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Abstract

This paper studies the correlation structure of spatial autoregressions defined over arbitrary config-

urations of observational units. We derive a number of new properties of the models and provide new

interpretations of some of their known properties. A little graph theory helps to clarify how the correlation

between two random variables observed at two units depends on the walks connecting the two units, and

allows to discuss the statistical consequences of the presence (or, more importantly in econometrics, the ab-

sence) of symmetries or regularities in the configuration of the observational units. The analysis is centered

upon one-parameter models, but extensions to multi-parameter models are also considered.

Keywords : exponential families; graphs; quadratic subspace; spatial autoregressions; spatial weights matri-

ces.

JEL Classification : C12, C21.

1 Introduction

Time series autoregressive processes can be generalized to a spatial setting in two different ways,

giving rise to Simultaneous Autoregressive (SAR) and Conditional Autoregressive (CAR) models.

The formulation of the models can be traced back to, respectively, Whittle (1954) and Besag (1974).

Since then the models have been employed in a wide variety of applications (see, for instance, Cliff

and Ord, 1981, Cressie, 1993). In particular, SAR models constitute the building block of most

parametric models, and also of some semi-parametric models, currently used in spatial econometrics

(e.g., Anselin, 1988, Kelejian and Prucha, 1999 and 2004, Lee, 2002, 2004 and 2006, Baltagi et

al., 2003, Giacomini and Granger, 2004, Bao and Ullah, 2006, Robinson, 2006). CAR models, also

known as auto-normal schemes, are more popular in other scientific fields such as disease mapping

and image analysis. Despite being very different in many respects, CAR and SAR models are similar

in terms of their correlation structure (e.g., Cressie, 1993, Wall, 2004).

The purpose of this paper is to analyze correlation properties of CAR and SAR models defined

over arbitrary sets of observational units. In the case of regular sets of observational units (e.g.,

∗Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB, Amsterdam, The

Netherlands. E-mail: f.martellosio@uva.nl.
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uniform grids), the correlation structure of spatial autoregressions is well-understood (e.g., Besag,

1972 and 1981). In this paper we focus on irregular spatial configurations, which clearly constitute

the case of interest in non-experimental fields such as econometrics. We will however also consider

the effect that the presence of regularities in the neighborhood structure of the units has on the

properties of the models. Recent literature has pointed out that when they are defined over irregular

lattices, spatial autoregressions may exhibit some undesirable or unexpected properties (e.g., Besag

and Kooperberg, 1995, and Wall, 2004). In fact, it is fair to say that some of the correlation

properties of spatial autoregressions on irregular lattices are not completely understood. This has

serious practical consequences, because specifying the models may be difficult if their properties are

not clear.

The theoretical study of the correlation structure of spatial autoregressions is not straightforward,

because, in contrast to the approach that is popular in geostatistics (e.g., Cressie, 1993, Chapter

2), the specification of spatial autoregressions is not based directly on a covariance matrix, but on

its inverse. In addition, one could argue that spatial autoregressions should be regarded as simple

interpolating devices, and hence that what is ultimately important about the models is their degree

of fitting to a given data set, rather than the correlation structure they imply. It is not our intention

here to enter these debates, but, given that spatial autoregressions (i) have important advantages

(alongside their disadvantages, of course) with respect to models parametrizing directly a covariance

matrix,1 and (ii) are so routinely used in spatial econometrics, it seems to us that a detailed study

of the correlations they imply on irregular lattices is much needed.

Large part of our analysis is conducted with the help of some formal graph theory. The use of

a graph theoretic terminology is common to discuss how CAR models are constructed (essentially

because of the Hammersley-Clifford theorem, which characterizes the class of random fields that are

Markovian with respect to a given graph; Besag, 1974), but not to discuss the correlation properties

of CAR and SAR models. There are several advantages to adopting a graph theoretic perspective

in our analysis. Firstly, a graph endows the set of observational units with a metric that allows

to develop a simple interpretation of the correlation structure of the one-parameter, or first-order,

models. Secondly, graph theory is helpful to clarify differences among different ways of constructing

multi-parameter models. Thirdly, graph theory provides a convenient language to discuss what

exactly is meant by regularities or symmetries in the spatial configuration of the observational units

and what their consequences on the properties of the models are.

The rest of the paper is organized as follows. Section 2 is devoted to the study of the correlation

structure of the one-parameter models, denoted by CAR(1) and SAR(1) models. The focus here is

on describing properties of the models that should be of interest to practitioners. This is done not

only by deriving formal results, but also by discussing less formally some general characteristics of

the models, and by examining some examples. We will find it convenient to first analyze CAR(1)

1For instance, spatial autoregressions are exponential families with low-dimensional sufficient statistic (see below),

they have a clear conditional independence structure, and they constitute a relatively simple framework for inference.
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models, and then extend the results to SAR(1) models. In Section 3 we first consider more briefly

possible extensions to multi-parameter models, which are less popular in econometric applications,

and then we discuss some issues concerning the parameterization of the models. In Section 4 the

special features of spatial autoregressive models on graphs exhibiting some regularities or symmetries

are discussed. In particular, we give conditions on the structure of the underlying graphs for two

pairs of variables to be equally correlated. This leads, among other things, to the statement of the

restrictive conditions required for the models to be homoskedastic or stationary (in a sense to be

defined). Section 5 concludes. All proofs are relegated to the Appendix.

2 One-Parameter Models

In this section we study the correlation properties of one-parameter, or first-order, spatial autore-

gressions on arbitrary configurations of observational units. We first introduce the models. Then,

in Section 2.1 we review some graph theoretic notions that are necessary for our analysis. Such

notions are used in Sections 2.2 and 2.3 to study the correlation properties of, respectively, CAR(1)

and SAR(1) models.

Consider a fixed and finite set of n observational units, for instance the set of regions of a country.

For convenience, we fix an arbitrary ordering of the units, i.e. an arbitrary labelling of the n units

by the first n positive integers. CAR(1) and SAR(1) models are families of distributions for a vector

y = (y1, ..., yn)
0 ∈ Rn, where yi is the random variable associated to the i-th observational unit. We

consider only zero-mean models, because our focus is on the correlation structure of the models.

Both models are specified on the basis of an n × n (spatial) weights matrix W (later, we will

remove the bar above W to denote a weights matrix in a normalized model). The matrix W is

a fixed matrix chosen to reflect a priori information on relations among the n observations (see,

e.g., Cressie, 1993). For instance, the entries W i,j may be taken to be a certain function of some

distance, deemed to be relevant for the phenomenon under study, between the i-th and the j-th

observational units. Usually a weights matrix is sparse, which, in the example just mentioned,

means that W i,j = 0 if the distance between i and j is larger than some threshold.

Let L be a known n × n diagonal matrix with positive diagonal entries. A CAR(1) model is

specified through the n conditional distributions

yi | {yj : j 6= i} ∼ N

⎛⎝ρ
nX
j=1

W i,jyj , τ
2Li,i

⎞⎠ , i = 1, 2, ..., n, (1)

where τ2 > 0 and ρ are functionally independent unknown parameters. Provided that (I−ρW )−1L

is symmetric and positive definite (hereafter abbreviated to p.d.), the n conditional distributions in

(1) yield the joint distribution

y ∼ Nn

¡
0, τ2(I − ρW )−1L

¢
(2)
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(see Besag, 1974). Here and throughout Nv(·, ·) denotes the v-variate Gaussian distribution, the
subscript being dropped in the univariate case.

In a SAR(1) model the distributions of the random variables in y are specified simultaneously,

rather than conditionally, through the stochastic equation

y = ρWy + ε,

where ε ∼ Nn(0, σ
2V ), V being a known n× n diagonal matrix with positive diagonal entries, and

τ2 > 0 and ρ are functionally independent unknown parameters. Provided that I−ρW is invertible,

the resulting joint distribution is

y ∼ Nn

³
0, σ2(I − ρW )−1V (I − ρW

0
)−1
´
. (3)

The same notation is used for ρ and W in CAR(1) and SAR(1) models only for convenience.

Note that SAR models can be readily extended to any non-Gaussian distribution with finite sec-

ond moments. This is not the case for CAR(1) models, because of the compatibility conditions

that n univariate conditional distributions must satisfy in order to produce a valid n-variate joint

distribution (see Besag, 1974).

In this paper, a weights matrix is assumed to satisfy the following conditions:

(i) W i,i = 0, for i = 1, ..., n;

(ii) W i,j = 0 if and only if W j,i = 0, for i, j = 1, ..., n;

(iii) W is irreducible;

(iv) W is (entrywise) nonnegative.

Assumptions (i) and (ii) are necessary for specification (1) to be valid (observe that (ii) is implied

by the stronger requirement that (I−ρW )−1L is symmetric). As it is usually the case in applications,

they are also maintained for SAR(1) models. Note that the symmetry of the zero entries ofW entails

that time series (unilateral) autoregressive models are not in the class of SAR models considered

here. Also, assumption (ii) implies that, for the purpose of studying the correlation structure of

models (2) and (3),W can be assumed to be irreducible (see, e.g., Gantmacher, 1974) without loss of

generality. This is because ifW were symmetric and reducible, then there would exist a permutation

of its index set bringing it, and hence the covariance matrices of a CAR(1) or SAR(1) model, to

block diagonal form, with the consequence that the models could be decomposed into the product

of at least two models. Assumption (iv) is not required by the definition of the models, but is

virtually always satisfied in empirical applications of spatial autoregressions and has the important

theoretical advantage of making the Perron-Frobenius theorem for nonnegative irreducible matrices

(e.g., Gantmacher, 1974) available to derive information about the spectral properties of weights

matrices.

Recall that our objective is to study the correlation structure of the models. Since the correlation

matrix of a multivariate normal vector y is invariant to transformations y → Ty, where T a diagonal

matrix with positive diagonal entries, it follows that there is no loss of generality in assuming

4



L = V = I (just take T = L−1/2 for a CAR(1) model and T = V −1/2 for a SAR(1) model). This

is indeed convenient for our analysis, and therefore, from now on and unless otherwise specified, by

CAR(1) model we mean the family of distributions

Nn

³
0, τ2 (I − ρW )−1

´
, (4)

for some W (linked to the W in (2) through the relation W = L−1/2WL1/2), and by SAR(1) model

we mean the family

Nn

¡
0, σ2[(I − ρW 0) (I − ρW )]−1

¢
, (5)

for some W (linked to the W in (3) through the relation W = V −1/2WV 1/2). Obviously, the

matrices W must satisfy the same assumptions (i)-(iv) as the matrices W . Note that expression

(4) implies that, for the purpose of studying the correlation structure of a CAR(1) model, W can

always be assumed to be symmetric. The fact that this is not the case for a SAR(1) model will have

important bearings on our analysis.

