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ABSTRACT

Motivation: The numerous public data resources make integrative

bioinformatics experimentation increasingly important in life

sciences research. However, it is severely hampered by the way

the data and information are made available. The semantic web

approach enhances data exchange and integration by providing

standardized formats such as RDF, RDF Schema (RDFS) and OWL,

to achieve a formalized computational environment. Our semantic

web-enabled data integration (SWEDI) approach aims to formalize

biological domains by capturing the knowledge in semantic models

using ontologies as controlled vocabularies. The strategy is to build

a collection of relatively small but specific knowledge and data

models, which together form a ‘personal semantic framework’. This

can be linked to external large, general knowledge and data models.

In this way, the involved scientists are familiar with the concepts

and associated relationships in their models and can create

semantic queries using their own terms. We studied the applicability

of our SWEDI approach in the context of a biological use case

by integrating genomics data sets for histone modification and

transcription factor binding sites.

Results: We constructed four OWL knowledge models, two RDFS

data models, transformed and mapped relevant data to the data

models, linked the data models to knowledge models using linkage

statements, and ran semantic queries. Our biological use case

demonstrates the relevance of these kinds of integrative bioinfor-

matics experiments. Our findings show high startup costs for the

SWEDI approach, but straightforward extension with similar data.

Availability: Software, models and data sets, http://www.

integrativebioinformatics.nl/swedi/index.html

Contact: breit@science.uva.nl

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

With the development of high-throughput biotechniques

and the subsequent omics studies, exciting avenues of scientific

exploration are opening up. Instead of being constrained

to analyze a handful of genes or proteins per experiment,

whole genomes and proteomes can be studied today. This

allows biologists to investigate more complex processes that

were not accessible before (Carroll et al., 2006; Lein et al., 2007;

Souchelnytskyi, 2005; Spellman et al., 1998; van Steensel, 2005).
As became evident from the human genome project, once

the technology limitations were lifted, the bottleneck rapidly

shifted to the annotation of the produced DNA sequence data.

Therefore, like the biotechniques, huge projects with numerous

research groups collaborate to tackle complex issues such

as annotating the human genome (The ENCODE Project

Consortium, 2004). So on top of the omics data a growing layer

of biological annotations is being produced. These data are

made increasingly available through public web-accessible data

stores like Ensembl and the UCSC Genome Browser. Because

the data is distributed across the web, this raises new issues

on data management, maintenance and usage. Biologists use

these data as reference, but increasingly also for in silico data

integration experiments. Integrating these heterogeneous data

sets across different databases, however, is technically quite

challenging, because one must find a way to extract informa-

tion from a variety of search interfaces, web pages and APIs.

To complicate matters, some databases periodically change

their export formats, effectively breaking the tools that provide

access to their data. At the same time, most omics databases

do not yet provide computer-readable metadata and, when they

do, it is not in a standard format. Hence, expert domain-specific

knowledge from the user is required to interpret what the data

actually represents before using it in integration experiments.

This limits the practical scale and breadth of integration, given

the variety and amount of data available from distributed

resources.

The Semantic Web is designed to bring meaning to the raw

data content by defining relationships between distinct concepts

(http://www.w3.org/2001/sw/) using ontologies. This allows the

sharing and processing of data by automated agents that can

assist in the retrieval of relevant information and metadata

(Roos et al., 2004). The Resource Description Framework

(RDF) specification is a metadata model that forms the basis of

the Semantic Web. The metadata model describes everything

as a resource that can be linked to other resources by defining*To whom correspondence should be addressed.

� 2007 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www
http://www.w3.org/2001/sw/
http://creativecommons.org/licenses/


relationships as properties. Resources are described by making

statements identifying the resource (the subject), its property

(the predicate) and the value of the property (the object),

e.g. MAPKAP-2, hasFunction, Kinase. The statements used in

RDF are defined in RDF Schema (RDFS). RDFS describes

the semantics and defines class and property hierarchies of the

domain for which the RDF document is used.

To allow machine reasoning over the formalized knowledge

of a domain, the W3C has developed a standard for a web

based ontology language: OWL (http://www.w3.org/2004/

OWL/), a language that builds upon RDF and RDFS.

