II III IV V 
θ   0.041 

 (0.012) 
 0.041 
 (0.011) 

 0.040 
(0.008) 

 0.040 
 (0.009) 

0.020 
(0.003) 

Bias  0.001 0.001 0.000 0.000 0.000 
MSE  1.4e-4  1.2e-4  7.1e-5  7.3e-5  9.1e-6 

k  4.82 
(8.28) 

5.56 
(3.30) 

10.3 
 (5.3) 

8.30 
(5.56) 

12.8 
 (4.2) 

Bias      3.3 3.0  5.1 1.3 5.8 
MSE 80 20 54 33 51 
σ  0.362 

(0.273) 
0.584 
(0.270) 

0.958 
(0.189) 

1.11 
(0.102) 

0.501 
(0.142) 

Bias 0.16 0.28 0.51 0.51 0.20 
MSE 0.10 0.15 0.29 0.27 0.06 

RMSPE 
in % 

5.8 
(2.3) 

7.8 
(2.4) 

11.3 
(1.9) 

14.1 
  (1.3) 

8.5 
(1.8) 

MAPE 
In % 

4.5 
(1.9) 

6.0 
(1.9) 

8.8 
(1.5) 

10.6 
 (0.7) 

6.7 
(1.5) 

See table 4.10 for further explanatory legend.  
 
 
The latter finding is attributed to the following. The stock variance can be written 
as 2 *

t t tx xσ θ= = + , in which *
t tx x θ= −  forms part of the unobserved state of the 

state space model, which needs to be estimated along with θ . The mean stock 
variance equals 2 *[ ] [ ] [ ] 0t t tx xσ θ θ θ= = + = + =P P PE E E . Table 4.10 shows that θ  is 
estimated too low on average for all parameter sets, which seems to imply that 
the mean stock variance is consistently estimated too low. However, inspecting 

                                           
10 As shown in appendix IIIc, the realized variance 2

,RV t tσ +∆  is a biased estimator of θ  if one samples 
at a finite number of intraday points I  (as we do here, as 48I = ). Table 4.11 shows that the bias is 
nevertheless small (for these parameter sets).  
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the mean of the smoothed *{ }tx -series reveals that it deviates from zero, in such 
a way that the sum of the θ -estimate and the mean of the smoothed *{ }tx  is 
close to θ . Consider e.g. parameter set III. The average estimate of θ  equals 
0.022, and the average mean of the smoothed *{ }tx  equals 0.0188 (std.dev. 
0.012), which add up to 0.0408, which is close to 0.04θ = . Restricting R̂vθ θ=  
yields an average estimate of 0.0404 for θ , whereas now the average mean 
smoothed *{ }tx  equals 0.000, adding up to 0.0404, which is again close to 

0.04θ = . Apparently, in the RV case it is difficult for the estimation procedure to 
discriminate between the magnitude of θ  and the mean level of *{ }tx , although 
the average volatility level is fitted adequately. (Further investigation reveals that 
this is also the case in the squared return case, though to a lesser extent.) 
 
For illustration, figure 4.5 plots the restricted estimates of , kθ  and σ  for 
parameter set III. Compared to figure 4.4, the estimates of θ  have typically 
shifted upward, those of k  downward, whereas those of σ  have largely remained 
in place. Plots for the other parameter sets reveal the same pattern. 
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Figure 4.5: Restricted estimates for parameter set III (RV data), for which 0.04θ = , 

5.25k = , 0.45σ = . From top to bottom: R̂Vθ  and k , σ -estimates. 
 
 
4.4.3   Results using option data for estimation 
 
Table 4.12 reports the estimation results if only short-maturity at-the-money 
option data is used for estimation. Once option data is included for estimation, all 
four parameters , , ,kθ σ γ  of the 1-factor CIR SV model can be estimated. We 
restrict “parameter” νµ  to zero prior to estimation. 11  
 

                                           
11 Leaving νµ  unrestricted, the BFGS optimization routine often keeps on iterating for a long time: 
Although the gradients associated with the other parameters become 0 quickly, it often cannot get the 
νµ -gradient sufficiently close to 0. Instead this gradient keeps on “switching” between values very 

close to 0. (This also occurs if return–option or RV–option data is used.) Hence, for νµ , there does not 
seem to be a clear, one direction that points to an improvement in the loglikelihood when leaving νµ  
unrestricted. We attribute this to the fact that νµ  is not a true parameter (in a simulation 
environment): It essentially absorbs the linearization error, and this error differs for each option at each 
point in time. (Recall (3.69) in chapter III.) Restricting 0νµ =  does not result in any problems: the 
optimum is quickly reached. Given that νµ  is close to 0 in the simulations, and given the earlier 
reported (Monte Carlo) evidence in the OU chapter, restricting νµ =0 may even be the better “choice”.   
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The use of option data is clearly preferable to either using only squared return or 
RV data. Option data is much more informative on all parameters: both the bias 
and MSE of the estimates are dramatically less. Moreover, the volatility evaluation 
criteria reveal much better volatility extraction.  
 
 
Table 4.12: Results 1-factor CIR SV based on (short-maturity ATMF) option data 

 I II III IV V 
θ    0.040 

  (0.011) 
 0.040 
 (0.011) 

  0.040 
  (0.008) 

  0.039 
  (0.008) 

  0.020 
   0.003) 

Bias 0.000 0.000 0.000 -0.001   0.000 
MSE  1.1e-4 1.2e-4  6.0e-5   6.0e-5   8.6e-6 

k  1.73 
(0.56) 

2.86 
(0.88) 

5.49 
(1.09) 

7.19 
(1.34) 

7.24 
(1.15) 

Bias 0.23 0.25 0.24 0.19 0.24 
MSE 0.37 0.83 1.25 1.82 1.39 
σ  0.202 

(0.007) 
0.304 
(0.011) 

0.461 
(0.016) 

0.616 
(0.021) 

0.306 
(0.014) 

Bias 0.002 0.004 0.011 0.016 0.006 
MSE 5.4e-5 1.2e-4 3.8e-4 7.0e-4 2.5e-4 
γ  -3.9 

 (2.3) 
-4.7 
 (2.6) 

-5.4 
 (2.6) 

-6.3 
 (2.5) 

-19.0 
  (3.8) 

Bias  0.1  0.3  0.6  0.7   1.0 
MSE  5.3  7.0  7.2  6.7  15.2 

RMSPE 
in % 

1.1 
(0.6) 

2.0 
(1.2) 

3.6 
(1.8) 

6.2 
(2.5) 

2.4 
(1.2) 

MAPE 
in % 

0.8 
(0.4) 

1.3 
(0.7) 

2.1 
(1.1) 

3.2 
(1.5) 

1.7 
(0.8) 

For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The conditional state space model was estimated using option data only 
under the restriction 0νµ = . The average estimates of , , ,kθ σ γ  are reported (std.dev. 
in parentheses), with associated sample bias and MSE. The average RMSPE and MAPE, for 
comparing the smoothed and true volatilities, are also reported (std.dev. in parentheses).     
 
 
 
The bias in the estimates of θ  and σ  is small for all parameter sets, and their 
small standard deviations show that the estimates are generally close to their 
true values. The estimates of the mean-reversion and market price of volatility 
risk-determining parameters k  and γ  are biased upward. The relative bias of k  
decreases when moving from very persistent, calmly fluctuating volatility (set I), 
to less persistent, more heavily fluctuating volatility (set IV, which is close to our 
empirical estimates), whereas for γ  it remains more constant.  
 
The large standard deviations of the γ -estimates indicate that this price of risk 
parameter is hard to pin down precisely. We encountered this earlier in the OU 
Monte Carlo study and our empirical work. Moreover, this is a common finding in 
the literature; see e.g. Pan (2002) and the interest rate literature.  
 
Standardized innovations 
Table 4.13 reports the autocorrelation coefficients of the standardized innovations 
in the BS implied variances of the estimated state space model, averaged over all 
datasets (standard deviations in parentheses), for each parameter set I-V. 
Evidently, the theoretical autocorrelation found in the option error series { }tε  
(recall table 4.6) does not translate into remaining autocorrelation in the 
standardized options innovations of the estimated state space model. As such, 
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the ACF of these innovations can be used as usual for examining if the model is 
dynamically well specified in practice.  
 
 
Table 4.13: Autocorrelation coefficients in the standardized innovations 

 I II III IV V 
AC(1) 0.01 (0.02) 0.01 (0.02) 0.00 (0.02) 0.00 (0.03) 0.01 (0.02) 
AC(2) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 
AC(3) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 
AC(4) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 
AC(5) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 

The table reports the autocorrelation coefficients (AC) up to order 5 of the standardized 
innovation series associated with the options measurement equation, averaged over the 
150 simulated datasets (std.dev. in parentheses), for each parameter set I - V. 
 
 
4.4.4   Results using squared return and option data for estimation 
 
Table 4.14 reports the estimation results if both squared return and short-
maturity ATM option data is used for estimation, with νµ  restricted to zero.  
 
This combination of data yields better results than the use of option data alone. 
The bias and MSE in the k ,σ  and γ -estimates has decreased further, and the 
volatility evaluation criteria have (modestly) improved. There are some efficiency 
gains to be obtained from including squared return in addition to option data.   
 
 
Table 4.14: Estimation results 1-factor CIR SV based on squared return - option data 

 I II III IV V 
θ     0.039 

  (0.010) 
   0.040 
  (0.011) 

   0.040 
  (0.008) 

  0.039 
  (0.008) 

  0.020 
  (0.003) 

Bias  -0.001  0.000  0.000 -0.001 0.000 
MSE   1.0e-4  1.2e-4   6.3e-5   6.2e-5  8.4e-6 

k  1.70 
(0.55) 

2.82 
(0.85) 

5.40 
(1.09) 

7.10 
(1.33) 

7.11 
(1.14) 

Bias 0.20 0.21 0.15 0.10 0.11 
MSE 0.34 0.77 1.21 1.77 1.32 
σ  0.201 

(0.007) 
0.303 
(0.011) 

0.458 
(0.017) 

0.614 
(0.024) 

0.304 
(0.015) 

Bias 0.001 0.003 0.008 0.014 0.004 
MSE 5.4e-5 1.3e-4 3.7e-4  7.8e-4  2.4e-4 
γ  -4.0 

 (2.3) 
-4.8 
 (2.6) 

-5.4 
 (2.6) 

-6.3 
 (2.5) 

-19.2 
  (3.7) 

Bias  0.0  0.2  0.6  0.7   0.8 
MSE  5.2  6.8  7.0   6.7  14.0 

RMSPE 
in % 

1.1 
(0.6) 

2.0 
(1.1) 

3.4 
(1.7) 

6.1 
(2.6) 

2.3 
(1.1) 

MAPE 
in % 

0.8 
(0.4) 

1.2 
(0.7) 

2.0 
(1.0) 

3.1 
(1.3) 

1.6 
(0.7) 

For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The conditional state space model was estimated using return - option 
data with 0νµ =  imposed. The average estimates of , ,kθ σ  and γ  are reported 
(std.dev. in (.)), with associated sample bias and MSE. The average RMSPE and MAPE, for 
comparing the smoothed with the true volatilities, are also reported (std.dev. in (.)).    
 
 
As an illustration, figure 4.6 plots the distributions of the estimates for parameter 
set III, for which 0.04θ = , 5.25k = , 0.45σ =  and 6γ = − . Based on the 150 
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estimates of each parameter, the histogram is plotted together with the 
estimated (continuous) density. A normal density with the same mean and 
variance has been superimposed. The graphs provide an indication of the finite-
sample distribution of the state space estimates.  
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Figure 4.6: Histogram, estimated density, and associated normal density (with same mean 
and variance) of the 150 estimates (computed using return - option data) of θ , k ,σ  
and γ  for parameter set III. True values: 0.04θ = , 5.25k = , 0.45σ =  and 6γ = − . 
 
 
Standardized innovations and diagnostic checking 
Table 4.15 reports autocorrelation coefficients of the standardized innovations in 
the BS implied variances (upper part) and squared returns (lower part) of the 
estimated state space model, averaged over the 150 datasets (std.dev. in paren-
theses), for each parameter set I-V. As in the option data-only case, the 
theoretical autocorrelation found in the option error series { }tε  (table 4.6) does 
not translate into remaining autocorrelation in the standardized innovations of the 
estimated state space model. The ACF of these innovations can thus be used as 
usual for investigating if the model is dynamically well specified in practice.  
 
 
Table 4.15: Autocorrelation coefficients in the standardized innovations 

 I II III IV V 
Option:     AC(1) 0.01 (0.02) 0.01 (0.02) 0.00 (0.03) 0.00 (0.03) 0.01 (0.02) 

AC(2) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 
AC(3) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 

Sq.return: AC(1) 0.00 (0.03) 0.00 (0.04) 0.00 (0.05) 0.00 (0.05) 0.00 (0.04) 
AC(2) 0.00 (0.04) 0.00 (0.04) 0.00 (0.04) 0.00 (0.05) 0.00 (0.05) 
AC(3) 0.00 (0.04) 0.00 (0.04) 0.00 (0.05) 0.00 (0.05) 0.00 (0.04) 

The table reports the autocorrelation coefficients (AC) up to order 3 of the std. innovations 
associated with the options (upper part) and squared return (lower part) measurement 
equations, averaged over the 150 simulated datasets (std.dev. in (.)), for each set I - V. 
 
 
What does a typical picture of these standardized innovations look like? And 
important, what do we learn from such a picture for our empirical analysis 
regarding diagnostic checking? Figure 4.7 plots the standardized innovations 
associated with the estimated state space model for a typical dataset, for 
parameter set III. This dataset was also used for illustration in figure 4.1. The 
standardized options innovations look homoskedastic. In contrast, the innovations 
in the squared returns display conditional heteroskedasticity, as a result of 
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volatility feedback: 12 Compare their graph with the stock volatility graph in figure 
4.1. Pictures for the other datasets (and parameter sets) look similar.  
 
If the model is correctly specified, the standardized innovations in the option 
series thus ought to look homoskedastic, both unconditionally and conditionally. 
This suggests the following regarding diagnostic checking: If clear evidence of 
conditional heteroskedasticity is found in the graphs of the option innovations in 
our empirical FTSE100-index analysis, then the level-dependent volatility-of-
volatility present in the data is not adequately (or sufficiently) captured by the 
model that was estimated. This turns out to be an important observation later. 
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Figure 4.7: Standardized innovations of the estimated state space model for a typical 
simulated dataset, for parameter set III.  (This dataset is also used in figure 4.1.) 
 
 
4.4.5  Results using RV and option data for estimation 
 
Table 4.16 reports estimation results based on using both RV and short-maturity 
ATM option data for estimation, with νµ  restricted to zero.  
 
θ  is accurately estimated, and with similar precision as in the squared return – 
option case. The bias in the mean-reversion parameter k  is now close to zero for 
parameter set I and II, whereas for sets III - V the bias is somewhat larger than 
in the squared return - option case, though still seemingly small. Although for the 
other data types we found consequent over-estimation of k  on average, note 
that for parameter sets II - V the bias is now negative, implying under-
estimation. Parameter σ  is very accurately estimated, with negligible bias and a 
small MSE. According to the MSE criterion, parameter γ  is more precisely 
estimated than when using return–option data, although the bias is for sets II - V 
somewhat larger. The combination RV–option data yields the most favorable 
volatility evaluation criteria. Their magnitudes indicate that the state space model 
performs well in extracting the underlying latent volatility series. 
 
There are clear efficiency gains associated with using RV and option data jointly 
for estimation. Overall speaking, we conclude that the combination of RV and 
option data yields the best estimation results.  

                                           
12 This is attributed to our assumption 2var [ | ] var [ ]t t t t tωω σ ω+∆ +∆= =P PF , which was motivated 
by, first, the non-exact Euler discretization, and second, that it simplifies implementation greatly.  
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For illustration, figure 4.8 plots the histogram, estimated density and associated 
normal density (with same mean and variance) of the estimates for parameter 
set III, for which 0.04θ = , 5.25k = , 0.45σ =  and 6γ = − .  
 
 
Table 4.16: Estimation results 1-factor CIR SV based on RV - option data 

 I II III IV V 
θ    0.039 

 (0.011) 
   0.040 
  (0.011) 

 0.040 
 (0.009)  

 0.039 
 (0.008) 

0.020 
(0.003) 

Bias -0.001   0.000 0.000 -0.001 0.000 
MSE    1.1e-4    1.3e-4  7.5e-5   7.3e-5  8.0e-6 

k  1.58 
(0.46) 

 2.60 
 (0.70) 

 5.07 
 (1.05) 

 6.83 
 (1.38) 

 6.75 
 (1.00) 

Bias 0.08 -0.01 -0.18 -0.17 -0.25 
MSE 0.22  0.50  1.14  1.93  1.07 
σ   0.200 

 (0.006) 
 0.299 
 (0.009) 

0.450 
(0.013) 

0.601 
(0.019) 

 0.299 
 (0.010) 

Bias  0.000 -0.001 0.000 0.001 -0.001 
MSE   4.0e-5   8.1e-5  1.8e-4  3.6e-4  1.0e-4 
γ  -4.0 

 (2.1) 
-4.6 
 (2.4) 

-5.1 
 (2.3) 

-6.2 
 (2.3) 

-18.7 
  (3.2) 

Bias  0.0  0.4  0.9  0.8   1.3 
MSE  4.6  5.6  6.0  6.1  11.7 

RMSPE 
in % 

0.7 
(0.4) 
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(2.9) 
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(0.4) 

MAPE 
in % 

0.5 
(0.2) 
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(0.3) 

1.0 
(0.3) 
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 (0.5) 

0.8 
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For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The conditional state space model was estimated using RV and option 
data. The average estimates of , , , ,kθ σ γ ρ  are reported (std.dev. in parentheses), with 
associated sample bias and MSE. The average RMSPE and MAPE, for comparing the 
smoothed with the true volatilities, are also reported (std.dev. in parentheses).     
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Figure 4.8: Histogram, estimated density, and associated normal density (with same mean 
and variance) of the 150 estimates (computed using RV-option data) of θ ,k ,σ  and γ  
for parameter set III.  True values: 0.04θ = , 5.25k = , 0.45σ =  and 6γ = − . 
 
 
Standardized innovations and diagnostic checking 
Table 4.17 reports autocorrelation coefficients of the standardized innovations in 
the BS implied variances and realized variances of the estimated state space 
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model, averaged over the 150 datasets (std.dev. in parentheses). As in the 
option and return-option cases, there is no remaining autocorrelation left. A 
similar account as before thus applies.  
 
 
Table 4.17: Autocorrelation coefficients in the standardized innovations 

 I II III IV V 
Option: AC(1) 0.01 (0.02) 0.01 (0.02) 0.00 (0.03) 0.00 (0.03) 0.00 (0.02) 

AC(2) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 
AC(3) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 

RV:      AC(1) 0.01 (0.04) 0.00 (0.04) 0.00 (0.05) 0.00 (0.05) 0.00 (0.04) 
AC(2) 0.00 (0.04) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05) 0.00 (0.05) 
AC(3) 0.00 (0.04) 0.00 (0.04) 0.00 (0.05) 0.00 (0.05) 0.00 (0.04) 

The table reports the autocorrelation coefficients (AC) up to order 3 of the std. innovation 
series associated with the options (upper part) and RV (lower part) measurement 
equations, averaged over the 150 simulated datasets (std.dev. in (.)), for each set I - V. 
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Figure 4.9: Standardized innovations of the estimated state space model for a typical 
simulated dataset, for parameter set III.  (This dataset is also used in figures 4.1 and 4.7.) 
 
 
Figure 4.9 plots the standardized innovations associated with the estimated state 
space model for a typical dataset, for parameter set III. This dataset was also 
used for illustration in figures 4.1 and 4.7. The standardized options innovations 
look homoskedastic, whereas the RV innovations display conditional 
heteroskedasticity, due to level-dependent volatility-of-volatility. 13 Compare their 
graph again with the stock volatility graph in figure 4.1. Pictures for the other 
datasets (and parameter sets) look similar.  
 
It will be clear that a similar account as in the return - option case regarding 
diagnostic checking thus applies here in the RV – option case as well. 
 
 

5.  FTSE100-index data: Results for 1-factor CIR SV 
  
This section presents estimation results for the 1-factor CIR SV option pricing 
model (the Heston (1993) model without leverage effect) based on the FTSE100-
index data. Section 5.1 reports results based on either only squared return data 
or SM option data, and both. Section 5.2 reports estimation results when the 
returns and the SM, MM and LM option series are jointly used for estimation.  

                                           
13 We attribute this to our simplifying assumption of 2

, , ,var [ | ] var [ ]RV t t t RV RV t tωω σ ω+∆ +∆= =P PF  
which was motivated by the non-exact measurement equation for RV.  
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5.1   Results based on only return data, SM option data, and both 
 
Table 5.1 presents estimation results for the 1-factor CIR SV model. Table 5.1 
may be compared to table 4.1 in the last chapter for the 1-factor OU SV model, 
except for the estimates of σ  and γ  (which cannot be directly compared as the 
model differs). Given the extensive comments on the OU results (sections 4.1-4.4 
of the previous chapter), and given that the implied CIR results are largely 
comparable, we keep the discussion short and focus on the main differences.  
 
 
Table 5.1: Estimation results 1-factor CIR SV (FTSE100-index data; Oct 1997–Dec 2001) 
 Sq.return 

data 
SM option 

data 
SM option 

data 

ŜqRθ θ=  

Sq.return & 
SM option 

data 

GARCH 

θ  0.0318 
(0.0118) 

0.0571 
(0.0131) 

0.0413 
 

0.0441 
(0.0111) 

 

k  143 
(170) 

8.39 
(2.22) 

11.4 
(1.06) 

7.86 
(1.95) 

 

σ  4.69 
(6.40) 

0.805 
(0.059) 

0.805 
(0.054) 

0.689 
(0.0367) 

 

γ     - 0.910 
(2.72) 

-3.30 
(1.11) 

-6.91 
(3.20) 

 

ωσ  0.0453 
(0.0261) 

- - 0.0663 
(0.0063) 

 

εσ   - 0.00075 
(0.00031) 

0.00072 
(0.00025) 

1.15e-5 
(1.84e-5) 

 

Vol. returns 17.8% 23.9% 20.3% 21.0% 20.3% 
Vol-of-var. 0.0495 0.0470 0.0343 0.0365 0.0175 
Persistence 0.577 0.968 0.957 0.970 0.937 
Half-life (days)  1.3 21 16 23 11 
Std.dev. tu  0.0404 0.0117 0.0099 0.0088  
Loglikelihood 1406 3823 3821 5162 3165 
Parameter estimates are in boldface, with robust White (1982) QML standard errors in 
parentheses. We estimated the conditional state space model (3.8)-(3.9) using only return 
data, only SM option data, only SM option data under the restriction ˆ 0.0413SqRθ θ= = , 
and both return - SM option data. Also reported are the unconditional stock volatility θ , 
the volatility-of-the-variance 2 /2kσ θ , the volatility persistence exp[ ]k t− ∆ , the half-life 
(in days) of a volatility shock ln2 / k t∆ , the QMLE of the standard deviation of the daily 
volatility shock tu , and the maximized quasi-loglikelihood value. The last column shows 
comparable quantities for the Gaussian GARCH(1,1) model (4.1) in the last chapter. 
 
 
Notice first that although the OU and CIR SV specifications are nonnested (the 
affine specification nests both however), much larger quasi-loglikelihoods are 
achieved in the CIR case. For example, based on return-option data, the quasi-
loglikelihood in the OU case equals 4761, here it equals 5162. This is indicative of 
the improved data description by CIR SV.  
 
The results based on the squared returns only confirm the simulation results of 
section 4.4.1. The estimated k  and σ  are very large and have large standard 
errors, indicating that the signal in the data is hard to distinguish from the noise. 
In the OU case, we found less extreme estimates however.   
 
Using SM option data only results in a too large θ -estimate it seems. The 
method-of-moment estimate of θ  equals ŜqRθ  = 0.0413, and implies an estimate 
of the mean stock volatility of 20.3%. Restricting θ  to ŜqRθ  does virtually not 
reduce the loglikelihood and gives similar results, except for the market price of 
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volatility risk parameter γ , which is now estimated negative. We encountered this 
before in the OU case, and is illustrative of the seemingly difficult empirical 
identification of θ  and γ  if only option data is used for estimation.  
 
5.1.1    Results based on the combination return - SM option data 
 
We now focus on the results obtained from using both return and SM option data 
for estimation. The stock variance process obeys the Feller condition, and the 
mean stock volatility is estimated near its moment estimate of 20.3%. The upper-
left graph of figure 5.1 shows the smoothed stock volatilities in the 1-factor CIR 
and OU cases in one graph; note the close correspondence.  
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Figure 5.1: Upper-left: Stock volatilities in 1-factor CIR and OU cases (based on return-
SM option data). Upper-right and lower-left: Zooming in: Volatilities around the time of 
the beginning Asian crisis and September 11, 2001. Lower-right: Volatility risk premium. 
 
 
CIR SV appears less persistent than OU SV 
The volatility persistence appears smaller in the CIR case (0.97) than in the 
comparable OU case (0.993). A possible explanation is the following. If the  
1-factor OU SV model is fitted to data which features periods of sudden large 
volatility changes, then it is likely that the estimated volatility path will start rising 
(or falling) too early, in an attempt to capture or fit these “extremes” as well as 
possible. This is because OU volatility-of-volatility is constant and as such, the 
volatility cannot change fast enough. This seems to result in a somewhat 
deceptively high estimated persistence, not because the volatility is truly that 
persistent, but because the OU SV model is actually misspecified in that case. As 
under CIR SV the volatility can change more rapidly due to volatility feedback 
(and is therefore a better data descriptor), it thus makes sense that the CIR 
results indicate a lower volatility persistence.  
 
Zooming in on the stock volatility graph in figure 5.1 in two periods of sudden 
increased turbulence (i.e. the beginning Asian crisis (upper-right graph of figure 
5.1) and the period around September 11, 2001 (lower-left)) seems to confirm 
this reasoning to some extent. 
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A similar discussion as in section 4.2 of the previous chapter on the comparison of 
the 1-factor OU SV volatilities with the GARCH and BS implied volatilities, also 
applies here in 1-factor CIR SV case. Moreover, the option data dominates the 
estimation results if both squared return and option data are used for estimation, 
and an upward (resp. downward) sloping VTS is generally associated with a low 
(high) stock volatility. (We do not report specific results to save space.) 
 
Compensation for FTSE100-index volatility risk 
In the 1-factor CIR SV case, the expected spot return an investor faces when 
investing in a general, path-independent European-style derivative F  equals 
 

 ( ) ( ), , , , ,|t
t t F S t t S t F x t t

t

dF
r x

F
β σ γ β σγ

   = + +    
PE F ,   (5.1) 

 
in which ,F Sβ  and ,F xβ  are the derivative’s stock and volatility beta respectively, 

,t S tσ γ  is the stock risk premium, and txσγ  is the volatility risk premium. In 
contrast to the OU case, the market price of volatility risk is time-varying and is 
given by ,x t txγ γ= , leading to a time-varying volatility risk premium.  
 
Parameter γ  is estimated negative at –6.91 and is significant, indicating that 
market volatility risk is systematic and yields a negative premium. The larger the 
volatility, the more an investor is willing to pay for delta-neutral positive-vega 
derivatives, which yield him consumption insurance. As figure 5.1 shows, the 
magnitude of the volatility risk premium can be substantial. The volatility risk 
premium is largest negative around the times of the Asian crisis, the near-
collapse of LTCM and September 11, 2001. 
 
Volatility risk premium: -21% per annum on average 
The CIR results imply an average volatility risk premium of σ γ θ  = (0.689) 
(-6.91)(0.0441) = -21% per annum for the FTSE100 index over 1997-2001. This 
premium is estimated more negative than in the OU case, for which we found a 
volatility risk premium of –14.6%. (See section 6.3 of chapter II for more 
evidence on volatility risk compensation.) 
 
Straddle return: -195% per annum 
Following a similar strategy as in the OU case (see section 4.3 of the previous 
chapter), the CIR results imply an average expected short-maturity ATMF 
straddle return 14 of –3.75% on a weekly basis (OU: -3.34%). On a monthly, 
respectively annual basis this number equals –16.2% and -195% (OU: -14.5%, 
resp. –174%). The larger the volatility the more negative the expected straddle 
return is. Remember that Driessen and Maenhout (2003) find an average monthly 
empirical return of –13.1%, and Coval and Shumway (2001) an average weekly 
return of –3% on such straddles. These straddle numbers are close, which is 
quite remarkable given that both the datasets and time periods differ. In terms of 
expected returns, writing ATM index straddles seemingly proves very valuable in 
practice. However, straddles involve considerable risk.  
 

                                           
14 In the CIR SV case, the mean spot short-maturity ATMF straddle return is given by 

( ), ,[ / | ] [ ]t t t t Str x t tdStr Str r x dtβ σ γ≈ +PE F . The average (virtually constructed) straddle price 
equals 366. For comparison with the OU results: The average straddle vega (recall our definition 

2
, /t tStr t Str σ= ∂ ∂V ) now equals 4842 (OU: 4161), and the average straddle volatility beta equals 

14.5 (OU: 12.3). The average Black-Scholes vega now equals 795 (recall that the BS vega is defined as 
/t tBS σ∂ ∂ ); in the OU case it was 796. 
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5.1.2    Diagnostic checking 
 
We now turn to specification testing of the 1-factor CIR SV model estimated with 
return - SM option data, and compare the results to the 1-factor OU test results 
reported in section 4.4 of the last chapter.  
 
Figure 5.2 shows the smoothed disturbances of the state space model. Compared 
to the OU case, the option error series { }tε  looks much more homoskedastic. (As 
the scale indicates, the option series is fitted very well.)  
 

1998 1999 2000 2001 2002

0.00

0.25

0.50

0.75

OMEGA 

1998 1999 2000 2001 2002

−2.5e−7

0

2.5e−7
EPSILON 

 
Figure 5.2: Smoothed { }tω  and { }tε -series.   
 
 
Figure 5.3 shows the standardized innovations, which ought to be unit-variance 
white noise if the model is correctly specified. Their respective means equal –0.08 
and 0.01, their variances equal 1.00. As evidenced by table 5.2, although the 
autocorrelations in the innovation series are small, they are significant, as in the 
OU case. As expected, modeling level-dependent volatility-of-volatility does not 
mitigate the autocorrelation. 
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Figure 5.3: Standardized innovations in the squared returns and BS implied variances.  
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As compared to figure 4.7 in the last chapter for 1-factor OU SV, the result of 
explicit modeling of volatility feedback is clearly visible in the lower graph of 
figure 5.3. The standardized options innovations look more (conditionally) 
homoskedastic than in the OU case. 
 
 
Table 5.2: Autocorrelations in the standardized innovations 
Std. innovations in squared returns Std. innovations in SM BS implied variances 
Order AC Q-Stat Prob    Order AC Q-Stat Prob  

1 0.09     9.16 0.002    1 -0.01  0.14 0.71  
2 0.07 13.7 0.001    2 -0.07 5.89 0.05  
3 0.15 36.8 0.000    3 -0.05 8.41 0.04  
4 0.12 52.8 0.000    4  0.05 10.9 0.03  
5 0.06 56.8 0.000    5  0.02 11.5 0.04  

The table reports the autocorrelation coefficients (AC) up to order 5 and the Ljung-Box Q-statistics (Q-
stat) for testing the null of no autocorrelation up to a certain order with associated p-values (Prob).  
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Figure 5.4: Smoothed *

tx , smoothed daily volatility shock tu , conditional standard 
deviation of tu , and standardized volatility shock / var[ | ]t t t tu u −∆F . 
 
 
1-factor CIR SV still does not allow for sufficiently fast changing volatility 
Nonetheless, there still seems to be conditional heteroskedasticity left in the 
standardized options innovations. This suggests that 1-factor CIR SV cannot 
sufficiently adequately describe the volatility feedback present in the data. To 
investigate this further, consider figure 5.4. The upper plot draws the (smoothed) 
volatility factor in deviation from its mean (the state *

t tx x θ= − ), the second plot 
draws the daily volatility shocks tu , and the third plot draws the conditional 
standard deviation of these shocks (see (4.3)). If the model is correctly specified, 

tu  divided by its conditional standard deviation ought to be approximately 
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standard normally distributed. 15 The lower plot in figure 5.4 shows the 
standardized shocks / var [ | ]t t t t tu u+∆ +∆ FP  together with the lines –1.96 and 
1.96, which are exceeded on 4.6% of the days. Their skewness equals 1.13, their 
kurtosis 9.1. The associated Jarque-Bera normality test statistic equals 1861, 
which is larger than the 95%-critical value of 5.99 of its asymptotic chi-
squared(2) distribution under the null. Normality is evidently rejected. 16  
 
Importantly, the graph of the standardized shocks shows that days on which the 
line 1.96 is exceeded (which mean large positive volatility shocks) appear in 
clusters. This suggests that 1-factor CIR volatility does not respond fast enough 
to rapidly increasing market stress. This point is also made by Chernov et al. 
(2003), Eraker et al. (2003), Jones (2003) and Tauchen (2004). Tauchen (2004) 
argues that the problem with the affine specification is that the square-root 
volatility function (i.e. t txσ = ) is concave. As such, sudden large realizations of 
the factors (which are common in times of market stress) have a diminished 
impact on the stock volatility itself, thereby limiting the ability of the affine SV 
model to adequately describe such periods.  
 
1-factor SV: Out-of-sample overpricing of longer-dated options  
As shown in the last chapter, the 1-factor OU SV model generally overprices the 
MM and LM ATM options out of sample. Given similar findings on the Heston 
(1993) model reported in Chernov and Ghysels (2000) and Pan (2002), the  
1-factor CIR SV model (which is the Heston model without leverage 17) is not 
expected to resolve this overpricing. Table 5.3 and figure 5.5 confirm this.  
 
Figure 5.5 shows the “observed” and fitted SM, MM and LM option prices (quoted 
in terms of BS implied volatilities) and their differences, the option pricing errors, 
which summary statistics are given in table 5.3. 18 Although the SM option series 
is virtually fitted perfectly in sample, the out-of-sample overfitting of the longer 
end of the volatility term structure can be considerable.  
 
 
Table 5.3: Summary statistics option pricing errors (1-factor CIR, return – SM option data) 
 Error in SM impl.vol. Error in MM impl.vol. Error in LM impl.vol. 
Mean  0.000% -4.02% -6.08% 
Std.deviation  0.000%  2.18%  2.74% 
 
 

                                           
15 The volatility shock can be written as ,exp ( )t t

t t t s x su k t t s x dWσ+∆
+∆ = − + ∆ −  Ÿ  (see 

appendix B section 6). Although the exact conditional distribution of t tu +∆  is unknown, for small t∆  
the integrand of the Itô integral is approximately constant, such that t tu +∆  is  approximately Gaussian, 
with mean and variance given in (4.3).  
16 Some caution is in place with this procedure of detecting misspecification. First, to compute the 
standardized volatility shocks we use the smoothed tu  and tx , and estimates of the parameters, and 
not their true values. This seems the best we can do. Second, / var [ | ]t t t t tu u+∆ +∆ FP  is only 
approximately normally distributed. Hence, it is not clear if small deviations from normality should either 
be attributed to misspecification, or to the approximate normality, and as such, cannot be considered a 
sign of misspecification. Here the deviation from normality seems obvious however.  
17 The correlation between the daily FTSE100-index returns and daily smoothed stock variance changes 
equals –0.67 (OU: -0.66), which indicates the presence of the leverage effect.  
18 Recall that (in terms of the general multifactor SV model) we compute fitted BS implied volatilities by 

, ,

*1 1
, , 1 , 1 , 1 ,( ) ( )' ( )'ˆ

i t i t
implied i t i t i t i t tAν τ τσ µ τ τ τ+  = + + B θ B x  for ,..,t t T t= ∆ ∆ , , ,i SM MM LM= , in 

which we substitute the parameter estimates and smoothed *{ }tx -series. The option pricing errors are 
computed as , , , , ,error ˆi t implied i t implied i tσ σ= − . 
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Figure 5.5: Fit of the VTS: In-sample fit of the SM BS implied volatility series and out-of-
sample fit of the MM and LM series. Left: “observed” and fitted BS implied volatilities for 
each maturity. Right: their difference, the option pricing errors.   
 
 
 
5.2 1-factor CIR SV:  Estimation results using return, SM, MM 

and  LM option data jointly 
 
The out-of-sample overpricing of the longer end of the VTS by the 1-factor CIR 
SV model is evidence of misspecification. This section reports further evidence 
that indicates the specific type of misspecification: insufficient volatility dynamics.  
 
 
Table 5.4: Results 1-factor CIR SV using return, SM, MM and LM option data jointly 
θ  0.0314 

(0.0192) 

 
, ,corr( , )SM t MM tε ε  0.957 

(0.014) 
k  0.782 

(0.464) 
 

, ,corr( , )SM t LM tε ε  0.691 
(0.198) 

σ  0.319 
(0.019) 

 
, ,corr( , )MM t LM tε ε  0.218 

(0.349) 
γ     -0.931 

(1.48) 
 Loglikelihood 13,324 

ωσ  0.0703 
(0.0057) 

 Vol. Returns 17.7% 

,SMεσ   0.0169 
(0.0012) 

 Vol-of-var. 0.0451 

,MMεσ   0.0047 
(0.00076) 

 Persistence 0.9970 

,LMεσ  0.0020 
(0.00044) 

 Half-life 230 

   Std.dev. tu  0.0035 
Parameter estimates are in boldface; robust White (1982) QML standard errors are in 
parentheses. The conditional state space model was estimated using all data (with 0νµ =  
restricted for all option series), allowing for contemporaneous correlation between the 
three { }itε -series. Also reported are: the unconditional volatility of returns θ , the 
volatility-of-the-variance 2 /2kσ θ , the volatility persistence exp( )k t− ∆ , the half-life of 
a volatility shock ln2 /k t∆ , and the QMLE of the std.dev. of the daily volatility shock tu .  
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Table 5.4 reports the 1-factor CIR SV estimation results in case the four time 
series are jointly used for estimation. (See section 4.5 in the previous chapter for 
the comparable 1-factor OU results.) The volatility persistence is estimated 
smaller than in the OU case. The mean volatility is estimated too low it seems. 
The large positive correlations between the option errors , ,,SM t MM tε ε  and ,LM tε  
suggest that the model lacks sufficient structure. As in the 1-factor OU case, the 
standardized innovations are heavily (and significantly) autocorrelated, see table 
5.5. This naturally motivates the investigation of extended volatility dynamics. 
Figure 5.6 shows the standardized innovations, figure 5.7 the smoothed 
disturbances. These series ought to look like white noise approximately if the 
specification is adequate. This is clearly not the case.  
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Figure 5.6: Standardized innovations  (1-factor CIR SV).   
 
 
Table 5.5: Summary statistics standardized innovations (1-factor CIR SV) 
 Std.inn.  

sq. return 
Std.inn.  

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.28 -0.26  0.01 -0.14 
Std.deviation  0.96  0.95  1.01  1.01 
AC(1)  0.13  0.45  0.71  0.11 
AC(2)  0.11  0.46  0.60  0.17 
AC(3)  0.18  0.47  0.55  0.07 
AC(4)  0.16  0.36  0.50  0.16 
AC(5)  0.10  0.39  0.48  0.14 
Cont.correlation  1.00  0.10  0.15  0.30 

matrix   1.00 -0.03 -0.02 
    1.00  0.09 
     1.00 
The table reports the mean, standard deviation, autocorrelation coefficients (AC) up to 
order 5, and the contemporaneous correlation matrix of the standardized innovations.  
 
 
In-sample fit of the volatility term structure  
Figure 5.8 shows to what extent the 1-factor CIR SV model fits the at-the-money 
VTS in sample. Figure 5.8 shows the observed and fitted BS implied volatilities of 
each maturity, and their difference. The pricing errors can be considerable and 
are not randomly distributed over time. The errors are largest around the times of 
the Asian crises (fall 1997), the near collapse of LTCM (fall 1998) and September 
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11, 2001. These periods were all characterized by sudden commotion in financial 
markets. The 1-factor SV model does not adequately describe these periods.  
 
Table 5.6 reports the mean and standard deviation of the (absolute) pricing 
errors for each option series. The SM option series is fitted worst, the LM series 
best. The estimated 1-factor CIR SV model typically predicts somewhat higher 
option prices than quoted in the market. These findings are similar as in the 
comparable 1-factor OU case. The fit has (only modestly) improved however.  
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Figure 5.7: Smoothed disturbances of the state space model (1-factor CIR SV). 
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Figure 5.8: Fit (in-sample) of the VTS (1-factor CIR SV). Left: observed and fitted BS 
implied volatilities for each maturity. Right: their difference, the option pricing errors. 
 
 
Table 5.6: Summary statistics (absolute) option pricing errors (1-factor CIR SV) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean -0.88% -0.13% -0.14% 2.27% 0.65% 0.37% 
Std.dev.  2.92%  0.92%  0.48% 2.03% 0.67% 0.33% 
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6.    FTSE100-index data: Results for 2-factor affine SV 
 
Given the evidence of the 1-factor CIR SV model not being able to describe the 
rich dynamics observed in the joint data, we next extend to two volatility factors. 
Section 6.1 presents estimation results in case 1 OU and 1 affine factor are 
driving the volatility. Section 6.2 considers the case of 1 CIR and 1 affine factor. 
We covered the 2-factor OU case in section 5.2 of the previous chapter.  
 
6.1 Results 2-factor SV model with 1 OU and 1 affine factor 
 
In their analysis of daily 1953-1999 DJIA stock index return data, Chernov et al. 
(2003) find that two volatility factors are sufficient to adequately describe the 
data generating process. The first factor is found to be very persistent and not 
featuring volatility feedback. The second factor appears quickly mean-reverting 
and does feature volatility feedback.  
 
Given this evidence, as a first extension, let us start by assuming that the stock 
variance is generated by the following 2-factor SV specification: 19 
 

2 2
1 2 1 2,t t t t t tx x d dx dxσ σ= + = +      (6.1) 

with  

1 1 1 1 11 1( )t t tdx k x dt dWθ σ= − +     (P)   

 2 2 2 21 1 2 22 2 2t t t t tdx k x dt dW x dWσ α β= − + + + .  (P) 
 
The OU factor 1x  reverts back to its mean 1θ  at speed 1k , and has constant 
volatility parameter 11σ . The affine factor 2x  reverts back to its mean 2 0θ =  at 
speed 2k . The volatility of 2x  is determined by both the shock in 1x  and an 
autonomous shock, which volatility depends on the current level of 2x . 20 If 

21 0σ = , the factors are independent, otherwise they are correlated with corre-
lation matrix given in (5.8) in appendix B. If 21 0σ > , ceteris paribus, a positive 
(respectively negative) shock in 1x  results in a positive (negative) shock in 2x .  
 