2.1 Graph Theoretic Notions

In order to study the properties of a CAR(1) or SAR(1) model, it is natural to consider the graph

with adjacency matrix W . This is the graph having as vertices the observational units, as edges the

pairs (i, j) such that Wi,j > 0, and with each edge (i, j) weighted with the entry Wi,j . Often, we

will find it more convenient to work with the graph with adjacency matrix ρW , which is the same

graph as above, except for a rescaling by ρ of the weights of all edges. For graph theoretic details,

we refer to Cvetkovíc et al. (1980).

Assumptions (i)-(iv) on W have implications on the type of graphs considered in this paper.

More specifically, and according to standard terminology, assumption (i) implies that such graphs

do not contain loops; assumption (ii) that they are undirected (a graph is said to be directed if its

edges are defined as ordered pairs of vertices, undirected if they are defined as unordered pairs of

vertices); assumption (iii) that they are connected (Cvetkovíc et al., 1980, p. 18), as long as ρ 6= 0.
If they form an edge, two vertices of a graph are called neighbors. The degree of a vertex i is the

number of neighbors of i and is denoted by δi. A graph is said to be degree-regular if all its vertices

have the same degree.

A walk of length r, or r-walk, from i to j is a sequence of vertices (i, l1, ..., lr−1, j) such that two

consecutive vertices in the sequence form an edge. A walk is said to be closed if i = j. A path is

a walk in which all the vertices are distinct. A cycle is a closed walk with all the vertices distinct

apart from the first and the last.

Given the notion of path, it is natural to define the distance d(i, j) between any two vertices i

and j of a graph as the length of the shortest path joining i and j. Note that, since our graphs are

undirected, d(i, j) = d(j, i), i, j = 1, ..., n. The largest distance between any two vertices of a graph

5



is called the diameter of the graph, to be denoted by ζ. The distance matrices Ah, for h = 0, 1, ..., ζ,

are the n × n matrices with entry (Ah)i,j equal to 1 if d(i, j) = h, to 0 otherwise, for each pair of

vertices i, j. Note that the distance matrices are disjoint symmetric (0, 1) matrices summing to a

matrix of all ones, that A0 = I and that A1–which we will usually denote simply by A–is the

binary version of the adjacency matrix W . In the special case of an unweighted graph, i.e., a graph

having all weights 0 or 1, W = A.

A graph theoretic notion that will be crucial in interpreting CAR and SAR models, is that of

weight of a walk.

Definition 2.1 The weight of a walk (i, l1, ..., lr−1, j) in a graph with adjacency matrix W is the

product Wi,l1Wl1,l2 ...Wlr−1,j of the weights of its steps.

Note that the effect of considering ρW , rather thanW , as adjacency matrix is simply to multiply

the weight of an r-walk by ρr. Clearly, one could define the weight of a walk differently (e.g., as the

sum, rather than the product, of the weights of its steps), but we shall see that Definition 2.1 is the

appropriate one for our purposes, because it implies a simple interpretation of the entries of powers

of an adjacency matrix W . More specifically, according to Definition 2.1, the entry

(W r)i,j =
nX

l1,...,lr−1=1

Wi,l1Wl2,l3 ...Wlr−1,j

represents the sum of the weights of all the r-walks from i to j. Note that if the graph is unweighted

(i.e., W = A), then (W r)i,j equals the number of r-walks from i to j.

The notion of bipartite graph (Cvetkovíc et al., 1980, p. 15) will also be critical to the under-

standing of some aspects of our analysis of spatial autoregressions.

Definition 2.2 A graph is said to be bipartite if its vertex set can be partitioned into two non-empty

disjoint sets V1 and V2 such that every edge of the graph joins one vertex in V1 with one vertex in

V2.

A necessary and sufficient condition that is useful to visually check for bipartiteness is the absence

of cycles of odd length. This suggests that “regular” graphs such as those of a rectangular lattice

(in any dimension) are bipartite, whereas “irregular” graphs such as those of geographical maps of

regions are generally not bipartite. Another necessary and sufficient condition for bipartiteness is

given in the next lemma, which follows immediately from Theorem 3.4 of Cvetkovíc et al. (1980).

We denote by λmax the spectral radius (i.e., the largest modulus of the eigenvalues) of W . By the

Perron-Frobenius theorem, λmax is a (algebraically and geometrically) simple eigenvalue of W .

Lemma 2.3 A graph with adjacency matrix W is bipartite if and only if −λmax is an eigenvalue
of W .

6



2.2 CAR(1) Model

In this section we study correlation properties of CAR(1) models on general graphs. Section 2.2.1

derives a graph theoretic interpretation of the covariances and correlations implied by a CAR(1)

model, and sets the scene for the subsequent analysis. The graph theoretic interpretation follows

almost straightforwardly from associating to a CAR(1) model the graph with adjacency matrix ρW ,

and is useful both to provide an explanation of some known properties of the models and to derive

some new properties. In Section 2.2.2 we study properties of CAR(1) models that are guaranteed

to hold exactly for any W only as ρ → 0. For a fixed W , such properties generally hold, at least

approximately, in large neighborhoods of ρ = 0. Section 2.2.3 discusses some differences in the

correlation structure of CAR(1) models between the case ρ > 0 and the case ρ < 0.

The covariance matrix τ2(I − ρW )−1 of a CAR(1) model is denoted by Σ(ρ), and the corre-

sponding correlation matrix by Σ∗(ρ). For convenience, we fix τ2 = 1. Recall from above that, in a

CAR(1) model, W is assumed to be symmetric. We denote the (real) eigenvalues ofW by λ1, ..., λn,

labelled in non-decreasing order of magnitude. Note that λ1 < 0 (because tr(W ) =
Pn

i=1 λi = 0,

and at least one eigenvalue does not vanish, since W is irreducible) and that λn = λmax ≥ |λ1|
by the Perron-Frobenius theorem, with equality if and only if the underlying graph is bipartite by

Lemma 2.3. It follows that, in order for Σ(ρ) to be p.d., it is necessary that λ−11 < ρ < λ−1max. Of

course, if desired, one can always reparametrize the model so that the right (resp. left) extreme of

the parameter space is 1, by rescaling W by λ−1max (resp. λ
−1
1 ).

We will pay particular attention to the two most popular versions of CAR(1) models used in

applications. Given the (0− 1) first distance matrix A of a graph, these are constructed by taking

W = A and W = D−1/2AD−1/2, where D is a diagonal matrix containing the row sums of A,

i.e. D(i, i) = δi, i = 1, ..., n. Observe that, before normalization to L = I, the latter specification

corresponds to W = D−1A, a so-called row-standardized weights matrix, and L = D−1. The models

with W = A and with W = D−1/2AD−1/2 are equivalent (up to a reparametrization) if and only if

the underlying graph is degree-regular (i.e., D is a scalar multiple of I).

2.2.1 Graph Theoretic Interpretation

When |ρ| < λ−1max, the covariance matrix of a CAR(1) model can be represented as Σ(ρ) =P∞
r=0 (ρW )

r, with W 0 = I (e.g., Horn and Johnson, 1985, p. 301). Thus, for any i, j = 1, ..., n,

Σi,j(ρ) =
∞X

r=d(i,j)

ρr(W r)i,j , (6)

where we have used the fact that (W r)i,j = 0 if r < d(i, j), which follows immediately from the

interpretation of powers of adjacency matrices (see Section 2.1). Based on the same interpretation,

representation (6) asserts that the covariance Σi,j(ρ) is equal to the total weight of all walks between

i and j in the graph underlying a CAR(1) model, or, equivalently:

7



Property 2.4 For |ρ| < λ−1max, any walk from i to j in the graph with adjacency matrix ρW con-

tributes its weight to Σi,j(ρ).

We stress that all walks from i to j, and not only the paths or some other sequences of vertices,

contribute to Σi,j(ρ). This makes clear that the covariance between any two variables yi and yj in

a CAR(1) model is determined by the global connectivity properties of the graph with adjacency

matrix ρW , and not only by the properties of the graph in some neighborhood of i and j. Observe

that the inequality |ρ| < λ−1max defines a (proper) subset of the interval (λ
−1
1 , λ−1max) where Σ(ρ) is

p.d., unless the graph underlying W is bipartite, by Lemma 2.3 and the fact that |λ1| ≤ λmax.

The interpretation of the covariance structure of CAR(1) models suggested by Property 2.4 is

particularly simple when W = A or W = D−1/2AD−1/2, because of the simple forms of the weights

of walks implied by such specifications. When W = A, any r-walk has weight ρr, and hence its

contribution to Σi,j(ρ) is strictly decreasing with r, for any fixed and non-zero |ρ| < λ−1max.
2 For

other specifications of W , the weight of an r-walk depends not only on r and ρ, but also on the

vertices that the walk visits. For instance, when W = D−1/2AD−1/2 a walk (i, l1, ..., lr−1, j) has

weight ρr/(δ1/2i δl1 ...δlr−1δ
1/2
j ), and hence, for fixed and non-zero r and ρ, its contribution to Σi,j(ρ)

is large if the vertices visited by the walk have a small number of neighbors.3 To further clarify

the distinction between a model with W = A and a model with W = D−1/2AD−1/2, consider the

contribution of an edge (i.e. a 1-walk) (i, j) to the covariance between yi and yj . Such a contribution

is the same for each pair of neighbors i, j when W = A (namely equal to ρ), whereas it is inversely

related to δi and δj whenW = D−1/2AD−1/2 (namely equal to ρ/(δiδj)1/2). This suggests that the

latter specification may be particularly appropriate for applications where spatial autocorrelation is

determined by a limited resource, such as, for example, transportation amongst geographical units.