Essentially, an ontology is a formalization of a domain,

defining concepts (i.e. collections of biological elements that

share common properties) and the relationships between them,

thus creating a common, controlled vocabulary that can be

reasoned over in a well-defined manner. Applying ontologies

to data involves populating the concepts with individuals,

i.e. real-life entities. By defining ontologies for a field as

complex as biology, one can eventually build a knowledge base

that facilitates the exchange and interoperability of the data

present in numerous available databases. Many biological

ontology initiatives exist (http://obo.sourceforge.net/), with

the Gene Ontology (GO) being the most widely adopted

(Ashburner et al., 2000). This allows these databases to

transcend from data stores to knowledge stores. Thus,

ontologies will greatly aid biological research by providing a

structured approach to capturing knowledge in a computer-

understandable way (Bodenreider and Stevens, 2006; Good and

Wilkinson, 2006; Ruttenberg et al., 2007; Strizh, 2006).
Because of the heterogeneity of life sciences data, the

semantic web approach could be useful throughout the entire

cycle of integrative bioinformatics experimentation. Figure 1

shows this cycle divided into five phases: problem definition,

experimental design, data integration, data analysis and data

interpretation. In the current study, we have applied the

semantic web approach to the data integration phase of an

example integrative bioinformatics experiment and evaluated

its applicability in the context of the whole cycle. As biological

use case, we set out to combine two genomics data sets from

UCSC: data about a specific histone modification and data

about transcription factor binding sites. Our approach using

semantic web-enabled data integration (SWEDI) is based on

semantic web technology for a model-based integration of

data sets in the life sciences domain (Marshall et al., 2006).

We constructed three OWL biological knowledge models, one

OWL technical knowledge model and two RDFS data models.

We then transformed and mapped relevant data to the data

models, linked the data models to the knowledge models using

linkage statements and ran a semantic query. The analysis

of the results of the biological use case demonstrated the

relevance of these kinds of integrative bioinformatics experi-

ments. Our findings are that the initial ‘startup’ costs for

SWEDI are high, but that subsequent addition of (similar) data

is straightforward.

2 METHODS

2.1 Data

All data sets were downloaded from the UCSC genome browser

website (http://genome.ucsc.edu/). We used H3K4me3 data from the

ChIP-on-chip data set produced by the Sanger Institute (http://genome.

ucsc.edu/cgi-bin/hgTrackUi?hgsid¼88704835&g¼encodeSangerChip)

for five human cell lines; GM06990, HeLaS3, HFL-1, K562 and

MOLT-4. Each data set contains locations on the human genome where

H3K4me3 is present plus the intensity score, which is an indication for

the amount of H3K4me3 at that position (ftp://ftp.sanger.ac.uk/pub/

encode/H3K4me3_GM06990_2/README) The Sanger data set is a

ENCODE region-wide H3K4me3 analysis which comprises �1% of the

total human genome. These motif sequences are usually represented by

position weight matrices of conserved TFBS types (cTFt). With these

cTFt matrices, highly similar locations in the genome can be identified

that are potentially conserved TFBS (cTFBS) for each cTFt. The

cTFBS data was generated by UCSC using 410 binding matrices from

the Transfac Matrix and Factor database v8.3 from Biobase

(http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid¼88704835&g¼tfbs

ConsSites). In essence, the track gives information about cTFt and the

predicted occurrence of associated cTFBS in the whole human genome.

The Hidden Markov Model (HMM) data identifies hit regions in the

Sanger data set using a two-state HMM analysis as performed by

EBI (http://genome.ucsc.edu/cgi-bin/hgTrackUi?hgsid¼86022194&g¼

encodeSangerChipHits). We used HMM data for the three available

human cell lines; GM06990, HeLaS3 and K562.