Table 6.1 reports estimation results for model (6.1) in three cases. Case a 
assumes independent factors ( 21 0σ = ) and zero correlation between the option 

                                           
19 This version is obtained by imposing 2 12 22 11 12 21 10, 0, 1, 0, 1θ σ σ β β β α= = = = = = =  in 
the general multifactor affine SV model (2.2)-(2.3). Specification (6.1) is close in line with the estimated 
2-factor OU specification (see last chapter). In the OU case we had to impose 2 0θ =  for identification 
reasons, in the affine case this seems not necessary. It appears however that 1θ  and 2θ  are 
individually difficult to estimate: We tried this for the 1 OU + 1 affine factor case, the 2-factor CIR case, 
and the 1 CIR + 1 affine factor case. First, in all these cases the estimated sum 2

1 2 [ ]tθ θ σ+ = PE  
(the mean stock variance) was not very close to its moment-estimate of ˆ 0.0413SqRθ = , and either 

1θ  or 2θ  was estimated near 0. Moreover, mean(smoothed *
1tx ) and mean(smoothed *

2tx ) were not 
close to 0. Second, 1̂θ , 2̂θ , mean(smoothed *

1tx ) and mean(smoothed *
2tx ) nonetheless added up to 

approximately 0.054 all the time, indicating a seemingly somewhat too high mean stock volatility of 
23%. A possible reason for the first finding is that there is too much “freedom” in the model when both 

1θ  and 2θ  are left free; i.e. a clear signal is lacking. (Each of the four terms that determines the mean 
stock volatility in  2 * *

1 2 1 2 1 2[ ] [ ] [ ]t t tx xσ θ θ θ θ= + + + = +P P PE E E  needs to be estimated or 
filtered out of the data.) Restricting 2θ  to 0 seems to help in this respect. The second finding may 
possibly be attributed to misspecification of the 2-factor SV models.   
20 We have restricted 22 1σ =  for identification reasons: Suppose that x  is a general affine factor  
such that it follows ,( )t t t x tdx k x dt x dWθ σ α β= − + + . This SDE can be rewritten as 

,( )t t t x tdx k x dt x dWθ σ α β= − + +  with 2 2/ , ,c c cσ σ α α β β≡ ≡ ≡ , for arbitrary 0c > , 
which is exactly the same process. As such, , ,α β σ  cannot separately be identified. We choose to 
restrict 1σ = .  



6. FTSE100-index data: Results for 2-factor affine SV 

 219

Table 6.1: Estimation results 2-factor SV model (6.1) using all data (1 OU + 1 affine factor) 
 Case a Case b Case c  Case a Case b Case c 

1θ  0.0397 
(0.0365) 

0.0472 
(0.0398) 

0.0385 
(0.0382) 

corr( , )SM MMε ε 0 0 0.149 
(0.704) 

1k  0.356 
(0.073) 

0.273 
(0.068) 

0.304 
(0.070) 

corr( , )SM LMε ε  0 0 -0.887 
(0.545) 

2k  7.82 
(1.41) 

8.62 
(1.74) 

9.13 
(1.63) 

corr( , )MM LMε ε 0 0 -0.605 
(0.397) 

11σ  0.0565 
(0.0045) 

0.0518 
(0.0041) 

0.0596 
(0.0050) 

Vol. returns 19.9% 21.7% 19.6% 

21σ  0 
 

0.0515 
(0.0081) 

0.0396 
(0.0111) 

Vol-of-var. 0.0794 0.0843 0.0878 

2α  0.0285 
(0.0058) 

0.0246 
(0.0060) 

0.0236 
(0.0054) 

Std.dev. 1tx  0.067 0.070 0.076 

22β  0.381 
(0.058) 

0.454 
(0.071) 

0.368 
(0.062) 

Std.dev. 2tx  0.043 0.040 0.037 

1γ  0.134 
(0.210) 

0.171 
(0.190) 

0.122 
(0.183) 

1 2corr( , )t tx x  0 0.107 0.088 

2γ  -2.86 
(3.09) 

-2.83 
(3.58) 

-4.11 
(3.65) 

Persist. 1x  0.9986 0.9990 0.9988 

ωσ  0.0672 
(0.0057) 

0.0673 
(0.0057) 

0.0673 
(0.0057) 

Persist. 2x  0.9704 0.9674 0.9655 

,SMεσ  1.47e-5 
(1.60e-5) 

1.68e-5 
(1.64e-5) 

8.33e-4
(4.01e-4) 

Half-life 1x  1.9y 2.5y 2.3y 

,MMεσ  0.00201 
(0.00018) 

0.00208 
(0.00015) 

0.00182
(0.00037) 

Half-life 2x  23 21 20 

,LMεσ  0.00206 
(0.00027) 

0.00209 
(0.00024) 

0.00169
(0.00029) 

Std.dev. 1tu  0.0035 0.0032 0.0037 

 
Loglik. 

 
14,475 

 
14,509 

 
14,519 

Std.dev. 2tu  0.0103 0.0101 0.0097 

The table reports (restricted) parameter estimates (in boldface) with robust White (1982) QML standard errors 
in parentheses, resulting from estimating the conditional state space model associated with the 2-factor SV 
assumption (6.1) using the combination of return, SM, MM and LM option data for three cases (see main text), 
together with the QMLEs of some other quantities of interest. Half-life is either reported in days or in years (if 
extension “y” is after the number). The 2-factor SV model (6.1) assumes 1 OU + 1 affine factor. 

errors { }; , ,it i SM MM LMε =  at all times. Case b assumes correlated factors, but 
maintains the assumption of zero option error correlation. Case c assumes 
correlated factors, and allows for contemporaneous option error correlation.  
 

The estimates are rather similar in all cases. The maximized quasi-loglikelihood in 
case (a) equals 14,475. In the comparable 2-factor OU case (Restrictions (a)) it 
equaled 14,305. Assuming yet one volatility feedback-featuring factor 
substantially increases the loglikelihood. 21 Subsequently allowing for factor 
dependence (case (b)), and option error correlation (case (c)) seems to only 
modestly further improve the quasi-loglikelihood as compared to case (a).   
 

 
The large standard errors of the 1θ -estimates suggest that the mean stock 
variance is hard to pin down precisely. An intuitive reason is that 1θ  represents 
the mean of the very persistent factor 1x , for which it takes long before it has 
reverted back to its mean. Shocks to 1x  have a half-life of around 2.3 years. In 
our sample of 4 years this factor does not very often “pass” through its mean, 
which may be the reason for the imprecise estimate. We encountered this 
imprecision before in the 2 and 3-factor OU cases as well.  

                                           
21 At least, it seems substantial. A likelihood-ratio test cannot be performed, as we are dealing with 
quasi loglikelihoods here.   
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Two of the option error correlations are estimated negative (which seems 
counterintuitive), but they are insignificant. Moreover, given that allowing for this 
extra freedom only modestly increases the loglikelihood when moving from case 
(b) to (c), this suggests that we may as well restrict these correlations to zero. 
Parameters 1γ  and 2γ  determine the market prices of volatility-factor risk. In 
none of the cases these parameters are significant, neither are they jointly. 22 
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Figure 6.1: Smoothed  *

1tx , *
2tx , 1tu  and 2tu . Lower panel: conditional standard deviation of 1tu  

and 2tu . (2-factor SV model (6.1) with 1 OU + 1 affine factor, case c) 
 
 
Although the z-statistics associated with 21σ  indicate that the persistent and fast 
mean-reverting factor are significantly correlated, their correlation is low, around 
0.10 (2-factor OU: 0.16). The z-statistics of 22β  indicate that the OU assumption 
for 2x  is strongly rejected, which is as expected.  
 
The standard errors ought be taken with care however, as model (6.1) appears 
misspecified in several respects (apart from leverage). A lack of sufficient 
volatility dynamics appears to be the main misspecification. 23 In addition, 
consider figure 6.1. The upper panel shows the smoothed factors *

1tx  and *
2tx  in 

the least restricted case, case (c). Their course looks similar as in the 2-factor OU 
case. The middle and lower panel show the daily unpredictable factor shocks 1tu  
and 2tu , and their conditional standard deviations (see formula (3.7)). As is clear 
from the graphs of *

1tx  and 1tu , the persistent factor 1x  does feature volatility 
feedback as well (though to lesser extent as the fast mean-reverting factor). This 
contrasts with the findings of Chernov et al. (2003), who find the persistent factor 
to not feature feedback; recall the discussion at the beginning of this section. 
 

                                           
22 The respective Wald test statistics of 1.44, 1.59 and 1.75 are smaller than the 95%-critical value of 
5.99 of their asymptotic chi-squared(2) distribution under the null hypothesis that 1 2 0γ γ= = .  
23 To save space we do not formally report on results of misspecification tests for this model. We will do 
so for the 2-factor SV model with 1 CIR  and 1 affine factor in the next section. 
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Table 6.2: Estimation results 2-factor SV model (6.2) using all data (1 CIR + 1 affine factor) 
 Case a Case b Case c  Case a Case b Case c

1θ  0.0413 
 

0.0413 
 

0.0413 
 

corr( , )SM MMε ε 0 0 -0.111
(0.245)

1k  0.120 
(0.053) 

0.103 
(0.051) 

0.0867 
(0.0471) 

corr( , )SM LMε ε  0 0 0.507
(0.215)

2k  12.1 
(1.34) 

13.2 
(1.36) 

13.5 
(1.33) 

corr( , )MM LMε ε 0 0 -0.473
(0.439)

11σ  0.322 
(0.028) 

0.306 
(0.023) 

0.329 
(0.021) 

Vol. returns 20.3% 20.3% 20.3%

21σ  0 
 

0.252 
(0.064) 

0.173 
(0.086) 

Vol-of-var. 0.1368 0.1415 0.1646

2α  0.0210 
(0.0027) 

0.0170 
(0.0029) 

0.0216 
(0.0041) 

Std.dev. 1tx  0.134 0.137 0.161 

22β  0.365 
(0.059) 

0.311 
(0.066) 

0.349 
(0.065) 

Std.dev. 2tx  0.029 0.027 0.029 

1γ  1.15 
(0.122) 

1.11 
(0.115) 

1.03 
(0.112) 

1 2corr( , )t tx x  0 0.064 0.037 

2γ  -11.5 
(1.73) 

-15.3 
(2.92) 

-13.0 
(2.40) 

Persist. 1x  0.9995 0.9996 0.9997

ωσ  0.0673 
(0.0057) 

0.0674 
(0.0056) 

0.0675 
(0.0057) 

Persist. 2x  0.9547 0.9506 0.9495

,SMεσ  8.20e-6 
(2.30e-5) 

7.32e-7 
(8.68e-7) 

6.31e-7
(2.15e-7) 

Half-life 1x  5.8y 6.7y 8.0y 

,MMεσ  0.00160 
(0.00022) 

0.00172 
(0.00016) 

0.00153
(0.00013) 

Half-life 2x  15 14 13 

,LMεσ  0.00240 
(0.00035) 

0.00235 
(0.00028) 

0.00208
(0.00025) 

Std.dev. 1tu  0.0041 0.0039 0.0042

 
Loglik. 

 
14,648 

 
14,682 

 
14,717 

Std.dev. 2tu  0.0088 0.0085 0.0091

The table reports (restricted) parameter estimates (in boldface) with robust White (1982) QML standard 
errors in parentheses, resulting from estimating the conditional state space model associated with the 2-
factor SV specification (6.2) using the combination of return, SM, MM and LM option data for three cases (see 
main text), together with the QMLEs of some other quantities of interest. Half-life is either reported in days 
or in years (if extension “y” is after the number). 2-factor SV model (6.2) assumes 1 CIR + 1 affine factor.

6.2 Results 2-factor SV model with 1 CIR and 1 affine factor 
 
Given that the persistent factor is also found to feature level-dependent volatility, 
this section reports estimation results in case 1 CIR and 1 affine factor are driving 
the volatility. We assume the following SV specification: 24 
 

2 2
1 2 1 2,t t t t t tx x d dx dxσ σ= + = +      (6.2) 

with 

1 1 1 1 11 1 1( )t t t tdx k x dt x dWθ σ= − +     (P) 

2 2 2 21 1 1 2 22 2 2t t t t t tdx k x dt x dW x dWσ α β= − + + + .  (P) 

 
CIR factor 1x  reverts to its mean 1θ  at speed 1k , with a volatility that depends 
on its current level. Affine factor 2x  reverts back to its mean 2 0θ =  at speed 2k , 
with a volatility determined by the shock in 1x  and an autonomous, level-depen-
dent shock. If 21 0σ = , the factors are independent, else they are correlated.25   
 

 

                                           
24 Imposing 2 12 22 11 12 21 10, 0, 1, 1, 0, 0θ σ σ β β β α= = = = = = =  in the general multifactor 
affine SV model (2.2)-(2.3), yields specification (6.2). 
25 As in the 2-factor OU and 1 OU + 1 affine SV factor cases, we restrict 2 12 0θ σ= = , for reasons 
discussed in earlier footnotes.  
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Table 6.2 presents results for three cases. Case a assumes independent factors 
and zero option error correlation at all times. Case b assumes correlated factors, 
but maintains the assumption of zero option error correlation. Case c assumes 
correlated factors, and allows for contemporaneous option error correlation. In all 
cases we restrict 1θ  to its moment estimate of ˆ 0.0413SqRθ = .   
 
Leaving 1θ  free results in estimates of 1θ  close to zero at about 0.005 in all 
cases, with averaged smoothed *

1tx  and *
2tx  deviating too much from 0. (Recall 

that we encountered similar findings in the Monte Carlo study (see sections 4.4.1 
and 4.4.2).) It is unclear why this happens. The high parameter non-linearity of 
the state space model, combined with the large imprecision found in the 1θ -
estimates in the 2-factor OU, 3-factor OU and 1 OU + 1 affine factor cases (which 
indicates the “instability” of this estimate) may possibly be held responsible for 
this. As such, we advocate restricting 1θ = ˆ 0.0413SqRθ =  from now on. 26  (We do 
not anticipate any major econometric problems regarding e.g. dramatically 
increased inconsistency as a result of imposing this restriction, though it may 
impact on the standard errors.)   
 
The estimates are rather similar in the three cases. Case (a) yields a maximized 
quasi-loglikelihood of 14,648. This seems a considerable increase to the value 
14,475 found in the comparable 1 OU + 1 affine factor case (a). As encountered 
before, modeling factor dependence (case (b)) and option error correlation (case 
(c)) in succession, does not seem to further raise the loglikelihood much.   
 
In comparison to the 1 OU + 1 affine SV factor cases, the persistence of factor 1x  
and the speed of mean reversion of 2x  both further increase. Their correlation 
seems significant but is again small, around 0.05 only. (The standard errors are 
distorted however, as the model appears misspecified.) The option error 
correlations do not seem significant. Remarkably, 1γ  and 2γ  (which determine the 
market prices of the factors) now seem highly significant. (This may possibly be 
attributed to restricting ŜqRθ θ= .) As in the previous 2-factor SV estimations, the 
market price of risk of 1x  is estimated positive, of 2x  negative. The SM option 
series is fitted nearly perfectly, as evidenced by the small ,SMεσ -estimate. The 
estimates indicate that the Feller condition 2

1 1 112k θ σ≥  associated with CIR factor 

1x  is violated. If the Feller condition holds, the upward drift in the CIR factor is 
sufficiently large for the factor to never exactly assume the value zero. The mean 
reversion of 1x  is apparently too slow for the Feller condition to hold.  
 
For further examination and diagnostic checking, we concentrate on the least 
restricted case, case (c). Figure 6.2 shows the smoothed factors *

1tx  and *
2tx . 

Although their course looks similar as in the previously discussed 2-factor SV 
estimations, the mean of *

2tx  (resp. *
1tx ) equals 0.021 (–0.0083) and hence still 

deviates rather much from zero. The middle and lower panel show the daily factor 
shocks 1tu  and 2tu , and their time-varying conditional standard deviations.  
 
Fit of the volatility term structure 
Figure 6.3 shows the observed and fitted SM, MM and LM Black-Scholes implied 
volatilities, and their difference, the option pricing errors. The 2-factor SV 
assumption is a clear improvement over the 1-factor CIR SV assumption (see 
figure 5.8), which is also evidenced by table 6.3 (as compared to table 5.6). The 

                                           
26 We also estimated cases (a), (b) and (c) for the SV specification  2

0 1 2t t tx xσ δ= + +  with 1x  and 
2x  both affine factors for which 1 2 0θ θ= = . This did not lead to much better results: 0δ  was 

estimated around 0.025 and the means of the smoothed *
1tx  and  *

2tx still deviated too much from 0.  
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largest improvement in fit is for the SM and MM option series, with the SM option 
series now fitted virtually perfectly. The pricing error graphs still seem to indicate 
unmodeled dynamic structure however. 
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Figure 6.2: Smoothed  *

1tx , *
2tx , 1tu  and 2tu . Lower panel: conditional standard deviation of 1tu  

and 2tu . (2-factor model (6.2) with 1 CIR + 1 affine SV factor, case c) 
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Figure 6.3: Fit of the VTS (1 CIR + 1 affine SV factor, case c). Left: observed and fitted 
BS implied volatilities for each maturity. Right: their difference, the pricing errors.  
 
 
Table 6.3: Statistics (abs.) option pricing errors (1 CIR + 1 affine SV factor, case c) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean 0.00% -0.01%  0.00% 0.00% 0.20% 0.25% 
Std.dev. 0.00%     0.26%  0.37% 0.00% 0.17% 0.27% 
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Specification tests 
Figure 6.4 shows the standardized innovations, summary statistics are in table 
6.4. The improved data description by the 2-factor SV specification with 1 CIR 
and 1 affine factor as compared to 1 CIR SV factor is obvious (recall figure 5.6 
and table 5.5). The innovations more closely resemble white noise. There still 
seems to be unmodeled conditional heteroskedasticity left however. Although the 
reduction in autocorrelation is apparent, the dynamics in especially the MM option 
series are still not very well described by this 2-factor SV model. 27 
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Figure 6.4: Standardized innovations  (1 CIR + 1 affine SV factor, case c) 
 
 
 
Table 6.4: Summary statistics std. innovations (1 CIR + 1 affine SV factor, case c) 
 Std.inn. 

sq. return 
Std.inn. 

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.19  0.06 0.06  0.06 
Std.deviation  0.98  1.00 1.04  0.96 
AC(1)  0.09 -0.05 0.35  0.16 
AC(2)  0.06 -0.07 0.23  0.07 
AC(3)  0.14 -0.01 0.21 -0.02 
AC(4)  0.11 -0.03 0.17  0.08 
AC(5)  0.05  0.06 0.20  0.04 
Cont.correlation  1.00  0.07 0.03  0.24 
matrix   1.00 0.01 -0.01 
   1.00  0.05 
     1.00 
The table reports the mean, standard deviation, autocorrelation coefficients (AC) up to 
order 5, and the contemporaneous correlation matrix of the standardized innovations.  
 
 
 
Figure 6.5 shows the smoothed disturbances. A comparison with figure 5.7 for  
1-factor CIR SV confirms the much improved data description. But again, these 
pictures seem to indicate a lack of sufficient volatility dynamics. 
 

                                           
27 Based on the Ljung-Box Q-statistic we still reject the null of zero autocorrelation up to order 5 at 5% 
significance for each innovation series, with respective p-values of 0.00, 0.03, 0.00, 0.00.  
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Figure 6.5: Smoothed disturbances (1 CIR + 1 affine SV factor, case c).  
 
 

7.   FTSE100-index data: Results for 3-factor affine SV 
 
The specification analysis for the estimated 2-factor SV model (6.2) naturally 
motivates the consideration of 3-factor SV models. This section reports estimation 
results for 3-factor SV models that allow for volatility feedback. Results for the  
3-factor OU SV model are discussed in section 5.3 of the previous chapter.  
 
We first briefly discuss results for the 1 OU + 2 affine SV factors case, then for 
the 1 CIR + 2 affine SV factors case. Within the class of affine SV models, the 
latter specification appears most adequate for the FTSE100-index data. As such, 
we end with an extensive specification analysis to investigate if the 3-factor affine 
SV model with 1 CIR and 2 affine factors still lacks important features that are 
present in the data, but which it cannot (sufficiently well) describe.  
 
7.1 Results 3-factor SV model with 1 OU and 2 affine factors 
 
We first assume that 1 OU and 2 affine factors are driving the stock volatility. In 
light of Chernov et al. (2003), our main interest here is to investigate if the 
persistent factor features volatility feedback or not, now that we take account of 
the dynamic misspecification of the 2-factor models. We consider the following SV 
specification 28   
 

2 2
1 2 3 1 2 3,t t t t t t t tx x x d dx dx dxσ σ= + + = + +     (7.1) 

with 

1 1 1 1 11 1( )t t tdx k x dt dWθ σ= − +       (P) 

2 2 2 21 1 2 22 2 2t t t t tdx k x dt dW x dWσ α β= − + + +        (P) 

 3 3 3 31 1 32 2 22 2 2 3 33 3 3t t t t t t tdx k x dt dW x dW x dWσ σ α β α β= − + + + + + .  (P) 

                                           
28 Imposing 3n =  and 2 3 12 13 23 22 33 1 10, 0, 1, 1, ,θ θ σ σ σ σ σ α= = = = = = = = =β 0  
together with 21 23 31 32 0β β β β= = = =  in the general multifactor SV specification (2.2)-(2.3) 
leads to this special case. Note that this specification is close in line with the 3-factor OU SV 
specification considered in the last chapter, which facilitates a comparison. In the 3-factor OU case we 
imposed 2 3 0θ θ= =  and took Σ  lower diagonal for identification reasons. Here this seems not 
necessary, but given our experience with the 2-factor estimations from the last section we advocate this 
choice. We impose the restrictions 22 33 1σ σ= =  again for identification reasons.  
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Table 7.1: Estimation results 3-factor affine SV models (7.1) and (7.2) using all data 
 Case 1 Case 2 Case 3  Case 1 Case 2 Case 3 

1θ  0.0413 
 

0.0413 0.0413
 

Vol. returns 20.3% 20.3% 20.3% 

1k  0.0017 
(0.0018) 

0.0017 
(0.0393) 

0.0066
(0.0068) 

Vol-of-var. 0.607 0.969 0.3049 

2k  3.65 
(2.17) 

1.73 
(24.2) 

2.73 
(0.59) 

Std.dev. 1tx  0.605 0.970 0.300 

3k  11.9 
(5.66) 

15.9 
(67.1) 

16.5 
(4.9) 

Std.dev. 2tx  0.040 0.062 0.048 

11σ  0.0354 
(0.0061) 

0.0568 
(0.3184) 

0.170 
(0.035) 

Std.dev. 3tx  0.028 0.027 0.027 

21σ  0 
 

-0.0738 
(0.8383) 

0 
 

1 2corr( , )t tx x 0 -0.04 0 

31σ  0 
 

0.0204 
(1.026) 

0 
 

1 3corr( , )t tx x 0 0.003 0 

32σ  0 0.390 
(5.274) 

0 2 3corr( , )t tx x 0 0.05 0 

2α  0.0117 
(0.0051) 

0.0077 
(0.154) 

0.0128
(0.0060) 

Persist. 1x  0.99999 0.99999 0.99998

22β  0.302 
(0.057) 

0.170 
(0.653) 

0.290 
(0.046) 

Persist. 2x  0.9860 0.9934 0.9895 

3α  0.0186 
(0.0049) 

0.0214 
(0.0621) 

0.0240
(0.0049) 

Persist. 3x  0.9553 0.9407 0.9386 

33β  0.319 
(0.122) 

0.346 
(0.306) 

0.283 
(0.109) 

Half-life 1x  405y 404y 105y 

1γ  0.309 
(0.533) 

-0.081 
(3.99) 

-0.548 
(1.29) 

Half-life 2x  49 104 66 

2γ  -2.58 
(6.77) 

0.748 
(168) 

1.25 
(1.17) 

Half-life 3x  15 11 11 

3γ  -2.48 
(12.5) 

-9.02 
(116) 

-9.12 
(13.7) 

Std.dev. 1tu  0.0022 0.0035 0.0021 

ωσ  0.0670 
(0.0058) 

0.0672 
(0.0063) 

0.0668
(0.0057) 

Std.dev. 2tu  0.0067 0.0071 0.0070 

,SMεσ  0.00111 
(0.00052) 

0.00011 
(0.00184) 

0.00013
(0.00063)

Std.dev. 3tu  0.0083 0.0091 0.0093 

,MMεσ  0.00145 
(0.00014) 

0.00154 
(0.00076) 

0.00147
(0.00012)

    

,LMεσ  0.00195 
(0.00028) 

0.00178 
(0.00329) 

0.00178
(0.00024)

Loglikelih. 14,719 14,743 14,793 

The table reports (restricted) parameter estimates (in boldface) with robust White (1982) QML standard errors 
in parentheses, resulting from estimating the conditional state space model associated with the 3-factor SV 
assumption using the combination of return, SM, MM and LM option data for three cases (see main text), 
together with the QMLEs of some other quantities of interest. Half-life is either reported in days or in years (if 
extension “y” is after the number). Case 1 and case 2 assume specification (7.1) with 1 OU + 2 affine SV 
factors. Case 3 assumes specification (7.2) with 1 CIR + 2 affine SV factors. 

The OU factor 1x  has constant volatility, the affine factors 2x  and 3x  feature 
level-dependent volatility. The factors are independent if 21 31 32 0σ σ σ= = = .  
 
 

 
 
The first two columns of table 7.1 report estimation results for two cases.  
Case 1 assumes independent factors and zero correlation between the option 
errors { }; , ,it i SM MM LMε =  at all times. Case 2 assumes correlated factors, but 
still maintains the assumption of zero option error correlation. As motivated in the 
previous section, we restrict 1θ  to its moment estimate of 0.0413 prior to 
estimation. (Case 3 is discussed in the next section.) 
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Allowing for correlated factors does not lead to a distinct optimum: The BFGS 
optimization routine does not converge and indicates that the quasi-loglikelihood 
is flat near the optimum. 29 In the “optimum”, half of the gradients associated 
with the 18 parameters to be estimated is of order 10-5, the other half is of order 
10-4. This explains the large standard errors in the estimates. Notice that the 
quasi-loglikelihood in the “optimum” does not seem much larger than in the 
independent factors case (1). Apparently, the signal in the data with respect to 
possible factor dependence is too weak to be convincingly filtered out (if it exists 
at all). Allowing for factor dependence seems to lead to an over-specification of 
the model for this dataset. Given our earlier results on insignificant option error 
correlation, we do not further pursue this extension here, as we expect it to lead 
to even more imprecision without further raising the loglikelihood much. 
 
In some sense it is perhaps not so surprising that the signal with regard to factor 
dependence (if it exists) is so weakly present in the data. We have four observed 
time series, the return, SM, MM and LM option series. We assume these series to 
have been generated by our multifactor SV model, for which misspecification 
tests show that three factors are needed to obtain an adequate data description. 
These observed times series are obviously correlated. This correlation can be 
generated even if the three SV factors are independent, simply because each of 
the factors is implicitly present in each time series. The point is basically that we 
try to map four observed correlated time series to a complicated SV structure that 
features three unobserved time series (the factors), which need not necessarily 
be correlated to make the observed correlation possible. This may intuitively 
explain the weak dependence signal. Remember that the estimated  
2-factor SV models yielded small but “significant” factor correlation. Given the 
illustrated lack of dynamics of those models however, this “significance” may well 
deceptively have been caused by this misspecification. 
 

1998 1999 2000 2001 2002

0.000

0.025

0.050

0.075

0.100
X1* 

1998 1999 2000 2001 2002

−0.005

0.000

0.005

U1 

 
Figure 7.1: Smoothed OU factor *

1tx  and its daily unpredictable shock 1tu  in case 1.  

 
 
As in the 3-factor OU SV case, we focus on the independent factors case, case 
(1), as we feel most confident with the results obtained for that specification. 
Figure 7.1 shows the smoothed OU factor *

1x  and its daily unpredictable shock 
                                           
29 Technically speaking, there is no improvement in line search possible in the “optimum”. Different 
starting values, reparametrizations and setting the convergence criteria looser do not lead to a clear-cut 
optimum either.   
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1tu . The plot of 1tu  reveals conditional heteroskedasticity. The OU assumption for 
the persistent factor 1x  is therefore not appropriate. A more realistic modeling of 

1x  is by a CIR factor. To save space we do not further comment on the results for 
case (1). Instead, we directly consider the results for the 1 CIR + 2 affine SV 
factors specification in the next section.  
 
7.2 Results 3-factor SV model with 1 CIR and 2 affine factors 
 
If 1 CIR and 2 affine SV factors are driving the volatility, and if these factors are 
independent, the SV specification reads 
 

2 2
1 2 3 1 2 3,t t t t t t t tx x x d dx dx dxσ σ= + + = + +    (7.2) 

with 

1 1 1 1 11 1 1( )t t t tdx k x dt x dWθ σ= − +     (P) 

2 2 2 2 22 2 2t t t tdx k x dt x dWα β= − + +     (P) 

 3 3 3 3 33 3 3t t t tdx k x dt x dWα β= − + + .    (P) 

 
The third column of table 7.1, Case 3, reports estimation results for this 
specification assuming no option error correlation (recall our earlier discussion). 
Subsequently moving from the 3-factor OU SV assumption (Restrictions a) to the 
1 OU + 2 affine SV assumption (case 1), to the 1 CIR + 2 affine SV assumption 
raises the quasi-loglikelihood from 14,500 to 14,719 to 14,793.  Modeling 1x  as a 
CIR factor instead of an OU factor leads to a rather substantial rise it seems.   
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Figure 7.2: Smoothed *

1tx , *
2tx , daily factor shocks 1tu  and 2tu , and conditional standard  

deviation of 1tu  and 2tu . (SV model (7.2) with 1 CIR + 2 affine SV factors, case 3). 
 
 
Long-term, medium-term and short-term volatility trends 
As in the 3-factor OU SV case (and case (1)), factors 1x , 2x  and 3x  can be 
interpreted as determining the long-term, medium-term and short-term volatility 
trends respectively. Shocks to the long-memory trend are virtually permanent. 
Shocks to the medium-term trend have a half-life of three months. The half-life of 
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shocks to the fast mean-reverting factor 3x  is 11 days. Factor 3x  captures large 
volatility fluctuations in short periods of time: The shocks 3tu  have largest 
variance. As in the 2-factor SV estimations, due to its high persistence, the CIR 
factor 1x  does not obey the Feller condition. 1x  virtually behaves as a random 
walk in discrete time, though features conditional heteroskedasticity.  
 
Figure 7.2 shows the smoothed factors *

1tx  and *
2tx , the daily unpredictable factor 

shocks 1tu  and 2tu , and their conditional standard deviations (computed using 
(3.7)). Figure 7.3 shows *

3tx , 3tu , 3,var[ | ]t t tu +∆ F , the smoothed stock variance 
2

1 2 3t t t tx x xσ = + +  and stock volatility tσ . The course of the factors looks similar 
as in the 3-factor OU SV case.  
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Figure 7.3: Smoothed *

3tx , 3tu  and conditional standard deviation of 3tu . Smoothed stock 
variance 2

1 2 3t t t tx x xσ = + +  and volatility tσ .(1 CIR + 2 affine SV factors, case (3)). 
 
 
Impact on option prices; VTS level, slope and curvature factors 
A second interpretation of the factors concerns their impact on the prices of 
options of different maturity and the dynamics of the ATM volatility term 
structure. The interpretation is similar as in the 3-factor OU SV case. Figure 7.4 
shows the factor loading functions 2

, 1/ ( ) /( )implied t jt j t tx Bσ τ τ∂ ∂ = ; 1,2,3j = , as 
functions of maturity (in years). These functions measure how option prices of 
different maturity respond to changes in the underlying volatility factors. The 
middle plot shows the instantaneous ceteris-paribus response of the BS implied 
variance to a one-standard-deviation shock in each of the factors, as a function of 
maturity, i.e. 1 /2

1( var [ ]) (.) /(.)n tI x BP⊙ . The lower plot shows the responses to 
factors 2x  and 3x  again, but without the response to factor 1x . 
 
Due to its high persistence, long-memory factor 1x  affects option prices of all 
maturities in a similar way. A shock to 1x  results in parallel VTS shifts in which all 
implied volatilities increase with approximately the same amount (ceteris 
paribus). Factor 2x  impacts on all options as well, but its effect gradually tempers 
off the longer the option maturity. Fast mean-reverting factor 3x  has biggest 
impact on the prices of short-maturity options, and does not virtually impact on 
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options with a maturity longer than half a year. As explained earlier (see section 
5.3.2 of the last chapter), given its rapid mean reversion this makes sense.  
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Figure 7.4. Upper plot: Reaction coefficients 1 (.) /(.); 1,2,3jB j =  as a function of option 
maturity (in years). Middle: Instant responses of the BS implied variances to 1-standard-
deviation shocks in each of the factors, as a function of maturity. Lower: Same as middle 
plot, but without the response to 1x . (1 CIR + 2 affine SV factors, case 3). 
 
 
Figure 7.5 confirms the earlier given interpretation to factors 1x , 2x  and 3x  as 
being largely associated with the level, slope and convexity dynamics of the ATM 
VTS respectively. The magnitude of the correlations between 1x , 2x− , 3x  and the 
level, slope and curvature is similar as in the 3-factor OU SV case.  
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Figure 7.5. Left: Evolution of level, slope and curvature of the VTS through time. Right: 
Smoothed * *

1 2,x x−  and *
3x . (1 CIR +  2 affine SV factors, case 3).  
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Market prices of risk and factor risk premia 
In the general multifactor affine SV model, the expected spot return to be earned 
on an arbitrary, path-independent European-style derivative F  is given by 

 

( ) ( ), , , , , ,| 't
t t F S t t S t F x t t x t

t

dF
r dt

F
β σ γ

   = + +    
β ΣΛ γPE F ,  (7.3) 

 
with ,x t t=γ Λ γ  the vector of market prices of factor risk, and 2

,t x t t=ΣΛ γ ΣΛ γ  
the vector of volatility-factor risk premia. For the current special case, the market 
prices of risk associated with the CIR and affine factors are given by, respectively, 

1 1 1t txγ γ= , 2 2 2 22 2t txγ γ α β= +  and 3 3 3 33 3t txγ γ α β= + . The factor risk premia 
are given by 11 1 1txσ γ  for CIR factor 1x , and 2 2 22 2[ ]txγ α β+  respectively 

3 3 33 3[ ]txγ α β+  for the affine factors 2x  and 3x .   
 
As in the 3-factor OU SV case, 1γ  and 3γ  are estimated negative, 2γ  positive, and 
none of these parameters differs significantly from zero. Neither do they jointly: 
The Wald test statistic for testing the joint significance of 1γ , 2γ  and 3γ  equals 
2.14, which is smaller than the 95%-critical value of 7.82 of its asymptotic chi-
squared(3) distribution under the null hypothesis. Figure 7.6 shows the factor risk 
premia over time in percents per annum. According to the estimation results, the 
QMLE of the average risk premium associated with factor 1x , respectively 2x  and 

3x , equals –0.38%, 1.60% and –22%. In the 3-factor OU SV case we found risk 
premia of –0.14%, 3.9% and –26%, which are rather comparable in magnitude. 
We refer to section 5.3.3 of the previous chapter for an interpretation and 
discussion of these risk premia.  
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Figure 7.6. Risk premia (in % per annum) associated with the volatility factors 1x ,  

2x  and 3x  . (3-factor SV model (7.2) with 1 CIR +  2 affine SV factors, case 3).  
 
 
Fit of the volatility term structure 
Figure 7.7 shows the in-sample fit of the VTS. In contrast to the 1-factor CIR SV 
results (figure 5.8) and the 2-factor SV results with 1 CIR and 1 affine factor 
(figure 6.3), the option pricing errors seem randomly distributed now, with no 
apparent systematic structure left. The improved fit is also obvious from table 7.2 
as compared to tables 5.6 and 6.3. All pricing errors concentrate around zero now 
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and are generally small. Remarkably, the statistics are not much different from 
those obtained in the 3-factor OU SV case (see table 5.6 in the previous chapter).  
We refer to section 5.3.4 in the last chapter for an explanation of the logical 
pattern that has emerged in the option pricing errors, from having considered 1, 
2 and 3 SV factors in succession.  
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Figure 7.7: Fit of the VTS. Left: observed and fitted BS implied volatilities for each 
maturity. Right: difference, the pricing errors. (1 CIR + 2 affine SV factors, case 3). 
 
 
 
Table 7.2: Summary stat. (abs.) pricing errors (1 CIR + 2 affine SV factors, case 3) 
 Error SM Error MM Error LM |Error SM| |Error MM| |Error LM| 
Mean 0.00%  0.00%   0.00% 0.00% 0.17% 0.19% 
Std.dev. 0.00%  0.22%   0.29% 0.00% 0.14% 0.22% 
 
 
7.2.1   Specification analysis of the 3-factor affine SV model with  

  1 CIR and 2 affine volatility factors 
 
This section considers diagnostic checking. Does the 3-factor affine SV model with 
one CIR and two affine volatility factors provide a satisfactory description of  
the joint FTSE100 stock-index and option data, or has the model still some 
important shortcomings? If it does, what modeling features does it lack? Given 
the evidence, we revisit compensation for volatility risk and outline some 
promising areas for future research.  
 
Leverage effect 
The leverage effect is not modeled. To get an idea of its magnitude, the 
correlation between the observed daily FTSE100-index returns and daily changes 
in the smoothed stock variance equals –0.66. We found an equal correlation in 
the 3-factor OU SV case. As already mentioned in the previous chapter, it seems 
unlikely that this misspecification invalidates most of our findings, given our focus 
on ATM options only. The next chapter shows by simulation that the VTS of ATM 
options is hardly affected by the leverage effect. (In contrast, leverage does 
affect the prices of in and out-of-the-money options.) 
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Remaining conditional heteroskedasticity 
Figure 7.8 plots the smoothed disturbances of the state space model associated 
with the squared return and options equations. Compared to the 1-factor CIR SV 
case (figure 5.7) and the 2-factor SV case with 1 CIR and 1 affine factor (figure 
6.5), the disturbances resemble white noise closest in the 3-factor SV case. 
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Figure 7.8: Smoothed disturbances (1 CIR + 2 affine SV factors, case 3). 
 
 
Comparing figure 7.9 to figures 5.6 and 6.4 reveals that the standardized options 
innovations resemble white noise closest in the 3-factor SV case as well. Table 
7.3 confirms this. Most autocorrelations are near zero now, although the Ljung-
Box Q-test still rejects the null hypothesis of zero autocorrelation up to order 5 
for all but the SM option series, with respective p-values of 0.000, 0.653, 0.000 
and 0.000. The magnitude of the autocorrelations is similar as in the 3-factor OU 
SV case, which is as expected: Explicit modeling of level-dependent volatility-of-
volatility (heteroskedasticity) does not influence the autocorrelation structure in 
any major way.  
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Figure 7.9: Standardized innovations (1 CIR + 2 affine SV factors, case 3). 
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Table 7.3: Summary stat. std.innovations (1 CIR + 2 affine SV  factors, case 3) 
 Std.inn. 

Sq. return 
Std.inn. 

SM series 
Std.inn. 

MM series 
Std.inn. 

LM series 
Mean -0.14 -0.03  0.03  0.01 
Std.deviation  0.99  0.98  1.02  0.97 
AC(1)  0.09  0.04  0.16  0.10 
AC(2)  0.06 -0.02  0.03  0.03 
AC(3)  0.14 -0.01 -0.03 -0.08 
AC(4)  0.11 -0.03 -0.01  0.05 
AC(5)  0.05  0.00  0.05  0.03 
Cont.correlation  1.00  0.10  0.04  0.22 
matrix   1.00 -0.06  0.13 
    1.00 -0.08 
     1.00 
The table reports the mean, standard deviation, autocorrelation coefficients (AC) up to 
order 5, and the contemporaneous correlation matrix of the standardized innovations.  
 
 
The graphs of the smoothed disturbances and standardized options innovations 
nevertheless still seem to feature periods of moderate conditional heteroskedas-
ticity, with the occasional “extreme” value occurring. This is the case notably in 
the fall of 1997 and 1998, and around September 11, 2001. These periods were 
characterized by unusual turmoil in world financial markets. If the 3-factor affine 
SV model with 1 CIR and 2 affine factors were correctly specified, conditional 
heteroskedasticity ought to be absent from the standardized options innovations.  
 
Jumps in returns? 
The plots suggest that the 3-factor affine SV specification does not capture all 
features of the joint FTSE100 stock-index and option data. For example, it might 
be the case that extending the SV specification with jumps in returns results in a 
more realistic data description.  
 
Let us explore if such jumps are “really needed”. 30 The upper graph of figure 
7.10 shows the observed prewhitened FTSE100-index returns, i.e., ˆt t tr tµ+∆ − ∆ . 
Any real jumps in the daily returns do not seem to occur, the one exception 
perhaps being the larger return at September 11, 2001. To examine this in more 
depth, recall that if our model is correctly specified, the daily stock returns are 
conditionally approximately normally distributed, 2| ( , )t t t t tr t tµ σ+∆ ≈ ∆ ∆F N . The 
standardized returns are therefore approximately standard Gaussian, 
 

 | (0,1)t t t
t

t

r t

t

µ
σ

+∆ − ∆
≈

∆
F N ,      (7.4) 

   
but with a kurtosis somewhat larger than 3 due to SV. As such, the distribution of 
the standardized FTSE100-index returns provides intuitive insight if it is probable 
that jumps in the (daily) returns have occurred. The middle graph of figure 7.10 
shows the estimated density of the standardized returns (computed using the 
parameter estimates and smoothed factors, which obviously has its drawbacks, 

                                           
30 Arguably, a realistic model should include jumps in returns. For example, Black Monday (October 19, 
1987) may be considered a jump event. Moreover, our model generates continuous stock price paths, 
whereas real stock prices change discontinuously as well. From a practical point of view however, jumps 
create problems with hedging. Our modest aim here is to explore only if such jumps occur that 
frequently at the daily horizon, that they should evidently not be left out from the specification, if the 
model is used for derivative pricing and hedging in practice. Problem remains of course, how to identify 
such jumps: Is an unusual return truly a jump, or is it just a low-probability realization of the DGP? We 
will not perform a formal analysis here, but instead we look at the data and do some intuitive analysis.  
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but seems the best we can do), with a Gaussian density with the same mean and 
variance superimposed (dashed). The standardized returns have a mean of 0.04, 
a standard deviation of 0.97, a skewness of 0.33 and a kurtosis of 4.2. 31 The 
lower graph shows the standardized returns and the lines 1.96 and –1.96, which 
are exceeded on 4.4% of the days (which is rather close to 5%). These days 
seem rather randomly distributed over the sample. Extreme realizations of the 
standardized returns do not seem to occur, except perhaps at September 11. This 
suggests that the non-modeling of jumps in returns is not a serious shortcoming 
for the FTSE100-index data.  
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Figure 7.10: Prewhitened FTSE100-index returns, estimated density of the standardized 
returns (7.4) with a Gaussian density (dashed) superimposed. Lower plot: Standardized 
returns and the lines 1.96 and –1.96. (1 CIR + 2 affine SV factors, case 3). 
 
 
Jump or volatility (jump) risk premium? Pan (2002) revisited 
Given this jumps-in-returns analysis, if one is willing to believe in the absence of 
clear jumps in returns (or at least, in the presence of too infrequent jumps), this 
has important implications for risk compensation in practice. If there are no 
jumps in returns, there is no possible compensation for jumps-in-returns risk. We 
found the risk premium associated with the fast-mean reverting volatility factor to 
be largest negative, -22% on average. This suggests that investors are paying for 
short-term volatility risk. Pushing this further, based on the lower plot of figure 
7.13 (which is explained below), this risk premium may perhaps partly be 
attributed to possible jumps in volatility. 32 
 
Now recall that Pan (2002), who fits the (1-factor SV) Heston (1993) model with 
jumps in returns (the Bates (2000) model) to weekly 1989-1996 S&P500 stock 
index and option data, finds that the jump risk premium dominates by far the 
volatility risk premium. However, Pan finds evidence indicating the possibility of 
jumps in volatility (which she did not model).   
 
                                           
31 The Jarque-Bera test statistic equals 83, which is larger than 5.99, indicating non-normality.  
32 Bates (2000) conjectures the presence of jumps in volatility. Eraker et al. (2003) estimate a 1-factor 
affine SV model with both jumps in returns and in volatility using S&P500 and Nasdaq100-index returns 
(but do not include options) for the periods 1980-1999 and 1985-1999 respectively. They find evidence 
of the presence of both types of jumps in the data.    
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So, may it be the case that these possible volatility jumps are actually responsible 
for the large negative jumps-in-returns risk premium that Pan finds? Pan (2002) 
ends her article with “In other words, simply adding jumps in volatility will not 
replace the role of premia for price jumps.” [..], but mentions a potential scope 
for jumps-in-volatility risk premia. However, in a footnote, Pan also mentions that 
“Statistically, jumps in volatility and jumps in prices could result in similar price 
movements. Investor’s aversion to these jump risks, however, could be quite 
different.” [..], thereby pointing to her co-authored paper of Liu et al. (2001), 
who find that both types of jumps have distinctively different implications for 
investor’s asset allocation.  
 