Remark 2.5 It is easily seen that, for anyW , the powersW 0, ...,W s−1, where s denotes the number

of distinct eigenvalues of W , are linearly independent. Hence, for any W and any i, j = 1, ..., n,

representation (6) can be rewritten as

Σi,j(ρ) =
s−1X

r=d(i,j)

fW,r(ρ)(W
r)i,j , (7)

for some functions fW,0(ρ), ...., fW,s−1(ρ) from (−λ−1max, λ−1max) to R (details are omitted for brevity,
but these are rational functions and can be derived straightforwardly for any W ). Representation

(7) asserts that Σi,j(ρ) can be interpreted in terms of contributions coming only from the walks

between i and j of length between d(i, j) and s − 1. The maximum length s − 1 that needs to be
considered is at least as large as the diameter ξ of the graph (this follows from a simple extension

of a classic result for unweighted graphs, e.g., Theorem 3.13 of Cvetkovíc et al., 1980). While (7) is

2This is because λmax ≥ min
i=1,...,n

n
j=1Ai,j ≥ 1. For the first inequality see, e.g., Gantmacher (1974), p. 63; the

second one is an obvious consequence of the symmetry and irreducibility of W .
3Note that D−1/2AD−1/2 is similar to the row-stochastic matrix D−1A, and hence has λmax = 1. Thus the

contribution ρr/(δ
1/2
i δi1 ...δir−1δ

1/2
j ) of an r-walk tends to decrease as r increases (for any |ρ| < λ−1max = 1).

8



very interesting from the point of view of interpreting the covariances implied by CAR(1) models

(because it shows that one does not need to consider an infinite number of walks), in the rest of the

section we find it more convenient to work with the less parsimonious (6), because in that case the

coefficients in front of the entries (W r)i,j are independent of W .

So far, our discussion has been in terms of the covariances Σi,j(ρ). However, since CAR(1) models

are well known to be generally heteroskedastic (cf. Proposition 4.4 below), the correlations Σ∗i,j(ρ)

provide a more appropriate measure of the strength of association between pairs of variables. Before

moving to analyze explicitly the correlations Σ∗i,j(ρ), it is worth noting that the normalization L = I

(see expression (4), and recall that such a normalization does not affect the correlation structure

of the models) entails that the models are approximately homoskedastic when ρ is close to 0, and

hence the simple properties and interpretations of the covariances Σi,j(ρ) deduced from (6) can be

extended, at least approximately, to the correlations Σ∗i,j(ρ) when |ρ| is sufficiently small.
The analog of representation (6) for Σ∗i,j(ρ) is given in the following lemma.

Lemma 2.6 For |ρ| < λ−1max and any i, j = 1, ..., n,

Σ∗i,j(ρ) =
∞X

r=d(i,j)

[(W r)i,j − cr(i, j)]ρ
r, (8)

with

cr(i, j) =
rX

s=2

(W r−s)i,j
X αk

k2!...ks!

sY
t=2

Ã
tX

u=0

(W t−u)i,i(W
u)j,j

!kt

, (9)

where k =
Ps

t=2 kt, αk =
k−1Y
l=0

¡
−12 − l

¢
, and the second summation in (9) is over all (s− 1)-tuples

of non-negative integers (k2, ..., ks) such that
Ps

t=2 tkt = s.

Although the expression for Σ∗i,j(ρ) resulting from Lemma 2.6 is rather involved, some interesting

properties of the correlation structure of a CAR(1) model may be deduced very simply from it.

Observe that every term on the right hand side of (9) contains one entry (W r−s)i,j , for some

s = 2, ..., r. Since (W q)i,j = 0 for any nonnegative integer q < d(i, j), it follows that cr(i, j) = 0 if

r ≤ d(i, j) + 1. Hence, from (8) we obtain that, for any i, j = 1, ..., n,

Σ∗i,j(ρ) = (W
d(i,j))i,jρ

d(i,j) + (W d(i,j)+1)i,jρ
d(i,j)+1 +O(ρd(i,j)+2), (10)

or, equivalently, dr

dρr Σ
∗
i,j(ρ)

¯̄
ρ=0

= r!(W r)i,j , for r ≤ d(i, j)+1. Expression (10) makes clear that the

correlations Σ∗i,j(ρ) of a CAR(1) model are determined by the properties of the underlying graph in

a way that is similar to, but more complicated than, the way the covariances Σi,j(ρ) are determined

(see representation (6)), especially for small ρ. In particular, it is worth emphasizing the following

interpretation of the entries of a weights matrix.
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Property 2.7 In a CAR(1) model Wi,j represents the first derivative of Σ∗i,j(ρ) at ρ = 0, for any

i, j = 1, ..., n.

Property 2.7 asserts that, when fixing an entry Wi,j , the user of a CAR(1) model is controlling

directly d
dρ Σ

∗
i,j(ρ)

¯̄
ρ=0
, and hence the behavior of Σ∗i,j(ρ) for |ρ| sufficiently close to 0. As discussed

above, for larger |ρ| Σ∗i,j(ρ) is determined not only by Wi,j but by the whole structure of W . In

particular, if the modeler sets Wi,j > Wl,m for two pairs of units i, j and l,m, then this implies¯̄
Σ∗i,j(ρ)

¯̄
>
¯̄̄
Σ∗l,m(ρ)

¯̄̄
for |ρ| small enough, but not necessarily over the whole parameter space of the

model (both when Wl,m > 0 and when Wl,m = 0). We will return to this point in Section 2.2.2.

The effect of the term cr(i, j), which constitutes the difference between representations (6) and

(8), can also be deduced from Lemma 2.6. On expanding multinomially all terms with exponents

kt in (9), it becomes clear that, for any W and any i, j = 1, ..., n, cr(i, j) can be expressed asPn
l1,...,lr−1=1

c(i, l1, ..., lr−1, j), for some coefficients c(i, l1, ..., lr−1, j) that do not vanish if and only

if (i, l1, ..., lr−1, j) is a walk (in the graph with adjacency matrix ρW ) with at least one repetition

of i or j. Recalling Property 2.4, representation (8) then implies that, for |ρ| < λ−1max, any walk

from i to j that does not contain repetitions of i or j contributes its weight to Σ∗i,j(ρ), whereas any

walk from i to j that contains at least a repetition of i or j gives a contribution that is smaller

than its weight. We refrain from analyzing the implications of expression (9) further, because the

interpretation of Σi,j(ρ) and Σ∗i,j(ρ) developed so far is all we need for the analysis in the following

sections.

We now illustrate how the adoption of a graph theoretic perspective contributes to the under-

standing of the correlation structure of CAR(1) models, by referring to two well-known properties,

or “peculiarities”, of the models.

Property 2.8 (e.g., Besag and Kooperberg, 1995, p. 735) Two correlations Σ∗i,j(ρ) and Σ
∗
l,m(ρ),

for two distinct pairs of neighbors (i, j) and (l,m), are generally different functions of ρ.

Property 2.9 (e.g., Wall, 2004, p. 320-1) In a CAR(1) model, the ranking of pairs of neighbors

in terms of their degree of correlation may vary across the parameter space.

These (and other) properties of spatial autoregressions have been regarded as undesirable or

counterintuitive in recent literature (for instance in Besag and Kooperberg, 1995, and in Wall, 2004).

Our perspective here is that they are natural consequences of the assumption that covariances are

determined by weighting all walks between pairs of vertices on a graph. We believe that such an

assumption might not be unrealistic in some applications. For the sake of simplicity, the following

discussion of Properties 2.8 and 2.9 is based on representations (6), but it is clear that, by a slight

modification of the same arguments, it could also be based on (8).

Starting from Property 2.8, observe that, according to representation (6), Σi,j(ρ) = Σl,m(ρ) for

any |ρ| < λ−1max if and only if the total weight of the r-walks from i to j is the same as the total

weight of the r-walks from l to m, for each r = 1, 2, ... Given any two pairs of neighbors i, j and

10



l,m, such a condition is not met on general graphs, firstly because different pairs of neighbors are

generally not linked by the same number of r-walks, for any r = 1, 2, ..., (unless strong regularities

are imposed on the graph; see Section 4), and secondly because the weights of r-walks between

different pairs of neighbors are generally different (because they depend on the vertices visited by

the r-walk, except for the simple weight function implied by W = A).

Moving to Property 2.9, this asserts that two correlations Σ∗i,j(ρ) and Σ
∗
l,m(ρ), regarded as

functions of ρ and for two fixed pairs of neighbors i, j and l,m, may intersect. Using representation

(6), write Σi,j(ρ)−Σl,m(ρ) as
P∞

r=1[(W
r)i,j−(W r)l,m]ρ

r. Then, it is clear that Σi,j(ρ) and Σl,m(ρ)

may intersect for some ρ because the terms (W r)i,j − (W r)l,m need not have the same sign for each

r. When W = A, this simply amounts to saying that there may be more walks of a certain length

between i and j than between l and m, but less walks of another length. It should be noted that

Property 2.9, as Property 2.8, holds not only for neighbors but also for units at graph distance

larger than one.

2.2.2 Properties When ρ is Close to 0

In this section we discuss some correlation properties of CAR(1) models that are guaranteed to

hold for any W , provided that ρ is sufficiently small. We also investigate in some detail how the

specification of W affects such properties when ρ is not necessarily small.

The following result makes clear how the correlations between variables observed at pairs of

neighbors depend on the local characteristics of the underlying graph, when ρ is close to 0, and when

a (0− 1) weights matrix (W = A, and hence W = A) or its row-standardized version (W = D−1A,

and hence W = D−1/2AD−1/2) are used. Recall that δi denotes the number of neighbors of i, and

that the correlations Σ∗i,j(ρ) are invariant to the normalization leading from W to W .

Proposition 2.10 Let i, j and l,m be any two pairs of neighbors. For any W = A in a CAR(1)

model, there exists a real interval (a, b) containing 0 such that, for any ρ ∈ (a, b), if the number of
common neighbors of i and j is not less than the number of common neighbors of l and m, then¯̄
Σ∗i,j(ρ)

¯̄
≥
¯̄̄
Σ∗l,m(ρ)

¯̄̄
. For any W = D−1/2AD−1/2 in a CAR(1) model, there exists a real interval

(a, b) containing 0 such that, for any ρ ∈ (a, b), if δiδj ≤ δlδm, then
¯̄
Σ∗i,j(ρ)

¯̄
≥
¯̄̄
Σ∗l,m(ρ)

¯̄̄
.

Remark 2.11 The interval (a, b) in Proposition 2.10 depends on W and on i, j, l,m. In particular,

it strongly depends on the degree of regularity ofW (see Section 4). For instance, (a, b) = (λ−11 , λ−1n ),

for any i, j, l,m, if the graph underlying a CAR(1) model is distance-regular (because in such a case

Σ∗i,j(ρ) depends on i, j only through d(i, j), see Theorem 4.7 below). Conversely, (a, b) can be very

small when a CAR(1) model is defined on a very irregular graph.