2.2 Semantic web technology

We created the data models, knowledge models and linkage statement

files using Protégé 3.1.1 with OWL plug-in V2.1 (http://protege.

stanford.edu/). To visualize the data sets within the knowledge

models, we used Protégé to create individuals for each data set within

the corresponding concept. To transform the tab-delimited data to

RDF/XML data we used a version of Mapper (https://gforge.vl-e.nl/

projects/mapper) that we modified for RDF output. Transformed data

was loaded in Sesame v1.2.6 (http://www.openrdf.org/). Subsequently,

SeRQL queries (Supplementary Material, Fig. S1) were constructed to

find cTFBS that overlapped with H3K4me3 regions. The Sesame

program was run on a server station with two Intel Xeon processors

at 2.8GHz equipped with 4 GB main memory.

Fig. 1. Integrative bioinformatics experimentation cycle with five dis-

tinct phases. At the end of a phase, an outcome is generated that is

input for the next phase. Our semantic data integration approach

is applied to phase II, which can be further divided into five steps.
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3 RESULTS

We set out to analyze the applicability of our SWEDI approach

for a specific phase of the integrative bioinformatics experi-
mentation cycle by means of a biological use case. Although we

only want to analyze one specific phase of this experimentation
cycle, its indissoluble nature forces us to perform an experiment

including all phases in order to determine the usability of

SWEDI for life sciences research. We identified five phases
in our experimental cycle: problem definition, experimental

design, data integration, data analysis and interpretation
(Fig. 1). At the end of each phase an outcome is generated

that serves as input for the next phase. Our study focuses
mainly on the application of SWEDI in the data integration

phase.

3.1 Problem definition

We started by defining the biological hypothesis of our use case

with the input from domain experts i.e. biologists. Figure 2
shows a cartoon representation of the hypothesis. A puzzling

phenomenon in biology pertains to histone modifications.
DNA is bound by histone octamers, called nucleosomes that

package it inside the nucleus. Nucleosomes are built of eight

histones, which can undergo post-translational chemical modi-
fications at their N-terminal tail (Felsenfeld and Groudine,

2003). Different histone marks are associated with different
cellular processes (Peterson and Laniel, 2004). It is believed

that these histone marks act in concert to form a ‘histone code’
that defines the transcriptional state of the chromatin (Strahl

and Allis, 2000). For instance, the presence of three methyl

groups to the fourth amino acid, a lysine (K), of histone 3,
named H3K4me3 (Turner, 2005) is believed to be a histone

mark for active gene transcription (Schneider et al., 2004).
Transcription factors regulate gene expression by (in)direct

binding to specific regions in the genome. In its simplest
view, one transcription factor with a DNA binding domain,

recognizes and binds a specific DNA sequence upstream

of a gene (i.e. transcription factor binding site, TFBS) to alter
its transcriptional state (Fig. 2). For many transcription factors

the associated TFBS sequence motifs they recognize have been

identified (Matys et al., 2003).
Because H3K4me3 is a histone mark for active gene trans-

cription, we formulated a biological hypothesis that postulates

a direct relationship between the presence of this histone mark

and specific cTFBS or cTFt (Heintzman et al., 2007). Although

in essence this relationship is known in biology, it is a nice
hypothesis to test our approach and possibly further interpret

this relationship.

3.2 Experimental design

For this hypothesis, we identified relevant data sources

about histone modification H3K4me3 and TFBS at the

UCSC Genome Browser site, which stores various genome

annotations concerning a number of different species including
human. We used a data track about cTFt conserved among

human, mouse and rat plus data tracks from the ENCODE

project about ChIP-on-chip intensity scores of human

H3K4me3. The ENCODE-H3K4me3 data tracks holds data

of �1% of the whole genome. We chose human cell line

GM06990 from the Sanger Institute track together with
the cTFBS data track from UCSC for SWEDI. For proof-

of-principle, we decided to start with only one human cell line

together with the cTFBS data track. Subsequently, we added

similar data from four additional human cell lines, plus HMM-

analyzed H3K4me3 data from three human cell lines to show

extendibility.
In order to discover a relationship between the level

of H3K4me3 modification and specific cTFBS or cTFt,

we devised SWEDI, a model-based data integration approach,
to integrate these genomics data sets. For this, we decided to

model the domains that cover the minimal relevant biological

and technical features associated with the data sets in a way

that would allow future extension. This means several small

models rather than one big, all-inclusive model. We also
decided to use RDFS data models that capture the low-level

metadata related to the data, to link the RDF data to our

knowledge models in OWL.