Given our own empirical evidence, and given the evidence in Pan (2002), the  
last word on volatility-risk, jumps-in-returns risk and jumps-in-volatility risk 
compensation has evidently not been said. This forms a promising (and obviously 
econometrically challenging) area for future research.  
 
3-factor affine SV still does not allow for fast enough changing volatility 
The plot (7.9) of the standardized options innovations suggests that the 3-factor 
affine SV model with 1 CIR and 2 affine volatility factors cannot capture all 
conditional heteroskedasticity present in the data. We now examine the nature of 
this finding by performing additional volatility analysis. 
 
Consider the change in the stock variance from day t  to the next day, day  
t t+ ∆ , defined as 2 2 2

t t t t tσ σ σ+∆ +∆∆ ≡ − . Given time- t  information, its conditional 
expectation equals 
 

 ( )2 *| ' expt t t d n ttσ +∆ ∆ = − ∆ −    1 K I xPE F ,    (7.5) 

 
which follows from (2.11) and the fact that 2 *' ' 't t tσ = = +1 x 1 x 1 θ . The 
conditional variance of the stock variance change equals  
          (7.6) 

     { }( )2 *

1

var | ' ( ) ' ' ( ) '
n

t t t d i t n i i
i

t tσ +∆
=

 
   ∆ = ∆ + ∆      

∑1 G ΣM Σ β x I σ σ 1P F ⊙ ⊙ ⊙⊗ H , 

 
as 2 2var [ | ] var [ | ]t t t t t tσ σ+∆ +∆∆ =P PF F  with 2var [ | ]t t tσ +∆ FP  given in (2.12). Figure 
7.11 shows the smoothed stock variance 2

tσ , the day-to-day change in the stock 
variance 2

t tσ +∆∆ , and the conditional standard deviation of 2
t tσ +∆∆  (and thus 2

tσ ). 
 
The evolution of the conditional standard deviation of 2

tσ  confirms the ability of 
the affine SV model to describe volatility feedback: If the volatility is large (resp. 
small), the volatility-of-volatility (the conditional standard deviation) is also large 
(small). What is not clear from this picture however, is the extent in which it can 
describe this feedback. In other words, can the volatility-of-volatility (i.e., the 
conditional standard deviation) under the affine SV specification change fast 
enough to be able to capture the occasional periods of very fast changing 
volatility?  
 
To explore this in more detail, consider the conditional distribution of the daily 
stock variance change in the multifactor affine SV model. Although the mean and 
variance are known, the exact distribution of 2

t tσ +∆∆  is unknown. Its conditional 
distribution is approximately Gaussian however, because 

 
2 '( )t t t t tσ +∆ +∆∆ = −1 x x        (7.7) 
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( ) *
,' exp[ ] ' exp ( )

t t

d n t d u x u

t

t t t u d
+∆

= − ∆ − + − + ∆ −  ∫1 K I x 1 K ΣΛ W , 

 
which follows from appendix B, (2.6). Given time- t  information, for small t∆  the 
integral in (7.7) -and hence 2

t tσ +∆∆ - is approximately normally distributed. The 
exact distribution may be regarded as a “random continuous mixture of normals”, 
and is therefore characterized by (somewhat) fatter tails than the normal 
distribution. This analysis shows that the z-score of 2

t tσ +∆∆ , which we define as 
 

    ( )2 2 2z-score | / var | (0,1)t t t t t t t t t tσ σ σ+∆ +∆ +∆ +∆   ≡ ∆ − ∆ ∆ ≈   P PE F F N , (7.8) 

 
is approximately standard Gaussian, given time- t  information.  
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Figure 7.11: Smoothed stock variance 2

tσ , daily change in stock variance 2
tσ∆ , and 

conditional standard deviation of 2
tσ  and  2

tσ∆  (which coincide, i.e. (7.6) ). (3-factor SV 
model (7.2) with 1 CIR + 2 affine SV factors, case 3).  
 
 
Given the estimation results for the 3-factor affine SV model, realized z-scores 
can be computed. These z-scores can be used to (intuitively) examine if the 
model is correctly specified for the FTSE100-index data, and in particular, if the 
volatility-of-volatility under the affine SV specification allows for sufficiently fast-
changing volatility. If the distribution of the z-scores deviates too much from 
Gaussianity, then this suggests misspecification. 33 
 

                                           
33 Evidently, care is in place with this procedure of detecting misspecification. First, to compute z-scores 
we use estimates of the parameters and unobserved factors (i.e. the smoothed factors) and not their 
true values. This seems the best we can do, and is common practice in other areas of econometrics; 
think about e.g. performing tests on the standardized returns of a GARCH model, or (indeed) our 
jumps-in-returns analysis above. There is a difference however: In the GARCH case we do at least 
observe the returns, whereas here we do not observe the realized 2

t tσ +∆∆ , but use an estimate as 
well.  Second, the z-score is conditionally only approximately normally distributed. Hence, it is not clear 
if small deviations from normality should either be attributed to misspecification, or to the approximate 
normality, and can therefore not be considered a sign of misspecification. Last, we will not perform any 
formal statistical tests to examine the misspecification, but base ourselves on “eyeball evidence”. 
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Figure 7.12 shows the realized z-scores (together with the lines 1.96 and –1.96) 
and their estimated density, with a Gaussian density (dashed) of the same mean 
and variance superimposed. The density is much more peaked, and has fatter 
tails than the normal density. Table 7.4 reports summary statistics. The positive 
skewness of 1.15 indicates that positive stock variance changes occur more 
frequently than negative changes. The large kurtosis of 13.9 clearly indicates that 
the z-scores are far from Gaussian. 34 Large day-to-day stock variance changes 
are much more common than is actually allowed under the 3-factor affine SV 
specification. Notably in the fall of 1997 and 1998 and around September 11, 
2001 do these large changes occur, which are exactly the periods for which the 
standardized options innovations in figure 7.9 still show remaining conditional 
heteroskedasticity.  
 

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

0.2

0.4

0.6
DENSITY Z−SCORE OF DAILY STOCK VARIANCE CHANGE 

1998 1999 2000 2001 2002

−5

0

5
Z−SCORE 

 
Figure 7.12: Estimated density of the z-scores (7.8) with a Gaussian density (dashed) 
superimposed. Lower plot: z-scores and the lines +1.96 and –1.96. (3-factor SV model 
(7.2) with 1 CIR + 2 affine SV factors, case 3).  
 
 
Table 7.4: Summary statistics z-scores 

z-scores: 2
tσ∆    1tx∆  2tx∆   3tx∆  

% abs.val.>1.96      4.5%       1.5%      2.8%     2.2% 
Mean       0.005       0.015      0.026    -0.034 
Std.deviation    0.97     0.65    0.79    0.76 
Skewness    1.15    -0.35    0.88    0.62 
Kurtosis        13.9 12.0 12.5 18.0 
Statistics are reported for the z-scores associated with daily smoothed stock variance and factor 
changes. The first row reports the percentage of days on which the z-scores exceed –1.96 or 1.96.  
 
 
The days on which the z-scores exceed the lines –1.96 and 1.96 (which occurs on 
4.5% of the days, which is close to the Gaussian distribution-predicted 5%) are 
not randomly distributed, but clearly cluster. This clustering indicates that 
although the conditional standard deviation of 2

tσ  (the volatility-of-volatility) 
changes in these periods (see figure 7.11), it does not change fast enough, and 
therefore cannot sufficiently accommodate the large swings in volatility present in 
these periods.  

                                           
34 The associated Jarque Bera normality test statistic equals 5471, indicating that Gaussianity is strongly 
rejected. Note however that the right conditions for this test to be properly applied are not satisfied.  
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Is any of the factors specifically responsible for this remaining conditional 
heteroskedasticity? To explore this, we can compute z-scores for the daily 
changes in the smoothed volatility factors in a similar way as in (7.8). The 
distribution of these z-scores may again be contrasted to the standard normal 
distribution as an indication of misspecification. (However, the normal approxima-
tion becomes worse the less persistent the factor.) The summary statistics 
reported in table 7.4 indicate severe deviations from normality. The z-scores 
shown in figure 7.13 reveal that the medium-term and short-term volatility trend 
factors 2x  and 3x  are largely responsible for the remaining heteroskedasticity. 
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Figure 7.13: z-scores associated with daily changes in the smoothed factors and the lines 
+1.96 and –1.96. (3-factor SV model (7.2) with 1 CIR + 2 affine SV factors, case 3).  
 
 
Abandon the affine SV specification? 
The analysis above may be regarded as evidence that the affine SV model cannot 
adequately describe relatively brief periods of large volatility changes in the 
FTSE100-index data, not even with three volatility factors. This complements the 
evidence in Chernov et al. (2003), who find that a 2-factor exponential-affine SV 
model without jumps yields a better fit of daily 1953-1999 DJIA stock-index data 
(but not option data), than do 1 or 2-factor affine SV models, or SV models with 
jumps in returns. Chernov et al. argue that jumps in returns are not needed 
because the exponential function allows more violent volatility than under the 
square-root (the affine) specification, which is especially appealing in times of 
increased market stress. (Note that this may additionally explain why price jumps 
are found to be needed in 1-factor affine SV models to improve on the fit.)  
 
So, for practical (banking) purposes, should we abandon the affine SV 
specification and focus on e.g. the exponential-affine SV specifications instead?  35  
It seems not. There are two important problems with the 2-factor exponential-
                                           
35 Another class of multifactor volatility models based on a superposition of non-Gaussian, pure jump 
OU Lévy processes has recently been introduced by Barndorff-Nielsen and Shephard (2001b, 2002), see 
section 3.3.4 of chapter III. Brockwell and Davis (2001) and Brockwell (2001) propose an extension to 
these models, termed CARMA(p,q) models, which are continuous-time, pure jump Lévy process-driven 
ARMA SV models. Tauchen and Todorov (2004) discuss simulation methods for such models.  
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affine SV stock price model considered by Chernov et al. (2003). First, the 
specification cannot be used directly, due to problems with sufficiency conditions 
for the existence of a solution to the stock price SDE. Second, the affine SV 
specification yields almost “closed-form” option pricing formulas (see also Heston 
(1993) and Duffie et al. (2000)). The exponential-affine SV specification does not. 
This seriously complicates option pricing (and probably also estimation).  
 
A multifactor affine SV model with jumps in volatility 
A reinspection of figure 7.13 shows a number of very large z-scores associated 
with fast mean-reverting factor 3x  around the times of the beginning of the Asian 
crisis and September 11, 2001. This suggests that a 3-factor affine SV 
specification with jumps in volatility (which does not have the problems 
associated with the exponential-affine SV specification) may be a promising 
candidate as an even more realistic model for the FTSE100-index data. We leave 
this for future research.  
 
 

8.   Summary 
 
Level-dependent volatility-of-volatility or volatility feedback, is a distinct charac-
teristic of the FTSE100-index data, as evidenced in the last chapter. OU SV does 
not feature volatility shocks that are conditionally heteroskedastic. This chapter 
therefore considers affine SV processes that feature volatility feedback. The 
simplest example is the square root or CIR SV process, also known as Heston 
(1993) volatility. The 1-factor CIR SV option pricing model coincides with the 
Heston (1993) model, except that it does not model the leverage effect.  
 
To be able to use the information in the data more efficiently regarding periods of 
observed conditional heteroskedasticity, we extend the state space estimation 
method (as developed in chapter III) to better exploit the characteristics of 
volatility feedback-featuring SV processes. We present the conditional state space 
model, which can be analyzed by the Extended Kalman filter, and which can be 
estimated by Extended Kalman filter QML. 
 
Monte Carlo study based on the 1-factor CIR SV model 
We perform an extensive Monte Carlo study towards the 1-factor CIR SV 
derivative pricing model, based on five sets of parameter values. We simulate 
time series of daily squared stock returns, 10-minute-based realized volatilities 
(48 intraday sampling points), and short-maturity at-the-money call options. We 
estimate the conditional state space model associated with 1-factor CIR SV using 
five different types of simulated data: Only squared return data, only RV data, 
only option data, both return - option data, and both RV and option data.  
 
The main results are summarized as follows. Using squared returns only for 
estimation performs worst. Squared returns are noisy. The signal with regard to 
the DGP appears particularly weakly present in the data. QML performs poorly in 
this case, which is also attributed to the asymmetric distribution of the squared 
returns. The use of squared return data only for estimation is generally not to be 
advocated, not even if we restrict θ  to its moment estimate ŜqRθ . (Besides, the 
market price of volatility risk cannot be estimated in this case.) 
 
Using RV data only, means a substantial reduction in bias and MSE. Nevertheless, 
both are still large. The volatility is much better filtered out than in the squared 



8. Summary 

 241

return case. If RV data only is used, θ  should be restricted to its moment 
estimate R̂Vθ , computed as the mean realized variance over the sample. (In this 
case the market price of volatility risk cannot be estimated either however.) 
 
Using option data only, means a dramatic improvement to using either only 
squared returns or RV data. Option data is much more informative on all 
parameters. The bias and MSE of the estimates are dramatically less, and the 
volatility evaluation criteria show much better volatility extraction.  
 
The combination squared return – option data in turn, outperforms the use of 
option data only. The bias and MSE decrease further, and the volatility evalua-
tion criteria further improve. The bias in the mean stock variance parameter θ , 
the volatility mean-reversion parameter k  and the volatility-of-volatility 
parameter σ  seems modest. Regarding the bias in the price of volatility risk 
parameter γ , the results are more mixed for the different parameter sets. There 
are efficiency gains from including squared return in addition to option data.  
 
Obvious additional efficiency gains are obtained from using the combination RV 
and option data for estimation. This combination yields the most favorable 
volatility evaluation criteria, which indicate that the state space model performs 
well in extracting the underlying latent volatilities. Overall speaking, the 
combination of RV and option data yields the best estimation results.  
 
The simulation results further show that the precision in the estimates of the 
market price of volatility risk parameter γ  is poor. The combination RV – option 
data yields the most precise estimates. This confirms our own empirical findings 
and those of others in the literature. 
 
Empirical results for affine SV models based on the FTSE100-index data 
Confronting the 1-factor CIR SV model to the real-world FTSE100-index data 
shows the following. Using return and SM option data jointly, yields results that 
are largely similar as those obtained in the comparable 1-factor OU SV case. As 
such, we focus on the main differences. The CIR process obeys the Feller 
condition. The volatility persistence of 0.97 is estimated lower than the 0.993 
found in the OU case. The smoothed CIR volatilities show signs of a quicker 
response to news than the OU volatilities.  
 
Investors investing in FTSE100-index derivatives pay for volatility risk. This 
confirms our theory on volatility risk compensation, regarding their aim of 
consumption smoothing. The time-varying volatility risk premium averages at  
–21% per annum (OU: -15%). Writing SM ATM straddles yields an expected 
return of 195% per annum (OU: 174%), but involves substantial risk.  
 
Diagnostic checks confirm the improved data description by 1-factor CIR SV as 
compared to 1-factor OU SV. Volatility clustering is better taken account of. 
Nonetheless, 1-factor CIR SV is still not capable of fully capturing the periods of 
rapidly changing volatility at the times of the Asian crisis, the near collapse of 
LTCM and September 11, 2001. As in the 1-factor OU SV case, the model 
overprices the longer-dated options out of sample. Modeling conditional hetero-
skedasticity does not resolve this. The reason is insufficient volatility dynamics.  
 
Extending to a 2-factor SV specification with 1 OU and 1 affine factor, shows that 
the OU assumption for the persistent factor is misspecified. This contrasts to the 
findings of Chernov et al. (2003). A 2-factor SV specification with 1 CIR and  
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1 affine factor does much better. Due to its slow mean-reversion, the Feller 
condition associated with the CIR factor is violated. Specification tests show 
however, that this 2-factor volatility model still lacks sufficient dynamic structure.  
 
Estimating a 3-factor SV model with 1 OU and 2 affine volatility factors, indicates 
that the shocks to the persistent, OU factor feature conditional heteroskedasticity 
as well. All volatility factors thus feature level-dependent volatility.   
 
A 3-factor affine SV specification with 1 CIR and 2 affine, independent volatility 
factors appears to fit the joint FTSE100-index data best. The interpretations of 
the factors are the same as in the 3-factor OU SV case. Long-memory factor 1x  
determines the long-term volatility trend, factor 2x  the medium-term, and fast 
mean-reverting factor 3x  the short-term volatility trend. Moreover, 1x , 2x  and 

3x  are largely associated with the level, slope and convexity dynamics of the 
volatility term structure, respectively. Consequently, their impact on option prices 
of different maturity is qualitatively also the same. This is as expected. Modeling 
level-dependent volatility-of-volatility should and does not alter the earlier OU SV 
findings. The fit of the VTS is adequate. The option pricing errors do not show any 
obvious unmodeled systematics, concentrate near zero and are typically small. 
The average risk premia associated with factors 1x , 2x  and 3x  equal –0.38%, 
1.60% and –22% per annum respectively (OU: -0.14%, 3.9% and –26%).   
 
Within the affine class of SV models, the 3-factor model with 1 CIR and 2 affine 
volatility factors is thus found to be most appropriate for the joint FTSE100-index 
data. An extensive specification analysis shows that the model can still be 
improved upon however. First, the leverage effect is not modeled. It is clearly 
present in the data. (This misspecification is unlikely to invalidate most of our 
findings, given our focus on ATM options only. The next chapter deals with the 
leverage effect in a 1-factor SV model.) Second, although the affine SV model 
describes volatility feedback, it cannot fully capture the periods of fast-changing 
volatility present in the data, not even with three volatility factors. Large day-to-
day volatility changes occur more often than the 3-factor affine SV specification 
allows for. Factors 2x  and 3x  are largely held responsible for the remaining 
unmodeled conditional heteroskedasticity. Extending the affine SV specification 
with jumps in volatility seems promising in this respect. Future research should 
clarify this.  
 
 
 

Appendix 
 
Va. System matrices conditional state space model 
 
The conditional state space model associated with the general multifactor affine SV 
derivative pricing model, in which both the squared returns and the three option series are 
jointly used for estimation reads 
 
 't t t t t= + +y a H ξ w  ~ ( , )t 0w R      ,...,t t T t= ∆ ∆          (I.1) 

 t t t t t+∆ +∆= + +ξ d Fξ v  ~ ( , )t t+∆ 0v Q  

         | ~ ( , )t t t t+∆ 0v QF , 
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in which the error series { }tw  and { }t t+∆v  are both serially and mutually uncorrelated at 
all points in time, and in which the system matrices read 36 (with 

4, , 1m n n r n= = = + ):  
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The expression for var [ | ]t t t+∆u FP  is given in (3.7). We take νµ  the same for each option 
series, as they are all ATMF. We moreover allow for possible non-zero contemporaneous 
correlation between the option errors ,{ }SM tε , ,{ }MM tε  and ,{ }LM tε .  
 
 

                                           
36 For notational convenience we index the option series with 1, 2 and 3 instead of SM, MM, and LM. 
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- VI - 
 

Leverage Effect  
and the 

Heston (1993) Model 
 
 

 
 
 

1. Introduction 
 
So far we have assumed a zero correlation between stock returns and volatility 
shocks. This assumption is generally violated in practice. When studying stock 
(market) data, one typically finds an asymmetric response of volatility to good 
and bad news. 1 Negative stock returns tend to increase volatility more than 
positive returns of the same magnitude. This effect, known as the leverage effect 
(Black (1976)), translates into a negative correlation between stock returns and 
volatility shocks.  
 
In option prices, the leverage effect is apparent from the volatility skew or smirk: 
If the associated Black-Scholes implied volatilities of a certain maturity are 
plotted against moneyness, the typical pattern since the 1987-crash is skew-
shaped. 2 SV with no leverage effect implies a U or smile-shaped BS implied 
volatility curve (Renault and Touzi (1996)). In contrast, SV with leverage effect 
induces a smirk or skew-shaped curve (Heston (1993)). 3   
 
We found strong indications of the presence of the leverage effect in the 
FTSE100-index data. The reason why we ignored leverage in the multifactor SV 
model in the first place was because it complicates matters dramatically, mainly 
with regard to our estimation method (when considering multiple factors). 
Nonetheless, a valid issue to rise is, if negligence of leverage has influenced our 
empirical results in any major way.  
 
The main aim of this chapter is to study the impact of the false assumption of no 
leverage effect. Our focus on ATM FTSE100-index options only was implicitly 
driven by our expectation that leverage is not really important for the pricing of 
ATM options (besides the fact that these options are most liquid and have largest 

                                           
1 See, e.g., Black (1976), French, Schwert and Stambaugh (1987), Nelson (1991), Bollerslev, Chou and 
Kroner (1992), Heston (1993), Glosten, Jagannathan and Runkle (1993), Bollerslev, Engle and Nelson 
(1994), and Franses and Van Dijk (2000) among many others. In contrast, in foreign exchange markets 
the assumption of a zero correlation between exchange rate returns and exchange rate volatility shocks 
seems adequate; see chapter II, section 8. Indeed, our multifactor affine SV derivative pricing model 
and estimation method seem promising for empirical research in foreign exchange markets as well.  
2 See, e.g., Pan (2002), Eraker, Johannes and Polson (2003), and Jones (2003) for such plots. 
3 We illustrate this by simulation in sections 5.2.2 and 5.2.4. Recent evidence suggests that the Heston 
(1993) model cannot sufficiently adequately fit empirical volatility skews, especially not for short-
maturity options. The observed skews tend to be (much) steeper; see Pan (2002), Jones (2003) and 
Eraker et al. (2003). Jumps in returns and jumps in volatility further steepen the volatility skew (as 
explained below). This forms a promising area for future research.  
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vega). The Monte Carlo evidence reported in this chapter suggests that this 
seems indeed the case. Our focus hereby is on the Heston (1993) model.  
 
Specifically, we show that the volatility term structure of ATM options is not much 
affected by the leverage effect. In contrast, the prices (and hence VTS) of out-of-
the-money and in-the-money options are strongly affected by leverage. 
Moreover, we perform a Monte Carlo study in which we simulate squared return, 
RV and ATM option data from the Heston model (hence with leverage effect), and 
next use the conditional state space model for estimation (which assumes no 
leverage) to investigate what the bias is. As we use the same parameter sets I-V 
as for the Monte Carlo study towards the 1-factor CIR SV model (i.e., the Heston 
model without leverage) in the previous chapter, this allows for a clear bias 
comparison. Although we do find additional bias in general, overall speaking, the 
additional bias seems rather modest. Monte Carlo evidence thus at least suggests 
that our multifactor SV estimation results reported in previous chapters seem not 
very much biased towards negligence of the leverage effect.  
 
In section 7 of chapter II, we gave an economic rationale based on the 
multifactor SV model for why investors appear willing to pay for volatility risk. 
The argument given there builds on the existence of a leverage effect, which the 
multifactor SV model assumes absent. As such, the argument given there is 
theoretically not fully just. A second aim of this chapter is to show that the 
argument still stands if leverage is explicitly taken into account.  
 
The outline of this chapter is as follows. Section 2 presents a 1-factor affine SV 
derivative pricing model with leverage effect. If there is no leverage, the model 
coincides with the 1-factor SV special case of the multifactor SV model. Moreover, 
the Heston (1993) model is a special case.  
 
Section 3 analyzes the model in a similar way as we analyzed the multifactor SV 
model in chapter II. We consider arbitrage-free derivative pricing and hedging, 
and derive pricing formulas for European call and put options. We give 
expressions for the stock and volatility betas of a derivative, and explore the 
returns investors are expected to earn when trading assets in this market. We 
explain the differences induced by the presence of leverage as opposed to 
assuming it absent. We present our theory for the existence of a negative 
volatility risk premium, based on the existence of a leverage effect.   
 
Section 4 derives a linear state space representation from the model to examine 
how leverage impacts on the estimation method (in the 1-factor SV case). As 
before, we linearize the model-implied call price around a suitably chosen 
linearization point. Simulation evidence next directs us to eventually use the 
same conditional state space model for estimation as derived from the multifactor 
no-leverage SV model.   
 
Section 5 specializes to the Heston model and performs a Monte Carlo study. We 
start with examining how the model parameters affect the stock return 
distribution, the volatility process and what their impact is on option prices, i.e., 
the shape of the implied volatility surface. We next investigate the performance of 
the conditional state space model based on simulated data from the Heston 
model, in a similar way as in previous chapters. We comment on the additional 
bias induced by neglecting leverage in the estimation method. Again, using 
squared return data only performs worst, the combination RV – option data best.  
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Section 6 summarizes. The appendix states the Heston (1993) call price formula 
and derives expressions for the derivative betas in the model with leverage effect.   
 
 

2. A 1-factor affine SV option pricing model with  
  leverage effect, and the Heston (1993) model 
 
Consider an arbitrage-free, frictionless financial market in which two basic assets 
are traded, a cash bond B  and a dividend-paying stock S . 4 Uncertainty is driven 
by a 2-dimensional generalized P-Brownian motion process { ; 0}t t ≥W  given by 
 

    
22 ,, , , ,

,, , ,

11
0 1

S tS t S t S t x t
t

x tx t x t x t

WW dW dW dW
WW dW dW

ρ ρρ ρ       = − +−= = ⇔         =      
W  (2.1) 

 
which is derived from the standard P-Brownian motion process { ; 0}t t ≥W   
with , ,( , )'t S t x tW W=W , and which is defined on the filtered probability space 
( , ,{ }, )tΩ F F P . Although the Brownian motions SW  and xW  are independent, the 
Brownian motions SW  and xW  are correlated, with correlation coefficient 

, ,corr [ , ]S t x tW Wρ = P . 5 Notice that x xW W= .  
 
The value of the cash bond evolves as  
  
 t t tdB r B dt= ,        (2.2) 
 
whereas, under market measure P, the ex-dividend stock price evolves as   
 

 ,t t t t t S tdS S dt S dWµ σ= + .     (P) (2.3) 

 
The stock pays a (deterministic) dividend yield of tq  per annum at time t . Under 
P the value of the tradable reinvestment portfolio rS  follows the SDE  
 

,( )r r r
t t t t t t S tdS q S dt S dWµ σ= + + .    (P) (2.4) 

 
The stock volatility evolves randomly over time, according to the 1-factor affine 
SV specification 2

t txσ = , with  
 

       , ,( ) ( )t t t x t t t x tdx k x dt x dW k x dt dWθ σ α β θ σλ= − + + = − + , (P) (2.5) 

 
in which t txλ α β≡ + . This specification corresponds to the 1-factor SV special 
case of our multifactor SV model, but differs in one important aspect: It allows for 
correlation between stock returns and volatility shocks. In particular,  
 

 2corr , |t
t t

t

dS
d

S
σ ρ

 
= 

 
FP ,      (2.6) 

 

                                           
4 Our model description here is deliberately brief to save space. It is largely similar as for the multifactor 
SV model given in section 2 of chapter II, where further details can be found.  
5 From the covariation process of the Brownian motions involved, it follows that , ,( )( )S t x tdW dW  

dtρ= , , ,( )( ) 0S t x tdW dW =  and , , , ,cov [ , | ] cov [ , ]S t x t t S t x tdW dW dW dW dtρ= =P PF . 
Decomposition (2.1) could be “reversed”, i.e., , ,S t S tdW dW= , 2

, , ,1x t x t S tdW dW dWρ ρ= − +  
Decomposition (2.1) is most suited for our purposes however.   
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which follows from 2var [ / | ]t t t tdS S dtσ=FP  and 2cov [ / , | ]t t t t t tdS S d dtσ ρσσ λ=FP , 
and  2 2 2var [ | ]t t td dtσ σ λ=FP . The leverage effect implies a negative value for ρ .  
 
Risk-neutral measure 
The absence of arbitrage requires the value of the discounted reinvestment 
portfolio to follow a martingale process under an equivalent probability measure 
Q, i.e., the risk-neutral measure. As the bond - stock market is incomplete due to 
SV there exists an infinite number of such measures Q. In order to guarantee 
unique derivative prices, an assumption on the market price of volatility risk is 
required. As before, we model the price of volatility risk as being proportional to 
the volatility function of factor x : 
 

 ,x t t txγ γ α β γ λ= + = .      (2.7) 
 
Risk-neutral measure Q is next defined from the Radon-Nikodym derivative 
 

 1
, , ,2

0 0

exp ' '
T

T T

T u u u u
d

L d du
d ρ ρ ρ

 
 ≡ = − −
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∫ ∫γ W γ γ

Q
P F

,   (2.8) 

 
in which , 1 2( , )'t t tρ γ γ≡γ , and  
 

 ( )1 , ,2

1

1
t S t x tγ γ ρ γ

ρ
≡ −

−
,  2 ,t x tγ γ≡ , ,

t t t
S t

t

q rµγ
σ

+ −
= , (2.9) 

 
with ,S tγ  the usual market price of stock risk (or Sharpe ratio). Under market 
measure P, the process { ; 0}t t ≥WQ  with ,,( , )'t x tS tW W=WQ Q Q , defined as  
 

   
, 1,

,
, 2,0

t
S t tS t

t ut
x t tx t

dW dW dt
du

dW dW dt
ρ

γ

γ

 = += + ⇔ 
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∫W W γ
Q

Q
Q

   (2.10) 

 
is a Brownian motion with drift function ,{ }tργ . Under probability measure Q, 
{ ; 0}t t ≥WQ  is a standard Brownian motion however.  
 
The bond - stock market is arbitrage-free  
Given this measure Q, the bond – stock market is arbitrage-free, as we will now 
show. Under P, the discounted reinvestment portfolio value 1r r

t t tZ B S−≡  follows   
 

 ,( )r r r
t t t t t t t S tdZ q r Z dt Z dWµ σ= + − +      

( )2
, ,( ) 1r r

t t t t t t S t x tq r Z dt Z dW dWµ σ ρ ρ= + − + − + , (P) (2.11) 

 
whereas, under this particular choice of Q, it follows from (2.10) and (2.9) that 
 

( ) ( )2
1 2,,1r r r

t t t t t t t t tx tS tdZ q r Z dt Z dW dt dW dtµ σ ρ γ ρ γ   = + − + − − + −   
Q Q  

2 2
1 2 ,,1 1r r

t t t t t t t t t x tS tq r Z dt Z dW dWµ σ ρ γ ργ σ ρ ρ    = + − − − + + − +        
Q Q

( )2
,,1r

t t x tS tZ dW dWσ ρ ρ= − +Q Q      

,
r

t t S tZ dWσ≡ Q .      (Q) (2.12) 
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As 21
02[exp( )]T

uduσ < ∞QE Ÿ , the driftless process { }r
tZ  is a ( ,{ })t −Q F martingale, 

as required by the absence of arbitrage. The process { ; 0}t t ≥WQ  with  
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W
Q Q Q Q Q

Q
Q Q Q Q

 (2.13) 

 
is a generalized Q-Brownian motion. The correlation between the Q-Brownian 
motions SWQ  and xWQ  equals ,,corr [ , ]x tS tW Wρ = Q Q

Q . 6  
 
The model under Q 
The following expressions directly link the correlated P and Q-Brownian motions 
with each other (and follow from substituting (2.10) in (2.13), rewriting, and 
using (2.1) and (2.9)): 
 

 , ,, S t S tS tdW dW dtγ= +Q  ,       , ,, x t x tx tdW dW dtγ= +Q .   (2.14) 

 
Under Q, the stock price and reinvestment portfolio value evolve according to  
 

,( )t t t t t t S tdS r q S dt S dWσ= − + Q      (Q) (2.15) 

 ,
r r r
t t t t t S tdS r S dt S dWσ= + Q ,     (Q) (2.16) 

 
the latter SDE, which illustrates the name risk-neutral measure for Q. (These 
expressions follow from (2.3) and (2.4) and use (2.14) and (2.9).) Substituting 
(2.14) and (2.7) in the SDE (2.5) for x , followed by rewriting, yields the SDE the 
unobserved volatility factor follows under Q:  
 

 ,( )t t t x tdx k x dt dWθ σλ= − +% % Q      (Q) (2.17) 

with 

k k σ γ β= +% ,  ( ) /k kθ θ σ γ α= − %% .     (2.18) 
 
The risk-neutral parameters k%  and θ%  exactly coincide with those in the 1-factor 
SV special case of our multifactor SV model, and are thus not affected by the 
leverage effect.  
 
Heston (1993) model 
If we take 0, 1α β= = , the model considered here essentially reduces to the 
Heston (1993) model, with CIR volatility ,( )t t t x tdx k x dt x dWθ σ= − +  under P. 
The market price of volatility risk reduces to ,x t txγ γ= , and the risk-neutral 
parameters to k k σγ= +%  and /k kθ θ= %% . Heston assumes constant interest rates 
and no dividends however. Moreover, Heston’s risk-neutral parameters are given 
by k k ϑ= +%  and /k kθ θ= %% , i.e. parameter σ  is subsumed in ϑ .  
 
 

3. Analysis of the model with leverage effect 
 
This section analyzes the 1-factor affine SV model with leverage effect in a similar 
way as we analyzed the multifactor affine SV model (without leverage) in chapter 
II. Section 3.1 considers derivative pricing. Section 3.2 derives call and put option 

                                           
6 Girsanov’s theorem allows for a drift change only; the variance and hence correlation structure are the 
same under P and Q. (If this were not the case P and Q would not be equivalent probability measures.) 
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pricing formulas. Section 3.3 considers hedging. Section 3.4 deals with stock and 
volatility betas and asset returns. Section 3.5 shows the volatility risk premium to 
be negative on theoretical grounds, using an argument based on leverage.   
 
3.1  Derivative pricing 
 
Consider a general, tradable European-style path-independent derivative F  
written on the stock ,S  that pays off an amount ( )T TF f S=  at some fixed future 
maturity date .T  Our interest is in deriving the arbitrage-free time- t  price tF  of 
such a claim for t T< . This price is given by some function ( , , )t t tF F t S x=  of 
, tt S  and tx  only. 7  From Itô’s formula, under P tF  follows the SDE 8 
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F F
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.    (P) (3.1) 

 
Enlarging the marketed assets with the derivative should not lead to arbitrage 
opportunities. If the derivative price were to evolve according to the SDE (3.1), 
then arbitrage would be possible. An arbitrage-free market restricts the drift of 
the SDE (3.1) as follows. Using (2.14), under Q tF  follows 
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Q Q . (Q) (3.2) 

 
In the absence of arbitrage, the relative derivative price 1{ }t tB F−  must be a 
( ,{ })t −Q F martingale, and hence the drift function of 1 1( ) [ ]t t t t t td B F B dF r F dt− −= −  
must equal zero. This leads to the following no-arbitrage restriction 
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.     (3.3) 

 
This restriction implicitly defines a parabolic PDE that the pricing function 

( , , )t tF t S x  must satisfy in the absence of arbitrage. Taking the claim payoff 
( )T TF f S=  into account, the unique pricing function can numerically be solved for. 

Under Q, the arbitrage-free derivative price thus follows 
 

,,
t t

t t t t t t x tS t
t t

F F
dF r F dt S dW dW

S x
σ σλ∂ ∂

= + +
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Q Q .   (Q)   (3.4) 

 

                                           
7 See section 3.1 of chapter II for a discussion on this. 
8 Here we used ( )( )t t t t tdS dx S dtρσσ λ= . This follows from the covariation process {[ , ] }tS x  of 
the semimartingales { }tS  and { }tx , which is derived from the covariation process {[ , ] }S x tW W  of 
the Brownian motions SW  and xW , yielding , ,( )( )S t x tdW dW dtρ= .  
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Finally, transforming back to the market measure using (2.14), yields the SDE 
the arbitrage-free derivative price follows under P: 

         (P)  (3.5) 

  , , , ,
1t t t t t

t t t S t t x t t t t S t t x t
t t t t t t

S F F F F
dF r F dt S dW dW

F S F x S x
σ γ σλ γ σ σλ

    ∂ ∂ ∂ ∂
= + + + +    ∂ ∂ ∂ ∂    

. 

 
PDE, martingale and SDF approaches to derivative pricing 
Instead of solving the PDE (3.3), the derivative price may also be obtained from 
the martingale approach to derivative pricing. As no-arbitrage requires the 
relative prices of all tradable assets to follow martingale processes under Q (such 
that / [ / | ]t t T T tF B F B= QE F ), the risk-neutral valuation formula applies:  
 

 1 | exp |
T

t t T T t u T t

t

F B B F r du F−
 

   = = −      
 
∫Q QE EF F .   (3.6) 

 
Alternatively, the stochastic discount factor (SDF) approach to derivative pricing 
may be used instead. This yields the SDF valuation formula 
 

 exp | |
T

T T
t u T t T t

t tt

L M
F r du F F

L M

      = − =         
∫ F FP PE E .   (3.7)  

 
Here, { ; 0}tM t ≥  with 1

t t tM B L−=  is the stochastic discount factor process, in 
which { ; 0}tL t ≥  is the Radon-Nikodym process, as defined from (2.8) in an 
obvious way. All three approaches yield an identical arbitrage-free price for 
derivative .F  Although the risk-neutral and SDF valuation formulas look exactly 
the same as in our multifactor SV option pricing model without leverage effect, 
the difference lies in the fact that the Q-measures are different in both settings. 
 
3.2 Call and put option valuation 
 
Consider pricing a European call option C  having strike K  and maturity T t> , in 
the model with leverage effect. Heston (1993) derives the call price using 
characteristic functions (and essentially Fourier transform analysis), a method 
also pursued by Bakshi et al. (1997) and Scott (1997). Appendix VIa states the 
complicated-looking “closed-form” Heston call price formula. This section derives 
the call price from a different perspective, using the law of iterated expectations. 
The resulting formula is more useful for our purposes in later sections. Although 
the derivation is similar as in the multifactor SV model, it is more complicated.  
 
From the risk-neutral valuation formula, the arbitrage-free call price tC  is given 
by  

 exp max{0, }|
T

t u T t

t

C r du S K
 
 = − −   
 
∫ QE F .    (3.8) 

 
Itô’s formula yields the SDE for {ln }tS  under Q from (2.15). Integrating this SDE 
over [ , ]t T , using (2.13), and transforming back to { }tS , yields for TS  under Q   
 

     ( )2 21
,,2exp 1

T T

T t t t t t u u x uS u
t t

S S r q dW dWσ τ ρ σ ρ σ
 
 = − − + − +
  

∫ ∫Q Q  (Q) (3.9) 

with 
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t T tτ = − ,   
1

T

t u
t t

r r du
τ

= ∫ ,   
1

T

t u
t t

q q du
τ

= ∫ ,   2 21
T

t u
t t

duσ σ
τ

= ∫ , (3.10) 

 
being the remaining option maturity, the average risk-free rate, dividend yield 
and stock variance, respectively. By (2.17) and decomposition (2.13), conditio-
ning on the path of the Q-Brownian motion xWQ  over the interval [ , ]t T , implies 
that the path of { }tx  and thus 2{ }tσ  is known over [ , ]t T  under Q, and hence 
 

      ( )
( )

2
,, | ,{ } ~ 0, ~ with ~ (0,1)

T T

u t x u u t tS u
t t

dW W duσ σ σ τ ε ε
 
 
 
 

∫ ∫
QQ QF N N . (3.11) 

 
(Here , ,{ } { ; }x u x uW W t u T≡ ≤ ≤Q Q .) Moreover, the second Itô integral in (3.9) is then 
a given constant. The distribution ( ),| ,{ }T t x uS WQF  is thus lognormal under Q.  
 
Given this lognormality, express the conditional call payoff in terms of ε  to get 
 

    ( ),max{0, }| ,{ }T t x uS K W− QF       (3.12) 

( )2 21
, 2 ,2

2 ,

exp 1 , if

0, if

T

t t t t t t t u x u t

t

t

S r q dW K d

d

ρ

ρ

σ τ ρ σ τ ε ρ σ ε

ε

  
  − − + − + − ≥ −=    

< −

∫ Q
 

with 

( )21
,2

2 , 2

ln

1

T
t

t t t t u x u

t
t

t t

S
r q dW

K
d ρ

σ τ ρ σ

ρ σ τ

+ − − +

≡
−

∫ Q

.   (3.13) 

 
It next follows that  
 

    ( ),max{0, }| ,{ }T t x uS K W − 
Q

QE F        

( ) 21
2

2 ,

2 21
, 2 ,2

1
exp exp 1 e ( )

2
t

T

t t t t t u x u t t t

t d

S r q dW d K d

ρ

ε
ρσ τ ρ σ ρ σ τ ε ε

π

∞
−

−

 
  = − − + − − Φ    

∫ ∫Q

( ) ( )2 2 21 1
, 1 , 2 ,2 2exp exp 1 ( ) ( )

T

t t t t t u x u t t t t

t

S r q dW d K dρ ρσ τ ρ σ ρ σ τ
 

  = − − + − Φ − Φ   
∫ Q

 2 21
, 1 , 2 ,2exp ( ) ( ) ( )

T

t t t t t u x u t t

t

S r q dW d K dρ ρρ σ τ ρ σ
 
 = − − + Φ − Φ
  

∫ Q ,  (3.14) 

with  

   
( )2 21

,2
2

1 , 2 , 2

ln ( )

1
1

T
t

t t t t u x u

t
t t t t

t t

S
r q dW

K
d dρ ρ

ρ σ τ ρ σ

ρ σ τ
ρ σ τ

+ − + − +

≡ + − =
−

∫ Q

 , (3.15) 

 
and (.)Φ  being the cumulative Gaussian distribution function. The expression for 
the Riemann integral after the first equality in (3.14) follows from changing the 
integration variable ε  to the variable 21 t tξ ε ρ σ τ≡ − − , such that an integral 
over the standard normal density is obtained.  
 
The call price in the 1-factor SV model with leverage effect then becomes: 
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exp( ) max{0, }|t t t T tC r S Kτ= − −  QE F     (3.16) 
 

( ),exp( ) max{0, }| ,{ } |t t T t x u tr S K Wτ  = − − 
Q

Q QE E F F  

2 21
, 1 , 2 ,2exp ( ) exp( ) ( )| .

T

t t t t u x u t t t t t

t

S q dW d K r dρ ρρ σ τ ρ σ τ
  
   = − − + Φ − − Φ     

∫ Q
QE F

 
Rewriting the call price in terms of the BS pricing function 
Call price formula (3.16) can be rewritten in terms of the Black-Scholes function. 
Defining 

2 21
, ,2exp

T

t t t t u x u

t

S S dWρ ρ σ τ ρ σ
 
 ≡ − +
 
 

∫ Q ,   2 2 2
, (1 )t tρσ ρ σ≡ − ,  (3.17) 

it follows 
 

 , 1 , 2 ,exp( ) ( ) exp( ) ( )|t t t t t t t t tC S q d K r dρ ρ ρτ τ = − Φ − − Φ QE F  (3.18) 

 2
, ,( , , , , , ) |t t t t t tBS S K r qρ ρτ σ =  QE F . 

 
Here, 2

, , , 1 , 2 ,( , , , , , ) exp( ) ( ) exp( ) ( )t t t t t t t t t t t tBS S K r q S q d K r dρ ρ ρ ρ ρτ σ τ τ= − Φ − − Φ  is the 
usual Black-Scholes pricing function. In terms of (3.17), 1 ,td ρ  and  2 ,td ρ  have the 
familiar form   

 

, 21
,2

1 , 2 , 1 , ,
,

ln ( )
,

t
t t t t

t t t t t
t t

S
r q

Kd d d

ρ
ρ

ρ ρ ρ ρ
ρ

σ τ
σ τ

σ τ

+ − +
= = − .  (3.19) 

 
If there is no leverage effect ( 0ρ = ), ,t tS Sρ = , 2 2

,t tρσ σ= , 1 , 1t td dρ = , 2 , 2t td dρ = , 
and the call price formula of section 3.2 in chapter II is obtained, i.e., 

2[ ( , , , , , ) | ]t t t t t t tC BS S K r qτ σ= QE F . 
 