In general, on typical planar graphs,4 both the number of common neighbors of i and j and the

4A graph is said to be planar if it can be drawn on a plane without edges crossing. For instance, the graphs of

geographical maps with two units being neighbors if they share a boundary are planar.
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product δiδj are large for pairs of neighbors (i, j) in the central region of the graph, and small for

pairs of neighbors close to the borders of the graph. Taking the previous sentence as our definition

of “typical planar graphs”, Proposition 2.10 suggests the following fundamental difference between

using a (0− 1) weights matrix or its row-standardized version.

Property 2.12 For CAR(1) models defined on typical planar graphs, and for |ρ| sufficiently small,
if W = A (resp. W = D−1/2AD−1/2), then pairs of neighbors in the central region of the graph

tend to be the most (resp. least) correlated pairs of neighbors, whereas pairs of neighbors close to

the borders of the graph tend to be the least (resp. most) correlated.

In fact, Property 2.12 generally holds over most of the interval (0, λ−1max) (the case ρ < 0 is more

delicate, as we will see below). We illustrate by referring to the map of the US, also used in Wall

(2004) (see in particular her Figure 5).

Example 2.13 Consider the graph having as vertices the 48 continental US states, and let two

states be neighbors if and only if they share a common boundary (or a common corner). Figure 1(b)

shows that whenW = A and unless ρ is very close to λ−1max (λ
−1
max
∼= .185), Maine and New Hampshire

are the most correlated contiguous states, whereas Missouri and Tennessee are the least correlated

contiguous states. (The non-smooth behavior of the correlation between variables observed at Maine

and New Hampshire will be explained in Remark 2.18.) On the contrary, Figure 1(c) shows that

when W = D−1/2AD−1/2 is used, Missouri and Tennessee is one of the most correlated pairs of

neighbors, whereas Maine and New Hampshire is the least correlated pair of neighbors.

Figure 1 about here

We now turn to analyze the behavior of Σ∗i,j(ρ), for fixed ρ, as the distance d(i, j) changes. The

next result establishes that, when ρ is sufficiently close to 0, Σ∗i,j(ρ) is decreasing (in absolute value)

with d(i, j).

Proposition 2.14 In a CAR(1) model, for any W and for any i, j, l,m = 1, ..., n, there exists a

real interval (a, b) containing 0 such that, for any ρ ∈ (a, b), if d(i, j) < d(l,m), then
¯̄
Σ∗i,j(ρ)

¯̄
>¯̄̄

Σ∗l,m(ρ)
¯̄̄
.

As Proposition 2.10, Proposition 2.14 need not hold over the whole parameter space of a CAR(1)

model. That is, for |ρ| sufficiently large, pairs of variables observed at two units l,m may be more

correlated than variables observed at two units i, j that are closer together according to the graph

distance d(·, ·). The reason for such a (at first sight counterintuitive) behavior lies again in the fact
that Σ∗i,j(ρ) is not determined by d(i, j), but by the total weight of the walks from i to j. More

specifically, for some r ≥ d(l,m), the total weight ρr(W r)i,j of the r-walks between i and j need

not be larger than the total weight ρr(W r)l,m of the r-walks between l and m. This is particularly
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clear when W = A (in which case the entries of W r represent the number of r-walks between two

vertices), because on a given graph and for units i, j, l,m such that d(i, j) < d(l,m), there may be

less r-walks between i and j than between l and m.

The above argument also suggests that for a fixed matrix A, a CAR(1) model with W =

D−1/2AD−1/2 is closer to satisfying, at least approximately, the property in Proposition 2.14 in

large intervals (a, b) than a CAR(1) model with W = A. This is because the weight of an r-walk

implied by the specification W = D−1/2AD−1/2 is inversely related to the product of the degrees of

the vertices visited (see Section 2.2.1), and hence tends to decay quicker with r than the weight ρr of

an r-walk implied by W = A. To illustrate, let us go back to the example of the US map. In Figure

2(b) we display the correlations implied by a CAR(1) model with W = A and when ρ ≥ 0, for a
pair of neighbors (dark line; Maine and New Hampshire) and for a pair of non-neighbors (light line;

Oklahoma and Nebraska). Observe that for large ρ the correlation between the two non-neighbors

can be much larger than the correlation between the two neighbors. This behavior is attenuated,

but not eliminated, when W = D−1/2AD−1/2. For such a choice of W , Figure 2(d) shows one case

in which, for some positive values of ρ, the correlation between a pair of non-neighbors (light line;

Vermont and Connecticut) can be larger than the correlation between a pair of neighbors (dark line;

Missouri and Tennessee). Note that, for any ρ > 0, the correlation between non-neighbors is never

much larger than the correlation between neighbors; when W = D−1/2AD−1/2 on the US map, this

is true over all pairs of contiguous and non-contiguous states.

Figure 2 about here

The fact that non-neighbors may be more correlated than neighbors should not necessarily be

regarded as a drawback of CAR(1) models. This is particularly true when the models are defined

on irregular lattices, as we next argue.

In the case of regular lattices, it is usually convenient to interpret a CAR(1) model for a finite-

dimensional vector y as a restriction of a process defined on an infinite lattice. In such a case it would

certainly be desirable that the finite model satisfies any kind of regularity or stationarity assumed

on the infinite process. This requires edge corrections, which, in general, are difficult to perform (see

Besag and Kooperberg, 1995, Section 2.3) and involve the loss of the original Markov property (e.g.,

Champagnat, Idier and Goussard, 1998). “Edge effects” definitely represent drawbacks of spatial

autoregressive models.

Conversely, when the models are defined on irregular lattices, it is hard to see why one would

want to impose that the correlations between neighbors are non-increasing (in absolute value) in

the graph distance. In the case of the US map, for example, if two non-contiguous states share

more low-order neighbors than two contiguous states, then it may be appropriate to allow for the

correlation between the two non-contiguous states to be greater than the correlation between the

two contiguous states. As discussed above, this is precisely what CAR models do, because the
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correlation between two variables in a CAR model is determined by weighting all the walks between

the two corresponding observational units (for instance, the number of neighbors shared by two

units is equal to the number of 2-walks between the two units).

To summarize the discussion prompted by Proposition 2.14, the user of CAR(1) models should

be aware that setting Wi,j > 0 (i.e., imposing that i and j are neighbors) does not necessarily imply

that yi and yj are more correlated than a pair yl and ym such that Wl,m > 0. If the modeler wants

to impose that pair of neighbors that are close together (in some metric) are more correlated, then

models that parametrize directly a covariance matrix are preferable to CAR(1) models.

2.2.3 Positive versus Negative Autocorrelation

This section discusses differences in the correlation structure of CAR(1) models between the case

ρ > 0 and the case ρ < 0. We start from the following simple result.

Proposition 2.15 In a CAR(1) model, for any W and any i, j = 1, ..., n, (a) if ρ > 0 then

Σ∗i,j(ρ) > 0; (b) there exists a left neighborhood of ρ = 0 where Σ∗i,j(ρ) < 0 if d (i, j) is odd and

Σ∗i,j(ρ) > 0 if d (i, j) is even.

When ρ < 0, Proposition 2.15 determines the sign of Σ∗i,j(ρ) only for small |ρ|. In fact, for a
fixed W and for fixed i and j, Σ∗i,j(ρ) need not have the same sign over the interval (λ

−1
1 , 0).5 This

is because when d (i, j) is odd (resp. even), the total positive contribution
P∞

r=2,r even ρ
r(W r)i,j of

the walks of even lengths to Σi,j(ρ) may, for some negative ρ, become larger (resp. smaller) than

the total negative contribution
P∞

r=2,r odd ρ
r(W r)i,j of the walks of odd lengths.

The different behavior of the correlations when ρ > 0 and when ρ < 0 can be regarded as

an intrinsic characteristic of spatial autoregressions on general graphs. This is in contrast with

time series autoregressions, whose correlations functions are either odd or even functions of the

autocorrelation parameter. Obviously, if the graph underlying a CAR(1) model is not bipartite,

then a correlation Σ∗i,j(ρ) cannot be either an odd or an even function of ρ, because, by Lemma

2.3, it is defined on a non-symmetric interval. Conversely, when the graph is bipartite, we have the

following neat result.

Proposition 2.16 For any CAR(1) model on a bipartite graph, Σ∗i,j(ρ), i, j = 1, ..., n, is: (a) an

odd function if d(i, j) is odd; (b) an even function if d(i, j) is even.

The next proposition is concerned with the behavior of the correlations at the two extremes of

the parameter space of a CAR(1) model. It is probably not surprising, at this stage of the analysis,

that for a CAR(1) model on a non-bipartite graph, the limits of the autocorrelations as ρ → λ−1max

(from the left) and as ρ → λ−11 (from the right) can be very different. We denote by m1 the

multiplicity of λ1, and by q1 an eigenvector of W associated to λ1. Unless the graph underlying a

CAR(1) model satisfies particular symmetries, generally m1 = 1 (see, for instance, Biggs, 1993).
5This property is also pointed out by Wall (2004), p. 321, where it is regarded as “counterintuitive”.
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Proposition 2.17 In a CAR(1) model, for any W and any i, j = 1, ..., n, (a) as ρ → λ−1max,

Σ∗i,j(ρ)→ 1; (b) as ρ→ λ−11 ,

Σ∗i,j(ρ)→

⎧⎪⎪⎨⎪⎪⎩
1 if m1 = 1 and (q1)i(q1)j > 0,

−1 if m1 = 1 and (q1)i(q1)j < 0,

0 if m1 = 1 and either (q1)i = 0 or (q1)j = 0,

(11)

whereas Σ∗i,j(ρ) can go to any number in [−1, 1] otherwise (i.e., if m1 = 1 and (q1)i = (q1)j = 0, or

if m1 > 1).