3.3 Data integration

This is the actual phase in which we want to apply SWEDI.

In our case we subdivided this phase into five steps: import

or create models, transform raw data to RDF data, link data
models to knowledge models, select common domain and

construct and run semantic query (Fig. 1). Given the complex-

ity of this phase, we will explain each consecutive step

separately.

3.3.1 Importing or creating models The initial step in
SWEDI is translating the hypothesis into a formalized,

composite knowledge model that captures the domain-specific
concepts and their relationships. This is done either by using

an existing domain-specific ontology or creating a new onto-

logy. Although an ontology like GO captures some of the

desired concepts, as a knowledge model it is too restricted

due to the limited types of relationships, only isA and partOf.

Fig. 2. Cartoon representation of the hypothesis of our biological use

case. Nucleosomes are bound to DNA and consist of eight histones.

One, histone 3 (H3), has a lysine on the fourth position of its

N-terminal tail (K4), which can accept 3 methyl (me) groups and this

modification H3K4me3 was shown to be a mark for active gene

transcription. Generally, gene expression (arrow on gene) is regulated

by transcription factors (TF) that recognize and bind to specific DNA

sequences upstream of genes, i.e. transcription factor binding sites

(TFBS). Our hypothesis predicts a relationship between histone modi-

fication H3K4me3 and gene expression regulation through TFBSs.
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Also, the level of granularity in the area of histones is limited.

Since we could not find any suitable ontology for our use case,

we constructed our own ontologies (Supplementary Material,

Fig. S2).
Because our approach is meant to be scalable by allowing

addition of more models and data, we purposely created

distinct models that capture different aspects of the involved

biology domain. Figure 3 shows our four OWL ontologies to

model the domains that cover the data sets: an epigenetics

model (epi), a histone model (HistOn), a TFBS model (tfbs) and

a technical model (tech). The knowledge models were created

with help of experts in the field of nuclear organization and

peer-reviewed literature. We chose to express the knowledge

models using OWL-DL in order to have enough expressiveness

but still remain computationally efficient (http://www.w3.org/

TR/owl-features/).

(i) epi, the largest model, was constructed to capture

general concepts in the biology domain of histone

modification from an epigenetics viewpoint. Epigenetics

is about (heritable) DNA-related features other than

the actual DNA sequence, such as DNA methylation,

histone modification and chromatin structure. The model

epi contains 78 concepts and 16 properties. Concepts

range from amino acid modifications, sequences and

chromosomes.

(ii) HistOn, the histone model, is more specific and covers

histones and histone-related concepts like histone

modifying proteins. It contains 17 concepts plus 19

properties and is nested within epi.
(iii) tfbs, the TFBS model covers TF, TFBS and related

concepts like promoters, enhancers and repressors.

It contains 14 concepts and 6 properties. tfbs is nested

within epi.

(iv) tech, the technical model was created to cover abstract

terms in the data sets such as experimental measurement

scores and calculated z-scores. It contains seven concepts

and four properties.

Together, these knowledge models capture all concepts

essential for our use case, but they can be further expanded

as needed.

We also constructed two RDFS data models that semanti-

cally capture the data sets we want to integrate. We based our

data models on the database table schema of the data sets.

The data models semantics is limited to describing the data file

rows and columns.

(i) The H3K4me3 data model describes the H3K4me3

data track on UCSC and contains two objects and six

properties.
(ii) The cTFBS data model describes the cTFBS data track

on UCSC and contains two objects and nine properties.

Although we constructed the data models using Protégé/

OWL, for our data models the expressiveness of RDFS is

sufficient and computationally less expensive.

3.3.2 Transform raw data into RDF format We retrieved
cTFBS and H3K4me3 data sets of human cell line GM06990

from UCSC and used an adapted version of Mapper with

the associated data model to transform the tab-delimited flat

file to RDF/XML. We chose to keep the data separated from

the ontology so that we can describe the data using ‘simple’

RDF/XML.
A drawback of expressing data in RDF/XML is bloating

of data size on disk. An approximate 15-fold increase in file

size was observed when the cTFBS tab-delimited data set was

transformed to RDF/XML and an approximate 18-fold

increase for the H3K4me3 data sets. Although once loaded

into memory, the XML bloat is no longer a problem, file

storage on disk and file exchange are issues that will require

attention.