Given time- t  information, the only random quantities in call price formula (3.16) 
are the average variance 2

tσ  under Q and an Itô integral, which both depend on 
the Q-Brownian motion xWQ  only. So rather than simulating the full correlated  
SDE system (2.15) and (2.17) to obtain the simulated risk-neutral call payoff 
distribution necessary for evaluating the risk-neutral valuation formula (3.6), 
there is a much quicker way to obtain the call price. As formula (3.16) shows, 
simulated paths of xWQ  are needed only essentially. As such, implementing (3.16) 
means a big advantage in computing time over naïve implementation of the risk-
neutral valuation formula (3.6). 
 
Put option valuation 
A European put option with strike K  and maturity T  can be valued using  
the put - call parity ,exp( ) exp( ) exp( )[ ]t t t t t t t t t t t TP C K r q S C r K Fτ τ τ= + − − − = + − − , 
in which , exp[( ) ]t T t t t tF S r q τ= −  is the forward price of the stock for delivery at 
time T . These expressions are the same as in case of no leverage effect.  
 
3.3 Hedging  
 
This section considers the hedging of derivatives in the 1-factor affine SV model 
with leverage effect. Hedging in the model without leverage was discussed in 
section 4.3 of chapter II. How, if at all, does the analysis change once the 
leverage effect is taken into account? 
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Consider hedging a general, path-independent European-style derivative F  
written on the stock S  that pays off an amount ( )

F FT TF f S=  at its maturity .FT  
From (3.5), the arbitrage-free price ( , , )t t tF F t S x=  evolves according to  
 
 , , , ,,t F t t F t t t S t t x tF tdF F dt S dW dWµ σ σλ= + ∆ + �V ,   (P) (3.20) 
 
with , , , ,,( / ) (1 / )F t t t t F t t S t t t x tF tr S F Fµ σ γ σλ γ≡ + ∆ + �V , and with , /F t t tF S∆ = ∂ ∂  the 
delta and 2

, / /t t t tF t F x F σ= ∂ ∂ = ∂ ∂�V  the vega of derivative F . 9 Consider next 
another, longer-maturity derivative G  that pays off ( )

G GT TG g S=  at its maturity 

G FT T> . Derivative G  serves as a hedging instrument for F  which hedges price 
changes due to unobserved volatility fluctuations. Its price ( , , )t t tG G t S x=  obeys  
 
 , , , , ,t G t t G t t t S t G t t x tdG G dt S dW dWµ σ σλ= + ∆ + V ,  (P) (3.21) 
 
in which , , , ,,( / ) (1 / )G t t t t G t t S t t t x tG tr S G Gµ σ γ σλ γ≡ + ∆ + �V .   
 
A self-financing hedging strategy 
We aim at deriving a dynamic, self-financing replicating hedging strategy for 
derivative F . If we start hedging F  at time 0 for maturity FT , the hedging 
strategy is given by the instrument holdings ( , , )r

t t t tψ φ ξ ∈ F  for [0, ]Ft T∈ . Here, 

tψ  governs the bond holding, r
tφ  is the number of reinvestment portfolios and tξ  

is the number of G − derivatives to hold in the hedge portfolio at time t . The 
time- t  value of the hedge portfolio, tV , equals 
 

 r r
t t t t t t tV B S Gψ φ ξ= + + .      (3.22) 

 
As we want the strategy to be replicating, we impose 

F FT TV F= . A self-financing 
strategy requires 
 

      r r
t t t t t t tdV dB dS dGψ φ ξ= + + .      (3.23) 

 
By no arbitrage, it then must hold that t tV F t= ∀ , and hence t tdV dF= . The 
instrument holdings , r

t tψ φ and tξ  next follow from equating the coefficients of the 

,, x tdt dW  and ,S tdW  terms in the equality t tdV dF= , which is given by  
 

r r
t t t t t t tdV dB dS dGψ φ ξ= + +  

, , , ,,( )r r r r
t t t t t t t t G t t t t t t G t t t S t t t x tG tr B q S G dt S S dW dWψ φ µ ξ µ φ σ ξ σ ξ σλ     = + + + + + ∆ +      �V

, , , ,,F t t F t t t S t t x tF tF dt S dW dWµ σ σλ≡ + ∆ + �V .     (3.24) 

 
The number of G -derivatives to hold in the hedge portfolio equals the ratio of 
vegas, , ,/t F t G tξ = � �V V . The number of reinvestment portfolios should equal 
 

 ,
, , 0 , ,

,

exp( ) F tr t
t F t t G t t F t G tr

G tt

S
q t

S
φ ξ

 
 = ∆ − ∆ = − ∆ − ∆  

  

�

�

V

V
,  (3.25) 

 
as 0exp( )r

t t tS q t S= . As  , ,, ,[ ( / ) ]r r
t t F t G t tF t G tS Sφ = ∆ − ∆� �V V , a self-financing strategy 

of r
tφ  invested in the reinvestment portfolio corresponds to a strategy of 

, , 0, ,( / ) exp( ) r
t F t G t t tF t G t q tφ φ≡ ∆ − ∆ =� �V V  invested in the stock, because r r

t t t tS Sφ φ= . 
The bond holding tψ  is most easily computed from realizing that, by no arbitrage,   

r r
t t t t t t t tV B S G Fψ φ ξ= + + ≡ , such that  1[ ]r r

t t t t t t tB F G Sψ ξ φ−= − − . 

                                           
9 Recall that (our definition of) the vega measures price changes resulting from stock variance changes. 
The price sensitivity with respect to volatility changes is given by ,/ 2t t t F tF σ σ∂ ∂ = �V . 
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The appearance of this hedging strategy is exactly the same as for the hedging 
strategy in the 1-factor affine SV model without leverage effect; see section 4.3.1 
of chapter II. The difference lies in the fact that both models generate different 
derivative prices, and hence deltas and vegas.  
 
3.4   Derivative betas, asset returns and volatility risk premium 
 
This section defines the stock and volatility betas of a general, path-independent 
European-style derivative F  for which ( , , )t t tF F t S x= , in the 1-factor SV model 
with leverage effect. We consider asset returns and the volatility risk premium.  
 
Stock and volatility betas 
Derivative prices are sensitive to stock price and volatility fluctuations. One way 
of measuring these price sensitivities is by the delta , /F t t tF S∆ = ∂ ∂  and vega 

2
, / /t t t tF t F x F σ= ∂ ∂ = ∂ ∂�V  of derivative .F  Another way of measuring these 

sensitivities is by the stock beta ,F Sβ  and volatility beta ,F xβ  of derivative ,F  
which we collect in the vector Fβ , and define as (remember that 2

t txσ = ): 
 

    

1

, ,
,

1, ,
var | cov , | .

t t
t t

t t
t t

t

t t

S FdS dS
F SF S t tS S

F t t t FF x t tt t F x

dF
Fdx dx

β
β

− ∂
∂

∂
∂

                  = ≡ =                       

β P PF F  (3.26) 

 
A proof is given in appendix VIb. The intuitive interpretation of these betas is best 
understood if we assume there to be no leverage effect for the moment, such 
that cov [ , | ] 0t

t

dS
t tS dx =P F . In that case F ’s stock and volatility beta become 

, , cov [ , | ] / var [ | ]t t t

t t t

dF dS dS
F S t t tF S Sβ = P PF F , , , cov [ , | ] / var [ | ]t

t

dF
F x t t t t tF dx dxβ = P PF F , 

which correspond to our beta definitions given in section 5.1 of chapter II. The 
betas of derivative F  then measure the covariance between F ’s  return and the 
(relative) change in its underlying risk factors, as a fraction of the variance of the 
(relative) change in the underlying risk factors, being the stock price and 
volatility. If a leverage effect is present, the interpretation essentially still stands, 
but a “correction” is needed to account for the correlation between stock returns 
and volatility shocks.  
 
Asset returns 
What returns are investors expected to earn when investing in the assets traded 
in this market with leverage? The spot bond return /t t tdB B r dt=  quantifies the 
time value of money. A stock investment automatically generates dividend 
income. From (2.4), the spot return on the reinvestment portfolio equals 
 

,| ( )
r
t

t t t t t S tr
t

dS
q dt r dt

S
µ σ γ

 
 = + = +   

  
PE F .    (3.27) 

 
The market price of stock price risk ,S tγ  determines the risk premium on the 
stock, ,t S tσ γ . From (3.5), trading in a general derivative F  yields an expected 
return of   

         , ,
1

|t t t t
t t t S t t x t

t t t t t

dF S F F
r dt

F F S F x
σ γ σλ γ

      ∂ ∂
= + +      ∂ ∂       

PE F    (3.28) 

            ( ) ( ),
, , , , , , ,

,
' t S t

t F t t F S t t S t F x t t x t
t x t

r dt r dt
σ γ

β σ γ β σλ γ
σλ γ

  
 = + = + +       

β . 
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This is the expected return – beta, or reward – risk relationship that holds for 
derivative assets in the 1-factor affine SV model with leverage effect. The 
expected derivative return consists of three parts. The first part is due to the time 
value of money. The second and third parts respectively, are compensation for 
the risk of derivative price changes induced by unpredictable stock price and 
volatility fluctuations. Compensation for inherent stock price risk equals the 
product of the stock beta , ,F S tβ  and the stock risk premium ,t S tσ γ . Compensation 
for inherent volatility risk equals the product of the volatility beta , ,F x tβ  and 
(what we define as) the volatility risk premium, , ( )t x t txσλ γ σγ α β= + . 
 
Comparing (3.28) to formula (5.5) in chapter II (and taking (5.1)-(5.2) in that 
chapter into account) reveals that the expressions for the expected derivative 
return are exactly the same, whether there is a leverage effect or not.  
 
3.5  Volatility risk premium is negative on theoretical grounds 
 
In section 7.3 of chapter II on the multifactor affine SV model, we proposed an 
economic theory that predicts the volatility risk premium to be negative. The 
argument given there was based on the existence of a leverage effect (which the 
multifactor SV model assumes absent) and is therefore theoretically not fully 
correct. This section shows however, that if the leverage effect is explicitly 
modeled, the argument still stands. The reason is that the expected return–beta 
relationship (3.28) for derivatives is the same in both model settings. 
 
Equation (3.28) is one expression for the arbitrage-free derivative return. 
Following a similar analysis as in section 5.5 of chapter II, it follows from the  
no-arbitrage pricing relation |t t T T tM F M F=   PE F  (see (3.7)), that the derivative 
return can also be expressed in terms of the SDF as 10 
 

 | cov , |t t t
t t t

t t t

dF dM dF
r dt

F M F
   

= −   
   

P PE F F .    (3.29) 

 
Similar as in chapter II, section 7, we may introduce investor preferences and 
investor behavior. The equilibrium behavior of a risk-averse, expected-utility 
maximizing investor, who has to decide how much to consume, save and invest, 
leads again to the derivative price expression 11 
 

 ( ) '( )
|

'( )
T t T

t T t
t

u c
F e F

u c
ρ− − 

=  
 

PE F ,     (3.30) 

 
which defines the stochastic discount factor as the marginal rate of intertemporal 
consumption substitution.  
 
Combining the absence of arbitrage with optimal investor behavior shows that the 
SDF process equals '( )t

t tM e u cρ−= , from which the consumption - derivative 
return formula follows 
 

                                           
10 Perhaps stressed superfluously, although this result does not depend on the leverage effect, the SDF 
processes  { ; 0}tM t ≥  differ in both model settings. 
11 Do not confuse our earlier-used notation ρ  for the investor’s time-preference rate with the 
(common) notation ρ  for the correlation between stock returns and volatility shocks, as used in this 
chapter. Except in (3.30) and in '( )t

t tM e u cρ−= , ρ  stands for this correlation in this chapter.  
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''( )
| cov , |

'( )
t t t t

t t t t
t t t t

dF u c dF dc
r dt c

F u c F c
   

= −   
   

P PE F F .   (3.31) 

 
Recall that ''( ) / '( ) 0t t tc u c u c− >  is the investor’s coefficient of relative risk 
aversion (CRRA). The CRRA measures the investor’s aversion to having different 
consumption opportunities in different states of the world. Combining (3.28) with 
(3.31) yields 
 

       ( ) ( ), , , , , ,
''( )

cov , |
'( )

t t t
t t F S t t S t F x t t x t

t t t

u c dF dc
c dt

u c F c
β σ γ β σλ γ

   − = +    
P F . (3.32) 

 
To make a theoretical prediction on the sign of the volatility risk premium, recall 
that the investor strives at consumption smoothing over time (the permanent-
income hypothesis). The investor may therefore be willing to pay more for assets 
that pay off when his consumption is low, and less for assets that pay off when 
his consumption is already high. Assets that correlate negatively with his 
consumption pattern are therefore more valuable to him.  
 
The typical investor has invested most of his wealth in long stock and bond 
positions (in practice). As such, if markets go down these positions devaluate, 
limiting his consumption opportunities. Vice versa, if markets go up, these 
positions appreciate, expanding his consumption opportunities. The investor’s 
consumption is thus directly tied to general market movements, which he cannot 
influence himself.   
 
To be able to smooth his consumption over time (i.e., to have his consumption be 
less dependent on markets movements), the investor can invest in a long delta-
neutral positive-vega derivative G  such as an ATM straddle or variance swap. As 

, / 0G t t tG S∆ = ∂ ∂ =  and hence , , 0G S tβ = , it follows from (3.32) 
 

 ( ), , ,
''( )

cov , |
'( )

t t t
t t G x t t x t

t t t

u c dG dc
c dt

u c G c
β σλ γ

 
− = 

 
P F .   (3.33) 

 
Suppose then that the investor holds such a derivative G  in his portfolio, and 
suppose now that markets are dropping. His long stock and bond positions still 
devaluate. However, due to the leverage effect, dropping markets are generally 
accompanied by increasing volatility, increasing the value of derivative G . As 
such, this increase (partly) offsetts the drop in value in the investor’s stock and 
bond portfolio (and hence his consumption opportunities). A delta-neutral 
positive-vega derivative G  thus indeed helps the investor pursuing a smooth 
consumption pattern over time. The correlation between derivative G ’s return 
and the investor’s consumption growth is therefore likely to be negative. Now, as 
 

( ), , ,

0 0
0 0

''( )
cov , |

'( )
t t t

t t G x t t x t
t t t

u c dG dc
c dt

u c G c
β σλ γ

> ⇒ <
> <

 
− = 

  12314243
14244314444244443

P F ,   (3.34) 

 
it follows that our theory predicts the market price of volatility risk (which equals 

,x t t txγ γλ γ α β= = + ) to be negative (and thus 0γ < ), leading to a negative 
volatility risk premium of , ( )t x t txσλ γ σγ α β= + .  
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Our own empirical evidence and the evidence on negative market volatility risk 
compensation discussed in section 6.3 of chapter II underwrites this theory.  
 
(Note: A similar clear-cut argument based on e.g. a long call option (which also 
rises in value if volatility rises) instead of a delta-neutral positive-vega derivative 
seems impossible to make: Reconsidering (3.32), dropping markets may induce a 
(temporarily) negative stock risk premium ,t S tσ γ . Moreover, the value of a call 
option decreases if the underlying declines in value. Hence, basing the argument 
on a non-delta-neutral derivative, we cannot distinctively disentangle whether the 
volatility risk premium should be positive or negative theoretically.) 
 
 

4. State space estimation approach 
 
This section derives a linear state space model for the 1-factor affine SV model 
with leverage effect, in a similar way as we previously did for the multifactor  
no-leverage SV model. Section 4.1 explains how to extract information from stock 
returns and RV, section 4.2 from option prices. We arrive at a somewhat different 
options measurement equation. However, as explained in section 4.3, Monte 
Carlo evidence directs us to eventually use the same conditional state space 
model as used in the previous chapter (which is based on no leverage). To 
estimate correlation ρ , we propose an alternative estimator based on (2.6).  
 
4.1  Extracting information from stock prices 
 
Consider first affine SV specification (2.5) with decomposition (2.1). As such, the 
usual exact discrete-time equivalent of the SDE for x  applies,  
 

 * *exp( )t t t t tx k t x u+∆ +∆= − ∆ + ,     (P) (4.1) 

 
with *

t tx x θ= − , and from appendix B, section 6, 
 

      2 1 exp( 2 )
~ 0, ( )

2t t
k t

u
k

σ α βθ+∆
− − ∆ + 

 
   (P) (4.2) 

 2 2 *1 exp( 2 ) exp( ) exp( 2 )
| ~ 0, ( )

2t t t t
k t k t k t

u x
k k

σ α βθ βσ+∆
− − ∆ − ∆ − − ∆ + + 

 
F . 

 
The error series { }tu  is unconditionally white noise, though conditionally 
heteroskedastic, through level-dependent volatility-of-volatility.  
 
Extracting information from squared returns and RV 
How to extract information from stock prices in the model with leverage? A 
derivation entirely analogous as in section 3.2 of chapter III based on an Euler 
discretization of the stock price SDE, shows that, despite the presence of the 
leverage effect, the squared returns still satisfy the equation 
 

 2 * 21
( ) , ~ (0, )t t t t t t t t t tr t x x

t ωµ ω θ ω ω σ−∆ −∆ −∆− ∆ = + = + +
∆

, (4.3) 

 
with { }tω  a white noise series. There is one difference. In the multifactor SV 
model without leverage, { }tω  is uncorrelated with the volatility-factor innovations 
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{ }tu  at all points in time. Here, although the series { }tω  and { }tu  do not 
correlate at different points in time, they are contemporaneously correlated. 12  
 
If high-frequency intraday data is available, one may opt for information 
extraction from RV data. In the multifactor SV model we derived the measure-
ment equation for RV from an equation involving the average stock variance (see 
section 3.3.3 of chapter III). The stock price dynamics did not play a role in the 
derivation. Given (2.5) and (2.1), exactly the same measurement equation for RV 
holds in the model with leverage effect, 
  

2 * 2
, , , ,

1 exp( )
, ~ (0, )RV t t t RV t RV t RV

k t
x

k t ωσ θ ω ω σ−∆
− − ∆

= + +
∆

,  (4.4) 

 
in which the white noise error series ,{ }RV tω  is contemporaneously correlated 
with the volatility factor shocks { }tu , but is uncorrelated at all other time points.   
 
 
4.2  Extracting information from option prices 
 
How can we extract information from call option prices in the 1-factor affine SV 
model with leverage effect? In terms of the Black-Scholes pricing function, the 
call price formula is given by (3.18) as  
 

2
, ,( , )|t t t tC BS S ρ ρσ =  QE F       (4.5) 

with 

2 21
, ,2exp

T

t t t t u x u

t

S S dWρ ρ σ τ ρ σ
 
 = − +
 
 

∫ Q     (4.6) 

2 2 2
, (1 )t tρσ ρ σ= −        (4.7) 

( )2 2 2
,

1
(1 ) ln ( ), expt t t t t t

t
Y Y Yρρ σ τ σ

τ
= − = ≡   . 

 
For simplicity we have shortened 2

, ,( , , , , , )t t t t tBS S K r qρ ρτ σ  to 2
, ,( , )t tBS S ρ ρσ , 

because given time- t  information, the only quantities that are random in the BS  
pricing function are ,tS ρ  and 2

,t ρσ .  
 
We pursue a similar approximation method as for the multifactor affine SV model 
using the result 2[ | ] [exp( )| ]t t t t tY τ σ=Q QE EF F 1 1exp[ ( ) ( ) ]t t tA B xτ τ= + , which still 
holds in case of leverage. Due to leverage however, the BS  pricing function is 
now a function of two random variables instead of one, ,tS ρ  and 2

, ( )t tYρσ . These 
random variables are correlated, though not perfectly. (In the multifactor model, 
the BS pricing function was a function of the average variance 2 2( )t t tYσ σ=  only; 
remember the implied call price 2( )|t t tC BS σ =  QE F  for that model.)  
  

                                           
12 This is seen as follows. From an Euler discretization of the stock price SDE (2.3), it follows that 

2 2
,[( ) / 1]t t t S tW tω σ+∆ = ∆ ∆ − , in which 2

, , , , ,1S t S t t S t S t x tW W W W Wρ ρ+∆∆ = − = − ∆ + ∆ ; 
see decomposition (2.1). Moreover, ,exp[ ( )]t t

t t t s x su k t t s dWσλ+∆
+∆ = − + ∆ −Ÿ  with (recall) 

s sxλ α β= + , such that the innovation t tu +∆  involves the full path of ,{ }x tW  over the interval 
[ , ]t t t+ ∆ . Evidently, t tω +∆  and t tu +∆  are correlated. The non-contemporaneous errors are 
uncorrelated, due to independent Brownian increments. 
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Linearizing the call price formula 
We aim at linearizing around suitable choices for ,tS ρ  and tY  such that we end up 
with a linear options measurement equation. We denote this linearization point by 

* *
,( , )t tS Yρ . From (4.7), a choice for *

tY  implies a choice for 2
,t ρσ  and vice versa. 

We are looking for a t −F measurable linearization point, i.e. a non-random point 
given tF -information. Linearizing the (.,.)BS  function around such a point 

* *
,( , )t tS Yρ  yields the rewritten call price formula 

 

( )2
, ,, ( ) |t t t t tC BS S Yρ ρσ =  QE F       (4.8) 

( ) ( ) ( )* 2 * * *
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, ( )t t t t t t t t t
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σ
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= + − + − + 
∂ ∂  

FQE  

( ) ( ) ( )* 2 * * *
, , , ,

,
, ( ) | | |t t t t t t t t t t t

t t

BS BS
BS S Y S S Y Y HOT

S Yρ ρ ρ ρ
ρ

σ
∂ ∂ = + − + − +        ∂ ∂

F F FQ Q QE E E

 
in which the (.,.)BS  partial derivatives are evaluated in ( )* 2 *

, ,, ( )t t tS Yρ ρσ  (and 
hence are t −F measurable, from which the third equality follows), and with tHOT  
denoting higher-order terms.  
 
To motivate the choice for the linearization point, consider the first term in (4.8). 
The model-implied Black-Scholes implied variance 2

,implied tσ  is defined implicitly as 
2

,( , )t t implied tC BS S σ= . This suggests the following convenient linearization point:  
 

 ( ) ( )* 2 * 2
, , ,, ( ) ,t t t t implied tS Y Sρ ρσ σ=  

2
,*

2
exp

1
t implied t

tY
τ σ

ρ

 
 ⇒ =

−  
,  (4.9) 

 
in which the implied *

tY  follows from (4.7). Reconsidering (4.8), the conditional 
expectation of tY  under Q equals 1 1[ | ] exp[ ( ) ( ) ]t t t t tY A B xτ τ= +FQE , which is 
exponential-affine in the latent factor.  
 
But what about the conditional expectation ,[ | ]t tS ρ FQE  that also appears in 
(4.8)? ,tS ρ  can be written as (see (4.6) and (3.10)) 
 
 , exp( )t t T tS S U Uρ = − ,       (4.10) 
 
in which the process { ; 0}tU t ≥  is defined by 

 

2 21
,2

0 0

t t

t u u x uU du dWρ σ ρ σ≡ − +∫ ∫ Q  2 21
,2t t t x tdU dt dWρ σ ρσ⇔ = − + Q . (4.11) 

 

Consider next the process { ; 0}tV t ≥  with exp( )t tV U≡ . Itô’s lemma shows that 

,t t t x tdV V dWρσ= Q , i.e. { ; 0}tV t ≥  is a driftless process. As the technical condition 
2 21

02[exp( )]T
sdsρ σ < ∞∫QE  holds (see appendix B, section 10), { ; 0}tV t ≥  is a 

( ,{ })t −Q F martingale. As such, [ | ]T t tV V=QE F  or [ / | ] 1T t tV V =QE F , and hence 
[exp( )| ] 1T t tU U− =QE F . This implies 

 
  ,[ | ]t t tS Sρ =QE F .       (4.12) 
 
Given linearization point (4.9), the first term in (4.8) thus equals tC , the second 
term equals zero, and hence (4.8) can be rewritten as  
 



4. State space estimation approach 

 261
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τ τ

 
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This equation is linear in the latent volatility factor x . 
 
A linear options measurement equation 
Similar as before, neglecting higher-order terms, rewriting using expression (4.9) 
for *

tY , introducing a constant νµ  and  noise in the form of an additive error term 

tε , yields  

 
2 2

2 21 1
,

(1 ) ( ) (1 ) ( )
, ~ (0, )t t

implied t t t t
t t

A B
xν ε

ρ τ ρ τ
σ µ ε ε σ

τ τ
− −

= + + + . (4.14) 

 
This equation may serve as the input to a linear state space model with time-
varying coefficients. 13 (If 0ρ = , the measurement equation obtained from the  
1-factor affine SV model without leverage effect results. Note that moneyness 
does not play a role in (4.14); see section 3.4.2 of chapter III for discussion.) For 
volatility specification (2.5), the functions 1(.)A  and 1(.)B  satisfy the following 
system of Ricatti ODEs, with k k σ γ β= +%  and ( ) /k kθ θ σ γ α= − %%  (see (2.18)): 
 

 221 1
1 12

( )
( ) ( )

dA
k B B

d
τ

θ τ ασ τ
τ

= +   
%% ,  1(0) 0A = ,  (4.15) 

 221 1
1 12

( )
( ) ( ) 1

dB
k B B

d
τ

τ βσ τ
τ

= − + +  
% ,  1(0) 0B = . 

 
Correlation parameter ρ  seems identifiable from (4.14): Factor 2(1 )ρ−  cannot 
be subsumed in just one of the parameters, not even for Heston (CIR) SV, for 
which 0α =  and 1β = . Namely, defining the functions 2

1, 1(.) (1 ) (.)A Aρ ρ≡ −  and 
2

1, 1(.) (1 ) (.)B Bρ ρ≡ − , these functions satisfy 2
1, 1( ) / (1 ) ( ) /dA d dA dρ τ τ ρ τ τ≡ − , 

2
1, 1( ) / (1 ) ( ) /dB d dB dρ τ τ ρ τ τ≡ − , and (taking (4.15) into account) cannot be 

rewritten in terms of simple adjusted parameters. Nor can 2(1 )ρ−  be considered 
a simple scaling factor acting on latent factor x . 14 
 
4.3   Conditional state space model  
 
Our specific choice (4.9) for the linearization point results in the linear options 
measurement equation (4.14). This is convenient, as this equation can be cast in 
a (relatively simple) linear state space representation, together with equations 
(4.1), (4.3) and (4.4) for the discrete-time volatility-factor evolution, the squared 
returns and RV. As a Monte Carlo study shows however (for the five parameter 
sets given in table 5.2), correlation parameter ρ  is routinely estimated at zero. 
We attribute this to linearization point (4.9). 15 (Restricting 0ρ =  in succession 

                                           
13 A parabolic approximation of the (.,.)BS  pricing function does not lead to an equation that is linear 
in tx . Such an approximation includes 2 2

,,t tY S ρ  and ,t tY S ρ , and requires expressions for the 
conditional Q-expectations of these random variables, given tF . From appendix B, section 10 we have 

2
2 2[ | ] exp[ ( ) ( ) ]t t t t tY A B xτ τ= +QE F . “Nice” analytical expressions for 2

,[ | ]t tS ρQE F  and 
,[ | ]t t tY S ρQE F  in terms of tx  seem impossible to derive however.  

14 If functions 1(.)A  and 1(.)B  were constant such that 2 2
, 1 1(1 )[ ]implied t t tA B xνσ µ ρ ε= + − + +  

then ρ , 1A  and 1B  would not separately be identified. However, they do vary with maturity tτ . 
15 A simple, clear-cut Jensen’s inequality-based argument in which we take call price formula (4.8) into 
account seems difficult (if not impossible) to make for this finding of ρ  being estimated at 0: Although 
the (.,.)BS -pricing function is concave in its variance argument, matters here are more complicated 
than in a no-leverage-effects model, as the (.,.)BS  function is now a function of two random 
variables (given tF ), with not only 2

,t ρσ  but also ,tS ρ  depending on 2
tσ . As such, we rather take this 

finding for granted, than give an intuitive but possibly incorrect reason for this finding.  
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leads to the same optimal loglikelihood value and estimates for θ , k , σ , and γ  
as when leaving ρ  free.)  
 
Restricting 0ρ =  and a different estimator for ρ  
We adopt the following strategy to overcome this hurdle and still obtain an 
estimate of ρ . First, we restrict 0ρ =  prior to estimation. Hence, this essentially 
boils down to assuming the leverage effect to be absent. The state space model 
derived from the 1-factor affine SV model with leverage then reduces to the 
conditional state space model derived from the multifactor no-leverage-effects 
affine SV model (the 1-factor special case). The conditional state space model is 
given in section 3.3 of chapter V and is estimated by Extended Kalman filter QML. 
Second, given the smoothed volatility series extracted from the data at the 
optimum, we next obtain an estimate for ρ  from (2.6). That is, we compute ρ  
as the correlation between daily stock returns and daily smoothed stock variance 
changes. This ρ -estimator is particularly easy to compute.  
 
Indeed, this is essentially the strategy pursued for the multifactor affine SV model 
without leverage effect in previous chapters. 
 
A 2-step estimation method 
The bias in this ρ − estimator appears modest when option data is included for 
estimation (see sections 5.3.3-5.3.5). However, restricting ρ  to zero whereas its 
true value differs from zero may result in bias in the other estimates. The 
following 2-step estimation method seems intuitively appealing to (partly) 
overcome this source of bias. In the first step, we estimate the conditional state 
space model by Extended Kalman filter QML with the restriction 0ρ =  imposed. 
At the optimum, we compute an estimate of ρ  using (2.6). (The first step thus 
corresponds to the estimation procedure just proposed.) In the second step, we 
plug this estimate of ρ  into the options measurement equation (4.14), and 
perform a second, restricted estimation round to determine the estimates of 
, ,kθ σ  and γ  (while keeping ρ  restricted).  

 
Although appealing at first sight, this 2-step method performs much worse than 
simply taking the estimates obtained in the first step as the final estimates. The 
Monte Carlo evidence in section 5.3.6 illustrates this. As such, the device is to 
restrict 0ρ = , estimate the conditional state space model to obtain estimates for 
, ,kθ σ  and γ , and then compute an estimate for ρ  based on (2.6). 

 
 

5. A Monte Carlo study towards the Heston model 
 
This section reports the results of a Monte Carlo study towards the Heston (1993) 
model. A first aim is to investigate each parameter’s impact on the stock return 
and volatility distributions, and on option prices. A second aim is to examine the 
performance of the state space estimation method as outlined in section 4.3 (with 

0ρ =  imposed), and to illustrate that the 2-step method performs worse.   
 
Section 5.1 details assumptions with regard to the simulated data and discusses 
the set up of the Monte Carlo experiment. Section 5.2 examines each parameter’s 
impact on stock returns and option prices. Section 5.3 investigates the 
performance of the estimation method based on (a combination of) squared 
return, RV and option data.  
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5.1 Simulating from the Heston model 
 
The Heston model is obtained from taking 0α =  and 1β =  in the model with 
leverage effect discussed in section 2. Under P, the Heston volatility specification 
reads 2

t txσ =  with ,( )t t t x tdx k x dt x dWθ σ= − + . Under Q, the factor SDE reads 

,( )t t t x tdx k x dt x dWθ σ= − +% % Q , in which the risk-neutral parameters are given by 
k k σγ= +%  and / .k kθ θ= %%  The price of volatility risk is given by ,x t txγ γ= . The 
volatility risk premium equals txσ γ , and averages at σ γ θ . If there is no 
leverage effect, the Heston model reduces to the 1-factor CIR SV model.  
 
5.1.1   Assumptions 
 
We assume 260 trading days per annum and denote the timing of the daily data 
points by , 2 ,..,t t t T t= ∆ ∆ ∆ , with 1 /260t∆ = . We simulate a total of T = 1058 
daily observations, corresponding to the UK data used in our empirical work. As in 
our previous Monte Carlo studies, we assume 0 5300S = , µ µ= = 8.25%t , 

3.5%tq q= = , and 6%tr r= = , which correspond to the information in the 
FTSE100-index data for the period 6 Oct 1997 – 28 Dec 2001. We simulate time 
series of squared returns, 10-minute realized volatilities (i.e. 48 intraday time 
points per trading day of eight hours) and short-maturity (close-to) ATMF call 
options. The maturity and moneyness of the simulated option series exactly 
match those of the empirical SM ATMF FTSE100-index option series, for each t . 
The average maturity is 1.4 months. (See section 2.1 of chapter IV for details.) 
 
 
Table 5.1: Heston (1993) model estimation results in the literature 
 Bakshi, 

Cao & Chen 
(1997) 

Chernov & 
Ghysels 
(2000) 

Pan 
(2002) 

Jones 
(2003) 

Van der 
Ploeg 

(2004) 
θ  - 0.0154 0.0137 0.0351 0.0441 
k  - 0.931 7.1 0.478 7.86 
σ  0.40 0.0615 0.32 0.377 0.689 
γ  (implied) - -3.92 -24 -9.17 -6.91 
ρ  -0.70 -0.018 -0.53 -0.679 -0.67 
Volatility of 
returns 

- 12.4% 11.7% 18.7% 21.0% 

Persistence - 0.9964 0.9731 0.9982 0.970 
Std.dev. tx  - 0.0060 0.0099 0.0722 0.0365 

k%  0.99 0.690 -0.50 -2.98 3.10 

θ%  0.0404 0.00956 -0.20 -0.0563 0.112 

Volatility risk 
prem. (implied) 

- -0.37% -10.4% -27% -21% 

Data Daily panel 
of  

S&P500  
call options 

Daily S&P500 
returns + 
 1 SM-ATM  
call series 

Weekly 
S&P500 

returns +  
1 SM-ATM  
call series 

 

Daily S&P100 
returns + 

impl.vols VIX 
 

Daily 
FTSE100  
returns + 
1 SM-ATM  
call series 

Period 1988 - 1991 1986 - 1993 1989 - 1996 1988 - 2000 1997 - 2001 

Estimation 
method 

Daily 
calibration 
(averaged   
estimates) 

Efficient 
Method of  
Moments 

Implied- 
state  
GMM 

Bayesian 
approach 

Extended 
Kalman  

filter QML 

The table reports recently estimated Heston model values and calculated implied results. 
Return volatility is computed as θ , persistence as exp( )k t− ∆ , std.dev. of tx  as 

2 /2kσ θ , implied γ  as ( ) /k kγ σ= −%  and mean volatility risk premium as σ γ θ .  
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A decision needs to be made on the parameter values with which to simulate data 
from the Heston model. Table 5.1 summarizes Heston model values researchers 
have recently estimated and reports implied results, including our own results 
from the previous chapter. The specific data, period and estimation method are 
also tabulated. Sections 6.3.1 and 2.1.1 of chapter II and III respectively, contain 
a more elaborate discussion of the papers by Chernov and Ghysels (2000), Pan 
(2002) and Jones (2003), and comment on their findings. Bakshi, Cao and Chen 
(1997) calibrate the Heston model to a panel of option prices, for which only the 
model under Q is needed. We therefore cannot infer the implied , kθ  and γ .  
 
The estimates reported in table 5.1 may guide us in what parameter values to 
choose. There are some issues regarding these estimates that deserve attention 
however. Although Chernov and Ghysels (2000) and Pan (2002) use a largely 
overlapping dataset, their results differ enormously on ρ , k  and the implied 
volatility risk premium. We feel more confident with Pan’s results. Moreover, both 
Pan (2002) and Jones (2003) find an explosive risk-neutral volatility process (as 

, 0k θ <% % ). We do not advocate simulating from such an explosive (and probably ill 
or improperly-defined) process. This restricts possible parameter choices, mainly 
with regard to γ .  
 
 
Table 5.2: Parameter sets  

Parameter set: I II III IV V 
θ  0.04 0.04 0.04 0.04 0.02 
k  1.50 2.61 5.25 7 7 
σ  0.20 0.30 0.45 0.60 0.30 
γ  -4 -5 -6 -7 -20 
ρ  -0.40 -0.50 -0.55 -0.60 -0.50 
Volatility of returns 20% 20% 20% 20% 14.14% 
Persistence 0.9942 0.9900 0.9800 0.9734 0.9734 
Std.dev. tx  0.0231 0.0263 0.0278 0.0321 0.0113 

k%  0.700 1.11 2.55 2.80 1.00 

θ%  0.0857 0.0941 0.0824 0.100 0.140 
Av.vol. risk premium -3.2% -6% -10.8% -16.8% -12% 
The table reports five parameter sets with implied quantities which will be used for 
simulating data from the Heston model (i.e. the 1-factor CIR SV model with leverage).   
 
 
Eventually we have chosen for five parameter sets, numbered I – V, given in 
table 5.2. Set IV closely corresponds to our own empirical estimates. Set V 
largely corresponds to Pan’s findings, with the exception that a negative k%  and θ%  
are circumvented, while keeping the average volatility risk premium similar. Note 
the same choice for θ  (unconditional stock variance) for parameter sets I - IV. 
We intuitively expect the bias of its estimate to be not much dependent on its 
magnitude. This allows us to focus (when moving from set I to IV) on the effects 
on bias of a gradual increase in mean-reversion (k ), accompanied by increasing 
volatility-of-volatility (σ ), and a stronger leverage effect ( ρ ), which is often 
observed in practice (see e.g., Jones (2003)).  
 
Parameter sets  I–V were also used in the Monte Carlo study towards the 1-factor 
CIR SV model (see section 4 of chapter V), except that there ρ = 0  (no leverage 
effect). This allows for a bias comparison induced by the leverage effect. 
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5.1.2   Set up of the Monte Carlo experiment 
 
Below we outline, in chronological order, how to obtain one simulated dataset 
from the Heston model. For each of the parameter sets I - V we simulate a total 
of 150 datasets, each consisting of 1058T =  daily observations. 16 
 
Step 1: Simulate a correlated stock price and volatility path under P;  

  compute squared returns and realized volatilities 
The first step consists of simulating a sample path of the correlated system of 
SDEs (2.3) and (2.5) for { }tS  and { }tx  under P, over the interval [0, ]T t∆ , given 

0 5300S =  and some value for 0x . We draw 0x  from the stationary distribution of 
{ }tx . Rather than using a simple Euler scheme, we use the refined 1D-Milstein 
approximation scheme for numerically solving the system. 17 It reads 
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for 0,.., 1i TI= − , in which , ~i.i.d. (0,1)i iηe N  under P. 18 We simulate { }tS  and 
{ }tx  on 48I =  equidistant intraday time points. Since a trading day lasts for 
approximately 8 hours, this means that a value is simulated every 10 minutes. 
The discretization step of the SDEs then equals 5/ 8.0 *10t t Iδ −= ∆ = . The 
associated P-volatility path over [0, ]T t∆  is given by [ ] [ ]i t i txδ δσ = . For all 
parameter sets I–V, the Feller condition associated with the CIR process for { }tx  
holds under both P and Q. 19  
 
The annualized squared returns in deviation from their mean are computed as 

2
[ ]( ) /j tr t tµ∆ − ∆ ∆  for 1,..,j T= , with [ ] [ ] [( 1) ] [( 1) ]( ) /j t j t j t j tr S S S∆ ∆ − ∆ − ∆= − . The 

simulated 10-minute realized variance over day [ , ]t t t+ ∆  is calculated as 
  

                                           
16 Obviously, the more datasets we simulate, the better for drawing conclusions on the state space 
estimation method. To keep the amount of computations to a reasonable level however, we choose to 
simulate 150 datasets. This takes 41 hours on a Pentium-III computer (see also our discussion below).  
17 An explicit solution to the SDE system does not exist, such that a numerical solution is called for. A 
pathwise approximation is usually called a strong numerical solution, whereas a weak numerical solution 
only aims at approximating the moments (i.e., the finite-dimensional distributions) of the solution. The 
Euler approximation scheme converges strongly with order 0.5 and weakly with order 1. The 1D-Milstein 
scheme converges strongly (and hence weakly) with order 1. It is an improvement to Euler’s scheme.  
18 This 1D-Milstein scheme follows from 2 21

, ,2 [( ) ]t t t t S t t t S tS S t S W S W tµ σ σ∆ ≈ ∆ + ∆ + ∆ − ∆ ,  
and 2 21

, ,4( ) [( ) ]t t t x t x tx k x t x W W tθ σ σ∆ ≈ − ∆ + ∆ + ∆ − ∆ , with all differences being forward, 
e.g., t t t tS S S+∆∆ ≡ − . Based on decomposition (2.1), we next perform the decomposition 

,x t tW t∆ = ∆ e  and 2
, [ 1 ]S t t tW t ρ η ρ∆ = ∆ − + e . In contrast, the so-called 2D-Milstein 

scheme starts from (2.3) and (2.5) with decomposition (2.1) being imposed before  discretizing the 
SDEs. Although the 2D-scheme means an improvement to the 1D-scheme, it is computationally more 
involved: The resulting discretized system involves a certain double stochastic integral, which may be 
approximated by e.g. the subdivision method of Kloeden (2002). See Schmitz (2004) for more details.   
19 Due to the discretization it may nevertheless occur that { }tx  turns negative at some point. If this 
occurs our simulation procedure replaces such a negative value by 10-5. Tracking the number of times 
this happens, shows that this never occurs however, for none of the simulated datasets.  
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Step 2: Simulate forward prices and option strike prices  
We compute the forward price for delivery on the same date as the expiration 
date of the option by τ= −[ , ] [ ] exp[( ) ]t T t tF S r q , for each ,..,t t T t= ∆ ∆ . Here, 
{ ; ,.., }t t t T tτ = ∆ ∆  is the option maturity series. As before, we simulate the strike 
prices of the ATMF option series in such a way that the moneyness of the 
simulated and real-world SM ATMF FTSE100-index option series exactly coincide 
for each t . (We use the same procedure as in section 3.2.2 of chapter IV).  
 
Step 3: Simulate Heston call prices 
Given r , q , tτ  and the simulated [ ]tσ , [ ] [ , ], ,t t T tS F K , we next simulate the 
theoretical Heston call price tC  for days , 2 ,..,t t t T t= ∆ ∆ ∆ . Given time- t  
information, the only random quantities in the call price formula (3.16) are an Itô 
integral and the average variance 2

tσ  under Q, i.e.,    
 

 2 21 1t tT T

t u u
t tt t

du x duσ σ
τ τ

= =∫ ∫ ,   , ,

t tT T

u x u u x u

t t

dW x dWσ =∫ ∫Q Q . (Q) (5.3) 

 
Suppose we have simulated N  independent combinations of the average variance 
and the Itô integral at time t . Each of these 1,..,i N=  combinations yields a 
simulated Black-Scholes call price value 2

[ , ] [ , ]( ( ), , , , , ( ))t t t tBS S i K r q iρ ρτ σ  as in 
(3.18). We take the average of these N  Black-Scholes values, [ ]tC , as an 
approximation of the true call price tC  at time t . This is justified by the weak law 
of large numbers. This approximation improves for larger N , but comes at the 
cost of increased computing time. As before, we take 2000N =  in our 
simulations, as this number appears to result in a sufficiently small Monte Carlo 
standard error of the simulated call price. Repeating this procedure for each 

,..,t t T t= ∆ ∆ , yields the simulated call price series [ ] [2 ] [ ]{ , ,.., }t t T tC C C∆ ∆ ∆ . 
 
But how exactly can we obtain 2000N =  realizations of 2

tσ  and the Itô integral 
under Q, given the initial simulated stock volatility [ ] [ ]t txσ =  under P at time t ? 
Each realization requires a simulated Q-path of { }tx  from (2.17) over the interval 
( , ]tt T , given the simulated P-value of tx  obtained in step 1. A Milstein approxi-
mation of SDE (2.17) yields the recursive scheme  
 

[ ] [ ]t tx x= , in which [ ]tx  is the simulated time- t  factor  (Q) (5.4) 
     value under P, obtained in step 1 
 

 2 21
[ ( 1) ] [ ] [ ] [ ] 4( ) 1t i t t i t t i t t i t i ix x k x t x t tδ δ δ δθ δ σ δ σ δ+ + + + +  = + − + + − 

% % e e , 

 
for 0,.., 1ti n= − , with /t tn I tτ≡ ∆  and ~i.i.d. (0,1)ie N  under Q. To simulate the 
call price series, we use this Milstein scheme based on 2I =  intraday time points 
(and not 48I =  20), implying an SDE-discretization step of /t t Iδ = ∆ =  
1 /(260 *2) 0.00192=  in this case.  