Remark 2.18 Generally, the limits in Proposition 2.17 are informative about the behavior of the

correlations in a rather large neighborhood of λ−1max and λ−11 , because the correlations go to such

limits slowly. There are cases, however, in which this is not so. Consider, for instance, two neighbors

i, j when W is a (0 − 1) matrix A. By Property 2.7, the derivative of Σ∗i,j(ρ) at ρ = 0 is 1. If the

number of short walks between i and j is very small (compared to number of longer walks), then the

coefficients of ρr in (8) for small r are very small (compared to the coefficients for larger r). Since

λ−1max is typically much smaller than 1 (in particular λ
−1
max ≤ 1/ min

i=1,..,n

Pn
j=1Ai,j ; Gantmacher, 1974,

p. 63), it follows that Σ∗i,j(ρ) has to increase quickly close to λ−1max in order to approach the limit

1 as ρ → λ−1max. This is precisely what happens in Figure 1(b) for the correlations between Maine

and New Hampshire. The same argument also suggests that a similar non-smooth behavior (i) can

only occur when CAR(1) models are defined on very irregular graphs, (ii) is very unlikely to occur

when W = D−1/2AD−1/2.

Remark 2.19 Proposition 2.17 (a) relies on the assumption of nonnegativity and irreducibility of

W . Without such an assumption, Σ∗i,j(ρ) could go, as ρ→ λ−1max, to any value in [−1, 1].

Remark 2.20 Let Ei be the eigenspace ofW associated to λi, for i = 1, ..., n. An alternative proof

of Proposition 2.17 is worth recording, because it shows how the limiting correlations, as ρ→ λ−1max

and as ρ→ λ−11 , are determined by the position of, respectively, En and E1 in the sample space Rn.

Since, as ρ goes to λ−1max (resp. λ
−1
1 ), the precision matrix I − ρW of a CAR(1) model tends to a

singular matrix, it is easily shown that CAR(1) models tend to improper distributions supported on

En (resp. E1). By the Perron-Frobenius theorem, En is the span of a vector with positive entries,

which implies that, as ρ → λ−1max, all pairs of variables yi and yj are perfectly correlated. On the

other hand as ρ→ λ−11 a pair of variables yi and yj need not be perfectly autocorrelated, since their

distribution is supported on a subspace, E1, that may have dimension larger than 1, or may be

1-dimensional but spanned by a vector q1 with some zero entries (and then the particular cases in

(11) admit a straightforward geometric interpretation; e.g., if (q1)i = 0 then yj must be uncorrelated

with any variable yj such that (q1)j 6= 0).
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Remark 2.21 The combination of Propositions 2.15 and 2.17 implies that, when m1 = 1, Σ∗i,j(ρ)

changes sign over the interval (0, λ−11 ) if d(i, j) is odd (resp. even) and (q1)i(q1)j > 0 (resp.

(q1)i(q1)j < 0).

Remark 2.22 When W = D−1/2AD−1/2 (which has λmax = 1, since it is similar to the row-

stochastic matrix D−1A), Proposition 2.17 (a) is a simple consequence of the celebrated Matrix-

Tree-Theorem for the Laplacian matrix D −A of an unweighted connected graph; Cvetkovíc et al.

(1980), p. 38. The limiting distributions with singular precision matrix D − A are known in the

literature as intrinsic autoregressions, and are often used as (improper) priors in Bayesian analysis;

e.g., Besag and Kooperberg (1995).

We end this section with a comment on the interpretation of ρ as as a measure of autocorrelation

in the joint distribution of y.6 Obviously, when it is negative, in general ρ cannot be interpreted

as an autocorrelation coefficient, because, as observed above, the correlations implied by a CAR(1)

model need not be monotonic over the interval (λ−11 , 0). Conversely, when ρ > 0 it appears that all

correlations are always monotonic in ρ, and hence ρ can be interpreted as a measure of autocorre-

lation. This is indicated in the following conjecture, to which we have not been able to find either

a counterexample or a proof.

Conjecture 2.23 In a CAR(1) model, for any W and for any i, j = 1, ..., n, Σ∗i,j(ρ) is strictly

increasing in ρ over the interval (0, λ−1max).

Note that, by representation (6), the conjecture holds trivially for the covariances Σi,j(ρ), but

due to the fact that the models are generally heteroskedastic, this is not very informative.

2.3 SAR(1) Model

The aim of this section is to show that essentially all of the properties of CAR(1) models discussed

above extend to SAR(1) models. We will repeat the main steps of Section 2.2, presenting the

necessary modifications.

For the purpose of studying their correlation structure, one important difference between CAR(1)

models and SAR(1) models is that in the latter case we have to allow the possibility of nonsymmetric

W (see Section 2). Setting for convenience σ2 = 1, we denote the covariance matrix [(I − ρW 0)(I −
ρW )]−1 of a SAR(1) model by Γ(ρ), and the corresponding correlation matrix by Γ∗(ρ). For Γ(ρ)

to be p.d., ρ must be different from the reciprocal of the non-zero real eigenvalues of W . Usually,

for various reasons, it is desirable to restrict the parameter space much further. For instance, one

6We stress that we are here referring to the joint distribution of y. The relation between ρ and an autocorrelation

coefficient in the conditional distribution of two variables observed at two neighbors, given all remaining variables,

is well-known and, because of the way CAR models are constructed, much neater. In fact, denoting by ρij be the

partial correlation coefficient between yi and yj , for two neighbors i and j, it is easily seen that ρ = ρij [Wi,jWj,i]−1/2

(e.g., Cressie and Chan, 1989, eq. 3.14).
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may want to work with a connected parameter space and hence impose ρ < λ−1max, and, if W admits

at least a (real) negative eigenvalue, ρ > λ−1min, with λmin denoting the minimum negative eigenvalue

of W .7

Let Zr =
Pr

k=0W
k(W 0)r−k. When |ρ| < λ−1max, Γ(ρ) admits the representation

Γ(ρ) =
∞X
r=0

ρrW r
∞X
r=0

ρr(W 0)r =
∞X
r=0

ρrZr. (12)

Observe that, for any i, j = 1, ..., n, (Zr)i,j = 0 if r < d(i, j). (This is because any two units

i, j = 1, ..., n cannot be joined by a walk of length less than d(i, j), and hence (W k)i,j = 0, for any

k = 0, ..., r, if r < d(i, j).) It follows that (12) can be rewritten as

Γi,j(ρ) =
∞X

r=d(i,j)

ρr(Zr)i,j , (13)

for any i, j = 1, ..., n. Comparing (13) and (6), it is clear that the matrices Zr play, for the correlation

structure of a SAR(1) model, a role similar to that played by the powers W r for the correlation

structure of a CAR(1) model. In particular, ρr(Zr)i,j may be interpreted as the contribution to

Γi,j(ρ) of an r-walk from i to j. Note that CAR(1) and SAR(1) are directly comparable only if W

is symmetric (because W must be symmetric in a CAR(1) model). In this case, Zr equals simply

(r + 1)W r, which clearly indicates that, for a fixed (symmetric) W , the correlation structures of

CAR(1) and SAR(1) depend on W in a very similar way (more specifically, the contribution of a

certain r-walk to Γi,j(ρ) is just r + 1 times its contribution to Σi,j(ρ)).

Given a graph with first distance matrix A, the two most popular specifications of SAR(1) models

in applications are obtained by setting V = I, and W equal to A or D−1A.8 In these two cases,

the relationship between the covariances implied by the models and the structure of the underlying

graph is particularly simple. WhenW = A, Γi,j(ρ) is determined by weighting the number (Ar)i,j of

r-walks from i to j, precisely as in a CAR(1) model constructed with the same W (see the previous

section), but with different functions of ρ, namely ρr in the CAR(1) model and (r + 1)ρr in the

SAR(1) model.9 When W = D−1A, it is easily seen that the contribution ρr(Zr)i,j of an r-walk

(i0, i1, ..., ir) to Γi0,ir(ρ) depends not only on ρ and r, but also on the vertices visited by the walk

(more specifically, such a contribution equals ρr
Pr

l=0 δil/
Qr

l=0 δil).

7Virtually all weights matrices used in applications have at least a negative eigenvalue. In particular, since

tr[W ] = 0 by assumption and λmax > 0 by the Perron-Frobenius theorem, this is certainly the case if W is (similar

to) a symmetric matrix. An important example is when W or W is equal to a row-standardized matrix D−1A

(with symmetric A), because then W can be written as V −1/2D−1/2D−1/2AD−1/2D1/2V 1/2, which is similar to

the symmetric matrix D−1/2AD−1/2.
8Contrary to what happens to L and W in a CAR model (because of the constraint L−1W = W

0
L−1), the

specification of V in a SAR(1) model does not restrict the specification of W . In other words, the correlation

structure of a SAR(1) model is determined not only by the choice of W but also, independently, by that of V .
9For a fixed ρ < 2/3, the function (r + 1)ρr, r = 1, 2, ..., is decreasing in r. Except for very special cases, the

inequality ρ < 2/3 is always satisfied when A is a (0− 1) irreducible matrix, due to the restriction ρ < λ−1max.
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We now turn to consider explicitly the correlations Γ∗i,j(ρ). Given representation (13), it is

straightforward to check that Lemma 2.6 extends to a SAR(1) model, provided that Σ∗i,j(ρ) is

replaced by Γ∗i,j(ρ) and W r by Zr. Thus Γ∗i,j(ρ), for any i, j = 1, ..., n, admits the simple expansion

Γ∗i,j(ρ) = Zd(i,j)(i, j)ρ
d(i,j) + Zd(i,j)+1(i, j)ρ

d(i,j)+1 +O(ρd(i,j)+2). (14)

Correspondingly, we have:

Property 2.24 In a SAR(1) model Wi,j +Wj,i represents the first derivative of Γ∗i,j(ρ) at ρ = 0,

for any i, j = 1, ..., n.

Thus, the specification of the entriesWi,j andWj,i has a direct effect on Γ∗i,j(ρ) when |ρ| is small.
As ρ gets larger, Γ∗i,j(ρ) is determined by the whole structure of W , as illustrated above. We stress

that setting Wi,j +Wj,i > Wl,m +Wm,l, for any i, j, l,m = 1, ..., n, guarantees
¯̄
Γ∗i,j(ρ)

¯̄
>
¯̄̄
Γ∗l,m(ρ)

¯̄̄
for sufficiently small ρ, but not necessarily for any ρ.

It should now be clear that not only Lemma but also all other formal results obtained in the

previous section for CAR(1) models can be extended to SAR(1) models with little effort. In par-

ticular, Propositions 2.10,10 2.14 and 2.15 can be shown to hold for any SAR(1) model simply by

replacing W r with Zr in the proofs. The counterparts of Propositions 2.16 and 2.17 require some

modifications in the proofs, and are therefore stated here (and proved in the appendix).