3.3.3 Link data model to knowledge model The next step

is to link the models that capture biological knowledge to the

data models. Figure 4 shows how we started by populating

the knowledge model with individuals representing each data

set. We then linked the data models to the knowledge models

by linking properties. Using the inference feature of RDFS,

we declared that a property of the data model, for instance

chrom, is a sub-property of the property Chromosome_identifier

from the knowledge model. For each data set this resulted

in two collections (i.e. files) that contain all linkage statements

(Fig. 3). As such, the linkage statements function as a user-

defined viewpoint of how a data model is related to the

knowledge models, which allows defining queries in the more

familiar terms of knowledge models.
We chose to keep our data independent of the knowledge

models, with an explicit mapping in the form of the linking

statements. This approach to linking also preserves the data

supplier’s naming scheme. We could have directly transformed

the raw data files into RDF that includes our own OWL terms

directly in the RDF version of the data. However, such an

approach would shift control of linking to the import stage and

subsequent changes to our knowledge models could require

an entire new import process for any affected data to correct

obsolete links embedded in the data.

Fig. 3. Schematic overview of the OWL knowledge models, epi (epi-

genetics), HistOn (histone), tfbs (TFBS) and tech (technical); the RDFS

data models, H3K4me3 and cTFBS; and how they are linked.
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3.3.4 Select common domain To determine the relationship
between H3K4me3 and cTFBS or cTFt, we had to find a path

between these concepts in our models and identify a domain for

comparison. By selecting a common domain we could integrate

these data sets. In our case, we chose ChromosomeRegion as

the common domain, because both histone modification and

cTFBS data have genomic positions coordinates in the form

of chromosome number, start and end position.

3.3.5 Construct and run semantic query With a common

domain identified, we created a query to test the relationship

under question: ‘Which DNA regions are bound by a

H3K4me3 modified histone as well as a cTFt?’ We constructed

a SeRQL query (Supplementary Material, Fig. S1) that checks

if H3K4me3 and cTFBS DNA regions are on the same

chromosome within each other’s start and stop positions.

It states that two regions from each data set overlap when there

is at least one base pair with a direct overlap. Overlap means

identification of a cTFBS for each cTFt.

Initially, the query took around 45 h (wall time) to complete

and returned 12 349 overlaps for GM06990 (Supplementary

Material, Fig. S3). Restricting the whole-genome cTFBS data

set (1 077 457) to cTFBS that are within an ENCODE region

(13 779), dramatically reduced the query run time to �30min.
The raw integration results in fact are the proof-of-principle

of SWEDI because it accomplishes data integration of hetero-

geneous data sets by means of semantic web technology.

An important difference between the use of a traditional data-

base and semantic web repositories is that the (meta)data model

for the semantic web approach is described in a standardized

language. Where RDFS and OWL are used, reasoning can be

applied to the model.

3.4 Extension of data integration experiment

After achieving this proof-of-principle using data from just one

cell line (GM06990), we evaluated the extensibility of SWEDI,

since that is its main motivation. For this, we extended the

experimental design with data from four additional human cell

lines; HeLa, HFL-1, K562 and Molt4. By simply changing the

identity of the histone modification data set and slightly

adapting the SeRQL queries we were quickly able to achieve

raw H3K4me3–cTFBS integration results for these cell lines;

13 350 overlaps for HeLa, 13 350 for HFL-1, 13 315 for K562

and 13 341 for Molt4.
We further extended our analysis with additional UCSC

data: HMM-analyzed H3K4me3 data from cell lines:

GM06990, HeLa and K562. The integration steps for these

three data sets remained the same, with similar exception for

the query step. The results were; 3289 overlaps for GM06990,

2134 for HeLa and 3273 for K562. Because HMM-analyzed

data sets are much smaller than nonanalyzed data, the query

took �1.5 h (wall time) to complete for the whole genome

cTFBS data set and �2min for cTFBS that are within an

ENCODE region.
The UCSC Genome Browser contains an extensive number

of genome annotation tracks that can potentially be integrated

using our approach. There are 13 tracks containing 97 sub

tracks that are almost identical to the data sets we used for ourF
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use case. These can be integrated almost directly, if we use

the H3K4me3 data model to transform the tab-delimited

data sets to RDF data. Also, the HistOn and tfbs knowledge

models need to be populated with the new data sets and the

SeRQL query needs to be changed to cover the new data sets.