                                           
20 In step 1, we simulate the SDE system (2.3)-(2.5) using 48I =  intraday time points, implying a  
10-minute RV measure. Taking 48I =  in step 4 results in a 15-second duration for simulating 1 call 
price, or 4.4 hours for 1 full simulated dataset, which consists of 1058 call prices (for each day one.) As 
we aim for simulating 150 datasets for each of the 5 parameter sets, this would imply a duration of 20 
weeks(!). If we take 2I =  instead, this latter duration reduces to 41 hours per parameter set, or 8.5 
days in total. (Notice that this duration is only the time it takes to simulate the datasets; the duration of 
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Given such a simulated Q-path of { }tx , we next approximate the average 
variance at time t  using the trapezoidal rule of numerical integration (see e.g. 
Atkinson (1993)), by 
 

 2 1 1
[ ] [ ] [ ( 1) ] [ ]2 2

1
..

t tt t t t t n t t n t
t

t x x x xδ δ δσ δ
τ + + − + ≈ + + + +  . (Q) (5.5) 

 
(The trapezoidal rule means an improvement to a conventional approximating 
Riemann sum.) We approximate the Itô integral in (5.3) at time t  by the quantity 
Integral[ ]tt n tδ+ , which is the final evaluation point of the recursion 
 

Integral[ ] 0t =        (Q) (5.6)      

21
[ ] 4Integral[ ( 1) ] Integral[ ] 1 , 0,.., 1.t i t i i tt i t t i t x t t i nδδ δ δ δ+  + + = + + + − = − e e   

 
 
Step 4: Obtain the Black-Scholes implied variance series 
Given the call price series [ ]{ ; ,.., }tC t t T t= ∆ ∆ , we obtain the associated simulated 
Black-Scholes implied variance series 2

,[ ]{ ; ,.., }implied t t t T tσ = ∆ ∆  by numerically 
solving for 2

,[ ]implied tσ  from the equation 2
[ ] [ ] ,[ ]( , , , , , )t t t t implied tC BS S K r qτ σ= .    

 
Repeating step 1 to 4 a 150 times results in 150 simulated datasets of the Heston 
model for a chosen set of parameter values. These datasets serve to investigate 
the performance of our state space estimation method in section 5.3. 
 
Illustrating the implied volatility surface, smile/skew and term structure 
In the next section, we first examine the various shapes of the (Black-Scholes) 
implied volatility surface that the Heston model can generate on a particular day. 
Simulation of Heston prices of option contracts that differ in maturity and strikes 
is therefore required.  
 
Suppose first that, at day t , we desire to simulate the prices of a cross-section of 

1,2,..,j nc=  call options that differ in strikes, but all have equal remaining time 
to maturity t tT tτ = − . Suppose that the current stock price equals 100tS = , 
whereas the current stock variance equals 2

t txσ =  (under P). We fix the 
moneyness of these options as 1 2, ,..., ncM M M , with /j j tM K S= , i.e., the ratio of 
strike and stock price. 21 Their strike prices thus equal j j tK M S= . As all options 
have the same time to maturity, their Heston call prices are given by 

2
, ,[ ( , , , , , )| ]tj t j t t tC BS S K r qρ ρτ σ= QE F . Notice that ,tS ρ  and 2

,t ρσ  are the same for 
each option. We therefore need to simulate N  average variances 2

tσ  and Itô 
integrals (5.3) only, to be able to compute the nc  Heston call option prices 
simultaneously, as outlined in step 3. These Heston call prices can next be   
transformed to Black-Scholes implied volatilities, as explained in step 4. The plot 
of these implied volatilities against moneyness is referred to as the volatility smile 
or volatility skew (or smirk) for that maturity.  
 
If we repeat this procedure for different maturities and next plot the BS implied 
volatilities on the resulting moneyness – maturity grid, we obtain a graph of  the 
implied volatility surface on day t . Selecting a certain moneyness jM , and 

                                                                                                                         
subsequent state space estimation is not yet added to this.) One reason to focus on a refined Milstein 
scheme instead of a simple Euler scheme is to “partly compensate” for taking = 2I  only. 
21 Defining moneyness as /j j tM K S=  results in a downward-sloping volatility skew, which is the plot 
practitioners have in mind. (Defining /j t jM S K=  results in an upward-sloping “skew”.) 
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plotting the associated BS implied volatilities against maturity, results in the 
volatility term structure for that moneyness.  
 
It follows from the put-call parity that European call and put options with the 
same strike and maturity have an identical BS implied volatility. The implied 
volatility surfaces of calls and puts thus coincide. 
 
5.2 Simulation results for the Heston model: 

Parameter influence on stock returns and option prices 
 
The Heston model has five parameters: , , ,kθ σ γ  and ρ . In what way do these 
parameters determine the stock return and volatility distributions? How do they 
influence option prices, i.e., how do they impact on the shape of the smiles and 
term structures? 
 
5.2.1   Parameters effects on stock returns and volatility 
 
From (2.3), the conditional distribution of the instantaneous stock return  
is Gaussian, 2/ | ~ ( , )t t t t tdS S dt dtµ σF N , with 2{ }t txσ =  representing the 
conditional variance process of the spot stock return. (Due to SV, the distribution 
of the stock return over any finite horizon is not Gaussian however.)  
 
Parameter θ  determines the average level of the stock volatility: 2[ ]tσ θ=PE . The 
larger θ , the larger the mean volatility level.  
 
Parameter k  determines the speed at which the stock variance 2

t txσ =  reverts 
back to its mean: As [ | ] ( )t t tdx k x dtθ= −PE F , it is clear that (for , 0k θ > ) the 
stock volatility is always drawn back to its mean of θ , at speed k . Equivalently, 
k  measures the volatility persistence ( exp[ ]k t− ∆ ), and determines the half-life of 
a volatility shock (which is given by ln2 /k t∆ ). If 0k = , there is no mean 
reversion, volatility shocks are persistent and impact on future volatility for ever. 
The volatility shows random walk behavior in that case. The larger k , the less 
persistent volatility is, the faster the mean reversion, and the faster the impact of 
shocks dies out.  
 
Parameter σ  determines the volatility of volatility shocks: 2var [ | ]t t tdx x dtσ=P F . 
The larger σ , the larger subsequent volatility fluctuations (ceteris paribus), and 
the larger the unconditional volatility-of-volatility: 2 2var [ ] /2t kσ σ θ=P . A larger θ  
implies a larger 2var [ ]tσP  as well, as the volatility-of-volatility is level-dependent. 
Moreover, the more persistent volatility is (the smaller k ), the larger the 
unconditional volatility-of-volatility. Intuitively, smaller k ’s imply that the 
volatility tends to wander away from its mean more than for larger k ’s, resulting 
in more volatility variation. Parameter σ  also controls the kurtosis of the stock 
return distribution. If stock volatility were constant, stock returns over any 
horizon would be normally distributed, and hence have a kurtosis of 3. The larger 
σ , the more the stock volatility fluctuates, the larger the deviation from 
normality, the larger the excess kurtosis (ceteris paribus).  
 
Parameter ρ  determines the correlation between stock returns and volatility 
shocks (see (2.6)), with the leverage effect indicated by 0ρ < . A negative ρ  also 
induces negative skewness in the stock return distribution: Declining stock prices 
(negative returns) are generally accompanied by increasing volatility (the 
leverage effect) and thus by larger return variation, than if stock prices go up 
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(positive returns). The return distribution will therefore be skewed to the left. 22 
(More properties of the Heston (CIR) SV process are in appendix B, section 14.)  
 
5.2.2   Implied volatility surface if there is no leverage effect 
 
First, recall that the constant-volatility Black-Scholes model implies a horizontal, 
flat implied volatility surface. SV without leverage effect implies a smile across 
equal-maturity, different-moneyness options. (See Renault and Touzi (1996) for a 
mathematical proof.) 
 
As a benchmark, figure 5.1 plots the BS implied volatility surface on a medium-
volatility day (i.e. σ θ σ= =2 2[ ]t tPE ) for parameter set IV, but assuming no 
leverage effect. Hence, 0.04θ = , 7k = , 0.60σ = , 7γ = −  and 0ρ = . The current 
stock price equals 100tS = . The moneyness / tK S  ranges from  0.70 to 1.30 (in 
steps of 0.05), and the maturity from 1 month to 1 year (in steps of 1 month). 
Figure 5.2 plots the associated volatility smiles for the maturities 1, 3, 6, 9 and 
12 months. The locations of currently at-the-money ( tS K= ) calls and puts, in-
the-money calls ( tS K> ) and puts ( tS K< ), and out-of-the-money calls ( tS K< ) 
and puts ( tS K> ) are highlighted.  
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Figure 5.1: BS implied volatility surface on a medium-volatility day for parameter set IV, 
but with 0ρ =  (no leverage effect), assuming 100tS =  and σ σ θ= =2 2[ ]t tPE . 
 
 
Volatility smile flattens out the longer the option maturity 
Relative to ATM options, stochastic volatility results in larger prices for ITM and 
OTM options: the smile effect. The volatility smile is most pronounced for short-
maturity options, and flattens out the longer the maturity of the options. An 
intuitive explanation is as follows. From (3.17)-(3.18), if 0ρ =  the call price 
becomes 2[ ( , , , , , )| ]t t t t tC BS S K r qτ σ= QE F . From (9.17)-(9.22) in appendix B, 
given tF , the average variance 2

tσ  converges to θ%  under Q for T → ∞ . This is 
due to volatility mean reversion (i.e. stationarity); shocks tend to “average out” 
over time. Therefore, the longer the maturity, the less 2[ | ]t tσQE F  depends on the 

                                           
22 See e.g. Franses and Van Dijk (2000) for recent empirical stock return evidence that supports this 
model implication. The distribution of empirical exchange rate returns is typically much more symmetric, 
which corresponds to 0ρ = .   
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current stock volatility 2
t txσ = , the closer its value is to its limiting constant value 

θ% , and thus the more horizontal the volatility smile will be (corresponding to the 
constant volatility BS model). 
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Figure 5.2: Volatility smiles associated with the implied volatility surface of figure 5.1. 
Locations of currently at-the-money (ATM), in-the-money (ITM) and out-of-the-money 
(OTM) call and put options are indicated. Horizontal axis: moneyness / tM K S= . Vertical 
axis: BS implied volatility.  
  
 
ATM VTS is upward sloping on medium-volatility days, due to  γ < 0  
On this medium-volatility day for which 2 2[ ]t tσ σ θ= =PE , the VTS is upward 
sloping, and steepest for ATM options. Similar pictures for low-volatility days 
reveal steeper upward-sloping term structures, whereas for high-volatility days, 
the term structures are downward sloping (and the smiles remain). These 
findings may also be explained by volatility mean reversion. They confirm the in 
practice often-assigned interpretation of BS implied volatilities being market 
forecasts of future volatility, at least on low and high-volatility days. Namely, on a 
medium-volatility day, the volatility is as likely to go up as down, as in that case 

2[ | ]s tσ θ=PE F  for s t>  (see (14.7) in appendix B). The upward-sloping ATM 
volatility term structure on medium-volatility days is therefore misleading.  
 
Now, why is the ATM VTS upward sloping on a medium-volatility day and not 
more or less flat? We attribute this to the assumption of a negative market price 
of volatility risk, which results in a mean Q-volatility θ%  larger than the mean  
P-volatility θ . In this case, 0.04, 0.10θ θ= =% . Option prices, and thus BS implied 
volatilities, are determined by the (mean-reverting) risk-neutral volatility process. 
So on a medium-(P)-volatility day for which σ θ θ= < %2

t , it is not surprising that 
the VTS is upward-sloping: The Q-volatility tends to revert to its larger mean θ% , 
starting from σ θ=2

t , which results in larger option prices (and hence larger 
implied volatilities) for longer maturities. This reasoning is confirmed by setting 
the current volatility to  σ θ= %2

t , which results in a close-to-flat ATM VTS. (There 
is a difference of 0.75% only between the 1-mth and 1-year implied volatility in 
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that case). Moreover, taking σ θ=2
t  and setting 0γ =  (no volatility risk 

premium), such that the P and Q volatility processes coincide and have mean θ , 
the ATM VTS is also virtually flat (a difference of 0.25% only). The ATM VTS 
appears steeper, the larger the deviation between the current (P-) stock volatility 
σ 2

t  and the mean Q-volatility θ% . 23 (Indeed, recall that for ATM options it holds 
that σ σ≈2 2

, [ | ]implied t t tQE �F  in the multifactor SV model without leverage effect.) 
 
This analysis indicates that if the ATM VTS is upward sloping on a medium-
volatility day in practice, this suggests a negative volatility risk premium. (This 
confirms the results based on the FTSE100-index data: We found the median ATM 
term structure to be upward sloping and a negative volatility risk premium.)  
 
5.2.3   Parameter effects on shape implied volatility surface 
 
How does each of the parameters , , ,kθ σ γ , ρ  influence the shape of the implied 
volatility surface and thus option prices? Recall first the risk-neutral mean-
reversion and mean-volatility parameters, k k σγ= +%  and /k kθ θ= %% . Starting 
from the benchmark medium-volatility day surface (σ σ θ= =2 2[ ]t tPE ) plotted in 
figure 5.1, a ceteris-paribus analysis reveals the following.  
 
The main implication of changing θ  is its indirect effect on the general level of the 
surface. As option prices depend on the Q-volatility process, increasing θ  leads to 
an increase in θ% , hence option prices, and thus BS implied volatilities. 24   
 
If volatility risk is not priced ( 0γ = ), the P and Q-volatility processes coincide: 
k k=%  and θ θ=% . The ATM VTS is then virtually flat, and averages a bit below the 
mean stock volatility. Volatility smiles are present (due to SV) and the VTS of ITM 
and OTM options is downward sloping. Negative values of γ  decrease the 
volatility mean reversion under Q (k%  becomes smaller) as opposed to under P, 
and increase θ% . As a result, the surface shifts upward. The ATM VTS becomes 
upward sloping first, whereas the OTM and ITM VTS gradually change from 
downward to upward sloping (this occurs first for options closest ATM). If γ  
becomes too large negative resulting in an explosive Q-volatility process (if 

, 0k θ <% % ), the whole surface becomes very steeply upward-sloping. (See also the 
empirical evidence reported in section 6.3.1 of chapter II.) 
 
Low values of volatility-of-volatility parameter σ  result in flat volatility surfaces, 
hence flat smiles and term structures. The larger σ , the more pronounced the 
volatility smiles, and the steeper-sloping VTS result. Intuitively, the smaller σ , 
the less σ 2

t  varies, the closer the model is to the constant-volatility BS model, 
which implies a flat surface. 25 (The steeper-sloping VTS are caused by the fact 
that an increase in σ  results in an increase in θ%  (because  k k σγ= +%  decreases), 
enlarging the difference between the current P-volatility σ θ=2

t , and θ% .) 
 

                                           
23 Intuitively, as [ | ] ( )t t tdx k x dtθ= −% %QE F , the larger the difference txθ −% , the larger the 
subsequent correction towards the mean volatility θ%  tends to be.  
24 A side-effect of increasing θ  is the steeper and steeper becoming VTS (and it moreover flattens). We 
attribute this to the difference between the current P-volatility σ θ=2

t  and the mean Q-volatility 
/k kθ θ= %% , which becomes larger and larger, as / 7 /2.8 2.5k k = =%  remains constant. 

25 This analysis intuitively clarifies why adding jumps to returns or volatility results in even more 
pronounced smiles (recall footnote 3): Increasing σ  enlarges the deviation from lognormality (the BS 
assumption), i.e., the kurtosis of the stock returns increases, which results in more pronounced smiles. 
Now, as adding jumps to returns or volatility further increase the kurtosis, this explains why such jumps 
lead to stronger smiles (and thus skews, if the leverage effect is taken into account.) 
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If mean-reversion parameter k  is small enough to have explosive Q-volatility 
( , 0k θ <% % ), the smile is present for all maturities, but most prominent are the very 
steeply-sloping VTS for all maturities. Small values of k  that still imply stationary 
Q-volatility (with small 0k >% ), result in a still steeply-sloped smiled surface. The 
larger k , the more the surface flattens, except for SM options, for which the 
smile remains prominent. Intuitively, the quicker the mean-reversion (the larger 
k ’s and thus k% ’s), the more transient a shock, the more the Q-volatility will stay 
and move around its mean θ%  (recall 2 2var [ ] /2t kσ σ θ= %%Q ) once it has been drawn 
back to it (from its P-starting value σ θ=2

t ), and thus the more constant the Q-
volatility, and hence the flatter the surface. (We attribute the still prominent smile 
for SM options to the time it takes for the volatility to mean-revert from σ θ=2

t  to 
its risk-neutral mean θ% .) In particular, a large k  combined with a small σ , 
implies a very flat-shaped implied volatility surface.  
 
5.2.4   Impact of the leverage effect 
 
The analysis so far was based on the absence of leverage. Negatively correlating 
stock and volatility changes lead to a volatility skew across same-maturity 
different-moneyness options. Figures 5.3 and 5.4 plot the implied volatility 
surface and corresponding skews on a medium-volatility day σ σ θ= =2 2( [ ] )t tPE , 
for parameter set IV, for which 0.04, 7, 0.60, 7kθ σ γ= = = = −  and 0.60ρ = − .  
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Figure 5.3: BS implied volatility surface on a medium-volatility day for parameter set IV, 
for which 0.60ρ = − , assuming 100tS =  and σ σ θ= =2 2[ ]t tPE . (Compare to figure 5.1.) 
 
 
 
The skew is most pronounced for short-maturity options, and flattens out the 
longer the maturity. (Compare to figures 5.1 and 5.2 which assume no leverage 
effect. Although the ATM VTS is still upward sloping, for other moneyness it may 
now be upward or downward sloping.)  
 
Parameter ρ  truly controls the skew: As a ceteris-paribus analysis shows, the 
more negative ρ  is, the skewer and steeper the skews, for all maturities.  
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On low-volatility days, both the skews and term structures are steeper. On high-
volatility days, the skews are less steep, and the VTS are all downward sloping. 
Given our earlier results based on no leverage effect, this makes sense.  
 

0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

1−mth 
6−mth 
1−year 

3−mth 
9−mth 

 

 
Figure 5.4: Volatility skews associated with the implied volatility surface of figure 5.3. 
Horizontal axis: moneyness / tM K S= . Vertical axis: Black-Scholes implied volatility.  
 
 
ATM VTS is not much affected by the leverage effect  
Correlation parameter ρ  controls the skew, but how does ρ  affect the volatility 
term structure of ATM options? The empirical analysis of the UK market in 
previous chapters focused on the VTS of ATM options. The estimated multifactor 
SV models ignored the leverage effect, and are therefore misspecified (given the 
supporting evidence of its presence). Besides their largest liquidity and vega, our 
exclusive focus on ATM options was driven by the expectation that leverage 
mostly impacts on the prices  of OTM and ITM options, and is of minor importance 
for ATM options. Let us now investigate if this is reasonable by simulation.  
 
Figure 5.5 plots the ATM VTS on a medium-volatility day ( 20%tσ = ) for 
parameter set IV, for ρ  = 0, -0.20, -0.40, -0.60 and -0.80. Table 5.3 reports the 
corresponding BS implied volatilities for maturities 1, 2, 3, 6, 9 and 12 months, 
for each value of ρ , and similarly for a low ( 5%tσ = ) and high ( 35%tσ = ) 
volatility day. Recall that set IV is based on our FTSE100-index estimation results 
for Heston’s model, based on the combination squared return–SM option data.  26 
  
The ATM VTS is indeed not much affected by the leverage effect. Take a medium-
volatility day for example. As opposed to 0ρ = , a correlation of –0.60 shifts the 
VTS upward about 0.7% only. A similar analysis for the other datasets confirms 
the in general minor impact of ρ  on the at-the-money VTS. In contrast, and as a 
comparison of figures 5.2 and 5.4 illustrates, the leverage effect impacts heavily 
on the prices of ITM and OTM options.  

                                           
26 The reader may note the much steeper-sloping medium-volatility-day simulated ATM VTS, as compa-
red to the median FTSE100-index ATM VTS (recall table 2.1 in chapter IV). Here, there is a simulated 
implied-volatility difference of 6.5% between 1-month and 9-month options (for ρ = −0.60 ), in the 
FTSE100-index data this difference is about 1.4% only. We attribute this to the severe misspecification 
of the (1-factor SV) Heston model for the joint FTSE100-index data. We needed a 3-factor SV 
specification, which can generate much more complicated ATM VTS than the Heston model can. 
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Figure 5.5: ATM VTS on a medium-volatility day ( 20%tσ = ) for parameter set IV, for 
ρ =0, -0.20, -0.40, -0.60, -0.80. Horizontal axis: maturity (years), vertical: BS impl.vol.  
 
 
Table 5.3: Simulated ATM VTS on a medium, low and high volatility day for set IV  
 
Medium-volatility day (σ = 20%t ): 

Maturity 0ρ =  0.20ρ = −  0.40ρ = −  0.60ρ = −  0.80ρ = −  
1 20.9% 21.1% 21.3% 21.5% 21.7% 
2 22.0% 22.3% 22.5% 22.7% 22.9% 
3 23.0% 23.2% 23.4% 23.6% 23.8% 
6 24.8% 25.1% 25.4% 25.7% 25.9% 
9 26.1% 26.4% 26.7% 27.0% 27.3% 
12 27.1% 27.4% 27.7% 27.9% 28.0% 

Low-volatility day (σ = 5%t ): 

Maturity 0ρ =  0.20ρ = −  0.40ρ = −  0.60ρ = −  0.80ρ = −  
1 10.7% 10.9% 11.0% 11.2% 11.3% 
2 14.1% 14.3% 14.5% 14.7% 14.8% 
3 16.5% 16.7% 16.9% 17.1% 17.3% 
6 20.7% 20.9% 21.2% 21.4% 21.6% 
9 23.1% 23.4% 23.7% 23.9% 24.2% 
12 24.9% 25.1% 25.4% 25.6% 25.8% 

High-volatility day (σ = 35%t ): 

Maturity 0ρ =  0.20ρ = −  0.40ρ = −  0.60ρ = −  0.80ρ = −  
1 34.1% 34.4% 34.7% 35.0% 35.2% 
2 33.7% 34.0% 34.3% 34.6% 34.8% 
3 33.4% 33.6% 33.8% 34.0% 34.2% 
6 32.2% 32.6% 32.9% 33.3% 33.6% 
9 31.7% 32.1% 32.5% 32.9% 33.2% 
12 31.6% 31.9% 32.2% 32.4% 32.5% 

The table reports the ATM VTS on a medium, low and high-volatility day for parameter set 
IV, for different values of ρ . Maturity is in months. Numbers are BS implied volatilities.   
 
 
 
This Monte Carlo evidence for the Heston model thus at least suggests that our 
multifactor SV estimation results based on the UK data are not much biased 
towards having neglected leverage. The next section provides additional evidence  
suggesting this.  
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5.3  Simulation results for the Heston model: 
Performance of the state space estimation method 

 
This section examines the performance of the estimation method based on 
simulated data from the Heston (1993) model. (See section 5.1 for assumptions, 
and section 4.3 for the state space method.) We thus restrict 0ρ =  prior to 
estimation such that the conditional state space model results (see section 3.3 of 
chapter V), which is based on no leverage effect, and estimate the parameters by 
Extended Kalman filter QML. We next estimate ρ  by (2.6) using the smoothed 
volatilities extracted from the data at the optimum.  
 
In the current Heston setting the simulated data thus takes the leverage effect 
into account (read: empirical FTSE100-index data), though the conditional state 
space model is based on the absence of leverage. In the Monte Carlo study 
towards the 1-factor CIR SV model (section 4 of chapter V), both the simulated 
data and the conditional state space model were based on the absence of 
leverage. Comparing the tables for this latter study with the Heston tables below 
thus allows for an investigation of the additional bias induced by leverage.    
 
As before, we consider estimation based on (combinations of) squared return, RV 
and SM ATMF option data. How close are the estimates and smoothed volatilities 
to their true values? What data yields the best results in this respect? 27 As 
before, squared returns perform worst, the combination RV - option data best. 
Overall speaking, the additional bias due to the leverage effect is rather modest. 
This holds in particular for the combination RV – option data. We attribute this to 
the leverage effect not really being important for pricing ATM options, as shown in 
the last section. Once option data is included for estimation, the estimator for ρ  
performs seemingly well: it has a small positive bias only. 
 
5.3.1  Results using squared returns for estimation 
 
Table 5.4 reports the estimation results for the Heston model if only squared 
return data is used for estimation. Parameter γ  cannot be estimated in this case.  
 
The results are very similar to the corresponding squared-return results found in 
the Monte Carlo study towards the 1-factor CIR SV model (which assumes no 
leverage effect); see table 4.8 in section 4.4.1 of the last chapter. As such, we 
keep the discussion brief. The bias in the estimates is large and the volatility 
evaluation criteria RMSPE and MAPE for comparing the smoothed with the true 
underlying volatilities indicate poor volatility extraction. Also in this case it 
sometimes occurs that θ  is estimated near zero, which is generally accompanied 
by very large estimates of k  and  σ , and this becomes worse when subsequently 
going from set I to IV. The estimator of ρ  performs poorly in this case.  
 
Table 5.5 reports estimation results based on squared returns only, but with θ  
restricted to its method-of-moments estimate ŜqRθ  prior to estimation (computed 
as the average of the annualized squared returns in deviation from their mean). 
Again, the results are very similar as found in the Monte Carlo study towards the 
1-factor CIR SV model; see table 4.9 in section 4.4.1 of the previous chapter. 
 

                                           
27 To keep the discussion brief, we do not separately consider the quality of the approximations carried 
out to arrive at a linear state space model, neither do we separately investigate the assumptions with 
regard to the state space errors. For practical purposes, the method’s performance matters most. 
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To repeat: Using squared return data only for QML estimation is generally not to 
be advocated, not even if θ  is restricted to its moment estimate.  
 
 
Table 5.4: Estimation results Heston model based on squared return data 

 I II III IV V 
θ   0.039 

 (0.012) 
  0.035 
 (0.014) 

 0.031 
 (0.016) 

 0.023 
 (0.017) 

 0.018 
 (0.006) 

Bias -0.001 -0.005 -0.009 -0.017 -0.002 
MSE   1.4e-4   2.3e-4   3.4e-4   5.8e-4   3.4e-5 

k   7.0 
(18.6) 

18.4 
(46.6) 

29.0 
(49.9) 

61.0 
(85.0) 

29.3 
(50.1) 

Bias  5.5 15.8 23.8 54.0 22.3 
MSE 375 2423 3060 10143 3011 
σ  0.41 

(1.12) 
1.27 
(3.23) 

  2.31 
  (4.91) 

 5.85  
(13.7) 

1.03 
(2.12) 

Bias 0.21 0.97  1.86  5.25 0.73 
MSE 1.30 11.4 27.5 215 5.03 
ρ  -0.05 

 (0.04) 
-0.06 
 (0.05) 

-0.06 
 (0.06) 

-0.05 
 (0.07) 

-0.06 
 (0.05) 

Bias  0.36  0.44  0.49  0.55  0.45 
MSE  0.13  0.20  0.25  0.31  0.20 

RMSPE 
% 

14.6 
 (5.3) 

22.5 
(10.4) 

29.8 
 (9.4) 

42.9 
(11.4) 

23.5 
 (7.6) 

MAPE 
% 

10.7 
 (4.0) 

15.9 
 (8.8) 

20.4 
(8.5) 

28.6 
(11.0) 

17.1 
(6.9) 

For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The conditional state space model was estimated using squared return 
data only. The average estimates of  , , ,kθ σ ρ  are reported (std.dev. in parentheses), 
with associated sample bias and MSE. Based on (2.6), ρ  is estimated as the correlation 
between returns and smoothed stock variance changes. The average RMSPE and MAPE, for 
comparing the smoothed and true volatilities, are also reported (std.dev. in (.)).     
 
 
Table 5.5: Results Heston model based on squared returns, under restriction ŜqRθ θ=  

 I II III IV V 

ŜqRθ θ=   0.040 
 (0.012) 

0.041 
(0.011) 

0.040 
(0.009) 

0.040 
(0.009) 

0.020 
(0.003) 

Bias  0.000 0.001 0.000 0.000 0.000 
MSE   1.5e-5  1.3e-4  7.8e-5  8.3e-5  1.0e-5 

k   5.8 
(13.3) 

11.8 
(37.2) 

19.2 
(38.5) 

24.5 
(46.4) 

23.5 
(38.7) 

Bias  4.3  9.2 14.0 17.5 16.5 
MSE 195 1471 1680 2462 1765 
σ  0.32 

(0.33) 
0.64 
(1.02) 

1.08 
(1.37) 

1.65 
(1.59) 

0.67 
(0.83) 

Bias 0.12 0.34 0.63 1.05 0.37 
MSE 0.12 1.15 2.26 3.63 0.83 
ρ  -0.05 

 (0.04) 
-0.06 
 (0.04) 

-0.06 
 (0.05) 

-0.06 
 (0.06) 

-0.06 
 (0.05) 

Bias  0.35  0.44  0.49  0.54  0.44 
MSE  0.13  0.19  0.24  0.30  0.20 

RMSPE 
% 

14.4 
 (3.8) 

21.0 
 (7.2) 

28.5 
(7.7) 

41.3 
(11.5) 

22.5 
(5.3) 

MAPE 
% 

10.5 
(2.1) 

14.4 
 (4.9) 

18.6 
(5.4) 

23.9 
(5.3) 

16.1 
(4.2) 

See table 5.4 for further explanatory legend.  
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5.3.2  Results using realized volatilities for estimation 
 
Table 5.6 reports Heston model results based on RV data only. Parameter γ  
cannot be estimated in this case (and ,corr [ , ]RV t t t tc uω +∆ +∆= P  is not identified).  
 
The results are very similar to the corresponding RV results found in the Monte 
Carlo study towards the 1-factor CIR SV model (though the bias in k  is 
somewhat larger for sets I – II; see table 4.10 in the last chapter). This is not 
surprising. The RV measurement equation is based on the equation the average 
variance satisfies over day [ , ]t t t+ ∆ : 2 21 1

,[ | ]t t t t
t u t u t RV t tt tdu duσ σ ϖ+∆ +∆

+∆∆ ∆= +PE FŸ Ÿ . 
This equation does not depend on the leverage effect (see (2.5) and (2.1)). We 
next essentially replaced the average variance with the realized variance to obtain 
the RV equation. The Heston and 1-factor CIR SV results are not completely the 
same, because the realized variance measures the average variance with error, 
and is computed as the sum of squared intraday stock returns (in which the 
leverage effect is present).    
 
Using RV data means a substantial reduction in bias and MSE in the ,k  σ  and ρ -
estimates as opposed to using squared returns. Nonetheless, the bias and MSEs 
are still large. The bias in θ  is even larger. The volatility is much better filtered 
out than if squared returns are used. Here as well it sometimes happens that θ  is 
estimated near zero, though less frequently than in the squared return case.   
 
 
Table 5.6: Estimation results Heston model based on RV data 

 I II III IV V 
θ    0.036 

 (0.014) 
 0.029 
 (0.015) 

 0.022 
 (0.011) 

 0.017 
 (0.009) 

 0.016 
 (0.004) 

Bias -0.005 -0.011 -0.018 -0.023 -0.004 
MSE   2.1e-4   3.5e-4   4.3e-4   6.1e-4   2.8e-5 

k   6.65 
 (9.90) 

 9.39 
 (6.10) 

16.9 
  (5.7) 

15.5 
 (5.1) 

16.5 
(6.3) 

Bias 5.2 6.8 11.7  8.5 9.5 
MSE 125 83 168 98 129 
σ  0.377 

(0.297) 
0.632 
(0.304) 

1.01 
(0.21) 

1.15 
(0.11) 

0.537 
(0.167) 

Bias 0.18 0.33 0.56 0.55 0.24 
MSE 0.12 0.20 0.36 0.32 0.08 
ρ  -0.10 

 (0.05) 
-0.12 
 (0.06) 

-0.12 
 (0.05) 

-0.14 
 (0.05) 

-0.14 
 (0.05) 

Bias  0.30  0.38  0.43  0.46  0.36 
MSE  0.09  0.15  0.19  0.21  0.13 

RMSPE 
% 

5.9 
(2.4) 

8.2 
(2.5) 

11.4 
(1.8) 

14.1 
(1.3) 

8.8 
(2.0) 

MAPE 
% 

4.6 
(2.0) 

6.3 
(2.0) 

8.9 
(1.4) 

10.6 
(0.7) 

6.9 
(1.6) 

For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The conditional state space model was estimated using RV data only. The 
average estimates of  , , ,kθ σ ρ  are reported (std.dev. in parentheses), with associated 
sample bias and MSE. Based on (2.6), ρ  is estimated as the correlation between returns 
and smoothed stock variance changes. The average RMSPE and MAPE, for comparing the 
smoothed and true volatilities, are also reported (std.dev. in (.)).     
 
 
Table 5.7 reports estimation results based on RV data, but with θ  restricted to its 
RV-based estimate R̂Vθ  for each dataset, computed as the mean realized 
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variance. Again, the results are very similar as found in the Monte Carlo study for 
the 1-factor CIR SV model (see table 4.11 in section 4.4.2 of the last chapter). 
 
 
Table 5.7: Estimation results Heston model based on RV data, under restriction R̂Vθ θ=  

 I II III IV V 

R̂Vθ θ=  0.041 
(0.012) 

0.041 
(0.011) 

0.040 
(0.008) 

0.040 
(0.009) 

0.020 
(0.003) 

Bias 0.001 0.001 0.000 0.000 0.000 
MSE  1.4e-4  1.2e-4  7.1e-5  7.3e-5  9.1e-6 

k  5.33 
(8.53) 

5.93 
(3.72) 

10.2 
(5.0) 

8.15 
(5.42) 

12.8 
(4.4) 

Bias 3.8 3.3 5.0 1.2 5.8 
MSE 87 25 50 31 53 
σ   0.373 

 (0.286) 
 0.603 
 (0.281) 

 0.961 
 (0.193) 

1.11 
(0.10) 

0.505 
(0.147) 

Bias 0.17 0.30 0.51 0.51 0.21 
MSE 0.11 0.17 0.30 0.27 0.06 
ρ  -0.10 

 (0.05) 
-0.12 
 (0.06) 

-0.13 
(0.05) 

-0.15 
(0.05) 

-0.14 
 (0.05) 

Bias  0.30  0.38 0.43 0.46 0.36 
MSE  0.09  0.15 0.18 0.21 0.13 

RMSPE 
% 

5.9 
(2.5) 

8.0 
(2.5) 

11.2 
(1.8) 

14.1 
(1.3) 

8.5 
(1.9) 

MAPE 
% 

4.6 
(2.0) 

6.2 
(2.0) 

8.8 
(1.4) 

10.6 
(0.7) 

6.7 
(1.5) 

See table 5.6 for further explanatory legend.  
 
 
Imposing θ = R̂Vθ  leads to a large bias and MSE reduction in the estimates of θ  
and ,k  only modestly affects the estimates of σ,  but has virtually no effect on 
the ρ − estimates and the volatility evaluation criteria. An explanation for this 
latter finding is given in the last chapter; it applies here as well. 
 
5.3.3  Results using option data for estimation 
 
Table 5.8 reports Heston model estimation results if only SM at-the-money option 
data is used for estimation. Once option data is included for estimation, all five 
parameters , , ,kθ σ γ , ρ  of the Heston model can be estimated. 
 
Using option data is clearly preferable to using only squared return or RV data. 
Option data is much more informative: The bias and MSE are dramatically less, 
and the RMSPE and MAPE reveal much better volatility extraction.  
 
The estimation bias in θ , σ  and ρ  is small for all sets I-V. Their seemingly small 
standard deviations indicate that the estimates are generally close to their true 
values. The absolute biases do not vary much across the different parameter sets. 
In contrast, the relative bias decreases when moving from persistent, calmly 
fluctuating volatility (set I), to less persistent, stronger fluctuating volatility and 
increased leverage effect (set IV, which is close to our empirical estimates). 
 
The estimator (2.6) of the correlation ρ  between stock returns and unobserved 
volatility shocks seems a particularly useful estimator if option data is used. It 
has a small positive bias, but is very easy to compute.  
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The estimates of the mean-reversion and market price of volatility risk 
determining parameters k  and γ  are biased upward. The relative bias of k  
decreases when moving from set I to IV, whereas for γ  it remains more constant. 
As encountered before, the relatively large standard deviations of the γ -
estimates indicate that this price-of-risk parameter is hard to pin down precisely.  
 
There is no additional bias induced by the leverage effect in the θ -estimates, a 
small extra bias in the σ -estimates, though quite some additional bias in the k  
and γ  estimates. (Compare table 5.8 with table 4.12 in the last chapter for the 1-

factor CIR SV model). 
 
 
Table 5.8: Estimation results Heston model based on (short-maturity ATMF) option data  

 I II III IV V 
θ  0.040 

(0.011) 
0.040 
(0.011) 

0.040 
(0.008) 

0.039 
(0.008) 

0.020 
(0.003) 

Bias 0.000 0.000 0.000 -0.001 0.000 
MSE 1.1e-4 1.1e-4 6.6e-5  6.6e-5  7.8e-6 

k  2.11 
(0.61) 

3.22 
(0.87) 

5.73 
(1.13) 

7.31 
(1.36) 

7.67 
(1.18) 

Bias 0.61 0.61 0.48 0.31 0.67 
MSE 0.73 1.13 1.50 1.95 1.85 
σ  0.225 

(0.011) 
0.335 
(0.015) 

0.490 
(0.020) 

0.643 
(0.024) 

0.326 
(0.016) 

Bias 0.025 0.035 0.040 0.043 0.026 
MSE 7.3e-4 0.001 0.002 0.002  9.5e-4 
γ  -3.4 

 (2.4) 
-4.1 
 (2.6) 

-4.8 
 (2.6) 

-5.7 
 (2.4) 

-18.0 
 (3.6) 

Bias 0.6 0.9 1.2 1.3 2.0 
MSE 5.9 7.5 8.2 7.4 17 
ρ  -0.35 

(0.03) 
-0.45 
(0.03) 

-0.51 
(0.03) 

-0.57 
(0.03) 

-0.46 
 (0.03) 

Bias 0.05 0.05 0.04 0.03 0.04 
MSE 0.0035 0.0040 0.0026 0.0020 0.0022 

RMSPE 
% 

2.0 
(0.7) 

3.5 
(1.3) 

5.2 
(1.9) 

8.4 
(2.7) 

3.8 
(1.3) 

MAPE 
% 

1.5 
(0.4) 

2.3 
(0.8) 

3.1 
(1.1) 

4.3 
(1.4) 

2.6 
(0.8) 

For each parameter set I-V, the results are summarized over the 150 simulated datasets 
jointly. The conditional state space model was estimated using option data only, with 
νµ = 0  imposed. The average estimates of , , , ,kθ σ γ ρ  are reported (std.dev. in (.)), 

with associated sample bias and MSE. Based on (2.6), ρ  is estimated as the correlation 
between returns and smoothed stock variance changes. The average RMSPE and MAPE, for 
comparing the smoothed and true volatilities, are also reported (std.dev. in (.)).     
 
 
 
5.3.4  Results using squared return and option data for estimation 
 
Table 5.9 reports Heston model estimation results based on squared return and 
short-maturity ATM option data.  
 
This combination of data yields better results than using option data only. The 
bias in notably the k  and γ -estimates has decreased further. The extra inclusion 
of the squared return data does not seem to affect the θ  and ρ -estimates, 
whereas the bias and MSE reduction in the σ − estimates modestly improves.  
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Table 5.9: Estimation results Heston model based on squared return - option data 
 I II III IV V 
θ  0.040 

(0.011) 
0.040 
(0.011) 

0.040 
(0.008) 

0.039 
(0.009) 

0.020 
(0.003) 

Bias 0.000 0.000 0.000 -0.001 0.000 
MSE 1.2e-4  1.1e-4  6.5e-5   7.6e-5  7.7e-6 

k  2.06 
(0.59) 

3.15 
(0.84) 

5.64 
(1.10) 

7.32 
(1.41) 

7.48 
(1.14) 

Bias 0.56 0.54 0.39 0.32 0.48 
MSE 0.66 1.00 1.35 2.09 1.53 
σ  0.224 

(0.011) 
0.333 
(0.016) 

0.486 
(0.020) 

0.639 
(0.029) 

0.322 
(0.017) 

Bias 0.024 0.033 0.036 0.039 0.022 
MSE 6.8e-4 0.001 0.002 0.002 7.9e-4 
γ  -3.6 

 (2.4) 
-4.3 
 (2.6) 

-5.0 
 (2.5) 

-6.0 
 (2.4) 

-18.3 
 (3.6) 

Bias 0.4 0.7 1.0 1.0 1.7 
MSE 6.0 7.1 7.4 7.0 15.6 
ρ  -0.35 

 (0.03) 
-0.45 

  (0.03) 
-0.51 
 (0.03) 

 -0.57 
  (0.03) 

-0.46 
 (0.03) 

Bias 0.05  0.05 0.04   0.03 0.04 
MSE 0.0035 0.0040 0.0025   0.0020  0.0022 

RMSPE 
% 

2.0 
(0.7) 

3.3 
(1.3) 

4.8 
(1.8) 

8.1 
(2.6) 

3.5 
(1.2) 

MAPE 
% 

1.5 
(0.4) 

2.2 
(0.7) 

2.9 
(0.9) 

4.1 
(1.2) 

2.4 
(0.8) 

For parameter set I-V, the results are summarized over the 150 simulated datasets jointly. 
The conditional state space model was estimated using squared return-option data with 
νµ = 0  imposed. The average estimates of  , , , ,kθ σ γ ρ  are reported (std.dev. in (.)), 

with associated sample bias and MSE. Based on (2.6), ρ  is estimated as the correlation 
between returns and smoothed stock variance changes. The average RMSPE and MAPE, for 
comparing the smoothed and true volatilities, are also reported (std.dev. in (.)).     
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Figure 5.6: Histogram, estimated density, and associated normal density (with same mean 
and variance) of the 150 estimates (based on squared return-option data) of θ , k ,σ , 
γ , ρ  for set III. True values: 0.04θ = , 5.25k = , 0.45σ = , 6γ = −  and 0.55ρ = − . 
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There is no additional bias induced by the leverage effect in the θ -estimates, a 
seemingly small extra bias in the σ -estimates, though some additional bias in the 
k  and γ -estimates. (Compare table 5.9 to table 4.14 in the previous chapter for 
the 1-factor CIR SV model).  
 
For illustration, figure 5.6 plots the distributions of the estimates for set III 
( 0.04θ = , 5.25k = , 0.45σ = , 6γ = − , 0.55ρ = − ). Using the 150 estimates of each 
parameter, the histogram, estimated continuous density, and a superimposed 
normal density are plotted. Compare figure 5.6 to figure 4.6 in the last chapter.   
 
5.3.5  Results using RV and option data for estimation 
 
Table 5.10 reports Heston model estimation results if both RV and short-maturity 
at-the-money option data is used for estimation.  
 