Proposition 2.25 For any SAR(1) model on a bipartite graph, Γ∗i,j(ρ), i, j = 1, ..., n, is: (a) an

odd function if d(i, j) is odd; (b) an even function if d(i, j) is even.

Note that if the graph underlying a SAR(1) model is not bipartite, then the (real) eigenvalue

−λmax does not belong to the spectrum of W by Lemma 2.3, which implies that no correlation

Γ∗i,j(ρ) can be either an odd or an even function over the parameter space of a SAR(1) model.

Let us now assume that W has at least one negative eigenvalue (see footnote 7, and note that

if W did not have a negative eigenvalue one could set λmin = −∞, and then Proposition 2.26
below would require only a minor modification, omitted for the sake of brevity). Denoting by mmin

the multiplicity of λmin (with generally mmin = 1, unless the graph underlying the SAR(1) model

satisfies particular symmetries; e.g., Biggs, 1993), and by qmin an eigenvector associated to λmin, we

have:

Proposition 2.26 In a SAR(1) model, for any W and any i, j = 1, ..., n, (a) as ρ → λ−1max,

10The SAR(1) models for which Proposition 2.10 holds are the model with W = A, corresponding to Model 1,

and the model with W = D−1/2AD−1/2, corresponding to Model 2. The latter model is obtained from specifying

W = D−1A and V = D−1; this is used for instance in Wall (2004), p. 316. Extensions to other SAR(1) models, e.g.,

the model with W = D−1A, are straightforward.
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Γ∗i,j(ρ)→ 1; (b) as ρ→ λ−1min,

Γ∗i,j(ρ)→

⎧⎪⎪⎨⎪⎪⎩
1 if mmin = 1 and (qmin)i(qmin)j > 0,

−1 if mmin = 1 and (qmin)i(qmin)j < 0,

0 if mmin = 1 and either (qmin)i = 0 or (qmin)j = 0,

(15)

whereas Γ∗i,j(ρ) can go to any number in [−1, 1] otherwise (i.e., if m1 = 1 and (qmin)i = (qmin)j = 0,

or if m1 > 1).

Some numerical investigation of properties connected to Proposition 2.26 can be found in Kele-

jian and Robinson (1995). As Proposition 2.17, Proposition 2.26 relies on both nonnegativity and

irreducibility ofW (cf. Remark 2.19). For instance, it would not hold ifW were equal to the matrix

with entries Wi,j = 1 if i − j = 1, Wi,j = 0 otherwise, which is reducible (and does not satisfy

condition (ii) of Section 2). Such a matrix is the one that, if it were used in a SAR(1) model, would

produce an AR(1) model (with random start-up y1 ∼ N(0, σ2), not covariance stationary).

For comparison, the counterparts of Figures 1 and 2 for SAR(1) models with W = A and

W = D−1A are given in Figures 3 and 4.11

Figures 3 and 4 about here

As in the case of a CAR(1) model (see Conjecture 2.23), the correlations Γ∗i,j(ρ) seem to be

increasing in ρ over the interval (0, λ−1max) for any W and any i, j = 1, .., n, implying that, when it

belongs to such an interval, the parameter ρ can be thought of as a measure of spatial correlation.

The correlations do not need to be monotonic in ρ when ρ < 0, or when ρ > λ−1max (which is one of

the reasons why it is desirable to restrict the parameter space of SAR(1) models to ρ < λ−1max).

3 Multi-Parameter Models

This section is concerned with the extension of one-parameter spatial autoregressions to multi—

parameter models. In Section 3.1, we discuss various possibilities of performing such an extension.

In Section 3.2, we analyze multi-parameter models from the perspective of the theory of exponential

families.

Extending the parameter space of the one-parameter models can be regarded as a natural way

to try to overcome some of the limitations of the one-parameter models, yet maintaining some of

their advantages. After all, it would be surprising if a family of distributions indexed by only two

parameters (ρ plus the parameter τ2 or σ2 scaling the covariance matrix) were sufficiently rich

to successfully represent the interaction structure of variables observed over possibly very irregu-

lar lattices! In addition, the introduction of further parameters may help to compensate for the

uncertainty associated to the specification of a weights matrix.
11We do not report the plots obtained for W = D−1/2AD−1/2 (see footnote 10), but we remark that they are very

similar to those for W = D−1A.
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It is convenient to introduce the models by referring to the following general formulation of CAR

and SAR models (normalized, as in Section 2, to include the hypothesis of i.i.d. data). Given n×n

matrices C and S depending on known constants and unknown parameters (and such that I −C is

symmetric and p.d., and I − S is nonsingular), a CAR model is specified through

yi | {yj : j 6= i} ∼ N

⎛⎝ nX
j=1

Ci,jyj , τ
2

⎞⎠ , i = 1, 2, ..., n, (16)

yielding

Nn

³
0, τ2 (I − C)−1

´
, (17)

and a SAR model is

Nn

¡
0, σ2[(I − S0) (I − S)]−1

¢
. (18)

Then, when C and S have the linear structure
Pp

h=1 ρhWh, p > 1, we call the modelsmulti-parameter

CAR or SAR models, denoted by CAR(p) and SAR(p). Here, ρ1, ..., ρp are functionally independent

unknown parameters and W1, ...,Wp are (known) non-zero linearly independent weights matrices

assumed to satisfy assumptions (i), (ii) and (iv) of Section 2. Assumption (iii) is now imposed onPp
h=1Wh. Observe that, due to the employed normalization, W1, ...,Wp must be symmetric in a

CAR(p) model.

3.1 Different Specifications

Given a graph with adjacency matrix W , there are two fundamentally different approaches to

constructing multi-parameter autoregressions, the distinction being based on whether or not such

models maintain the same conditional independence structure as the one-parameter model with

weights matrix W . We recall that when y ∼ Nn (μ,Σ) and for any i 6= j, yi and yj are conditionally

independent given all the remaining random variables in y if and only if (Σ−1)i,j = 0 (i.e., (Wh)i,j =

0, for each h = 1, ..., p, in the case of a CAR(p) model). For details on the conditional independence

structure of a Gaussian model, see Speed and Kiiveri (1986).

The first approach, which maintains the original conditional independence structure, consists

of splitting the edge set of the graph in p > 1 disjoint subsets, say E1, ..., Ep, and associating a

parameter to each subset, so that C (or S) is parametrized as
Pp

h=1 ρhWh with (Wh)i,j 6= 0 if and
only if (i, j) ∈ Eh. For example, on a rectangular two-dimensional grid different parameters may be

associated to horizontal and vertical edges, to account for potential anisotropy along the two main

axes. On irregular lattices, reasonable criteria for splitting the edge set will vary from application

to application. We are not aware of work addressing this issue, but a criterion that might prove to

be useful to classify edges is their closeness to the borders of the graph, as could be measured, for

instance, by the number (A2)i,j of common neighbors of two vertices i and j forming an edge.
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In the second approach to extending spatial autoregressions based on a single weights matrixW ,

additional parameters are associated to different degrees of neighborhood. We refer to such multi-

parameter autoregressions as higher-order CAR or SAR models. Contrary to the time series case,

in a spatial setting there is no obvious way of constructing higher-order autoregressions. The use of

a graph theoretic perspective helps to clarify the differences among the following three alternatives

that have been proposed in the literature (recall that Ah denotes the h-th power of A, whereas Ah

denoted a h-th distance matrix, with A1 = A):

(a) Wh = Ah, h = 1, ..., p (e.g., Huang, 1984);

(b) Wh = Ah, h = 1, ..., p (e.g., Anselin and Smirnov, 1996);

(c)Wh = Ph, h = 1, ..., p, Ph being the matrices with (i, j)-th entry equal to the number of paths

of length h between i and j (Blommestein and Koper, 1997).

As for specification (a), the matrices Ah generally have non-zero elements on their diagonals

(for instance, Ah(i, i) > 0, for any even h and any i = 1, ..., n), which requires modifications in

our definition of CAR(p) models (see Martin, 1990). The fact that the entries of the powers Ah

count the numbers of h-walks between two vertices, including the ones that are not paths, has been

seen as a problem by some authors (see Blommestein and Koper, 1997, and references therein).12

Specification (b) is in a sense the most natural in the graph metric induced by the graph distance

d(·, ·). The matrices Ah are just the binary version of the matrices Ph used in (c). Note that

specification (c) is always different from (a), because A is symmetric (and it is not the zero matrix)

and hence cannot be (similar to) a triangular matrix (if A were a triangular matrix, for instance

representing temporal unilateral interaction, then we would have Ph = Ah, for each h). It is worth

remarking (a), (b) and (c) imply the same conditional independence structure, both for CAR(p)

and for SAR(p) models. Specifically, two variables yi and yj in a CAR(p) (resp., SAR(p)) model

are conditionally independent (given all the remaining variables) if and only if d(i, j) > p (resp.,

d(i, j) > 2p).

Regardless of how multi-parameter models are constructed, it is clear that the dependence be-

tween the characteristics of the weights matrices and the correlation properties of the models is

more complicated than in one-parameter models. Nevertheless, extensions of the results and inter-

pretations given in Section 2 are possible. In the rest of this section, we present the main steps

necessary for such extensions, but, for the sake of brevity, we leave details to the reader.

Essentially, what is needed for the analysis of multi-parameter models is to generalize the con-

cept of weight of a walk to the case where p different adjacency matrices are available. Denote

by eh(i, j) an edge in the graph with adjacency matrix ρhWh, for any h = 1, ..., p. For given

W1, ...,Wp, we define a p-variate r-walk from i to j as an alternating sequence of vertices and edges

[i, e
h1
(i, l1), l1, eh2 (l1, l2), l2, ...lr−1, ehr (lr−1, j), j], for some h1, ..., hr = 1, ..., p. Similarly to Defini-

tion 2.1, we define the weight of a p-variate r-walk as the product of the weights of its steps, that

12 It should be noted, however, that the fact that the matrices Ah, h = 1, ..., p, commute has a number of advantages

for the analysis of the models.
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is, ρh1Wh1(i, l1)ρh2Wh2(l1, l2).... For simplicity, let us restrict attention to the case of symmetric

weights matrices. Observe that, when ρ1, ..., ρp are such that the eigenvalues of
Pp

h=1 ρhWh are all

smaller than one in absolute value, a covariance matrix of the form

Ω = σ2

Ã
I −

pX
h=1

ρhWh

!−q
,

(q = 1 for a CAR(p) model, q = 2 for a SAR(p) model) admits the representation

Ω = σ2
∞X
r=0

µ
r + q − 1

r

¶Ã pX
h=1

ρhWh

!r

. (19)

Then, on expanding all r-th powers in (19) (with care, because the multinomial theorem can be

used unless the W ’s commute), the following generalization of Property 2.4 becomes clear:

Property 3.1 Let y follow a CAR(p) model with weights matrices W1, ...,Wp. For ρ1, ..., ρp such

that all eigenvalues of
Pp

h=1 ρhWh are smaller than one in absolute value, any p-variate walk from

i to j contributes its weight to cov(yi, yj).