There are also 12 tracks containing 37 sub tracks that can be

integrated requiring only minor concept additions to the tech

model and/or a new data model in addition to the changes

mentioned above (Supplementary Material, Table S1).

3.5 Data analysis and interpretation

Through SWEDI we have coupled H3K4me3 intensity scores

to all cTFBS of each cTFt and we obtained raw integra-

tion results (Supplementary Material, Fig. S4). These results

showed that the majority of cTFBS displayed a low H3K4me3

score. Applying a H3K4me3 score cutoff of 42 resulted in:

1382 overlaps for GM06990, 984 for HeLa, 1063 for HFL-1,

1303 for K562 and 739 for Molt4. An in-depth analysis

and interpretation is beyond the scope of this article. A brief

preliminary analysis and interpretation of the result can be

found in Supplementary Material, Figure S5.
The analysis of the raw integration results from SWEDI

on the HMM-analyzed H3K4me3 data from cell lines

GM06990, HeLa and K562 showed essentially the same

outcome as compared to the original H3K4me3 data (data

not shown).

4 DISCUSSION

Along with the introduction of omic technologies in the

life sciences came the need to handle, analyze and interpret

biological data in a different, more formalized way. The

semantic web approach enhances data exchange and integra-

tion by providing standardized formats such as RDF, RDFS

and OWL, to achieve a formalized computational environment.

In this study, we have investigated the potential of the semantic

web concept for the purpose of data integration by computa-

tional experimentation in the life sciences. We focused on basic

linkage of data to knowledge using semantic web based data

and knowledge models.

Because of the complexity of biology, we adopted a strategy

to formalize a (part of a) domain that is of interest to a specific

(group of) scientist(s) by capturing the knowledge via a network

of interrelated semantic models using ontologies as a controlled

vocabulary. This allows a modular approach for data integra-

tion in which the individual scientists can use existing (general)

models, potentially in combination with small specific models

that they create themselves. This means that each scientist can

interact with external data and knowledge models from their

own perspective using a kind of ‘personal semantic framework’.

In this way the involved scientists are familiar with the concepts

and the relationships in the models they work with and can

create semantic queries using their own terms. The external

models should be either made by coordinating data-managing

organizations (e.g. NCBI), or organized domain experts

(e.g. FlyBase consortium).

After creating several necessary knowledge and data models,

we were able to provide a proof-of-principle for our SWEDI

approach. Multiple genomics data sets, which involved histone
modification and TFBS, were successfully linked via a common
domain. The integrated data in our biological use case resulted

in some interesting biological observations that may lead to
new hypotheses regarding the role of histone modification in
gene expression regulation. With our approach, we established

a type of formalization of the problem domain by creating
a vocabulary in the form of knowledge models that describe
the data and capture the domain knowledge. This promoted the

transparency and reproducibility, as well as the easy extensi-
bility of our experiments. However, more sophisticated tools
(for example the OntoViz plug-in in Protégé) are needed for

visualization of concepts and their relationships when more and
more data sets are added. Also, our approach gives us flexibility
in asking questions to the data sets. Although sites like UCSC

Genome Browser have tremendous amounts of data and
information, it is rather difficult to ask simple questions like:
what is the overlap between any number of tracks concerning
histone modifications, transcription factors and genes.