 
Table 5.10: Estimation results Heston model based on RV - option data 

 I II III IV V 
θ    0.039 

  (0.010) 
 0.039 

  (0.011) 
0.040 
(0.008) 

 0.038 
  (0.008) 

0.020 
(0.003) 

Bias -0.001 -0.001 0.000 -0.002 0.000 
MSE   1.1e-4   1.2e-4  7.2e-5   6.5e-5  7.9e-6 

k  1.70 
(0.46) 

2.71 
(0.70) 

 5.13 
 (1.06) 

  6.85 
  (1.33) 

  6.80 
  (1.03) 

Bias 0.20 0.10 -0.12 -0.15 -0.20 
MSE 0.25 0.49  1.14  1.80  1.10 
σ  0.218 

(0.011) 
0.323 
(0.013) 

0.472 
(0.016) 

0.621 
(0.021) 

0.311 
(0.012) 

Bias 0.018 0.023 0.022 0.021 0.011 
MSE  4.4e-4  7.1e-4 7.1e-4 8.6e-4 2.6e-4 
γ  -3.7 

(2.1) 
-4.3 
(2.3) 

-4.8 
(2.2) 

-5.8 
(2.1) 

-17.9 
 (3.2) 

Bias 0.3 0.7 1.2 1.2  2.1 
MSE 4.3 5.6 6.4 6.0 14.4 
ρ  -0.35 

 (0.03) 
-0.45 
 (0.03) 

-0.51 
 (0.03) 

-0.57 
 (0.03) 

-0.46 
 (0.03) 

Bias 0.05 0.05 0.04  0.03  0.04 
MSE 0.0035 0.0039 0.0025 0.0020  0.0021 

RMSPE 
% 

1.3 
(0.4) 

2.0 
(0.5) 

2.9 
(0.9) 

5.7 
(2.8) 

2.2 
(0.4) 

MAPE 
% 

1.0 
(0.2) 

1.4 
(0.2) 

1.8 
(0.3) 

2.6 
(0.5) 

1.6 
(0.5) 

For each parameter set I-V, the results are summarized over the 150 simulated datasets 
jointly. The conditional state space model was estimated using RV - option data with 
νµ = 0  imposed. The average estimates of , , , ,kθ σ γ ρ  are reported (std.dev. in (.)), 

with associated sample bias and MSE. Based on (2.6), ρ  is estimated as the correlation 
between returns and smoothed stock variance changes. The average RMSPE and MAPE, for 
comparing the smoothed and true volatilities, are also reported (std.dev. in (.)).     
 
 
θ  is accurately estimated, with only a small bias and MSE. There is a large bias 
reduction in the estimates of mean-reversion parameter k  as opposed to using 
squared return – option data. The estimation bias in k  seems small now. For the 
other data types we found over-estimation of k  on average, here the bias is 
negative for sets III - V. Parameter σ  is also more accurately estimated with only 
a small bias. For sets I and II, γ  is more precisely estimated than in the return–
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option data case, though for sets III - V it is the other way round. The positive 
bias and MSE in the correlation estimates ρ  seems small and is similar as in the 
squared return - option data case. The combination RV – option data yields most 
favorable volatility evaluation criteria. Their magnitudes indicate that the state 
space model performs well in extracting the underlying latent volatilities. 
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Figure 5.7: Histogram, estimated density, and associated normal density (with same mean 
and variance) of the 150 estimates (based on RV - option data) of θ , k ,σ ,γ , ρ  for 
parameter set III. True values: 0.04θ = , 5.25k = , 0.45σ = , 6γ = −  and 0.55ρ = − . 
 
 
Figure 5.7 plots the histogram, estimated continuous density and associated 
normal density of the 150 estimates for set III, for which 0.04θ = , 5.25k = , 

0.45σ = , 6γ = − , 0.55ρ = − . Compare figure 5.7 to figure 4.8 in the last chapter.   
 
We conclude that the combination RV – option data yields the best estimation 
results (also) for the Heston model. Moreover, the additional estimation bias 
induced by the leverage effect is particularly modest in this case. (Compare table 
5.10 to table 4.16 in the previous chapter.) We attribute this to the only minor 
impact of the leverage effect on the prices of at-the-money options.  
 
5.3.6   Results 2-step estimation method based on RV – option data 
 
Recall the reason for restricting 0ρ =  prior to state space estimation of the 
Heston model: If ρ  is left free, it is routinely estimated at zero. We attribute this 
to linearization point (4.9). We chose this specific linearization point because it 
leads to a linear options measurement equation.  
 
As the Monte Carlo evidence has shown, the bias in the ρ − estimator based on 
(2.6) appears modest if option data is included for estimation. Restricting ρ  to 
zero whereas its true value differs from zero may nonetheless result in bias in the 
other estimates. An intuitively appealing 2-step estimation method to deal with 
this possible bias is the following. In the first step, the conditional state space 
model is estimated with 0ρ =  imposed. At the optimum, an estimate of ρ  is 
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computed based on (2.6). (This procedure is followed in sections 5.3.1–5.3.5.) In 
the second step, this estimate of ρ  is plugged into the options measurement 
equation (4.14), after which a second, restricted estimation round is performed, 
to determine the estimates of , ,kθ σ  and γ  (while keeping ρ  restricted).  
 
 
Table 5.11: 2-step estimation results Heston model based on RV - option data 

 I II III IV V 
θ    0.039 

  (0.011) 
  0.038 
  (0.010) 

  0.037 
  (0.008) 

 0.035 
 (0.008) 

 0.019 
 (0.003) 

Bias -0.001 -0.002 -0.003 -0.005 -0.001 
MSE   1.2e-4   1.1e-4   6.9e-5   8.6e-5   8.3e-6 

k  1.74 
(0.53) 

3.01 
(0.81) 

6.02 
(1.34) 

8.57 
(1.87) 

7.95 
(1.31) 

Bias 0.24 0.40 0.77 1.57 0.95 
MSE 0.34 0.82 2.38 5.98 2.62 
σ  0.228 

(0.012) 
0.346 
(0.016) 

0.503 
(0.020) 

0.664 
(0.027) 

0.332 
(0.014) 

Bias 0.028 0.046 0.053 0.064 0.032 
MSE 9.3e-4 0.002 0.003 0.005 0.001 
γ  -11.9 

  (3.2) 
-14.8 
  (3.4) 

-15.9 
  (3.2) 

-17.3 
  (3.4) 

-30.9 
   (4.1) 

Bias -7.9 -9.8 -9.9 -10.3 -10.9 
MSE 72 106 109 118 137 
ρ  -0.34 

 (0.03) 
-0.42 
 (0.03) 

-0.48 
 (0.03) 

-0.52 
 (0.02) 

-0.44 
 (0.03) 

Bias 0.06 0.08 0.07 0.08 0.06 
MSE 0.0045 0.0071 0.0061 0.0065 0.0040 

RMSPE 
% 

2.3 
(0.9) 

3.4 
(0.6) 

5.3 
(1.2) 

9.6 
(3.5) 

4.1 
(0.6) 

MAPE 
% 

1.8 
(0.5) 

2.7 
(0.4) 

3.9 
(0.6) 

5.9 
(1.0) 

3.3 
(0.4) 

For each parameter set I-V, the estimation results are summarized over the 150 simulated 
datasets jointly. The state space model resulting from (4.1)-(4.4), (4.14)-(4.15) was 
estimated by the 2-step method using RV - option data, with νµ = 0  imposed. The 
average second-step estimates of , , , ,kθ σ γ ρ  are reported (std.dev. in (.)), with 
associated sample bias and MSE. Based on (2.6), ρ  is estimated as the correlation 
between returns and smoothed stock variance changes. The average RMSPE and MAPE, for 
comparing the smoothed and true volatilities, are also reported (std.dev. in (.)). First-step 
estimates are in table 5.10.     
 
 
This 2-step method performs much worse than simply taking the estimates 
obtained in the first step as the final estimates. Table 5.11 illustrates this. It 
reports the 2-step estimation results in case both RV and option data is used for 
estimation. (NB: The ρ -estimates in table 5.11 are computed using (2.6) at the 
optimum of the second estimation round. This is driven by our curiosity to what 
extent the ρ -estimates obtained in the first and second round differ.) Comparing 
table 5.11 to table 5.10 shows the larger bias and MSE, and the worse volatility 
evaluation criteria. Especially notable is the dramatic (negative) increase in bias 
and MSE of the γ − estimates. This is perhaps not so surprising, given that our 
earlier results have shown that γ  is hardest to pin down precisely. As such, its 
estimate seems most sensitive to picking up distortions.  
 
We conclude that this 2-step estimation method should not be adopted. Instead, 
take the estimates obtained in the first step as the final estimates.   
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6.  Summary 
 
We found supporting evidence of the presence of the leverage effect in the 
FTSE100-index data in previous chapters. We ignored leverage in the multifactor 
affine SV model because it complicates matters greatly, mainly with regard to our 
estimation method (and especially if multiple SV factors are considered). 
Nonetheless, one might wonder if this misspecification has affected the empirical 
results in any major way. This chapter provides Monte Carlo evidence suggesting 
that the impact of having neglected leverage seems modest, given our exclusive 
focus on ATM options. We focus hereby on a 1-factor affine SV derivative pricing 
model with leverage effect, of which the Heston (1993) model is a special case.  
 
The chapter starts with analyzing the model in a similar way as the multifactor 
no-leverage-effects affine SV model was analyzed in chapter III, and explains the 
differences induced by leverage. We show how to value and hedge derivatives, 
and consider expected asset returns. Both the hedging strategy and the expected 
return - beta relationship for derivatives have the same appearance as in case of 
no leverage (but the implied derivative prices differ for both models).  
 
Our economic rationale for negative volatility risk compensation is explicitly based 
on the existence of a leverage effect. To summarize: Risk-averse investors who 
aim at consumption smoothing are willing to pay a premium for volatility risk.  
As dropping markets typically lead to less consumption opportunities, but 
simultaneously generally increase volatility (the leverage effect), holding delta-
neutral positive-vega derivatives provides consumption insurance. Namely, such 
derivatives are sure to increase in value then, (partially) offsetting the drop in the 
investor’s consumption opportunities, leading to a smoother consumption pattern.     
 
To examine the effects of leverage on our estimation method (in the 1-factor SV 
case), we next derive a linear state space representation from the model. 
However, Monte Carlo evidence next directs us to still use the conditional state 
space model from the previous chapter (which is based on no leverage) to 
estimate the model with leverage effect. We estimate the correlation between 
unobserved volatility changes and stock returns by using the smoothed volatilities 
obtained at the optimum.   
 
We next focus on the Heston model, for which we perform a Monte Carlo study to 
investigate the effects of leverage. Parameters , , , ,kθ σ γ  and ρ  of the Heston 
model have the following interpretation regarding their impact on the volatility 
process, the stock return distribution, and option prices. Parameter θ  determines 
the average stock volatility level, k  the volatility mean reversion or persistence, 
σ  the excess return kurtosis and volatility-of-volatility, and ρ  the leverage-
effects correlation and induces negative skewness in the stock returns. The 
Heston model without leverage effect ( 0ρ = ) yields a U-shaped implied volatility 
surface with the smile becoming less pronounced the longer the option maturity. 
The Heston model with leverage effect ( 0ρ < ) results in a skew-shaped surface. 
ρ  controls the skew: the stronger the leverage effect, the skewer the skews.  
 
Based on simulation, the effects of the other parameters on the shape of the 
implied volatility surface may roughly be summarized as follows. Parameter γ  
largely determines the average Q-volatility, and as such, the general level of the 
surface. Larger negative values result in higher surface levels. Parameter σ  
largely determines the extent in which the surface smiles or smirks. Larger values 
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imply stronger smiles and skews. Parameter k  also determines the extent of 
smileyness or smirkiness, and impacts on the slope of the surface. Low values 
result in steep-sloping, bent surfaces, whereas large values typically imply a more 
flat surface (except for short maturities).  
 
Another important VTS slope-determining factor is the current (P) stock volatility 

2
t txσ = . The more it deviates from the risk-neutral mean volatility θ% , the steeper 

the term structures tend to be. If the market price of volatility risk is negative, 
the at-the-money VTS is upward sloping on a medium volatility day. If volatility 
risk is not priced, the ATM VTS is more or less flat.  
 
The ATM VTS is not much affected by the leverage effect, as simulation shows. In 
contrast, the VTS of OTM and ITM options is strongly affected by leverage.  
 
We also perform a Monte Carlo study in which we simulate squared return, RV 
and SM ATM option data from the Heston model (hence with leverage), and next 
use the conditional state space model (which assumes no leverage) for 
estimation. We use the same parameter sets I-V as in the Monte Carlo study for 
the 1-factor CIR SV model (the Heston model without leverage) in the previous 
chapter. As such, this yields insight in the additional bias induced by having 
neglected the leverage effect. As found in the other Monte Carlo studies, also for 
estimating the Heston model using squared return data only performs worst, and 
the combination RV - option data best. Overall speaking, the additional bias due 
to the leverage effect seems rather modest. This holds in particular for the 
combination RV – option data. We attribute this to the leverage effect not being 
really important for pricing ATM options. Our proposed estimator for ρ  performs 
well if option data is included for estimation; it has a small positive bias only.  
 
The Monte Carlo evidence reported in this chapter thus strengthens and 
underwrites our motivation for having focused exclusively on ATM options in the 
empirical analysis of the FTSE100-index market. It at least suggests that the 
empirical results seem not very much distorted by having neglected the leverage 
effect. 
 
 

Appendix  
 
VIa. Heston call price formula 
 
Below we state the Heston (1993) call price formula for a European call option written on a 
stock S  having strike K  and maturity T , assuming a constant risk-free interest rate r  
(such that  t tdB rB dt= ), and no dividend payments (such that 0tq t= ∀ ).   
 
The Heston model is stated under the risk-neutral measure as 
 

,t t t t S tdS rS dt S dWσ= + Q      (Q) (a.1) 

 2
t txσ =  

,( )t t t x tdx k x dt x dWθ σ= − +% % Q , 

 
in which the Q-Brownian motions SWQ  and xWQ  are correlated with correlation coefficient 

,,corr [ , ]x tS tW Wρ = Q Q
Q . 
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Heston (1993) shows that the time- t  price of the call option is given by  
 

1 2( , , ) exp( ) ( , , )t t t t t t tC S t S x K r t S xτ= Π − − Π ,   (a.2) 
 
in which t T tτ = −  is the current remaining time to maturity, and ( , , ); 1,2j t tt S x jΠ =  
are functions of , tt S  and tx . These functions are given by 
 

0

exp[ ln ] ( , , ; )1 1
( , , ) Re

2
j t t

j t t
i K f t S x

t S x d
i

φ φ
φ

π φ

∞ −
Π = + ∫ ,  (a.3) 

 

with 1i ≡ − , and Re(.) stands for the real part of a complex number, and 
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VIb. Derivative betas 
 
This appendix derives expressions for the stock beta ,F Sβ  and volatility beta ,F xβ  of a 
general, path-independent European-style derivative F  for which ( , , )t t tF F t S x= , in the 
1-factor affine SV derivative pricing model with leverage effect.  
 
Betas ,F Sβ  and ,F xβ  are collected in vector Fβ ,  which we define as:  
 

 

1

, ,
,

, ,
var | cov , |

t t

t t

dS dS
F S t tS S

F t t t
F x t tt t

dF
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β
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We next compute each variance and covariance appearing in (b.1) separately.  
 
From (2.3), it follows 2

,var [ / | ] var [ | ]t t t t t S t t tdS S dW dtµ σ σ= + =P PF F . From (2.5), 
2 2var [ | ]t t tdx dtσ λ=P F . Using , ,cov [ , | ]x t S t tdW dW dtρ=P F , we obtain from (2.3) and 

(2.5) cov [ , | ]t

t

dS
t tS dx =P F , ,cov [ , | ]t S t t x t t t tdW dW dtσ σλ ρσσ λ=P F .  As such, 
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From (2.3) and (3.5), the covariance between the derivative and stock returns equals: 
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From (2.5) and (3.5), the covariance between the derivative return and stock variance 
change (recall 2

t txσ = ) equals: 
 

, , ,
1

cov , | cov , |t t t t
t t t S t t x t t x t t

t t t t t

dF S F F
dx dW dW dW

F F S F x
σ σλ σλ

      ∂ ∂
= +      ∂ ∂       

P PF F  

2 2
, , ,

1
cov , vart t t

t t S t x t t x t
t t t t

S F F
dW dW dW

F S F x
σσ λ σ λ

   ∂ ∂   = +      ∂ ∂   
P P  

2 21t t t
t t t

t t t t

S F F
dt

F S F x
ρσσ λ σ λ

    ∂ ∂
= +    ∂ ∂     

.   (b.4) 

 
Straightforward matrix multiplication and some further manipulations then finally yield for 
the stock and volatility beta of derivative F : 
 

, ,
,

1, ,

t t

t t

t

t t

S F
F SF S t

F t FF x t
F x

β
β

∂
∂

∂
∂

 
   = =       

β .      (b.5) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  

 
 
 
 
 
 
 



289 

- VII - 
 

Summary  
and 

Directions for Future Research 
 

 
 
 
 
This thesis considers derivative pricing under stochastic volatility. Driven by 
recent empirical evidence, we assume the volatility of the underlying stock to be 
driven by a multifactor SV specification. Specifically, we model the stock volatility 
as an affine function of an arbitrary number of unobserved affine factors, which 
follow mean-reverting Markov diffusions. We label the model the multifactor 
affine stochastic volatility derivative pricing model. Investors are exposed to two 
sources of risk in this model, stock price fluctuations and volatility changes.  
We explain how the model can be used for pricing and hedging stock and foreign-
exchange derivatives.  
 
We develop an (Extended) Kalman filter-based QML estimation method for the 
multifactor SV model. Our method is transparent, circumvents simulation of 
option prices during estimation, generates a volatility forecast and is above all 
fast. We show how to include time series of squared returns, realized volatilities 
and option prices for estimation, and combinations hereof.  
 
Monte Carlo studies for a number of subcases of our general SV model 
consistently show that if ATM option data is included for estimation, our method 
performs seemingly well. Option data appears very informative. More specific, 
using only squared return data for QML estimation is generally not to be 
advocated. The estimation bias and MSEs are large, and the underlying latent 
volatility is not very well filtered out. Using RV data instead yields considerably 
better results, though the bias and MSEs are still large. Option data means a 
dramatic improvement to using only RV data for estimation. The bias and MSE of 
the estimates are dramatically less, and the volatility is much better extracted. 
Combining squared return and option data for estimation outperforms the use of 
option data only in turn. The bias seems modest in general. There are efficiency 
gains from including squared returns in addition to option data. The combination 
RV - option data contains the most precise information: The estimation bias is 
typically small, it yields the most efficient estimates and the extracted and true 
volatilities are generally close. As such, combining RV and option data for 
estimation is preferable. The simulation results further show that the market price 
of volatility risk is hard to pin down precisely, irrespective of the data used for 
estimation. This confirms findings by other researchers in the literature.  
 
We study the nature of volatility risk. We consider investment strategies that are 
especially prone to volatility risk, such as straddles and variance swaps. We 
investigate how investors are compensated for the risk of derivative price 
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changes due to uncertain volatility fluctuations. We derive an expected return – 
beta relationship for derivatives and define the volatility risk premium. Our 
empirical work shows that investors appear willing to pay for market volatility 
risk. This is in line with other recent evidence in the literature, and seems 
counterintuitive at first sight.  
 
Our economic rationale for the existence of a negative volatility risk premium is 
summarized as follows. According to the permanent-income hypothesis, risk-
averse investors aim at consumption smoothing. As such, they are willing to pay 
a premium for volatility risk: As dropping markets typically lead to less 
consumption opportunities, but simultaneously typically increase volatility (the 
leverage effect), holding delta-neutral positive-vega derivatives provides 
consumption insurance. Such derivatives are certain to increase in value then, 
(partially) offsetting the drop in the investor’s consumption opportunities, which 
leads to a smoother consumption pattern. As the return on such derivatives is 
likely to negatively correlate with the investor’s change in consumption (due to 
the leverage effect), this translates into a negative volatility risk premium.  
 
Our empirical work confronts the multifactor affine SV derivative pricing model to 
joint FTSE100 stock-index and option data for Oct 1997 – Dec 2001. These years 
were characterized by three periods of unusual turmoil in financial markets: the 
Asian crisis (fall 1997), the near collapse of LTCM and the Soviet Union (and 
continuing Asian) crisis (fall 1998), and September 11, 2001 with its aftermath. 
The data consists of time series of squared index returns and three ATM index-
option series of different maturities, a short, medium and long-maturity series. 
 
We initially assume the FTSE100-index data to have been generated by the  
1-factor OU and CIR SV special cases of our model. Fitting the model to only the 
squared return and SM option data reveals the following. The observed BS 
implied volatilities are typically larger than the underlying hidden volatilities, due 
to a negative market price of volatility risk. The common market interpretation of 
BS implied volatilities being forecasts of future volatility should therefore be taken 
with care if volatility risk is priced. Investing in FTSE100-index derivatives yields 
a negative volatility risk premium of approximately –17.5% per annum. Writing 
SM ATM straddles yields a substantial expected return of about 185%, though 
involves considerable risk. Straddles are true bets on volatility. The volatility 
factor features level-dependent volatility. The 1-factor CIR SV specification 
(Heston volatility) does not allow for sufficiently fast-changing volatility however, 
during the three periods of increased market stress mentioned above. The 
misspecification of the 1-factor CIR SV model estimated with squared return – SM 
option data seems modest at first sight. However, the estimated model severely 
overprices the longer-maturity options out of sample. Estimating the model using 
the squared return, SM, MM and LM option data jointly unveils the cause of this 
finding: 1-factor SV option pricing models cannot sufficiently adequately describe 
the rich volatility dynamics present in the joint data. 
 
A subsequent search for the multifactor SV option pricing model within the affine 
class that best fits the data reveals the following. A considerable improvement in 
fit is obtained when 2-factor SV specifications are considered. Both factors feature 
volatility feedback. Dynamic volatility misspecification still remains however.  
 
A 3-factor affine SV specification with one CIR and two affine, independent 
volatility factors appears to fit the joint FTSE100-index data best. Each of the 
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three factors thus features level-dependent volatility. The volatility dynamics 
present in the data is adequately accounted for and the fit of the VTS is good. The 
option pricing errors concentrate near zero and are typically small. The 3-factor 
SV volatilities respond quicker to news than the 1-factor SV volatilities, especially 
in times of sudden market stress. 
 
The three volatility factors 1x , 2x  and 3x  differ greatly in their characteristics. 
Factor 1x  is extremely persistent and shows near random walk behavior. 1x  
fluctuates around the long-term mean stock volatility and determines the long-
term volatility trend. Factor 2x  is much faster mean reverting. Shocks to 2x  have 
a half-life of approximately three months. 2x  determines the medium-term 
volatility trend. Factor 3x  is very rapidly mean reverting. Shocks to 3x  lose half 
their impact in about ten days and have largest variance. 3x  governs large 
volatility changes in relatively short periods of time. Factor 3x  is associated with 
short-term volatility trends.  
 
Volatility factors 1x , 2x  and 3x  impact on the prices of options of different 
maturity in different ways. A shock to long-memory factor 1x  impacts on all 
option prices similarly, irrespective of maturity. Medium-term volatility trend 
factor 2x  affects all option prices as well, but gradually by smaller amounts the 
longer the option’s lifetime. Shocks to fast mean-reverting factor 3x  mainly affect 
the prices of short-maturity options. The impact of 3x  quickly diminishes as the 
option maturity increases. As 3x  is so rapidly mean reverting, its shocks tend to 
average out over a sufficiently long time span, resulting in an only marginal 
impact on the prices of long-dated options.  
 
Factors 1x , 2x  and 3x  impact differently on the shape and evolution of the 
volatility term structure over time. 1x  is mainly responsible for changes in the 
general level of the VTS. 2x  is largely associated with changes in the slope. 3x  is 
closely related to dynamic changes in the curvature of the VTS.  
 
The market prices of risk associated with the SV factors are estimated 
imprecisely. We lack an intuition why the price of risk of medium-term volatility 
trend factor 2x  is estimated positive; both others are negative. The risk premium 
associated with 2x  equals 3.9% per annum. The risk premium on fast mean-
reverting factor 3x  is much more negative (–22% per annum) than the premium 
on long-memory factor 1x  (–0.4%). These premia imply a much more negative 
expected return to be earned on short-maturity ATM straddles than on long-
maturity ATM straddles, which agrees with short-maturity straddles being riskier. 
The finding of negative expected (long) straddle returns agrees with investors 
being negatively compensated for volatility risk.   
 
 

Directions for future research 
 
Within the affine class of SV models, we have found the 3-factor affine SV 
derivative pricing model with one CIR and two affine volatility factors to be most 
appropriate for the joint FTSE100 stock-index and option data. As diagnostic 
checking has revealed however, there is still room left for improvement. (See 
section 7.2.1. of chapter V for a more complete discussion.)  
 
First, we did not model the leverage effect. Given our focus on ATM options only, 
having neglected leverage is unlikely to invalidate most of our findings: The ATM 
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VTS is not much affected by leverage as we have shown in chapter VI. However, 
if the model is to be used for pricing of OTM and ITM options, the leverage effect 
cannot be neglected. As such, the multifactor affine SV derivative pricing model 
with associated estimation method may be extended to allow for leverage.  
 
Second, the 3-factor affine SV model cannot fully capture the three periods of 
rapidly changing volatility present in the FTSE100-index data, not even with three 
volatility factors. Extending the affine SV specification with jumps in volatility 
seems promising in this respect. At this stage however, it is unclear to us how to 
incorporate the modeling of jumps in volatility (as well as in returns) in a state 
space estimation strategy. 
 
Other directions for future research include the following.  
 
As recent evidence has shown, empirical (short-maturity) volatility skews are 
typically steeper than can be described by diffusive SV or SV with jumps in 
returns. Jumps in volatility further steepen the skews. As such, much more 
remains to be learned about how exactly investors are compensated for volatility-
factor risk, jumps-in-volatility risk and jumps-in-returns risk. (We refer to section 
7.2.1. of chapter V for a discussion.) Without doubt it is econometrically 
challenging to estimate such a fully specified multifactor SV option pricing model 
that includes jumps in returns and volatility, based on multiple time series of 
stock and option prices. From an economic perspective more important however, 
a problem likely to be encountered is imprecision in the estimates of the prices of 
risk. This makes it difficult to disentangle for which sources of risk investors are 
exactly compensated for and for which they are (possibly) not. Relatedly, the 
imprecision complicates a precise numerical interpretation of the results.  
 
Given the Monte Carlo evidence, an interesting extension is to include RV data in 
the analysis of the FTSE100-index (or any other) market, and to compare the 
estimation results to those obtained from including squared return data instead.  
 
As a number of papers has recently shown, direct modeling of time series of 
realized volatilities using ARMA-type models yields much better volatility forecasts 
than GARCH and SV stock price models (see section 3.3.2. of chapter III). Given 
our simulation evidence, it would be interesting to compare state space, RV –
option data-based volatility forecasts to forecasts obtained from direct modeling 
of RV, and to investigate if the latter ones still yield superior forecasts.  
 
The hedging strategies outlined in this thesis assume continuous rebalancing of 
the hedging portfolio and no transaction costs. In that case the strategies 
replicate the derivative payoff perfectly, as desired. These assumptions are 
violated in practice. It may be of interest to examine the hedging error incurred 
from only periodically rebalancing of the hedging portfolio by simulation. 
 
Our multifactor affine SV derivative pricing model and associated state space 
estimation method seem promising in a foreign-exchange markets context. 
Section 8 of chapter II discusses this extension. No further mathematical analysis 
is required for casting the model in a FX option pricing and hedging framework. A 
main advantage is that the assumption of a zero correlation between FX returns 
and FX volatility shocks (i.e. no “leverage effect”) seems adequate. The Monte 
Carlo evidence reported in chapter V for the 1-factor CIR SV model (which 
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assumes no leverage) is suggestive for how well our state space estimation 
method will perform in a FX setting.    
 
Combining time series of squared FX returns or realized FX volatilities with FX 
options data for estimation yields insight in how investors are compensated for 
exchange-rate volatility risk (if at all). Our rationale for negative stock volatility-
risk compensation is explicitly based on the existence of the leverage effect. If a 
zero correlation between FX returns and FX volatility shocks is indeed reasonable, 
how are domestic and foreign-country investors then compensated for FX 
volatility risk? If FX volatility risk is systematic, both types of investors ought to 
be compensated for bearing this risk at least to some extent.   
 
As this incomplete list already indicates, there are numerous interesting directions 
for future research based on our multifactor affine SV derivative pricing model 
and associated state space estimation strategy.   
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Definitions: (.,.)ic , ( 1) (.,.)nx c , ( ) (.,.)dnxn C

- Appendix A - 
 

Matrix definitions    
 

 
 

 
This appendix serves as a convenient reference. It collects matrix definitions associated with 
the statistical properties of the factors ( 1)nx x  which are derived in appendix B. It also states 
a lemma and derives some intermediate results which are often invoked in appendix B.  
 
 
Definition: (exponent of a diagonal matrix) 
The exponent of a square diagonal matrix 1( ) diag ,...,d nnxn a a=   A  is defined as 

1exp diag exp( ),...,exp( )d na a≡      A . 
 
Lemma:  
Let 1( ) diag ,..,d nnxn d d=   D  and 1( ) diag ,..,d nnxn f f=   F  be square diagonal matrices. 
Collect their diagonal elements in the vectors 1( ,.., )'n dd d= =d D 1  and 1( ,.., )'n df f= =f F 1  
respectively, in which ( 1)nx 1  is a vector of ones. Let ( )nxn A  be a general square matrix. 
Straightforward matrix multiplication shows that ' 'd d d d= =D AF df A D 11 F A⊙ ⊙ , in which 
⊙  denotes the Hadamard product. 1 
 
Matrix definitions:  

1( ) diag ,..,d nnxn k k=   K   ( )nxn J  with 
1

ij
i jk k

=   +
J  

1 1( ) diag ' ,.., 'd n nnxn α α= + +  M β θ β θ  1( 1) ( ,.., )'nnx α α=α  

 

1( ) ,.., nnxn =   β βB  1( ) diag ,.., nnxn γ γ=   Γ  

 

1 1( ) diag ' ,..., 't t n n tnxn α α = + + Λ β x β x  ( ) 'dnxn = +K K ΣΓ% B  

 

( )1( 1) dnx −= −θ K K θ ΣΓα% %  1( ) ,.., nnxn =   Σ σ σ  (column partition). 

 
Scalar, vector and matrix functions 
Below we define a list of scalar, vector and matrix functions. These functions appear in the 
matrix integral manipulations in appendix B. 
 

 
 
 

 

 ( , ) exp ( ) , 1,..,i ic p q k q p i n≡ − − =   . 

                                           
1 For matrices ( )mxn A  and ( )mxn B , the Hadamard product of A  and B  is defined as the ( )mxn  
matrix A B⊙  which ij-th element equals the product of the ij-th elements of A  and B . That is, element-
by-element multiplication: [ ] [ ] [ ]ij ij ij=A B A B⊙ .  
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1( , ) exp ( ) diag c ( , ),.., ( , )d d np q q p p q c p q≡ − − =      C K  

      1( , ) ( , ),.., ( , ) ' ( , )n dp q c p q c p q p q≡ =  c C 1 . 

 
 

    
 

( , ) exp ( ) 'exp ( ) ( , ) ( , )'
q q

d d

p p

p q q u q u du u q u q du≡ − − − − =      ∫ ∫G K 11 K c c . 

 
The ij-th element of (.,.)G  equals 
 

( , ) exp ( )( )
q

i jij
p

p q k k q u du = − + −    ∫G  

1 exp ( )( )i j

i j

k k q p

k k

 − − + − =
+

 

' exp ( ) ' exp ( )d dij ij
q p q p = − − − − −           J 11 K 11 K⊙  

' ( , ) ( , )'
ij ij

p q p q= −      J 11 c c⊙ , 

 
which reveals that ( ) ( , )nxn p qG  can be written as 

 

( , ) ' exp ( ) ' exp ( )

' ( , ) ( , )' .

d dp q q p q p

p q p q

 = − − − − −       
= −  

G J 11 K 11 K

J 11 c c

⊙

⊙

 

 
The following holds 
 

( , ) (0, )p q q p= −G G , 

 
such that ( ) ( , )nxn p qG  is a function of q p−  and not of p  or q  separately. This observation 
yields another result which turns out to be convenient in the derivations in appendix B: 
 
 ( , ) (0, )p q q p= −G G  

0

exp ( ) 'exp ( )
q p

d dq p u q p u du
−

= − − − − − −      ∫ K 11 K  

 
0

exp[ ] 'exp[ ]d d

q p

v v dv
−

= − − −∫ K 11 K  

 
0

exp[ ] 'exp[ ]
q p

d dv v dv
−

= − −∫ K 11 K , 

 
in which the third equality follows from the change of variable towards v q p u≡ − − , such 
that dv du= − , and u  running from 0 to q p−  implies that v  is running from q p−  to 0.  
 

Definition: ( ) (.,.)nxn G  
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Definitions: (.,.)id , ( 1)nx d , ( ) (.,.)nxn D  

Definition: ( ) (.,.)nxn N  

As ( , )p qG  is a function of q p−  only, and not of p  and q  separately, we sometimes write 
the following short cut: 

0

( ) (0, ) exp 'exp ' exp ' exp
q

d d d dq q v v dv q q ≡ = − − = − − −               ∫G G K 11 K J 11 K 11 K⊙

 
 

 
 

1 exp ( )
( , ) exp ( ) , 1,..,

q
i

i i
ip

k q p
d p q k u p du i n

k

− − −  ≡ − − = =  ∫  

( )1
1( , ) diag ( , ),.., ( , ) exp ( ) exp ( )

q

n d d n d

p

p q d p q d p q u p du q p−≡ = − − = − − −          ∫D K K I K

 

1( , ) ( , ),.., ( , ) ' ( , )np q d p q d p q p q≡ =  d D 1 . 

 
The following holds: 
 
 ( , ) (0, ), 1,..,i id p q d q p i n= − =  

  ( , ) (0, )p q q p= −d d  

  ( , ) (0, )p q q p= −D D . 

 
As ( , ), ( , ), ( , )id p q p q p qd D  are functions of q p−  only, and not of p  and q  separately, we 
sometimes write the following short cuts:  
 

0

1 exp( )
( ) (0, ) exp ; 1,..,

q
i

i i i
i

k q
d q d q k u du i n

k
− −

≡ = − = =  ∫  

 1( ) (0, ) ( ),.., ( ) ' (0, )nq q d q d q q≡ = =  d d D 1  

( )1
1

0

( ) (0, ) diag ( ),.., ( ) exp exp
q

n d d n dq q d q d q u du q−≡ = = − = − −          ∫D D K K I K . 

 
 

  

( , ) ( , ) ( , )'
q

p

p q u q u q du≡ ∫N d d . 

 
( , )p qN  can be rewritten as:  

 ( , ) ( , ) ( , )'
q

p

p q u q u q du≡ ∫N d d  

 (0, ) (0, )'
q

p

q u q u du= − −∫ d d  
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0

0 0

(0, ) (0, )' (0, ) (0, )' ( ) ( )'
q p q p

q p

v v dv v v dv v v dv
− −

−

= − = =∫ ∫ ∫d d d d d d , 

 
in which the third equality follows from a change of variable towards the variable v  defined as 
v q u≡ − , such that dv du= − , and as u  runs from p  to q , then v  runs from q p−  to 0. 
The latter expression reveals 

 
( , ) (0, )p q q p= −N N , 

 
such that (.,.)N  is a function of q p−  only, and not of p  and q  separately. We therefore 
write the following short cut 

 

0

( ) (0, ) ( ) ( )'
q

q q u u du≡ = ∫N N d d ,  

 
which can be simplified towards 

 

0

( ) ( ) ( )'
q

q u u du= ∫N d d  

0

( ) ' ( )
q

u u du= ∫D 11 D  

( ) ( )1 1

0

exp ' exp
q

d n d n d du u du− −= − − − −      ∫K I K 11 I K K  

1 1

0

' 'exp exp ' exp 'exp
q

d d d d d du u u u du− − = − − − − + − −               ∫K 11 11 K K 11 K 11 K K

1 1

0 0 0 0

' ' exp exp ' exp 'exp
q q q q

d d d d d ddu u du u du u u du− −
 
 = − − − − + − −               
 
∫ ∫ ∫ ∫K 11 11 K K 11 K 11 K K

 
1 1' ' ( ) ( ) ' ( )d dq q q q− −= − − +  K 11 11 D D 11 G K . 

 
 

The ij − th element of this matrix ( 1,.., ; 1,.., )i n j n= =  equals  
 

1 exp ( )1
( ) ( ) ( )

i j
j iij

i j i j

k k q
q q d q d q

k k k k

  − − +  = − − +   +  
N . 

I 
 
 
 

 

( , ) ( , ) ( , ) ( , )'
s

j j

t

t s c t u u s u s du≡ ∫ c cH ,  1,..,j n=  

 1( , ) ( , )',..., ( , )' 'nt s t s t s≡   H H H .     

Definitions: 2( ) (.,.), ( ) (.,.)jnxn n xnH H  
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The pq − th element of ( , )j t sH  equals 

 

 ( , ) ( , ) ( , ) ( , ) exp[ ( ) ( )( )]
s s

j j p q j p qpq
t t

t s c t u c u s c u s du k u t k k s u du  = = − − − + −  ∫ ∫H  

 
exp[ ( )] exp[ ( )( )]j p q

p q j

k s t k k s t

k k k

− − − − + −
=

+ −
.    

 
As ( , )j t sH  and ( , )t sH  are functions of s t−  only, and not of t  or s  separately, we 

typically write the following short cuts: 
 

( ) ( , )j js t t s− ≡H H  (0, )j s t= −H  

 ( ) ( , ) (0, )s t t s s t− ≡ = −H H H . 

 
  
 
 

 

 ( , ) ( , ) ( , ) ( , )'
T

j j

t

t T c t u u T u T du≡ ∫ d dI , 1,..,j n=        

  1( , ) ( , )',..., ( , )' 'nt T t T t T≡   I I I . 

 
The pq − th element of matrix ( , )j t TI  equals 

 

( , ) ( , ) ( , ) ( , )
T

j j p qpq
t

t T c t u d u T d u T du  =  ∫I       

 
1 exp[ ( )] 1 exp[ ( )]

exp[ ( )]
T

p q
j

p qt

k T u k T u
k u t du

k k

   − − − − − −
= − −       

   
∫  

  
1

exp[ ( )] exp[( ) ]
T T

j q j j q
p q t t

k u t du k k u k t k T du
k k


= − − − − + −

∫ ∫  

 

exp[( ) ] exp[ ( ) ( )( )]
T T

p j j p j p q

t t

k k u k t k T du k u t k k T u du

− − + − + − − − + −


∫ ∫
 

 
1

( ) exp[( ) ]
T

j q j j q
p q t

d k k u k t k T du
k k

τ

= − − + −


∫  

 exp[( ) ] ( )
T

p j j p j pq
t

k k u k t k T du τ

 − − + − +   

∫ H , 

 
with T tτ = − , and in which the integrals in this latter expression equal 
 

Definitions: ( ) (.,.)jnxn I , 2( ) (.,.)n xn I
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exp[ ] exp[ ]
;

exp[( ) ]

exp[ ];

j qT
j q

q jq j j q

t
j j q

k k
k k

k kk k u k t k T du

k k k

τ τ

τ τ

− − −
≠ −− + − = 

 − =
∫  

  

 

exp[ ] exp[ ]
;

exp[( ) ]

exp[ ]; .

j pT
j p

p jp j j p

t
j j p

k k
k k

k kk k u k t k T du

k k k

τ τ

τ τ

− − −
≠ −− + − = 

 − =
∫  

 
As ( , )j t TI  and ( , )t TI  are functions of T tτ = −  only, and not of t  or T  separately, we 
typically write the following short cuts: 
 

( ) ( , ) (0, )j j jT t t T T t− ≡ = −I I I  

 ( ) ( , ) (0, )T t t T T t− ≡ = −I I I .  

 
Limits of matrix functions 
The limits below are invoked in section 3.3.5 of chapter III and in appendix IIIc. It holds that 
 

 ( )
δ δ

δ δ−

→ →
= − − =  

1

0 0
lim ( ) lim expd n dt t

t tD K I K 0       

 ( ) ( )
δ δ

δ δ δ δ−

→ →
= − − =  

1

0 0
lim ( ) / lim expd n d nt t

t t t tD K I K I , 

 
where the latter limit follows from an application of l’Hôspital’s rule. To derive the limit 

δ
δ δ

→0
lim ( ) /
t

t tN , note first that  
 

 1 1( ) ( ) ( ) ( )
' ' 'd d

t t t t
t t t t
δ δ δ δ
δ δ δ δ

− − = − − + 
 

N D D G
K 11 11 11 K .   

 
By l’Hôspital’s rule, the limit of the ij -th element of the matrix function ( ) /t tδ δG  for tδ  
approaching zero equals  
 

  
δ δ δ

δ δδ
δ δ→ → →

   − − + + − +     = = =  + + 0 0 0

1 exp ( ) ( )exp ( )( )
lim lim lim 1

( )
i j i j i j

t t ti j i jij

k k t k k k k tt
t k k t k k

G
. 

 
As such, 

0
lim ( ) / '
t

t t
δ

δ δ
→

=G 11  and hence 
0

lim ( ) /
t

t t
δ

δ δ
→

=N 0 , the zero-matrix.   

 



301 

- Appendix B - 
 

Statistical Properties of the  
Multifactor Affine SV Process 

 
 
 
This appendix derives statistical properties of the volatility-driving factors x  and the stock 
volatility process. The multifactor affine SV specification and its properties are stated under 
some arbitrary probability measure M. Taking the specific evolutions of the factors under the 
market and risk-neutral measures P and Q into account, the results below may subsequently 
be translated to these specific measures. Sections 1 to 10 exclusively deal with the properties 
of the factors and the stock variance process, without involving the specific evolution of the 
stock price as a geometric Brownian motion-type process (with SV). Sections 11 and 12 do 
involve the stock price evolution; these sections look at stock returns. 
 

1. The SV specification under measure M 

Consider the multifactor affine SV specification, in which the instantaneous stock variance 2
tσ  

is driven by n possibly correlated, unobservable factors 1( ,.., )'nx x=x  in an affine way, 
 

 2
0 't tσ δ= + δ x ,        (1.1) 

 
in which 0δ  and 1( 1) ( ,.., )'nnx δ δ=δ  are positively valued. Under M the latent factors evolve 
according to stationary mean-reverting Markov diffusions, 
 
 ,( )t d t t x td dt d= − +x K θ x ΣΛ W ,     (M) (1.2) 

 
in which ( 1)nx >θ 0  represents the mean of the factors (as shown below), ( ) ,dnxn K Σ  are 
matrices of constants with 1diag[ ,.., ]d nk k=K  being diagonal and positive definite, and tΛ  
is a diagonal matrix given by 
 

 1 1 ndiag ' ,.., 't t n tα α = + + Λ β x β x ,     (1.3) 

 
in which 1( ,.., )'nα α=α  and 1( ,.., )'i i inβ β=β , 1,..,i n=  are ( 1)nx  vectors of positive real-
valued constants. Uncertainty is resolved by an n -dimensional standard Brownian motion 
process ,{ ; 0}x t t ≥W , given by 
 
 , 1( ,.., )'x t t ntW W=W ,       (M) (1.4) 
 
which is defined on the filtered probability space 0( , ,{ } , )t t ≥Ω MF F , satisfying the “usual 
conditions”; see e.g. Protter (1990). { ; 0}t t ≥F  denotes the natural Brownian filtration. 
 
As [ | ] ( )t t d td dt= −x K θ xME F , with , d> >θ 0 K 0 , it is clear that whenever the factors are 
below (resp. above) their mean, there is an upward (downward) drift tendency. As such, the 
factors tend to revert back to their mean at all times, which is characteristic for a (covariance) 
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stationary process. The matrix dK  governs the speed of adjustment of the factors towards 
their mean θ . We assume the dynamics of the factors to be well defined, which requires 

' 0i i tα + ≥β x  for all i  and t . 1 The Heston (1993) (i.e., CIR) volatility specification is a 
special case of this model; see section 14. If the factors follow a multifactor Ornstein-
Uhlenbeck (OU) process (in case i i= ∀β 0 ), the stock variance is not guaranteed to stay 
positive at all times. This is theoretically inconsistent. (We refer to the main text for further 
discussion.) The volatility specification allows for level-dependent volatility-of-volatility, also 
called volatility feedback.  
 