By expression (19), the contribution of any p-variate r-walk in a SAR(p) model with symmetric

weights matrices equals r + 1 times its weight (if the Wh’s are not symmetric modifications similar

to those in Section 2.3 are necessary).

It is also possible to obtain an interpretation of the entries of the matrices W1, ...,Wp similar

to that of Properties 2.7 and 2.24. For instance, letting Σ∗p be the correlation matrix of a CAR(p)

model it is easily shown that

(Wh)i,j =
∂(Σ∗p)i,j

∂ρh

¯̄̄̄
ρ1=....=ρp=0

.

Property 3.1 is useful, among other things, to understand some differences in the way correlations

are formed in the tree specifications (a), (b), (c) of higher-order models.13 We illustrate with a simple

example.

Example 3.2 In Figure 5 a planar configuration of observational units is given together with a

corresponding graph, where two vertices are joined by an edge if the corresponding units are con-

tiguous. Consider specifications (a), (b) and (c) for a SAR(2) model on this graph (for (a) we

impose that the diagonal elements of W2 = A2 are zero). Then the first few terms in the expansion

of cov(y3, y6) are, using (19),

(a) 18ρ1ρ2 + 12ρ
2
2 + 12ρ

3
1 + 48ρ

2
1ρ2 + 140ρ1ρ

2
2 + 120ρ

3
2 + 20ρ

4
1;

(b) 12ρ1ρ2 + 12ρ
3
1 + 16ρ

2
1ρ2 + 20ρ1ρ

2
2 + 20ρ

4
1; (20)

(c) 18ρ1ρ2 + 12ρ
3
1 + 16ρ

2
1ρ2 + 60ρ1ρ

2
2 + 20ρ

4
1.

13Of course, this is not to say that the choice of specification should be based only on the correlations it implies.

Other criteria, say based on the data or on computational considerations, may be more relevant in applications.
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By a multivariate extension of (14), these are also the first few terms in the expansion of the

correlation corr(y3, y6). Using the notions developed above, all coefficients in (20) can be inter-

preted, which allows to clarify how the structure of the underlying graph affects the shape of

the correlations implied by different SAR(2). For instance, the coefficient of ρ22 (corresponding to

(r!)−1 ∂2corr(y3, y6)/∂ρ
2
2

¯̄
ρ1=ρ2=0

= 3W 2
2 ) equals r + 1 times the total weight of the 2-variate r-

walks from i to j composed only by steps in the graph with adjacency matrix W2, with r = 2.

Such a total weight is 0 for specification (b) and (c) (because there are no 2-variate 2-walks join-

ing 3 and 6 when W2 = A2 or W2 = P2), and is 4 for specification (a) (4 being given by the

two walks [3, e2(3, 2), 2, e2(2, 6), 6] and [3, e2(3, 5), 5, e2(5, 6), 6] having weight 1 each, and the walk

[3, e2(3, 4), 4, e2(4, 6), 6] having weight 2).

Figure 5 about here

3.2 Spatial Autoregressions as Exponential Families

The choice of the parametrization of the matrices C and S in (17) and (18) obviously determines

how the correlation structure of the models depend on the parameters. Parameterizations other

than
Pp

h=1 ρhWh are certainly possible, but are rarely considered in the spatial econometric liter-

ature, and are not considered in this paper. A strong reason for restricting attention to a linear

parametrization of C and S is that this is the only parametrization (up to a diffeomorphism) such

that the models are exponential families (see Efron, 1978, Amari, 1990, Kass and Vos, 1997). Recog-

nizing that CAR(p) and SAR(p) models are exponential families is important not only because of

the many nice statistical properties satisfied by such families, but also because it emphasizes a

crucial difference between conditional and simultaneous models (see Proposition 3.3 below), and it

reveals an interesting consequence of using highly structured weights matrices in SAR(p) models

(see Proposition 3.5 below).

We briefly remind the reader that a family of densities is said to be an exponential family if its

elements are representable as

pdf(y; θ) = exp

(
kX

h=1

ηh(θ)sh(y)− κ(θ)

)
b(y), (21)

with respect to some dominating measure on the sample space. Assuming that k is the smallest

integer such that (21) holds, (s1(y), ..., sk(y))0 is the minimal sufficient statistic for the parameter θ.

The parameter η = (η1(θ), ..., ηk(θ))
0 is called the canonical parameter and the canonical parameter

space Ω ⊆ Rk is the set of canonical parameters such that the integral of exp{
Pk

h=1 ηh(θ)sh(y) −
κ(θ)} is finite. Subject to weak regularity conditions, an exponential family is said to be full if for
each η ∈ Ω there exists a density pdf(y; θ) in the family, curved otherwise. If the family is full and,
in addition, Ω is an open subset of Rk, then the exponential family is said to be regular.

Calling a matrix full if it does not contain any zero entries, we have:
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Proposition 3.3 (a) Any CAR(p) model is a regular exponential family. (b) A SAR(p) model is

generally a curved exponential family. For a SAR(p) model to be a regular exponential family, the

matrix I −
Pp

h=1 ρhWh must be full.

The term “generally” in the statement of Proposition 3.3 is intentionally vague. More details

can be found in the proof of Proposition 3.3 and in Proposition 3.5 below, but the important point

here is that, in typical applications of SAR(p) models, I−
Pp

h=1 ρhWh is not full and hence SAR(p)

models are curved. In particular, a SAR(1) model is certainly curved if W has at least one zero

off-diagonal entry (or, equivalently, the underlying graph is not complete).14 We remark that the

essential difference between CAR(p) and SAR(p) models leading to Proposition 3.3 is that in a

CAR(p) model the inverse of the covariance matrix–the precision matrix–lies in a vector space of

dimension equal to the number (p+1) of parameters, whereas it generally lies in a higher-dimensional

space in the case of a SAR(p) model. A very informative discussion, from a time series perspective,

of the properties of Gaussian models with precision matrix having linear structure can be found in

Anderson (1971), Chapter 6.

The necessary condition in part (b) of Proposition 3.3 is by no means sufficient. Indeed, for a

SAR(p) model to be a regular exponential family,
Pp

h=1 ρhWh must not only be full, but must also

have a very special structure. This is particularly transparent in the special case when all weight

matrices Wh are symmetric, and can be proved by referring to the concept of a quadratic subspace

of symmetric matrices, first introduced by Seely (1971) and subsequently extensively used in the

statistical literature on variance components. We denote by L(n) the vector space of all n× n real

symmetric matrices.

Definition 3.4 A subspace Q of L(n) is a quadratic subspace if Q ∈ Q⇒ Q2 ∈ Q.

Letting Ψp denote the subspace of L(n) spanned by the matrices W0,W1...,Wp, we have:

Proposition 3.5 A SAR(p) model with symmetric weights matrices W1, ...,Wp is a curved expo-

nential family, except when Ψp is a quadratic subspace, in which case it is a regular exponential

family.

A quadratic subspace is a highly structured set of matrices. We will see in the next section that,

in order to obtain a quadratic subspace, the spatial configuration of the observational units must

satisfy a very high level of regularity, and a specific number of weights matrices must be used.

Remark 3.6 Proposition 3.5 gives a necessary and sufficient condition for the conditional and the

simultaneous approaches to the specification of autoregressive models to be equivalent, because the

14A circular AR(1) model is a regular exponential model but does not constitute a counterexample to Proposition

3.3 (b), because the matrix W necessary to write it as a SAR(1) model would not satisfy assumption (ii) of Section

2.
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covariance matrices of CAR(p) and SAR(p) models (constructed with the same matricesW1, ...,Wp)

belong to the same subspace Ψp if and only if Ψp is a quadratic subspace.

The practical importance of Propositions 3.3 and 3.5 lies in the fact that statistical curvature

has well-known consequences on the properties of inferential procedures (e.g., Amari, 1990, Kass

and Vos, 1997). For instance, any efficient estimator in the context of a curved exponential family

involves a loss of information which should somehow be recovered, typically by conditioning on

an approximately ancillary statistic.15 As far as hypothesis testing is concerned, it is well known

that large statistical curvature is generally associated to poor performance of tests in exponential

families; for example, this has been shown formally for locally most powerful tests in one-parameter

exponential families (e.g., Efron, 1978, Kallenberg, 1981). In the particular case of CAR(1) and

SAR(1) models curvature should therefore play an important role in determining the power of tests

of spatial autocorrelation. The simplest observation along these lines is that the Moran test for

spatial autocorrelation (Moran, 1950) is uniformly most powerful in the class of similar (or invariant,

with respect to a suitable group of transformations on the sample space) tests of ρ = 0 against the

alternative of a (pure) CAR(1) model (which has zero curvature), for any W , but generally (and

certainly ifW has at least one zero off-diagonal entry, by Proposition 3.3) not against the alternative

of a SAR(1) model (for details, we refer to Martellosio, 2006). The dependence of differential

geometric measures of curvature, such as the Efron curvature (see Efron, 1978, and Amari, 1990),

on W and ρ could certainly be studied, but this goes beyond the scope of the present paper.

We close this section by remarking that the implications of statistical curvature become even

more serious when the mean of the models, instead of being zero, is parametrized as a regression

function Xβ, because–as it is easily seen by writing out their density–this makes CAR(p) models

curved (unless the column space of X is spanned by a set of linearly independent eigenvectors of

W ), and introduces further curvature in SAR(p) models (in the sense that it increases the dimension

of a minimal sufficient statistic, with respect to the dimension of the parameter space).

4 Symmetries and Regularities

In this section we study properties of CAR(p) and SAR(p) models when the underlying graphs satisfy

some symmetries (in a group theoretic sense) or some regularities (in a combinatorial sense). The

results derived here, contrary to those obtained in Section 2, are probably not directly useful to the

applied spatial econometrician, who typically faces data coming from very irregular configurations.16

However, as we shall see, they are crucial to understand the connection between the second-order

15Finding suitable approximately ancillary statistics may be difficult in practice. In fact, to the best of our knowl-

edge, no attempts to “recover information” have been made so far in the context of spatial autoregressive models.