Although in this study we used a rather limited use case,
we still could show that SWEDI is extendable by starting from
just one cell line (GM06990) and adding similar H3K4me3

modification data sets from four additional human cell lines
and three H3K4me3 recalculated data sets. The use of new data
from the same site (UCSC Genome Browser) and from the

same track, resulted in the re-use of the H3K4me3 data model,
because this model describes the data on a very low level and
the format is identical. Since the data model can be re-used,

the linking between the data and knowledge model remains the
same, as does the common domain. In contrast, the SeRQL
queries do have to be altered slightly. The addition of extra data

sets was facilitated by the great similarity between the data sets,
but in essence any data set that contains at least a chromosome
number, start position and end position can be integrated. Data

models need to be created, if they cannot be re-used. Although
we showed extensibility by adding similar data sets, it will be a
challenge to add totally different data, e.g. data not related to

genomic location.
There are also drawbacks to SWEDI. The main problem

is that the initial setting-up costs are high, because there are

hardly any adequate knowledge models available yet. This
problem is inherent to formalizing a domain, but the applied
semantic web technologies are still immature, so RDF data set

manipulation is hard. Also, a future problem could rise when
many, highly divergent personalized frameworks eventually
have to be merged. This relates to the more general problem

of ontology alignment (Euzenat and Valtchev, 2003). So it
seems fair to assume that if any domain in biology wants
to embrace this approach, it will take a community as well as

a multidisciplinary effort to make and maintain something like
a domain semantic framework. The effort can be compared
to those from initiative such as NCBI, UCSC Genome Browser,

FlyBase, WormBase, etc. An example in this context
is the effort of the W3C-HCLS (Ruttenberg et al., 2007) to
recommend a standard scheme for the URIs that refer

to commonly used bioconcepts. If widely adopted, such a
URI scheme would have a normalizing effect that would
greatly increase the ease of data integration and model sharing.

This would be a first step in the direction of a domain
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semantic framework. Although the necessary consensus for a
domain semantic framework would be a challenge to establish,
it would only need to happen once. In contrast, consider the

countless times that database schemas are re-invented for use
with the same data but at different institutions. The scalability
of SWEDI is also a matter of concern, as performance

and provenance may become bottlenecks. With the sizes of
our whole-genome data sets the queries took �2 days to run,
because the query engine is not optimized for our type

of semantic web based query yet. As noted earlier, query
optimizations can greatly improve the performance (Marshall
et al., 2006). Although we could have used SQL for better query

performance, we would have to give up all the benefits of
explicit use of our models in the query itself. Furthermore,
in SWEDI data models are mapped to knowledge models using

subPropertyOf statements that are stored in the data models.
This poses a problem because in our scenario, we do not
control these data models and so we cannot add mapping
statements directly to these models. We therefore, had to

store the linking statements in a separate file, thus keeping
the data models intact, but adding an extra layer. Finally,
choosing the common domain is done manually, which

demands extensive domain knowledge. It would be extremely
useful if methods could be developed that identify common
domains automatically.

In the context of biological data and knowledge integration,
numerous solutions have been developed to enable retrieval
of data from heterogeneous distributed sources (Eckman et al.,

2003; Searls, 2005; Stein, 2003). The solutions range from
monolithic, such as, SRS (Zdobnov et al., 2002) with keyword
indexes and hyperlinks, Kleisli/K2 (Ritter et al., 1994) with

a query language across databases as if they were one, data
warehouses such as BioZon (Birkland and Yona, 2006),
automated annotation systems such as PhosphaBase-myGrid

(Wolstencroft et al., 2006), to BioMOBY which uses web
services acting as portals to biological data (Wilkinson et al.,
2005). Perhaps the most widely used system is SRS, providing

integration of over 400 databases. Our approach to data
integration uses semantic models to provide a schema for
integration. TAMBIS pioneered such an approach by creating

a molecular-biology ontology as a global schema for trans-
parent access to a number of sources including Swiss-Prot
and Blast (Stevens et al., 2000). Systems such as BACIIS

(Miled et al., 2003), BioMediator (Mork et al., 2005) and
INDUS (Caragea et al., 2005) extend on this example. For
instance, BioMediator uses a ‘source knowledge base’ that

represents a ‘semantic web’ of sources linked by typed objects.
The knowledge base includes a ‘mediated schema’ that can
represent a user’s domain of discourse. INDUS shows impor-

tant similarities to our approach, offering an integrated user
interface to import or create user ontologies, and creating
ontological mappings between concepts and ‘ontology-

extended’ data sources. In contrast to our approach, however,
INDUS does not use semantic web formats such as OWL and
RDF. While the syntactic step of our import is similar to that of

YeastHub (Cheung et al., 2005), our explicit linking of the
semantic types to the syntactic types with RDFS moves the
work of discovering semantics from the query to the model

alignment stage. A different approach using Semantic Web

methodologies to integrate gene data with phenotype data
uses RDF graph analysis to prioritize candidate disease genes
(Gudivada et al., 2007).