As becomes apparent in section 6, in discrete-time, this SV specification boils down to the 
stock variance being modeled as a superposition of n  (possibly correlated) autoregressive 
processes of order 1 (i.e., AR(1)-processes). Each AR(1) process features its own mean, and 
has an error term which is unconditionally white noise, but which conditional variance depends 
on the current level of the AR(1) process(es).  
 
2. Expressing sx  in terms of tx  
 
From the SDE of the factors ( 1)nx x  under M, 
 
 ,( )t d t t x td dt d= − +x K θ x ΣΛ W ,     (M) (2.1) 

 
the basic equation from which to derive the factor moments is one in which sx  is expressed in 
terms of tx , for s t> . To achieve this, consider the transformation 
 
 exp[ ]t d tt≡y K x ,        (2.2) 

 
with 1exp[ ] diag[exp( ),..,exp( )]d nt k t k t=K ; see appendix A. By Itô’s lemma, 
 

,exp[ ] exp[ ] exp( )[ ]t d d t d t d d t x td t dt t d t dt d= + = +y K K x K x K K θ ΣΛ W , (2.3) 

 
in which the second equality uses the diagonality of both dK  and exp[ ]dtK , such that these 
matrices are commutative. Integrating the increments over the interval [ , ]t s  yields 
 

 ,exp[ ] exp[ ]
s s

s t d d d u x u

t t

u du u d= + +∫ ∫y y K K θ K ΣΛ W .    (2.4)  

  
Transforming back to sx  by premultiplying with exp[ ]ds−K  yields 

,exp[ ( )] exp[ ( )] exp[ ( )]
s s

s d t d d d u x u

t t

s t s u du s u d= − − + − − + − −∫ ∫x K x K K θ K ΣΛ W    

,exp[ ( )] ( exp[ ( )]) exp[ ( )]
s

d t n d d u x u

t

s t s t s u d= − − + − − − + − −∫K x I K θ K ΣΛ W . (2.5) 

such that 

 ( ) ,exp[ ( )] exp[ ( )]
s

s d t d u x u

t

s t s u d= + − − − + − −∫x θ K x θ K ΣΛ W . (M) (2.6) 

                                           
1 Parameter restrictions that ensure a unique strong solution to the SDE (1.2) are in Duffie and Kan (1996) 
and Dai and Singleton (2000).  
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3. (Conditional) mean of factors, and the mean-reverting property 
 
Consider the integral in equation (2.6). Like ordinary Riemann and Riemann Stieltjes integrals, 
Itô integrals are linear on adjacent intervals. Therefore 
 

,exp[ ( )] |
s

d u x u t

t

s u d
 
 − −
  
∫ K ΣΛ WME F      (3.1) 

, ,

0 0

exp[ ( )] exp[ ( )] |
s t

d u x u d u x u ts u d s u d
 
 = − − − − −
  
∫ ∫K ΣΛ W K ΣΛ WME F  

 , ,

0 0

exp[ ( )] | exp[ ( )]
s t

d u x u t d u x us u d s u d
 
 = − − − − −
  
∫ ∫K ΣΛ W K ΣΛ WME F  

, ,

0 0

exp[ ( )] exp[ ( )]
t t

d u x u d u x us u d s u d= − − − − − =∫ ∫K ΣΛ W K ΣΛ W 0 , 

 
in which the third equality follows from the martingale property of Itô stochastic integrals. The 
conditional expectation of sx  given tF   then follows from (2.6) as 
 

 ( )| exp[ ( )]s t d ts t= + − − −  x θ K x θME F .     (3.2) 

 
As the factor process is a Markov process, conditioning on the information filtration tF  is 
equivalent to conditioning on the value the process assumes at time t . Therefore 

[ | ] [ | ]s t s t=x x xM ME E F . Given (3.2), (2.6) yields the following interpretation  
 
 ,|s s t t s= +  x x uME F ,       (3.3) 

 
in which we label the deviation of the factors from their conditional mean, i.e., 
 

 , ,exp ( ) |
s

t s d u x u s s t

t

s u d≡ − − = −      ∫u K ΣΛ W x xME F ,   (3.4) 

 
the disturbance- or error term. Evidently (but as also shown in (3.1)), ,t su  has (conditional) 
expectation zero. The unconditional mean of the factors equals  
 

( ) ( )| exp[ ( )]s s t d ts t= = + − − −          x x θ K x θM M M ME E E EF .  (3.5) 

 
Given stationarity, [ ] [ ] ,s t t s= ∀x xM ME  E  . This in turn implies 
 

 ( ) ( )exp[ ( )]n d ss t− − − − =  I K x θ 0ME .     (3.6) 

 
Apparently, the vector ( )[ ]s −x θME  lies in the null space of the diagonal matrix 

exp[ ( )]n d s t− − −I K . As 0 1,..,ik i n> ∀ = , the matrix exp[ ( )]n d s t− − −I K  has full rank, 
such that (3.6) implies that the unconditional mean of the factors equals  
 

 s =  x θME .         (3.7) 
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Below it will often turn out convenient to state results in terms of the factors in deviation from 
their mean, which we define as 
 

 *
s s s≡ − ∀x x θ .        (3.8) 

 
The conditional factor expectation (3.2) represents the sum of two parts, one being the 
unconditional factor expectation θ , the other the current deviation of the factors from their 
mean value, t −x θ , scaled by the matrix exp[ ( )]d s t− −K . It holds that  
 

 lim |s t
s→∞

=  x θME F ,        (3.9) 

 
as expected, given stationarity. Hence, given current information, the best forecast of the 
factors in the indefinite future equals their unconditional mean.  
 
Mean-reversion 
A characteristic property of stationary processes is mean-reversion: Irrespective of the current 
deviation of the process from its mean, the process will always return to its mean. To illustrate 
this property of the factors in discrete time, from (3.2) it holds that 
 
 ( ) ( )| exp[ ( )]s t t d n ts t− = − − − −  x x K I x θME F .    (3.10) 

 
The diagonal matrix exp[ ( )]d ns t− − −K I  ( s t> ) is negative definite. Equation (3.10) 
reveals that if the factors are currently above (resp. below) their mean, their tendency is to 
revert back to their mean, as the expected increment over [ , ]t s  is then negative (resp. 
positive). The factors thus indeed show mean-reversion. 
 
4. Conditional variance of the factors 
 
Appendix A states the definitions of the scalar functions (.,.); 1,..,ic i n= , the vector function 
( 1) (.,.)nx c  and the matrix function ( ) (.,.)dnxn C . From (2.6), the conditional variance of 

sx  given tF  (for s t> ) then becomes 
  

 ,var | var exp[ ( )]
s

s t d u x u t

t

s u d
 
 = − −     
∫x K ΣΛ WM MF F    (4.1)  

,var ( , )
s

d u x u t

t

u s d
 
 =
  
∫C ΣΛ WM F  

, ,( , ) ' ' ( , )
s

d u x u x u u d t

t

u s d d u s =  ∫ C ΣΛ W W Λ Σ CME F  

 2( , ) ' ( , )
s

d u d t

t

u s u s du =  ∫ C ΣΛ Σ CME F   

2( , ) ' ( , )
s

d u t d

t

u s u s du =  ∫C Σ Λ Σ CME F ,    

 
in which the fourth equality uses , , 'x u x u nd d du=W W I , which holds since the individual 
Brownian motions are independent. Using the lemma in appendix A , we subsequently obtain 
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 ( )2var | ( , ) ( , )' '
s

s t u t

t

u s u s du =    ∫x c c Σ Λ ΣM MEF F⊙ .   (4.2) 

 
The aim is to arrive at an analytical expression not involving integrals. As a first step, partition 
the matrix Σ  into its columns: 1[ ,.., ]n=Σ σ σ . ( 1)nx iσ  thus represents the i-th column of 
Σ . As 2

1 1diag[ ' ,.., ' ]t t n n tα α= + +Λ β x β x ,  
 

 ( )2

1

' ' | '
n

u t i i u t i i
i

α
=

  = +     ∑Σ Λ Σ β x σ σM ME EF F ,    (4.3) 

and hence 

 ( )
1

var | ( , ) ( , )' ' | '
s n

s t i i u t i i
it

u s u s duα
=

  
 = +           

∑∫x c c β x σ σM MEF F⊙    

 ( )
1

' | ( , ) ( , )' '
s n

i i u t i i
it

u s u s duα
=

 
 = +    
 
∑∫ β x c c σ σME F ⊙   

 ( )
1

' | ( , ) ( , )' '
sn

i i u t i i
i t

u s u s duα
=

 
 = +    
 

∑ ∫ β x c c σ σME F ⊙ . (4.4) 

 

The integral in (4.4) becomes 
 

( )' | ( , ) ( , )'
s

i i u t

t

u s u s duα +   ∫ β x c cME F        

( )*' ' ( , ) ( , ) ( , )'
s

i i i d t

t

t u u s u s duα= + +∫ β θ β C x c c

 *( ' ) ( , ) ( , )' ' ( , ) ( , ) ( , )'
s s

i i i d t

t t

u s u s du t u u s u s duα= + +∫ ∫β θ c c β C x c c  

  *( ' ) ( , ) ' ( , ) ( , ) ( , )'
s

i i i d t

t

t s t u u s u s duα= + + ∫β θ G β C x c c ,  (4.5) 

 
in which the last equality invokes the definition of the matrix function ( ) (.,.)nxn G  as stated 
in appendix A. As *

s s= −x x θ  has elements *
js js jx x θ= − ; 1,..,j n= , the integral in (4.5)  

becomes 

 * *

1

' ( , ) ( , ) ( , )' ( , ) ( , ) ( , )'
s s n

i d t ij j jt
jt t

t u u s u s du c t u x u s u s duβ
=

 
 =
  
∑∫ ∫β C x c c c c   

*

1

( , ) ( , ) ( , )'
sn

ij jt j
j t

x c t u u s u s duβ
=

 
 =
  

∑ ∫ c c  

*

1

( , )
n

ij jt j
j

x t sβ
=

= ∑ H ,   (4.6)  

 
in which the matrix functions ( )nxn ( , ), 1,..,j t s j n=H  are defined as 
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 ( , ) ( , ) ( , ) ( , )'
s

j j

t

t s c t u u s u s du≡ ∫ c cH .       (4.7) 

 
The pq − th element of ( )nxn ( , ), 1,..,j t s j n=H  equals 

 

 ( , ) ( , ) ( , ) ( , ) exp[ ( ) ( )( )]
s s

j j p q j p qpq
t t

t s c t u c u s c u s du k u t k k s u du  = = − − − + −  ∫ ∫H  

 
exp[ ( )] exp[ ( )( )]j p q

p q j

k s t k k s t

k k k

− − − − + −
=

+ −
.   (4.8) 

 
These matrices ( , )j t sH  are functions of the time difference s t−  only, and not of t  or s  
separately. Therefore, if convenient, we will sometimes write ( ) ( , )j js t t s− ≡H H  

(0, )j s t= −H . Expression (4.6) can further be simplified towards 
 

1
* * *

1 1
1

( , )
( , ) ,...,

( , )

n

ij jt j i t n in nt n
j

n

t s
x t s x x

t s
β β β

=

 
  =   
  

∑ I I M

H
H

H

( )* ' ( , )i t n t s =  β x I⊙ H⊗ ,    (4.9) 

 
in which 2

1( ) ( , ) ( , )',..., ( , )' 'nn xn t s t s t s≡   H H H .  
 
Collecting the intermediate results together, we find 
 

{ }( )*

1

var | ' ( , ) ' ( , ) '
n

s t i i i t n i i
i

t s t sα
=

  = + +         ∑x β θ G β x I σ σM F ⊙ ⊙H⊗
 

{ }( )*

1 1

( ' ) ( , ) ' ' ( , ) '
n n

i i i i i t n i i
i i

t s t sα
= =

 = + +    ∑ ∑β θ G σ σ β x I σ σ⊙ ⊙ ⊙H⊗

{ }( )*

1

( , ) ' ' ( , ) '
n

d i t n i i
i

t s t s
=

 = +  ∑G ΣM Σ β x I σ σ⊙ ⊙ ⊙H⊗ ,    (4.10) 

 

in which (recall) 1 1diag ' ,..., 'd n nα α≡ + +  M β θ β θ . As { }tx  is a Markov process, it also 

holds that var [ | ] var [ | ]s t s t=x x xM M F .  

 

Note that var [ | ]s s =x 0M F  (as it should). Moreover, as lim ( , ) lim (0, )
s s

t s s t
→∞ →∞

= −G G  

lim ' exp[ ( )] 'exp[ ( ) 'd d
s

s t s t
→∞

= − − − − − = =  J 11 K 11 K J 11 J⊙ ⊙ , and as it can be seen that 

lim ( , )
s

t s
→∞

= 0H , we also have that 
 
 lim var | 's t d

s→∞
=  x J ΣM ΣM F ⊙ .      (4.11) 

 
As shown in the next section, ' vard t=   J ΣM Σ xM⊙ .  Result (4.11) is precisely what we 
expect for a stationary process. Namely, its current value has no impact on its conditional 
mean (recall (3.9)) or variance if prediction of the process in the infinite future is the concern. 
In that case, the current value of the process does not yield any extra information.  
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5. Variance of the factors & contemporaneous correlation matrix 
 
This section computes the unconditional variance of the factors in two ways. First, due to 
stationarity, var [ ] var [ ]s t=x xM M . It then follows that 
 

 ( ) ( )var var | var |s s t s t   = +      x x xM M M M ME EF F    (5.1) 

 ( , ) ' var exp[ ( )]( )d d tt s s t= + + − − −  G ΣM Σ θ K x θM⊙  

 ( , ) ' ( , ) var ( , )d d s dt s t s t s= +   G ΣM Σ C x CM⊙ .         

 
To solve for the variance, vectorize this expression: 2 
 

 ( ) ( )vec var vec ( , ) ' vec ( , )var ( , )s d d s dt s t s t s   = +     x G ΣM Σ C x CM M⊙   (5.2) 

( )vec ( , ) ' ( , ) ( , ) vec vard d d st s t s t s  = +        G ΣM Σ C C x⊙ ⊗ M ,  

 
in which we exploit the linearity of the vec operator. It next follows that  
 

         ( ) ( )2

-1
vec var ( , ) ( , ) vec ( , ) 's d d dn t s t s t s   = −      x I C C G ΣM ΣM ⊙⊗ . (5.3) 

 
Equation (5.3) defines the factor variance matrix implicitly. It is not clear how to back out this 
matrix explicitly. We nonetheless desire an explicit expression for var [ ]sxM , for e.g. 
computing the correlation matrix of the factors.  
 
Let us therefore compute var [ ]sxM  in a different way. From appendix A, ( , )t sG  can be 
written as 
 
 ( , ) ' ( , ) ( , )'t s t s t s= −  G J 11 c c⊙ .      (5.4) 

 
Using (5.4) and invoking the lemma stated in appendix A, we obtain from (5.1) 
 
 var ( , ) ' ( , ) var ( , )s d d s dt s t s t s= +      x G ΣM Σ C x CM M⊙    (5.5) 

 ' ( , ) ( , )' ' ( , ) ( , )' vard st s t s t s t s= − +      J 11 c c ΣM Σ c c xM⊙ ⊙ ⊙ ,  

such that 
 
 ' ( , ) ( , )' var ' ( , ) ( , )' 's dt s t s t s t s− = −          11 c c x J 11 c c ΣM ΣM⊙ ⊙ ⊙ . (5.6) 

 
This implies 
 
 var 's d s= ∀  x J ΣM ΣM ⊙ ,       (5.7) 

 
which is an explicit expression for the variance matrix of the factors.  
 
The contemporaneous correlation matrix of the factors is next given by 
 

     
1 /2 1 /2

corr ' ' 's n d d n d
− −

=              x I J ΣM Σ J ΣM Σ I J ΣM ΣM ⊙ ⊙ ⊙ ⊙ ⊙ . (5.8) 

 

 
                                           
2 The second equality in expression (5.2) uses the fact that for ( ) , ( ) ,( )mxn nxp pxqA B C , it holds that 
vec( ) ( ' )vec( )=ABC C A B⊗ .  See e.g., Magnus and Neudecker (1988). 
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6. Properties of ,t su  

 
The error term ,t su  defined in (3.4) plays a pivotal role in the state space estimation method 
of our multifactor SV model. Its properties are therefore important. First, recall equations 
(2.6) and (3.4), repeated here for convenience, 
 

( ) ,exp[ ( )] exp[ ( )]
s

s d t d u x u

t

s t s u d= + − − − + − −∫x θ K x θ K ΣΛ W , (M) (6.1) 

 , ,exp[ ( )]
s

t s d u x u

t

s u d= − −∫u K ΣΛ W .     (M) (6.2) 

     
As *

s s s= − ∀x x θ , (6.1) can be rewritten as 
 

 * *
,exp[ ( )]s d t t ss t= − − +x K x u .     (M) (6.3) 

        
From (3.1) it is clear that 
 

 , |t s t  = u 0ME F , ,t s  = u 0ME .      (6.4)  

 
From equation (6.3),  
 
 

        ,var | var |t s t s t  =    u xM MF F       (6.5) 

 { }( )*

1

( , ) ' ' ( , ) '
n

d i t n i i
i

t s t s
=

 = +  ∑G ΣM Σ β x I σ σ⊙ ⊙ ⊙H⊗ . 

 
As such,  
 

        ( ) ( ), , ,var var | var | ( , ) 't s t s t t s t dt s     = + =     u u u G ΣM ΣM M M M ME EF F ⊙ .  (6.6)  

 
What about the correlation between disturbances that do not overlap in time? Consider the 
covariance between ,t su  and ,u vu  for t s u v< < < . By first invoking the law of iterated 
expectations and then the tower property of conditional expectations, yields 
 

 , , , ,cov , 't s u v t s u v   =   u u u uM ME ;  t s u v< < <     (6.7) 

 ( ), , ' |t s u v s =  u uM ME E F  

 ( ), , ' |t s u v s =  u uM ME E F  

 ( )( ), , ' | |t s u v u s = = u u 0M M ME E E F F ,    

 
as ( ), ' |u v u =u 0ME F  by (6.4). Hence, non-overlapping disturbances do not correlate.  
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7.  Covariance and correlation function of the factors 
 
To examine the dependence structure in the factors over time, we consider their correlation 
function. The covariance between sx  and tx  for s t>  equals  
 

* *cov , cov ,s t s t =    x x x xM M       (7.1) 

* *
,cov exp[ ( )] ,d t t s ts t = − − + K x u xM  

*
,exp[ ( )]var cov ,d t t s ts t  = − − +    K x u xM M  

( ) *
,exp[ ( )] ' 'd d t s ts t  = − − +  K J ΣM Σ u xME⊙   

( ) ( ) *
,exp[ ( )] ' | 'd d t s t ts t  = − − +  K J ΣM Σ u xM ME E F⊙  

( )exp[ ( )] 'd ds t= − −K J ΣM Σ⊙ ,      
 
in which the second equality uses (6.3), and the fourth and sixth equality exploit (6.4). The 
correlation between sx  and tx  for s t>  then follows as  
 

( ) ( )1 /2 1 /2
corr , var cov , vars t n s s t n t

− −
=              x x I x x x I xM M M M⊙ ⊙   (7.2) 

( ) ( ) ( )1 /2 1 /2' exp[ ( )] ' 'n d d d n ds t− −= − −I J ΣM Σ K J ΣM Σ I J ΣM Σ⊙ ⊙ ⊙ ⊙ ⊙

( ) ( ) ( )1 /2 1 /2exp[ ( )] ' ' 'd n d d n ds t − −= − −K I J ΣM Σ J ΣM Σ I J ΣM Σ⊙ ⊙ ⊙ ⊙ ⊙

exp[ ( )]corrd ss t= − −   K xM ,       

 
in which the matrix-interchange after the second equality is allowed due to the diagonality of 
the matrices involved, and in which the latter equality uses (5.8).  
 

The covariance and correlation between sx  and tx  depend on the time distance s t−  only 
and not on their individual time stamps s  or t . The dependence structure in { ; 0}t t ≥x  is 
thus invariant under shifts of time. Moreover, for fixed t  
 

 lim cov ,s t
s→∞

=  x x 0M ,   lim corr ,s t
s→∞

=  x x 0M ,   (7.3) 

  
as dK  is positive definite. The dependence thus fades away over time: A current shock to 
{ ; 0}t t ≥x  has a diminishing effect on the future evolution of the process as time goes by. 
Shocks are thus not persistent. Indeed, these properties are due to stationarity of { ; 0}t t ≥x .  
 
8. Properties of 2{ }tσ  and volatility mean reversion 
 
From (3.2),  

 
2 *

0 0| ' | ' 'exp[ ( )]s t s t d ts tσ δ δ  = + = + + − −    δ x δ θ δ K xM ME EF F . (8.1) 
 

The mean stock variance equals 
 

 2
0 'sσ δ  = +  δ θME .        (8.2) 

 
The conditional mean stock variance thus equals the sum of the unconditional mean stock 
variance and a term representing the scaled factors in deviation from their mean. This makes 
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sense intuitively. For the conditional variance of the instantaneous stock variance, by (4.10) 
we find 
 

 2var | ' var |s t s tσ  =     δ x δM MF F       (8.3) 

{ }( )*

1

' ( , ) ' ' ( , ) '
n

d i t n i i
i

t s t s
=

 
 = +    

∑δ G ΣM Σ β x I σ σ δ⊙ ⊙ ⊙H⊗ . 

 
From (5.7), the unconditional variance of the stock variance equals  
 

 2var ' var ' 's s dσ  = =        δ x δ δ J ΣM Σ δM M ⊙ .    (8.4) 

 
What about the conditional distribution of the stock variance? Notice that 
 

 ( )2
0| ' |s t s tσ δ= + δ xF F ,       (8.5) 

with  

 *
,| exp[ ( )] exp[ ( )] |

s

s t d t d u x u t

t

s t s u d
 
 = + − − + − −
 
 
∫x θ K x K ΣΛ WF F . (M) (8.6)  

          
The conditional distribution of the integral in this expression is essentially a random 
“continuous mixture of normals” (except in the OU case, for which it is Gaussian).  As such, 
the distribution 2 |s tσ F  is a random continuous mixture of normals as well, and will therefore 
be characterized by fat tails (except in the OU case).  
 
Regarding the dependence structure in the volatility process, for s t>  
 

( )2 2cov , ' cov , 'exp[ ( )] 's t s t d ds tσ σ  = = − −    δ x x δ δ K J ΣM Σ δM M ⊙ , (8.7) 

and 
2 2 2 2 2corr , cov , / vars t s t sσ σ σ σ σ     =     M M M  

( ) ( )' exp[ ( )] ' / ' 'd d ds t= − −δ K J ΣM Σ δ δ J ΣM Σ δ⊙ ⊙ . (8.8) 

For t  fixed,  
 

2 2lim cov , 0s t
s

σ σ
→∞

  = M ,   2 2lim corr , 0s t
s

σ σ
→∞

  = M .   (8.9)  

 
Evidently, as the stock variance process is an affine function of { ; 0}t t ≥x  which is 
stationary, the stock variance process itself is stationary. Therefore, the dependence in the 
stock variance process dies out over time as well. To illustrate volatility mean reversion, it 
holds 

 2 2
0 0| ' ( ' ) |s t t s t tσ σ δ δ − = + − +    δ x δ xM ME EF F     (8.10) 

' |s t t= −  δ x xME F  

 ( ) ( )' exp[ ( )]d n ts t= − − − −δ K I x θ , 

 
which uses (3.10). As the diagonal matrix exp[ ( )]d ns t− − −K I  is negative definite, (8.10) 
shows that if [ ]t t> =x x θME  such that 2 2

0[ ] 't tσ σ δ> = + δ θME , then 2 2[ | ] 0s t tσ σ− <ME F   
and vice versa. Hence, 2{ ; 0}t tσ ≥  has the tendency to revert back to its mean at all times.  
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9. (Conditional) mean and variance of integrated variance 2
T

s

t

dsσ∫  

The integrated stock variance over the interval [ , ]t T  equals 
 

 2
0 '

T T

s s

t t

ds dsσ δ τ= +∫ ∫δ x ,       (9.1) 

 
in which we define T tτ ≡ − . Recall (2.6), which expresses sx  in terms of tx  for s t> : 
 

 ,exp[ ( )]( )s d t t ss t= + − − − +x θ K x θ u ,    (M) (9.2) 

 
with ,t su  defined in (3.4) as 

, ,exp[ ( )]
s

t s d u x u

t

s u d= − −∫u K ΣΛ W ,     (M) (9.3) 

and which we labeled the disturbance or error term since , [ | ]t s s s t= −u x x xME ; see (3.3). 
Integrating the process { ; 0}s s ≥x  over [ , ]t T  yields 
 

   * *
, ,exp[ ( )] ( )

T T T T

s d t t s t t s

t t t t

ds s t ds ds dsτ τ τ= + − − + = + +∫ ∫ ∫ ∫x θ K x u θ D x u , (M) (9.4) 

 

with ( )1( ) exp[ ]d n dτ τ−= − −D K I K , as defined in appendix A. Next, 

 

 2 *
0 ,( ' ) ' ( ) '

T T

s t t s

t t

ds dsσ δ τ τ= + + +∫ ∫δ θ δ D x δ u .   (M) (9.5) 

 
Equation (9.5) has a fairly natural interpretation. The integrated stock variance over [ , ]t T , 
expressed in terms of time- t  information, i.e. tx , consists of the sum of three parts. The first  
part is the unconditional stock variance weighted by the length of the interval. The second part 
measures the current deviation of the variance-driving factors from their mean, *

tx , scaled by 
the matrix ( )τD . The third part is interpreted as the integrated disturbance term over [ , ]t T , 
which is the random component in the integrated stock variance, given time- t  information.   

The integrated disturbance term ,

T

t s

t

ds∫u  and its moments 

To derive the moments of the integrated stock variance, the moments of the integrated 
disturbance term are needed. Invoking the stochastic Fubini theorem, which enables to 
interchange the order of classical Riemann-Stieltjes integrals and Itô stochastic integrals, 
yields 

 , ,exp[ ( )]
T T s

t s d u x u

t t t

ds s u d ds
 
 = − −
 
 

∫ ∫ ∫u K ΣΛ W     (M) (9.6) 

 ,exp[ ( )]
T T

d u x u

t u

s u ds d
 
 = − −
 
 
∫ ∫ K ΣΛ W  
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 , ,exp[ ( )] ( , )
T T T

d u x u u x u

t u t

s u ds d u T d
 
 = − − =
 
 
∫ ∫ ∫K ΣΛ W D ΣΛ W .   

 
As Itô integrals are martingales,  
 

 , |
T

t s t

t

ds
 
  =
  
∫u 0ME F ,        (9.7) 

and thus 

 , , |
T T

t s t s t

t t

ds ds
    
    = =
        

∫ ∫u u 0M M ME E E F .     (9.8) 

 
Intuitively, this result is immediately clear, as the integrated disturbance term is essentially 
nothing but a “continuous sum” of disturbances which each have mean zero.  
 
To derive its conditional variance, we follow an analysis largely in line with the work performed 
to obtain var [ | ]s txM F . As such, we skip many of the intermediate steps below. Due to the 
Itô isometry and the lemma stated in appendix A, it holds that 
 

 , ,var | var ( , ) |
T T

t s t u x u t

t t

ds u T d
   
   =
      
∫ ∫u D ΣΛ WM MF F     (9.9) 

 2( , ) | ' ( , )
T

u t

t

u T u T du =  ∫D Σ Λ Σ DME F  

( )2( , ) ( , )' | '
T

u t

t

u T u T du =  ∫ d d Σ Λ ΣME F⊙  

 ( )
1

( , ) ( , )' ' | '
T n

i i u t i i
it

u T u T duα
=

  
 = +        

∑∫ d d β x σ σME F⊙  

( )
1

' | ( , ) ( , )' '
Tn

i i u t i i
i t

u T u T duα
=

 
 = +    
 

∑ ∫ β x d d σ σME F ⊙ , 

 
in which the fourth equality uses the partition of Σ  into its columns, 1[ ,.., ]n=Σ σ σ , with 
( 1)nx iσ  the i-th column of Σ . Using the expression for [ | ]s txME F  in (3.2), the integral in 
the latter expression can be written as 
 

 ( )' | ( , ) ( , )'
T

i i u t

t

u T u T duα +   ∫ β x d dME F       

  *( ' ) ( , ) ( , )' ' ( , ) ( , ) ( , )'
T T

i i i d t

t t

u T u T du t u u T u T duα= + +∫ ∫β θ d d β C x d d  

  *( ' ) ( ) ' ( , ) ( , ) ( , )'
T

i i i d t

t

t u u T u T duα τ= + + ∫β θ N β C x d d ,  (9.10) 
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in which the final equality invokes the definition of the matrix function ( ) (.,.)nxn N  from  
appendix A. The integral in (9.10) is simplified as follows: 
 

* *

1

' ( , ) ( , ) ( , )' ( , ) ( , ) ( , )'
T T n

i d t ij j jt
jt t

t u u T u T du c t u x u T u T duβ
=

 
 =
  
∑∫ ∫β C x d d d d  

*

1

( , ) ( , ) ( , )'
Tn

ij jt j
j t

x c t u u T u T duβ
=

 
 =
  

∑ ∫ d d

 *

1

( , )
n

ij jt j
j

x t Tβ
=

= ∑ I  

1
* *

1 1

( , )
,...,

( , )
i t n in nt n

n

t T
x x

t T
β β

 
  =   
  

I I M

I

I

( )* ' ( , )i t n t T =  β x I⊙ I⊗ ,  (9.11) 

 

with 2
1( ) ( , ) ( , )',..., ( , )' 'nn xn t T t T t T≡   I I I , and in which the matrices ( )nxn ( , )j t TI , 

1,..,j n=  are defined as 
 

 ( , ) ( , ) ( , ) ( , )'
T

j j

t

t T c t u u T u T du≡ ∫ d dI .      (9.12) 

    
The pq − th entry of the matrix ( , )j t TI  is given by 

 

( , ) ( , ) ( , ) ( , )
T

j j p qpq
t

t T c t u d u T d u T du  =  ∫I      (9.13) 

 
1 exp[ ( )] 1 exp[ ( )]

exp[ ( )]
T

p q
j

p qt

k T u k T u
k u t du

k k

   − − − − − −
= − −       

   
∫  

  
1

exp[ ( )] exp[( ) ]
T T

j q j j q
p q t t

k u t du k k u k t k T du
k k


= − − − − + −

∫ ∫  

 

exp[( ) ] exp[ ( ) ( )( )]
T T

p j j p j p q

t t

k k u k t k T du k u t k k T u du

− − + − + − − − + −


∫ ∫
 

 
1

( ) exp[( ) ]
T

j q j j q
p q t

d k k u k t k T du
k k

τ

= − − + −


∫  

 exp[( ) ] ( )
T

p j j p j pq
t

k k u k t k T du τ

 − − + − +   

∫ H . 

 
The integrals in this latter expression become 
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exp[ ] exp[ ]
;

exp[( ) ]

exp[ ];

j qT
j q

q jq j j q

t
j j q

k k
k k

k kk k u k t k T du

k k k

τ τ

τ τ

− − −
≠ −− + − = 

 − =
∫ (9.14) 

  

 

exp[ ] exp[ ]
;

exp[( ) ]

exp[ ]; .

j pT
j p

p jp j j p

t
j j p

k k
k k

k kk k u k t k T du

k k k

τ τ

τ τ

− − −
≠ −− + − = 

 − =
∫  

 
Note that the matrix function ( , ); 1,..,j t T j n=I  is a function of T t τ− =  only, and not of 
t  or T  separately. Therefore we will sometimes write ( ) ( , )j j t Tτ ≡I I  (0, )j T t= −I .  
 
Collecting the intermediate results together, yields 
 

{ }( )*
,

1

var | ' ( ) ' ( ) '
T n

t s t i i i t n i i
it

ds α τ τ
=

 
   = + +      

∑∫u β θ N β x I σ σM F ⊙ ⊙I⊗

 

{ }( )*

1 1

' ( ) ' ' ( ) '
n n

i i i i i t n i i
i i

α τ τ
= =

 = + +    ∑ ∑β θ N σ σ β x I σ σ⊙ ⊙ ⊙I⊗  

{ }( )*

1

( ) ' ' ( ) '
n

d i t n i i
i

τ τ
=

 = +  ∑N ΣM Σ β x I σ σ⊙ ⊙ ⊙I⊗ ,    (9.15) 

and thus  

, , ,var var | var |
T T T

t s t s t t s t

t t t

ds ds ds
        
        = +
               

∫ ∫ ∫u u uM M M M ME EF F  (9.16) 

 
( ) 'dτ= N ΣM Σ⊙ .       

 
 
Returning to the integrated stock variance  
Given these moments, from (9.5) it next follows that  
 

 2 *
0| ( ' ) ' ( )

T

s t t

t

dsσ δ τ τ
 
  = + +
  
∫ δ θ δ D xME F ,     (9.17) 

and 

 2 2
0| ( ' )

T T

s s t

t t

ds dsσ σ δ τ
    
    = = +
       

∫ ∫ δ θM M ME E E F .    (9.18) 

 
(Note again the intuitive logic behind these results.) The conditional variance of the integrated 
stock variance becomes 
 

 2
,var | ' var |

T T

s t t s t

t t

ds dsσ
   
   =
      
∫ ∫δ u δM MF F      (9.19) 

 { }( )*

1

' ( ) ' ' ( ) '
n

d i t n i i
i

τ τ
=

 
 = +    

∑δ N ΣM Σ β x I σ σ δ⊙ ⊙ ⊙I⊗ , 

and thus 
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 2 2 2var var | var |
T T T

s s t s t

t t t

ds ds dsσ σ σ
        
        = +
               

∫ ∫ ∫M M M M ME EF F   (9.20) 

 ( )' ( ) ' ( ) ' ( )d dτ τ τ = + δ N ΣM Σ D J ΣM Σ D δ⊙ ⊙  

( )' ( ) ' ( ) ' ( ) 'd dτ τ τ = + δ N ΣM Σ D 11 D J ΣM Σ δ⊙ ⊙ ⊙  

( )' ( ) ( ) ' ( ) 'dτ τ τ = + δ N D 11 D J ΣM Σ δ⊙ ⊙ .    

 
Define the average stock variance over the interval [ , ]t T  as 
 

 2 21
T

s

t

dsσ σ
τ

≡ ∫ .         (9.21) 

 
From the results just derived, it follows that the average stock variance converges in mean-
square to the unconditional mean stock variance, for T → ∞  and t  fixed, which is again  
intuitively a logical result due to stationarity: 
 

 
2

2 2
0 ' [ ]tσ δ σ→ + =δ θ E .      (M) (9.22) 

  
10. cMGF of the integrated stock variance   
 
This section derives the conditional moment generating function (cMGF) of the integrated 
stock variance by generalizing the results of Duffie and Kan (1996). From its cMGF, any 
arbitrary moment of 2T

t sdsσŸ  can be computed (if it exists).  
 
Section 9 derived closed-form expressions for the (conditional) mean and variance of 

2T
t sdsσŸ , for the general multifactor affine SV model. This section shows that the moments of 

2T
t sdsσŸ  can also be derived from solving and differentiating a system of ordinary differential 

equations (ODEs). However, only in the multifactor OU (the Gaussian) case this yields closed-
form expressions. As such, the work in section 9 is not superfluous.  
 
We consider the same SV specification as before (see section 1), but with one important 
exception. Previously we assumed the speed-of-adjustment matrix to be diagonal (and 
positive definite); i.e., 1diag[ ,.., ]d nk k=K  with 1,.., 0nk k > . Now we allow the speed-of-
adjustment matrix to be an arbitrary (positive definite) matrix ( )nxn K . (Positive definiteness 
seems required for the factor process to be stationary.) Specifically, in this section the factors 
obey  
 

 ,( )t t t x td dt d= − +x K θ x ΣΛ W .     (M) (10.1) 

 
Given this specification, from the results of Duffie and Kan (1996), it follows that 3 

                                           
3 Duffie and Kan (1996) model the short interest rate by 0 't tr δ= + δ x , with the latent factors x  
following the same SDE as in (10.1) (but then under the risk-neutral measure Q). Given this set-up, they 
show that the time- t  price ( , )P t T  of a zero coupon bond maturing at time T  is given by 

( , ) exp | exp[ ( ) ( )' ]
T

u t t

t

P t T r du A τ τ
  
  = − = +
  

  
∫ B xQE F ,  
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 2
1 1exp | exp ( ) ( )'

T

s t t

t

ds Aσ τ τ
  
   = +    

  
∫ B xME F ,    (10.2) 

  
in which 1(.)A  is some deterministic function of T tτ ≡ −  with T t≥ , and 1(.)B  is an ( 1)nx  
deterministic vector function of τ , which satisfy the following system of Ricatti ODEs:  
 

 
21 1

1 1 02
1

( )
' ' ( ) ' ( )

n

ii
i

dA
d
τ

τ τ α δ
τ =

= + +  ∑θ K B Σ B      (10.3)  

 
21 1

1 12
1

( )
' ( ) ' ( )

n

ii
i

d
d

τ τ τ
τ =

= − + +  ∑B
K B Σ B β δ , 

 
with boundary conditions 1(0) 0A = and 1(0) =B 0 . In the OU (Gaussian) case, in which the 
volatility function of the factor SDE is deterministic, closed-form expressions for 1( )A τ  and 

1( )τB  exist; see section 13. In other cases, the system can be solved numerically. 
 
We now further generalize these results. In particular, our interest is in the cMGF of the 
integrated stock variance, denoted by 2| ( )

tτσφ F m : 
 

 2
2

| ( ) exp |
t

T

s t

t

dsτσφ σ
  
  ≡
  

  
∫MEF Fm m ,      (10.4) 

 
in which m  is an arbitrary multiple of the integrated stock variance. Given (10.2), consider 
the following reparametrization: 2 2

0 0( ) ( )' 't t t tσ σ δ δ≡ = + ≡ +δ x δ x
ttt

m m m  with 0 0δ δ≡
t

m  
and ≡δ δ

t
m . It is then immediately clear that it holds that 

 

 2
2

| ( ) exp | exp ( ) ( )'
t

T

s t t

t

ds Aτσφ σ τ τ
  
  = = +    

  
∫ B xMEF F

m m
m m ,  (10.5) 

 
in which (.)A

m
 and ( 1)nx (.)B

m
 are deterministic functions of T tτ ≡ − , which depend on 

the choice of m , and which satisfy the following system of Ricatti ODEs  
 

 
21

02
1

( )
' ' ( ) ' ( )

n

ii
i

dA
d

τ τ τ α δ
τ =

= + +  ∑θ K B Σ Bm

m m
m     (10.6) 

 
21

2
1

( )
' ( ) ' ( )

n

ii
i

d
d

τ
τ τ

τ =

= − + +  ∑B
K B Σ B β δm

m m
m , 

 
with boundary conditions (0) 0A =

m
and (0) =B 0

m
. (The reason is that the parameters 

, i iK θ, α ,β , 1,..,i n=  are not affected by the reparametrization.) 
 
From the cMGF (10.5), any arbitrary moment (both conditional and unconditional) of 2T

t sdsσŸ  
can be computed (if it exists). Specifically, the i -th conditional moment follows from 
evaluating  

                                                                                                                              
in which T tτ ≡ − , and (.)A  and (.)B  satisfy a similar -but not exactly equal- system of ODEs as in 
(10.3). The ODE system (10.3) is obtained from a reparametrization. Indeed, the inspiration for our 
multifactor SV model arose when reading their and related papers in the interest rate literature.  
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2

2

|2 ( )
|

0

( )
| (0)t

t

i iT
i

s t i
t

d
ds

d
τσ

τσ

φ
σ φ

=

     = =  
   
∫ME

F

F
F

m

m

m

.    (10.7) 

 
By the law of iterated expectations, the i -th unconditional moment can next be obtained from  
  

 
2

2

|2 ( )
|

0

( )
(0)t

t

i iT
i

s i
t

d
ds

d
τσ

τσ

φ
σ φ

=

           = =       
      
∫M M ME E EF

F

m

m

m

.   (10.8) 

 
Computing the derivatives of the cMGF with respect to m  involves differentiating the system 
of ODEs (10.6) with respect to m . This does not seem to be a trivial exercise, and seems in 
general only possible numerically, except in the Gaussian case (see section (13)).  
 
11. Moments of the stock returns 
 
Consider the multifactor affine SV model for a stock price, as covered in the main text (but 
now stated under measure M to maintain consistency within this appendix). Assuming a 
constant stock price drift of t tµ µ= ∀ , it reads: 
 

,t t t t S tdS S dt S dWµ σ= +       (M) (11.1) 

 2
0 't tσ δ= + δ x  

 ,( )t d t t x td dt d= − +x K θ x ΣΛ W . 
 
Uncertainty is resolved by the ( 1)n + -dimensional standard Brownian motion { ; 0}t t ≥W , 
given by , , , 1( , ')' ( , ,.., )'t S t x t S t t ntW W W W= =W W , which is defined on the filtered probability 
space 0( , ,{ } , )t t ≥Ω MF F , satisfying the usual conditions. (Recall that the leverage effect is 
not modeled; this facilitates the calculations considerably.) 
 
This section derives the cMGF of the logreturns on stock S . Moreover, we indicate how the 
exact moments of the relative stock returns can be obtained. This appears much more 
involved than for the logreturns. 
 
Deriving the cMGF of the logreturns 
From Itô’s lemma, the log stock price follows the SDE 

 
21

,2ln ( )t t t S td S dt dWµ σ σ= − + .     (M) (11.2) 

 
The logreturn t tR δ+  over the interval [ , ]t t tδ+  equals  

 

21
,2ln

t t t t
t t

t t u u S u
t t t

S
R t du dW

S

δ δ
δ

δ µ δ σ σ
+ +

+
+ ≡ = − +∫ ∫ .   (M) (11.3) 

 
The cMGF of the logreturn, denoted by | ( )

t t tR δ
φ

+ F m , follows as 

  

   | ( ) exp( )|
t t tR t t tR

δ δφ
+ +≡   F FMEm m       (11.4) 



- Appendix B - Statistical Properties of the Multifactor Affine SV Process 
 

 318 

 21
,2exp |

t t t t

u u S u t

t t

t du dW
δ δ

µ δ σ σ
+ +  

  = − +
    

∫ ∫ FME m m m  

21
,2exp( ) exp |{ } |

t t t t

u u S u u t

t t

t du dW
δ δ

µδ σ σ σ
+ +      = − +       
∫ ∫ FM ME Em m m  

   21
,2exp( ) exp exp |{ } |

t t t t

u u S u u t

t t

t du dW
δ δ

µδ σ σ σ
+ +          = −           
∫ ∫ FM ME Em m m , 

 
in which the third equality follows from the law of iterated expectations. (The condition |{ }uσ  
stands for conditioning on the σ − field generated by the volatility over the interval 
[ , ]t t tδ+ .) Now,   
 

 2
, |{ } ~ 0,

t t t t

u S u u u

t t

dW du
δ δ

σ σ σ
+ + 

 
 
 

∫ ∫N .    (M) (11.5) 

 
By invoking the moment generating function of a Gaussian variate, it thus holds that 
 

 2 21
, 2exp |{ } exp

t t t t

u S u u u

t t

dW du
δ δ

σ σ σ
+ +    

    =
        
∫ ∫ME m m .   (11.6) 

 
The cMGF of the logreturn t tR δ+  over [ , ]t t tδ+  then becomes 
 

21
| 2( ) exp( ) exp ( 1) |

t t t

t t

R u t

t

t du
δ

δ

φ µδ σ
+

+  
  = −

    
∫F FMEm m m m     (11.7) 

1 1
2 2( 1) ( 1)exp ( ) ( )' tt A t tµδ δ δ− −

 = + + B xm m m mm , 

 
in which ( 1) /2(.)A −m m  and ( 1) /2( 1) (.)nx −Bm m  satisfy the ODE system (10.6) with m  replaced 
by ( 1) /2−m m  and τ  by tδ . (Note that this result hinges on the cMGF of the integrated 
stock variance, which we derived in section 10.)  
 