With respect to the applicability of SWEDI in biology
there is no doubt that semantic modeling is a necessity for
biological knowledge bases (Ruttenberg et al., 2007). Life

sciences research today is all about data, information and
knowledge management. Whereas previously the important
domain information and knowledge resided mainly in the head
of the responsible principal investigator and literature, we are

moving into the era of data warehouses/repositories, informa-
tion management systems and knowledge bases. For any
life sciences research group, this means that they have to deal

with these e-science issues if they want to stay competitive
(Goble et al., 2005; Rauwerda et al., 2006). Furthermore,
merely managing all resources will not help much. Once all

resources are accessible, multidisciplinary skills such as data
mining, data integration, data analysis, statistics, etc are
needed. With SWEDI we advanced towards formalized

resource management by semantic models. Even our limited
SWEDI approach can be used to integrate a substantial
number of data sets. However, at present SWEDI only covered

data integration and not data analysis or interpretation. This
means that with SWEDI we succeeded to integrate multiple
genomics data sets. As always, once the technical bottleneck

for data integration was lifted, it shifted immediately to data
analysis and interpretation. These phases are not covered by
SWEDI yet, and it takes quite an effort to extract relevant

biological knowledge from raw integration results, as we
experienced in our use case. However, the data and findings
of any integrative bioinformatics experiment using SWEDI

are by definition in a standardized format. This facilitates
putting them in semantic web repositories, which subsequently
increases their re-use by other members of the research

community.
SWEDI is based on building OWL models confined within

the scope of an experiment (Marshall et al., 2006). OWL

enables the linking of small models to form a larger semantic
web, hence a ‘bottom up’ approach. This ensures freedom
for scientists to compose and extend models to their specific

needs, such as, new (hypothetical) concepts that have yet to
reach the level of consensus necessary for consortia-managed
ontologies. In contrast, OBO models are being built ‘top-down’

by consortia to encompass an extensive number of concepts.
Integration could be enhanced through the use of upper-
bio-ontologies (Grenon et al., 2004; Rector and Rogers, 2004;

Schulz et al., 2006) and the anticipated problems of merging
many and divergent personalized frameworks can be circum-
vented by linking personalized frameworks via upper-

bio-ontologies. Upper-bio-ontologies can also facilitate the
introduction of new domains to the created formalized
computational environment. These upper ontologies increas-

ingly offer guidance on how to categorize new concepts.
Careful use of them, and best practices should simplify the
alignment of semantic models.

Altogether our SWEDI approach is a first step towards
a formalized computational environment for integrative bio-
informatics experimentation. The modular nature of SWEDI

in combination with the use of standardized semantic web
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formats ensures the extendibility and scalability of the

approach. SWEDI can either be used to create bottom-up

small personal semantic frameworks or (top–down) larger

domain semantic frameworks. An important advantage of the

use of semantic web repositories compared to relational

databases is that their complete (meta)data models (i.e. data

schemas) are described in a standardized language, which

enhances transparency because they can be visualized and

manipulated by nonproprietary tools. These schemas are also

referenced by the query so that it is possible to examine

any RDF query to discover precisely what it means, i.e. track

data provenance. Where RDFS and OWL constructions

are used, the corresponding reasoning can be applied to the

data schemas, creating opportunities for innovative integrative

bioinformatics experimentation. Furthermore, semantic web

repositories can flexibly be accessed and modified, because

many types of modifications require neither specialized knowl-

edge about repository internals nor risky processes such

as table migration. Finally, if upper ontologies and best

practices are carefully applied in the smaller personal semantic

frameworks, it will be possible to link them together into

a functional semantic web.
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