Given (11.7), the i -th conditional moment of the log stock return follows as  
 

 
| ( )

|

0

( )
| (0)t t t

t t t

i
Ri i

t t t Ri

d
R

d
δ

δδ
φ

φ+

++

=

  = = 
F

FFME
m

m

m
.    (11.8) 

 
By the law of iterated expectations, the i -th unconditional moment can subsequently be 
computed from 
 

 
| ( )

|

0

( )
(0)t t t

t t t

i
Ri i

t t Ri

d
R

d
δ

δδ
φ

φ+

++

=

 
     = =    
 

F
FM M ME E E

m

m

m
.   (11.9) 

 
The derivatives of the cMGF with respect to m  can be determined in a recursive-type fashion. 
In particular: 
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'( ) ( ) 't
dA d

t
d d

φ φ µ δ = + +  

B
xm m

m m
              (11.10) 

 
2 2

2 2
''( ) '( ) ' ( ) 't t

dA d d A d
t

d d d d
φ φ µ δ φ

  = + + + +      

B B
x xm m m

m m m m
 

 '''( ) .....φ =m , 
 
etcetera, in which the following abbreviations are used for ease of notation: 

|( ) ( )
t t tR δ

φ φ
+

≡ Fm m , /dA d ≡m ( 1) /2( ) /dA t dδ−m m m , ( 1) /2/ ( ) /d d d t dδ−≡B Bm mm m , and 
similarly for the higher-order derivatives.  
 
As closed-form expressions exist for ( 1) /2(.)A −m m  and ( 1) /2( 1) (.)nx −Bm m  in the Gaussian, OU 
case (see section 13), the moments of the logreturns have closed-from expressions in the OU 
case. In the non-OU case, the moments of the logreturns can in principle numerically be 
computed, though this does not seem to be a trivial exercise.   
 
The moments of the relative stock returns 
The relative stock return over the interval [ , ]t t tδ+  is given by ( ) /t t t t t tr S S Sδ δ+ +≡ − . 
Integrating the log stock price increments given in (11.2) over [ , ]t t tδ+ , and transforming 
back yields 

 21
,2exp

t t t t

t t t u u S u

t t

S S t du dW
δ δ

δ µ δ σ σ
+ +

+

 
 = − +
  

∫ ∫ .                      (11.11) 

 
The i − th power of the relative return can thus be written as 
 

 21
,2exp 1

i
t t t t

i
t t u u S u

t t

r t du dW
δ δ

δ µ δ σ σ
+ +

+

  
  = − + −
    

∫ ∫ ,            (11.12) 

 
which may be expanded. Having done so, the moments can in principle be computed by 
following a similar analysis as for the logreturns. Nonetheless, it is clear that this is much 
more involved than for the logreturns. We therefore do not further pursue this here.  
 
From a first-order Taylor series expansion, ln( / ) ( ) /t t t t t t t t t t tR S S S S S rδ δ δ δ+ + + += ≈ − = . 
Logreturns and relative returns will therefore be close in value for small tδ . As such, we 
expect their moments to be close in value as well.  
 
12. Correlation between non-overlapping logreturns 
 
This section investigates the correlation between non-overlapping logreturns, assuming the 
same SV stock price model as in section 11.  
 
First, a remark: If the stock volatility would vary in a deterministic way instead, then it readily 
follows from the independent increments property of Brownian motion that non-overlapping 
logreturns (and relative returns) are uncorrelated. (Remember that the Efficient Markets 
Hypothesis implies that non-overlapping stock returns should be uncorrelated.) 
 
Given that there is SV, does this still hold? Based on an Euler discretization of the (log-) stock 
price SDE, and pretending this discretization to be exact, it can be shown that non-overlapping  
stock returns are uncorrelated indeed. As the Euler discretization is not exact however, it may 
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well be the case that the true stock returns are correlated. If they are found to be correlated, 
we nevertheless expect this correlation to be small, given the Euler discretization result.  
 
Let us examine the exact correlation. Consider the covariance between the non-overlapping 
logreturns t tR δ+  and (1 )t p tR δ+ −  for 1,2,..p = . under measure M: 
 

(1 ) (1 )
2 21 1

(1 ) , ,2 2cov , cov ,
t p t t p tt t t t

t t t p t u u S u u u S u

t t t p t t p t

R R du dW du dW
δ δδ δ

δ δ
δ δ

σ σ σ σ
+ − + −+ +

+ + −

− −

 
   = − + − +   
 

∫ ∫ ∫ ∫

 

(1 ) (1 )
2 21 1

, ,2 2cov , cov ,
t p t t p tt t t t

u u S u u S u u

t t p t t t p t

du dW dW du
δ δδ δ

δ δ

σ σ σ σ
+ − + −+ +

− −

   
   = − −
   
   
∫ ∫ ∫ ∫  

 

(1 ) (1 )
2 21

, , 4cov , cov ,
t p t t p tt t t t

u S u u S u u u

t t p t t t p t

dW dW du du
δ δδ δ

δ δ

σ σ σ σ
+ − + −+ +

− −

   
   + +
   
   
∫ ∫ ∫ ∫ .(12.1) 

 
(All expectations and covariances are taken under measure M here and below. We omit this 
for notational simplicity.) We tackle each covariance term in (12.1) individually. As Itô 
integrals have expectation zero, we find for the first covariance 

 
(1 ) (1 )

2 2
, ,cov ,

t p t t p tt t t t

u u S u u u S u

t t p t t t p t

du dW du dW
δ δδ δ

δ δ

σ σ σ σ
+ − + −+ +

− −

   
   =
   
   
∫ ∫ ∫ ∫E   (12.2) 

(1 )
2

, |{ }
t p tt t

u u S u u

t t p t

du dW
δδ

δ

σ σ σ
+ −+

−

  
  =
  

  
∫ ∫E E  

(1 )
2 2

, |{ } * 0 0
t p tt t t t

u u S u u u

t t p t t

du dW du
δδ δ

δ

σ σ σ σ
+ −+ +

−

    
    = = =
       
∫ ∫ ∫E E E , 

 
in which |{ }uσ  is short-hand notation for the condition |{ ; }u t p t u t tσ δ δ− ≤ ≤ + . A similar 
argument shows that the second covariance in (12.1) equals zero as well. The third covariance 
equals 

(1 ) (1 )

, , , ,cov ,
t p t t p tt t t t

u S u u S u u S u u S u

t t p t t t p t

dW dW dW dW
δ δδ δ

δ δ

σ σ σ σ
+ − + −+ +

− −

   
   =
   
   
∫ ∫ ∫ ∫E  (12.3) 

(1 )

, , |
t p tt t

u S u u S u t

t t p t

dW dW
δδ

δ

σ σ
+ −+

−

  
  =
  

  
∫ ∫ FE E

(1 ) (1 )

, , ,| * 0 0
t p t t p tt t

u S u u S u t u S u

t p t t t p t

dW dW dW
δ δδ

δ δ

σ σ σ
+ − + −+

− −

    
    = = =
    

    
∫ ∫ ∫FE E E , 

 
in which the last equality exploits the martingale property of Itô stochastic integrals. As 

2
0 't tσ δ= + δ x , the last covariance term in (12.1) equals  

 
(1 ) (1 )

2 2cov , ' cov ,
t p t t p tt t t t

u u u u

t t p t t t p t

du du du du
δ δδ δ

δ δ

σ σ
+ − + −+ +

− −

   
   =
   
   
∫ ∫ ∫ ∫δ x x δ .  (12.4) 
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As [ ]t t

t udu tδ δ+ =x θME Ÿ , the covariance in (12.4) becomes 
 

(1 ) (1 )
2cov , ' '

t p t t p tt t t t

u u u u

t t p t t t p t

du du t du du
δ δδ δ

δ δ

δ
+ − + −+ +

− −

   
   = − +
   
   
∫ ∫ ∫ ∫x x θθ x xE  (12.5) 

(1 )
2

(1 )' | '
t p tt t

u t p t u

t t p t

t du du
δδ

δ
δ

δ
+ −+

+ −

−

  
  = − +
   

  
∫ ∫θθ x xFE E , 

 
in which the second equality invokes the law of iterated expectations. Using result (3.2), the 
inner expectation in this latter expression equals  
 

(1 ) (1 )| |
t t t t

u t p t u t p t

t t

du du
δ δ

δ δ

+ +

+ − + −

 
   =   
 
∫ ∫x xF FE E     (12.6) 

( )*
(1 )exp[ ( ( 1) )]

t t

d t p t

t

u t p t du
δ

δδ
+

+ −= + − − + −∫ θ K x  

*
(1 )exp[ ( )] exp[ (1 ) ]

t t

d d t p t

t

t u t du p t
δ

δδ δ
+

+ −

 
 = + − − −
 
 
∫θ K K x

 *
(1 )( ) exp[ (1 ) ]d t p tt t p t δδ δ δ + −= + −θ D K x , 

with (recall) *
t t= −x x θ . Hence, 

 

 

(1 )

(1 )| '
t p tt t

u t p t u

t t p t

du du
δδ

δ
δ

+ −+

+ −

−

  
  
   

  
∫ ∫x xFE E      (12.7) 

( )
(1 )

*
(1 )( ) exp[ (1 ) ] '

t p t

d t p t u

t p t

t t p t du
δ

δ
δ

δ δ δ
+ −

+ −

−

 
 = + −
 
 

∫θ D K x xE  

(1 )
2 *

(1 )' ( ) exp[ (1 ) ] '
t p t

d t p t u

t p t

t t p t du
δ

δ
δ

δ δ δ
+ −

+ −

−

 
 = + −
 
 

∫θθ D K x xE . 

 
Collecting the intermediate results together, it holds that    
 

   
(1 ) (1 )

*
(1 )cov , ( ) exp[ (1 ) ] '

t p t t p tt t

u u d t p t u

t t p t t p t

du du t p t du
δ δδ

δ
δ δ

δ δ
+ − + −+

+ −

− −

   
   = −
   
   
∫ ∫ ∫x x D K x xE ,  

           (12.8) 
such that the last covariance term in (12.1) becomes 
           (12.9) 

(1 ) (1 )
2 2 *

(1 )cov , ' ( ) exp[ (1 ) ] '
t p t t p tt t

u u d t p t u

t t p t t p t

du du t p t du
δ δδ

δ
δ δ

σ σ δ δ
+ − + −+

+ −

− −

   
   = −
   
   
∫ ∫ ∫δ D K x x δE . 

 
Finally, for the covariance between the non-overlapping logreturns t tR δ+  and (1 )t p tR δ+ −  for 

1,2,..p = . under measure M, we find that 
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(1 )
*1

(1 ) (1 )4cov , ' ( ) exp[ (1 ) ] '
t p t

t t t p t d t p t u

t p t

R R t p t du
δ

δ δ δ
δ

δ δ
+ −

+ + − + −

−

 
   = −   
 

∫δ D K x x δE .(12.10) 

 
It is not obvious how to further simplify the expectation in (12.10) in an exact way. To 
examine its approximate magnitude, notice that for small tδ  
 

 

(1 )
* *

(1 ) (1 ) (1 )' '
t p t

t p t u t p t t p t

t p t

du t
δ

δ δ δ
δ

δ
+ −

+ − + − + −

−

 
   ≈   
 

∫x x x xE E                      (12.11) 

 *
(1 ) (1 )cov ,t p t t p tt δ δδ + − + − =  x x  

 

 ( )(1 ) (1 )cov , 't p t t p t dt tδ δδ δ+ − + − = = x x J ΣM Σ⊙ , 

 
in which the ≈  follows from approximating the Riemann integral in (12.11) by the product of 
the integrand at the end of the interval, times the length of the interval, tδ .  
 
What do we learn from these computations? First, non-overlapping logreturns do correlate, 
due to SV. Second, the autocorrelation in the returns dies out exponentially, due to the 
appearance of the matrix exp[ (1 ) ]d p tδ−K in (12.10), in which dK  is positive definite. It 
holds that (1 )lim cov[ , ] 0p t t t p tR Rδ δ→∞ + + − = . Third, as for small tδ , it holds that ( )tδ ≈D 0 , 
exp[ (1 ) ]d np tδ− ≈K I  and ( ')d tδ ≈J ΣM Σ 0⊙ , this autocorrelation is close to zero for small 
tδ . So for tδ  small, non-overlapping stock returns are virtually uncorrelated.  

 
13. Special case: n-factor OU SV 
 
This section states the most important results obtained in the previous sections for the OU SV 
special case of the multifactor affine SV model. The OU SV case is obtained by imposing  

 
 =α 1 ,  , 1,..,i i n= =β 0 ,       (13.1) 

 
in the general multifactor model (1.1)-(1.4). The factors thus follow the SDE  
 

 ,( )t d t x td dt d= − +x K θ x Σ W       (M) (13.2) 

 
under M, as in the OU case t n t= ∀Λ I . Matrix dM  reduces to the n-dimensional unity matrix 
as well: d n=M I . Imposing these restrictions leads to the following results. 
 
First, the n -factor OU process is a Gaussian process. The factors are normally distributed. To 
illustrate this, consider the disturbance term ,t su  (defined in (3.4)). In the OU case it equals 
 

 , ,exp[ ( )]
s

t s d x u

t

s u d= − −∫u K Σ W .     (M) (13.3) 

 

As the integrand of the Itô integral in (13.3) is non-stochastic, ,t su  is Gaussian 
unconditionally. However, as the information filtration tF  does not provide any information 
about ,t su , ,t su  is conditionally Gaussian as well, with the same mean and variance. Given 
this observation, and invoking (6.4), (6.5) and (6.6), it holds that 
 

 , ,~ | ~ , ( , ) 't s t s t t s  u u 0 G ΣΣF ⊙N .    (M) (13.4) 
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Hence, in the OU SV case, the conditional and unconditional distribution of ,t su  are the same. 
Given (13.4) and from (3.2) and (3.3), the conditional distribution of the factors is given by 
 

 ( )| ~ exp[ ( )] ; ( , ) 's t d ts t t s + − − − x θ K x θ G ΣΣF ⊙N .  (M) (13.5) 

 
And what about the unconditional, or invariant (also called stationary) distribution of the 
factors? Suppose the initial value 0x  of the process is drawn from the unconditional factor 
distribution. Alternatively, suppose that the factor process { ; 0}t t ≥x has been evolving for a 
long time yet  (or, to be precise, started evolving in the infinite far past). As { ; 0}t t ≥x  is 
stationary, the initial value 0x  no longer influences the current distribution of the factors. 
Then, from (3.9), (4.11) and (13.5), it is clear that  
 

 ~ ; 's   x θ J ΣΣ⊙N .       (M) (13.6) 

 
(The mean and variance of sx  coincide with what (3.2), (3.7), (4.10) and (5.7) yield in the 
OU case, as it should of course.)  From (5.8), the correlation matrix of the factors becomes 
  

1 /2 1 /2
corr ' ' 's n n

− −
=              x I J ΣΣ J ΣΣ I J ΣΣM ⊙ ⊙ ⊙ ⊙ ⊙ .  (13.7)  

 
As the instantaneous stock variance 2

0 't tσ δ= + δ x  is an affine function of the factors, its 
conditional distribution is Gaussian as well, 
 

   ( ) ( )2
0| ~ ' 'exp[ ( )] ; ' ( , ) 's t d ts t t sσ δ + + − − − δ θ δ K x θ δ G ΣΣ δF ⊙N .  (M) (13.8) 

 

This also holds for the invariant distribution of the stock variance: 
 

 ( )2
0~ ' ; ' 'sσ δ + δ θ δ J ΣΣ δ⊙N .     (M) (13.9)     

 
(An obvious drawback of the n-factor OU SV model is that the stock variance can become 
negative, which is theoretically inconsistent. We refer to the main text for a discussion; see 
section 2 of chapter II and section 1 of chapter III.) In the OU SV case, the integrated 
disturbance term (9.6) becomes 
 

 , ,( , )
T T

t s x u

t t

ds u T d=∫ ∫u D Σ W .      (M)    (13.10) 

Its conditional and unconditional distributions coincide, and is Gaussian: 
 

 , ,~ | ~ ; ( ) '
T T

t s t s t

t t

ds ds τ  ∫ ∫u u 0 N ΣΣF ⊙N .    (M)   (13.11)  

 
As the integrated stock variance (9.5) is a linear combination of the integrated disturbance 
term, it is both conditionally and unconditionally normally distributed as well: 
 

 ( ) ( )2
0| ~ ( ' ) ' ( ) ; ' ( ) '

T

s t t

t

dsσ δ τ τ τ + + − ∫ δ θ δ D x θ δ N ΣΣ δF ⊙N , (M)     (13.12) 
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( )2
0~ ( ' ) ; ' ( ) ( ) ' ( ) '

T

s

t

dsσ δ τ τ τ τ  + +  ∫ δ θ δ N D 11 D J ΣΣ δ⊙ ⊙N . (M)   (13.13) 

 
When discussing the cMGF of 2T

t sdsσŸ , we mentioned that the system of Ricatti ODEs (10.6) 
(which is based on (10.1) with arbitrary )K  yields closed-form expressions for (.)A

m
 and 

(.)B
m

 in the Gaussian, OU case. Having derived the conditional distribution of 2T
t sdsσŸ  in 

(13.12) based on (13.2) with diagonal dK , obtaining the functions (.)A
m

 and (.)B
m

 in (10.6) 
for the n -factor OU SV case with diagonal d=K K  is easy. Namely, from the MGF of a 
Gaussian variate,  

2
2

| ( ) exp |
t

T

s t

t

dsτσφ σ
  
  =
  

  
∫MEF Fm m            (13.14) 

( )21
0 2exp ( ' ) ' ( )( ) ' ( ) 'tδ τ τ τ = + + − + δ θ δ D x θ δ N ΣΣ δm m m ⊙   

 
which is indeed of the exponential-affine form, with  
 

 ( )21
0 2( ) ( ' ) ' ( ) ' ( ) 'A τ δ τ τ τ= + − +δ θ δ D θ δ N ΣΣ δ

m
m m m ⊙ ,            (13.15) 

 ( ) ( )τ τ=B D δ
m

m .                 (13.16) 

 
cMGF of the logreturns 
Consider next the logreturn ln( / )t t t t tR S Sδ δ+ +=  over the interval [ , ]t t tδ+  in the SV stock 
price model stated in section 11. For the n -factor OU SV process, the cMGF of the logreturn 
exists in closed form. From (11.7), 
 

 1 1
2 2

| ( 1) ( 1)( ) exp ( ) ( )'
t t tR tt A t t

δ
φ µδ δ δ

+ − −
 = + + B xF m m m mm m ,           (13.17) 

 
in which the functions  ( 1) /2(.)A −m m  and ( 1) /2( 1) (.)nx −Bm m  are given by  

           

     1
2

2 21 1
0( 1) 2 8( ) ( 1) ( ' ) ' ( ) ( 1) ' ( ) 'A t t t tδ δ δ δ δ− = − + − + −      δ θ δ D θ δ N ΣΣ δm m m m m m ⊙  

     1
2

1
( 1) 2( ) ( 1) ( )t tδ δ− = −B D δm m m m .               (13.18) 

 
Using the same abbreviations as in (11.10), straightforward algebra shows 
 

  1 1
02 2

0

( ' ) ' ( )
dA

t t
d

δ δ δ
=

= − + +δ θ δ D θ
mm

,              (13.19) 

2
1

0 42
0

( ' ) ' ( ) ' ( ) '
d A

t t t
d

δ δ δ δ
=

= + − +   δ θ δ D θ δ N ΣΣ δ
mm

⊙ , 

and 

  1
2

0

( ) ;
d

t
d

δ
=

= −
B

D δ
mm

2

2
0

( )
d

t
d

δ
=

=
B

D δ
mm

.              (13.20) 

 
(Un)conditional mean and variance of the logreturns 
Notice that (0) 1φ =  in the OU case. The conditional mean logreturn is given by '(0)φ , and 
equals  

 *1 1
02 2| ( ' ) ' ( )t t t tR t tδ µ δ δ δ+  = − + −    δ θ δ D xFME .             (13.21) 
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The unconditional mean logreturn is next determined from [ '(0)]φME . It equals 
 

 1
02 ( ' )t tR tδ µ δ δ+  = − +    δ θME .              (13.22) 

 
Some algebra shows that the conditional second moment of the logreturn t tR δ+  (which equals 

''(0)φ ) is given by 
                    (13.23) 

22 2 * *1 1
0 02 4| ( ' ) ( ' ) ' ( ) ' ( )t t t t tR t t t tδ δ δ µ δ δ δ δ+   = + + − + +   δ θ δ θ δ D x x D δFME

( ) *1 1
02 41 ( ' ) ' ( ) ' ( ) 'tt t tµ δ δ δ δ + − − + +    δ θ δ D x δ N ΣΣ δ⊙ . 

 
As * *var [ ] [ '] 't t t= =x x x J ΣΣM ME  ⊙ , the unconditional second moment equals 
  

22 21 1
0 02 4( ' ) ( ' ) ' ( ) ' ( )t tR t t t tδ δ δ µ δ δ δ δ+   = + + − + +      δ θ δ θ δ D J ΣΣ D δME ⊙  

 1
4 ' ( ) 'tδ+   δ N ΣΣ δ⊙ .             (13.24) 

 
It then follows that, in the OU SV case,  
 

 * 1
0 4var | ( ' ) ' ( ) ' ( ) 't t t tR t t tδ δ δ δ δ+ = + + +      δ θ δ D x δ N ΣΣ δFM ⊙             (13.25) 

 

( )1
0 4var ( ' ) ' ( ) ' ( ) ( ) 't tR t t t tδ δ δ δ δ δ+  = + + +    δ θ δ D J ΣΣ D N ΣΣ δM ⊙ ⊙     (13.26) 

 
 

13.1   1-factor OU SV 
 
Let us further specialize to 1-factor OU SV. In that case there is only one factor driving the 
volatility which evolves according to an Ornstein-Uhlenbeck process, such that 
 

 ,( )t t x tdx k x dt dWθ σ= − + .      (M)      (13.27) 

      
(1-factor OU SV is obtained by imposing the restrictions 1, 1, 0n α β= = =  in the general 
multifactor affine SV model.) This section further restricts 0 10, 1δ δ= =  such that 2

t txσ = , 
and thus  

2 2
,( )t t x td k dt dWσ θ σ σ= − + .      (M) (13.28) 

 

Specializing the results for n -factor OU SV to 1-factor OU SV, yields (recall that s t> ): 
 

 2
, ,

1 exp[ 2 ( )
~ | ~ 0;

2t s t s t
k s t

u u
k

σ
 − − − 
  

  
F N    (M)      (13.29) 

 ( ) 2 1 exp[ 2 ( )
| ~ exp[ ( )] ;

2s t t
k s t

x k s t x
k

θ θ σ
 − − − 

+ − − −  
  

F N  (M)     (13.30) 

       
2

~ ;
2sx
k

σθ
 
 
  

N        (M)     (13.31) 

( )2 2 2 1 exp[ 2 ( )
| ~ exp[ ( )] ;

2s t t
k s t

k s t
k

σ θ σ θ σ
 − − − 

+ − − −  
  

F N  (M)     (13.32) 
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2

2 ~ ;
2s k
σσ θ

 
 
  

N .       (M)    (13.33) 

 

The conditional distribution of the integrated stock variance 2T
t sdsσŸ  is Gaussian, with  

  

   2 21 exp[ ]
| ( )

T

s t t

t

k
ds

k
τσ θτ σ θ

  − −   = + −     
∫ME ��F ,             (13.34) 

 
2

2
2

1 exp[ ] 1 exp[ 2 ]
var | 2

2

T

s t

t

k k
ds

k kk

σ τ τσ τ
   − − − −     = − +           
∫M ��F .           (13.35) 

 
The unconditional distribution of the integrated stock variance is also Gaussian, with  
 

   2
T

s

t

dsσ θτ
 
  =
  
∫ME ,                 (13.36) 

 2 2 2var var | var |
T T T

s s t s t

t t t

ds ds dsσ σ σ
        
        = +

               
∫ ∫ ∫M M M M ME EF F            (13.37) 

 
22 2

2

1 exp[ ] 1 exp[ 2 ] 1 exp[ ]
2

2 2
k k k

k k k kk

σ τ τ σ ττ
 − − − − − −   = − + +    

    
. 

 
The functions (.)A

m
 and (.)B

m
 in (13.15)-(13.16) become in the 1-factor OU SV case 

 
2

1
2

1 exp[ ] 1 exp[ ] 1 exp[ 2 ]
( ) 2

2
k k k

A
k k k k

τ σ τ ττ θ τ τ
   − − − − − −       = − + − +          

          
m

m
m

1 exp[ ]
( )

k
B

k
ττ − − 

=  
 

m
m .               (13.38) 

 
14. Special case: 1-factor CIR SV (Heston (1993) volatility process) 
 
This section states the main results for the 1-factor Cox-Ingersoll-Ross (CIR) SV specification, 
also known as Heston (1993) volatility. In this case there is one volatility-driving factor that 
follows a CIR process: 4 
 

 ,( )t t t x tdx k x dt x dWθ σ= − + .     (M) (14.1)  

 
The CIR SV case is obtained by restricting 1, 0, 1n α β= = =  in the general multifactor affine 
SV model. In this section we furthermore restrict 0 10, 1δ δ= =  such that 2

t txσ = . The 
instantaneous stock variance thus follows 
 

 2 2 2
,( )t t t x td k dt dWσ θ σ σ σ= − + .     (M) (14.2)  

 

                                           
4 This process is also known as the square root or Feller process, due to W. Feller. In the SV literature it is 
also referred to as the Heston (1993) stock variance process, or in short, Heston volatility.  
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This specification precludes negative 2
tσ ’s if 2

0, , 0k θ σ > . As Brownian sample paths are 
continuous, so are the paths 2{ }tσ  follows. 2

tσ  therefore first has to become zero for a path 
to possibly become negative. But if 2

tσ  becomes zero, then the diffusion component of the 
SDE drops out, and hence there is temporarily no stochastic variation in 2

tσ . As θ , k >0 are 
positive, the process will then naturally be pulled away from zero towards θ  (due to mean 
reversion). As such, 2

tσ  will never become negative. If the Feller condition 22kθ σ≥  holds 
(Feller (1951)), the upward drift in the CIR stock variance process is sufficiently large for 2

tσ  
to never exactly reach zero.  
 
From (3.2) and (3.7) it follows that (recall that s t> ): 
 

*| exp[ ( )]s t tx k s t xθ= + − −  ME F ,   sx θ=  ME .   (14.3)  

 
From (4.10) and (5.7),   

 

2 2 *1 exp[ 2 ( ) exp[ ( )] exp[ 2 ( )]
var |

2s t t
k s t k s t k s t

x x
k k

σ θ σ− − − − − − − −   
= +      

   
M F       

( ) ( )
2 2

2
1 exp[ ( )] exp[ ( )] exp[ 2 ( )]

2 tk s t x k s t k s t
k k

σ θ σ
= − − − + − − − − − , (14.4) 

2

var
2sx
k

σ θ
=  M .         (14.5) 

 
As 2

t txσ = , the unconditional and conditional moments of the stock variance follow directly 
from the expressions above. In contrast to the 1-factor OU SV case (see (13.8)), the 
conditional variance of the CIR stock variance depends on the current level of the volatility. In 
particular,    
 

 ( )
2 2

2

var [ | ]
exp[ ( )] exp[ 2 ( )] 0s t

t

k s t k s t
k

σ σ
σ

∂
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,            (14.6)  

 
as 0s t− >  and 0k > . Therefore, if the currently stock volatility increases, the conditional 
variance of the stock variance increases. The CIR process is thus able to describe level-
dependent volatility-of-volatility.  
 
Regarding the properties of the disturbance term ,t su , from (6.4), (6.5) and (6.6):  
 

 , | 0t s tu  = ME F , , 0t su  = ME ,              (14.7) 
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From (9.17) and (9.18), 
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From (9.19) and (9.20), 
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          (14.13) 
                   

In the CIR SV case, the functions 1(.)A  and 1(.)B  can numerically be solved for, after first 
having tailored the ODE system (10.3) to this particular case.  
 
The analytical results in Hull (2003) 
The observant reader may perhaps think (due to the similarities) that the analytical results in 
Hull (2003) p.542 can be transformed to our specific SV interests. Hull discusses the CIR 
interest rate model, and gives an analytical expression for the implied zero-coupon bond 
prices resulting from that model. Translating his results to our SV setting in which 2

t tx σ=  
follows a CIR process, yields 
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in which 1( , , , )kτ θ σF  and 2( , , )kτ σF are some closed-form expressions of their respective 
arguments. However, our interest is not in the conditional expectation of the exponent of 
minus the integrated stock variance, but instead is in the conditional expectation of the 
exponent of plus the integrated variance. This latter quantity cannot be obtained by a simple 
transformation or reparametrization however. The argument is as follows. Notice that 
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      
      = −

            
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in which 2 2

s s sσ σ≡ − ∀% . Now, if it can be shown that 2{ ; 0}t tσ ≥%  is a CIR process (with 
possibly different parameters), then we can resort to the closed-form result. However, as 

2 0t tx tσ = − < ∀% , as { ; 0}tx t ≥  is a CIR process itself, 2{ ; 0}t tσ ≥%  cannot be a CIR process, 
as it is always negative. As such, to obtain the functions 1(.)A  and 1(.)B  in the Heston SV 
case, requires numerically solving the system of Ricatti ODEs.  
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Stochastische Volatiliteit 
en de 

Waardering van Financiële Derivaten: 
 

Samenvatting 
 

(Summary in Dutch) 
 
 
 
Dit proefschrift beschouwt het waarderen van derivaten onder stochastische 
volatiliteit (SV). Gedreven door recent empirisch bewijs, nemen we aan dat de 
volatiliteit van het onderliggende aandeel aangedreven wordt door een multifactor 
SV specificatie. Meer specifiek, we modelleren de volatiliteit als een affiene functie 
van een willekeurig aantal niet-waarneembare affiene factoren, welke mean-
reverting Markov diffusies volgen. We noemen het model het multifactor affiene 
stochastische volatiliteit derivatenwaarderingsmodel. Beleggers worden blootgesteld 
aan twee bronnen van risico in dit model, aandeelkoersbewegingen en veranderingen 
in volatiliteit. Het model kan worden gebruikt voor het prijzen en hedgen van 
derivaten geschreven op aandelen en vreemde valuta’s. 
 
Het proefschrift ontwikkelt een op de (Extended) Kalman filter gebaseerde quasi-
maximum likelihood (QML) schattingsmethode voor het derivatenwaarderingsmodel. 
De methode is transparant, omzeilt het simuleren van optieprijzen tijdens het 
schatten, genereert een volatiliteitvoorspelling en is bovenal snel. We leggen uit hoe 
(combinaties van) tijdreeksgegevens van gekwadrateerde aandeelrendementen, 
realized volatilities (RV) en optieprijzen kunnen worden gebruikt voor het destilleren 
van informatie met betrekking tot de modelparameters en onderliggende volatiliteit. 
 
Verscheidene Monte Carlo studies voor een aantal speciale gevallen van het 
algemene multifactor affiene SV model laten zien dat indien at-the-money (ATM) 
optiedata wordt meegenomen tijdens het schatten, de methode schijnbaar goed 
werkt. Optiedata blijkt erg informatief te zijn. Meer specifiek, het gebruik van alleen 
gekwadrateerde rendementen voor QML schatting is in het algemeen niet aan te 
raden. De schattingsonzuiverheid en de mean-squared errors (MSEs) zijn groot, en 
de onderliggende latente volatiliteit wordt niet goed uit de data gefilterd. Het gebruik 
van realized volatilities leidt tot aanzienlijk betere resultaten, hoewel de onzuiverheid 
en MSEs nog altijd groot zijn. Optiedata leidt tot een dramatische verbetering ten 
opzichte van het gebruik van alleen RV data. De schattingsonzuiverheid en MSEs zijn 
substantieel minder, en de onderliggende volatiliteit wordt veel beter blootgelegd. 
Het combineren van gekwadrateerde rendementen en optiedata leidt vervolgens tot 
betere schattingsresultaten dan alleen het gebruik van optiedata. In het algemeen 
lijkt de onzuiverheid bescheiden en is de efficiëntie van de schattingen groter. De 
combinatie RV – optiedata bevat de meest precieze informatie: De schattings-
onzuiverheid is in het algemeen klein, het leidt tot de meest efficiënte schattingen en 
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de geschatte en werkelijke volatiliteiten liggen in het algemeen dicht bij elkaar. 
Indien voorhanden, is deze combinatie van data dus te prefereren voor het schatten 
van het derivatenwaarderingsmodel. De simulatieresultaten laten verder zien dat de 
marktprijs van volatiliteitrisico moeilijk precies te schatten is, ongeacht de data die 
gebruikt wordt voor het schatten. Dit bevestigt de bevindingen van andere 
onderzoekers in de literatuur. 
 
Het proefschrift bestudeert tevens de aard van volatiliteitrisico. We beschouwen 
beleggingsstrategieën die in het bijzonder onderhevig zijn aan volatiliteitrisico, zoals 
straddles en variance swaps. Onderzocht wordt hoe beleggers worden 
gecompenseerd voor het risico van derivatenprijsveranderingen als gevolg van 
onzekere volatiliteitfluctuaties. We leiden een verwacht rendement – beta relatie 
voor derivaten af, en definiëren de risicopremie op volatiliteit. In overeenstemming 
met recente bevindingen in de literatuur, laat een empirische analyse zien dat 
beleggers bereid zijn te betalen voor marktvolatiliteitrisico. In eerste instantie lijkt dit 
tegenintuïtief. 
 
Onze economische verklaring voor het bestaan van een negatieve volatiliteit-
risicopremie kan als volgt samengevat worden. Volgens de permanent-inkomen 
hypothese streven beleggers naar een zo stabiel mogelijke consumptiestroom. Met 
andere woorden, hun doel is consumption smoothing. Hierdoor zijn zij bereid een 
premie te betalen voor volatiliteitrisico: Aangezien een dalende markt in het 
algemeen leidt tot minder consumptiemogelijkheden, maar tegelijkertijd ook tot een 
toename in de volatiliteit (het leverage effect), verschaft het aanhouden van delta-
neutrale positieve-vega derivaten een verzekering tegen consumptieveranderingen. 
Immers, daar de waarde van dergelijke derivaten in dat geval toeneemt, doet dit de 
daling in de consumptiemogelijkheden van de belegger (gedeeltelijk) teniet, wat leidt 
tot een gelijkmatiger consumptiepatroon. Daar het waarschijnlijk is dat het 
rendement op dergelijke derivaten negatief correleert met veranderingen in de 
consumptie van de belegger (als gevolg van het leverage effect), vertaalt dit zich in 
een negatieve risicopremie op volatiliteit.  
 
De empirische analyse in dit proefschrift confronteert het multifactor affiene SV 
derivatenwaarderingsmodel met FTSE100 aandelenindex- en optiedata, betreffende 
de periode oktober 1997 – december 2001. Deze jaren kenmerkten zich door drie 
ongebruikelijk roerige perioden in de financiële markten: de Azië crisis (herfst 1997), 
de bijna-teneergang van hedgefonds Long Term Capital Management en de Rusland 
en continuerende Azië crises (herfst 1998), en 11 september 2001 met zijn nasleep. 
De data bestaat uit tijdreeksen van gekwadrateerde  FTSE100-indexrendementen en 
drie ATM indexoptiereeksen met verschillende looptijden, een korte-termijn (KT), een 
middellange-termijn (MT) en een lange-termijn (LT) optiereeks. 
 
Aanvankelijk nemen we aan dat de FTSE100-index data gegenereerd is door de  
1-factor OU en 1-factor CIR SV speciale gevallen van ons multifactor model. 
Wanneer het model gefit wordt aan alleen de gekwadrateerde indexrendementen en 
de korte-termijn optiereeks, vinden we het volgende. De geobserveerde Black-
Scholes impliciete volatiliteiten zijn in het algemeen groter dan de onderliggende 
verborgen volatiliteiten, dankzij de negatieve marktprijs van volatiliteitrisico. De in 
de praktijk gangbare interpretatie van een Black-Scholes impliciete volatiliteit zijnde 
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een voorspelling van toekomstige volatiliteit, dient daarom met voorzichtigheid te 
worden benaderd indien de markt volatiliteitrisico prijst. Het beleggen in FTSE100-
index derivaten levert een negatieve volatiliteitrisicopremie op van ongeveer –17.5% 
op jaarbasis. Het schrijven (shorten) van korte-termijn ATM straddles genereert een 
substantieel verwacht rendement van ongeveer 185%. Deze strategie is niettemin 
zeer risicovol; straddles zijn echte bets on volatility. De volatiliteit van de SV factor 
hangt duidelijk af van het huidige niveau van de factor zelf. Anders gezegd, de SV 
factor kenmerkt zich door level-dependent volatility. De 1-factor CIR SV specificatie 
(Heston (1993) volatiliteit) schiet echter tekort in het voldoende adequaat kunnen 
beschrijven van de zeer snel veranderende volatiliteit die de drie eerdergenoemde 
perioden van heftige koersschommelingen karakteriseert. Niettemin lijkt de 
misspecificatie van het 1-factor CIR SV model (geschat met de gekwadrateerde 
rendementen en de KT optiereeks) in eerste instantie bescheiden. Nadere analyse 
laat echter zien dat het geschatte model te hoge prijzen genereert voor de langere-
termijn opties buiten de steekproef. Wanneer het model geschat wordt met 
gelijktijdig zowel de gekwadrateerde rendementen als de KT, MT en de LT 
optiereeksen, wordt de oorzaak van deze overwaardering duidelijk: 1-factor SV 
optiewaarderingsmodellen zijn niet in staat de rijke volatiliteitdynamiek die impliciet 
aanwezig is in de gezamenlijke data, adequaat te beschrijven.  
 
Dit leidt ons tot het ondernemen van een econometrische speurtocht op zoek naar 
het multifactor SV optiewaarderingsmodel binnen de affiene klasse, dat het beste de 
gezamenlijke data beschrijft. Een aanzienlijke verbetering in de fit wordt verkregen 
door 2-factor SV specificaties te beschouwen. Beide factoren kenmerken zich door 
level-dependent volatility. Niettemin is er nog steeds sprake van misspecificatie met 
betrekking tot onvoldoende volatiliteitdynamiek.  
 
Een 3-factor affiene SV specificatie met één CIR en twee affiene, onafhankelijke 
volatiliteitfactoren blijkt de gezamenlijke FTSE100 aandelenindex en optiedata het 
best te beschrijven. Elk van de drie factoren kenmerkt zich dus door level-dependent 
volatility. Het model beschrijft de in de data aanwezige volatiliteitdynamiek 
adequaat, en de fit van de termijnstructuur van de volatiliteit is goed. De 
optieprijsfouten concentreren zich rondom nul en zijn in het algemeen klein. De 
geschatte 3-factor SV volatiliteiten reageren sneller op nieuws dan de 1-factor SV 
volatiliteiten, met name in tijden van plotselinge marktstress.  
 
De karakteristieken van de drie volatiliteitfactoren 1,x  2x  en 3x  verschillen in 
belangrijke mate. Factor 1x  is extreem persistent en vertoont vrijwel random-walk 
gedrag. 1x  fluctueert rondom de lange-termijn gemiddelde FTSE100-indexvolatiliteit, 
en bepaalt de lange-termijn trend in de volatiliteit. Factor 2x  is veel sneller mean-
reverting. Schokken in 2x  hebben een half-life van ongeveer 3 maanden. 2x  bepaalt 
de middellange-termijn volatiliteittrend. Factor 3x  keert zeer snel naar zijn 
gemiddelde terug. Schokken in 3x  verliezen de helft van hun uitwerking in ongeveer 
tien dagen en hebben de grootste variantie. Factor 3x  bepaalt grote volatiliteit-
veranderingen in relatief korte tijdsperioden, en wordt geassocieerd met de korte-
termijn trend in de volatiliteit.  
 
De volatiliteitfactoren 1,x  2x  en 3x  beïnvloeden de prijzen van opties van  
verschillende looptijd op verschillende wijze. Een schok in de lange-termijn SV factor 
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1x  heeft soortgelijke invloed op alle optieprijzen, ongeacht looptijd. Ook de 
middellange-termijn SV factor 2x  beïnvloedt alle optieprijzen, maar in afnemende 
mate naarmate de looptijd van de optie langer is. Schokken in de zeer snelle mean-
reverting factor 3x  hebben voornamelijk invloed op de prijzen van korte-termijn 
opties. De impact van 3x  neemt snel af zodra de looptijd van de optie toeneemt. 
Aangezien 3x  zo snel naar zijn gemiddelde terugkeert, hebben de schokken in 3x  de 
neiging uit te middelen over een voldoende lange tijdshorizon, met als gevolg een 
slechts marginale uitwerking op de prijzen van opties met lange looptijden.  
 
De SV factoren  1,x  2x  en 3x  hebben een verschillende invloed op de vorm en de 
evolutie van de volatiliteittermijnstructuur door de tijd. 1x  is met name 
verantwoordelijk voor veranderingen in het algemene niveau van de 
termijnstructuur. Veranderingen in de helling worden voornamelijk geassocieerd met 

2x . Factor 3x  is sterk gerelateerd aan de dynamiek in de convexiteit van de 
termijnstructuur. 
 
Helaas zijn de schattingen van de marktprijzen van risico behorende bij elk van de 
SV factoren onnauwkeurig. We missen een intuïtie voor het vinden van een positieve 
prijs van risico behorende bij de middellange-termijn SV factor 2x ; de prijzen van 
risico geassocieerd met 1x  en 3x  worden beide negatief geschat. De risicopremie 
behorende bij 2x  bedraagt 3.9% op jaarbasis. De risicopremie op de snelle mean-
reverting factor 3x  is veel meer negatief (-22%) dan de premie op de lange-termijn 
factor 1x  (-0.4%). Deze premies impliceren een veel groter negatief verwacht 
rendement op korte-termijn dan op lange-termijn ATM straddles. Dit is in 
overeenstemming met het grotere risico dat gepaard gaat met beleggen in korte-
termijn straddles. Het feit dat we negatief verwachte rendementen op long straddles 
vinden komt overeen met beleggers die negatief gecompenseerd worden voor 
volatiliteitrisico.  
 
Binnen de affiene klasse van SV modellen, is het 3-factor affiene SV 
optiewaarderingsmodel met één CIR en twee affiene volatiliteitfactoren dus het 
meest geschikt voor de gezamenlijke FTSE100 aandelenindex- en optiedata. 
Specificatietoetsen laten echter zien dat er nog steeds ruimte voor modelverbetering 
mogelijk is. (Zie sectie 7.2.1 van hoofdstuk V voor een meer complete discussie.) 
Ten eerste hebben we het leverage effect niet gemodelleerd. Gegeven onze focus op 
louter ATM opties, is het onwaarschijnlijk dat het hebben genegeerd van leverage het 
merendeel van onze bevindingen ongeldig verklaart. Zoals hoofdstuk VI laat zien, 
wordt de ATM volatiliteittermijnstructuur maar in beperkte mate beïnvloed door 
leverage. Niettemin, indien het doel het prijzen en hedgen van in- en out-of-the-
money aandelenopties is, kan leverage niet zomaar worden genegeerd. Het 
multifactor affiene SV derivatenwaarderingsmodel met bijbehorende state space 
schattingsmethode kan eventueel worden uitgebreid ten einde het leverage effect 
expliciet mee te nemen. Ten tweede blijkt het multifactor affiene SV model niet in 
staat de in de data aanwezige drie perioden van zeer snel veranderende volatiliteit 
volledig te beschrijven, zelfs niet met drie factoren. Een uitbreiding van het model 
dat sprongen (jumps) in de volatiliteit toelaat lijkt veelbelovend in dit opzicht. Samen 
met de overige suggesties voor verder onderzoek geopperd in hoofdstuk VII, vormt 
dit interessant werk voor toekomstig onderzoek.  
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