Future research in this area may prove fruitful.
16Of course, regular spatial configurations such as uniform grids are relevant in simulation experiments; e.g., Conley

and Molinari (2006).
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properties of spatial autoregressions and the structural properties of the underlying graphs.

For the sake of simplicity, in this section we focus on the models constructed by using the first

p distance matrices of a graph as weights matrices, that is, according to specification (b) of Section

3. We refer to such models simply as CAR( p) and SAR( p) models on a graph.

An automorphism of a graph G with vertex set V (G) and edge set E(G) is a permutation g

on V (G) preserving adjacency (and non-adjacency), i.e. such that (i, j) ∈ E(G) if and only if

(g(i), g(j)) ∈ E(G), for any i, j ∈ V (G), where g(i) denotes the action of g on i; Cvetkovíc et al.

(1980), Biggs (1993). The set of the automorphisms of a graph G, which is obviously a subgroup

of the symmetric group of degree n, will be denoted by Aut(G). The n × n permutation matrix

representing a permutation g will be denoted by Pg. Note that the action of Aut(G) on V (G) induces

naturally an action on E(G) as well. Evidently, the covariance matrix of any CAR(p) or SAR(p)

model on a graph G, denoted by Υ, is invariant under Aut(G), in the sense that PgΥP 0g = Υ for

each g ∈ Aut(G).17 Hence, Υi,j = Υl,m if there exists g ∈ Aut(G) such that g(i) = l and g(j) = m,

for i, j, l,m = 1, ..., n (the same property holding, of course, also for the correlations).

Example 4.1 When y follows a CAR(p) or SAR(p) model on the graph of Figure 5, cov(yi, y2) =

cov(yj , y5) for (i, j) = (2, 5), (1, 1), (3, 3), (4, 4), (6, 6).

Clearly, models defined on graphs having large automorphism group have simple covariance

properties. The following definition can be found, for instance, in Biggs (1993).

Definition 4.2 A graph G is said to be: vertex-transitive if Aut(G) acts transitively on V (G);

edge-transitive if Aut(G) acts transitively on E(G); distance-transitive if for all i, j, l,m ∈ E(G)

such that d(i, j) = d(l,m), there exists g ∈ Aut(G) such that g(i) = l and g(j) = m.

It follows from the definition that if G is vertex-transitive, then the variances Υi,i of any CAR(p)

or SAR(p) model on G do not depend on i, whereas if G is edge-transitive, then the covariances

Υi,j , with i and j neighbors, do not depend on the pair i, j. For the reader’s convenience, examples

of a small vertex transitive graph and of a small edge-transitive graph are given in Figure 6.

Figure 6 about here

It is of interest, at this point, to characterize a notion of stationarity for our models on arbitrary,

and finite, graphs. We do not distinguish between weak and strong stationarity, since in this paper

we are concerned only with Gaussian distributions.

17 In group theoretic terminology, this is equivalent to saying that Σ belongs to the commuting algebra (centralizer)

C(G) of the linear representation of Aut(G) in Rn. A basis of C(G) is given by the relationship matrices Rl, l = 1, ..., t,

of the orbits of the action of Aut(G) on V (G)×V (G); see James (1957) for an application of these notions in statistics.
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Definition 4.3 A model for the random vector y, whose index set is in a one to one correspondence

with the vertex set of a graph G, is said to be G-stationary if the covariance between any two variables

yi and yj depends on i, j only through d(i, j).

It should be noted that G-stationarity is a very strong, and in a sense impractical, property

of a statistical model. The reasons for introducing such a notion are: (i) it is the most natural

concept of stationarity on arbitrary graphs endowed with the metric induced by the distance d(·, ·);
(ii) it helps to clarify the relations between the correlation structure of spatial autoregressions and

the properties of the underlying graphs. We remark that, in the particular case of regular lattices,

weaker notions of stationarity are usually formulated in terms of invariances of the distribution with

respect to a set of translations, and are based on the Euclidean metric, rather than a graph metric.

A sufficient condition for CAR(p) or SAR(p) models on a graph G to be G-stationary is, evi-

dently, distance-transitivity of G. However, the condition is not necessary, in the same way as vertex-

transitivity is not necessary for the models to be homoskedastic. Interestingly, it turns out that

necessary and sufficient conditions for homoskedasticity and G-stationarity of CAR(p) or SAR(p)

models on a graph G are given in terms of combinatorial regularities, rather than group theoretic

symmetries, of G. To show that this is the case, we need to generalize the concepts of vertex-

transitivity and distance-transitivity to the concepts of walk-regularity and distance-regularity, re-

spectively.

A graph is said to be walk-regular if the number of closed r-walks starting at a vertex i does not

depend on i, for each r = 2, 3, ... (Godsil and McKay, 1980). Observe that walk-regularity implies

degree-regularity. When p = 1, we have:

Proposition 4.4 Any CAR(1) or SAR(1) model with W = A is homoskedastic if and only if G is

walk-regular.

Certainly, it is well-understood that CAR(1) and SAR(1) models are in general heteroskedastic.

The novelty of Proposition 4.4 lies in identifying precisely the circumstances, expressed in terms of

the structure of the underlying graphs, in which they are homoskedastic.

Remark 4.5 One might have expected degree-regularity of a graph to be sufficient for homoskedas-

ticity of CAR(1) and SAR(1) models withW = A. According to Proposition 4.4, this is not the case,

because a degree-regular graph needs not be walk-regular. However, from the proof of Proposition

4.4 it can be deduced that the variances of a model on a degree-regular graph are, in general, all

very similar, at least when ρ is not too large and the girth (i.e., the length of the shortest cycle) of

the graph is large. This is because, if G is a degree-regular graph with girth g, then (Ar)i,i does not

depend on i, for r = 0, ..., g − 1; see Fiol (1997), p. 12.

Remark 4.6 Proposition 4.4 does not, in general, extend to higher-order models on graphs (with

Wh = Ah, h = 1, ..., p). This is because walk-regularity does not necessarily imply that the powers of
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Ah, h ≥ 2, have constant diagonal (and hence, using the same notation as in the proof of Proposition
4.4, the variances

P∞
r=0 αr (

Pp
h=1 ρhAh)

r depend on i). In contrast, higher-order models with

Wh = Ah, h = 1, ..., p, are always homoskedastic when the underlying graph is walk-regular.

A graph is said to be distance-regular if the number of vertices at any given graph distances d1

from a vertex i and d2 from a vertex j only depends on d(i, j); see, e.g., Brouwer et al. (1989).

This class of graphs, which contains the class of distance-transitive graphs and is contained in the

class of walk-regular graphs, has attracted a great deal of attention in both the mathematical and

the statistical literature. The importance of distance-regular graphs to our treatment of spatial

autoregressions is emphasized by the next result.

Theorem 4.7 Any CAR(p) or SAR(p) model on a graph G is G-stationary if and only if G is

distance-regular.

The notion of distance-regular graph also enables us to further elucidate the relationship between

the curvature of a SAR(p) model and the regularities of the underlying graph (see Proposition 3.5).

Theorem 4.8 A SAR(p) model on a graph G is a regular exponential family if G is distance-regular

with diameter p, a curved exponential family otherwise.

Simple examples of distance-regular graphs are a complete graph (i.e., a graph where any two

vertices are neighbors), which has diameter 1, and a d-dimensional cube, which has diameter d. For

many other examples, see Brouwer et al. (1989).

Remark 4.9 Theorems 4.7 and Theorem 4.8 hold also for SAR(p) models constructed according to

specification (a) of Section 3 rather than (b) (or for models with covariance matrix
¡
I −

Pp
h=1 ρhA

h
¢−1

,

which are not CAR models because they cannot be decomposed as in (16), due to the fact that

generally (Ah)i,i 6= 0). This can be easily deduced from the proof of the theorems, because, when G

is distance-regular with diameter ξ, the matrices A0, A1, ..., Aξ span the same (Bose-Mesner) algebra

as A0, A1, ..., Aξ (Bannai and Ito, 1984).

5 Concluding Remarks

The purpose of this paper was to analyze the correlation structure of spatial autoregressions on

arbitrary graphs. We have provided an interpretation of how the correlations implied by CAR(1)

and SAR(1) models depend on the properties of the underlying graph. The basic observation is

that, when the random vector y is modeled as a CAR(1) or SAR(1) process, cov(yi, yj) can be

viewed as a sum of contributions coming from all walks between the observational units i to j,

with each contribution being the weight of a walk. We have shown that such an interpretation

helps to explain some properties and peculiarities of the models. Extensions to multi-parameter
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spatial autoregressions are more complicated, but can be based on the results pertaining the one—

parameter models. Our analysis has also shed some light on how different specifications of the

weights matrices affect the correlation properties of spatial autoregressions. This is important,

because the specification of weights matrices may be very difficult and uncertain when the models

are defined on irregular lattices. We have also studied the stronger properties enjoyed by the models

when the underlying graphs satisfy symmetries or regularities.

Some comments concerning the assumption of Gaussianity as the joint distribution of a spatial

process are in order. In particular, it is natural to ask how Gaussianity affects the interaction

structure of a process defined on a graph. The question is best answered in the context of Markov

random fields, of which CAR models are an example. A random field is said to be a pairwise inter-

action process if its log-density does not depend on the data through interaction terms yi1yi2 ...yim

of order m higher than two (for details, see Besag, 1974, or Section 6.4 of Cressie, 1993). Now, by

the Hammersley-Clifford theorem, Gaussianity implies that a Markov random field is a pairwise in-

teraction processes. But, again by the Hammersley-Clifford theorem, the same restriction is implied

by the absence in the graphs of cliques (i.e., sets of vertices which are all neighbors of each other) of

size greater than two. We therefore conclude that Gaussianity does not restrict (in the above sense)

the interaction structure of Markov random fields defined on graphs that do not contain cliques of

size greater than two, such as bipartite graphs (see Section 2.1). On the other hand, it may well

be possible that pairwise interaction is too restrictive for data observed over graphs with cliques of

size greater than two; see Besag and Tjelmeland (1998) and Lee et al. (2001). This is an interesting

aspect to consider in future work, since the graphs of irregular lattices do generally contain cliques

of size greater than two.

Finally, in this paper we have not discussed, if not very briefly, advantages and disadvantages

of CAR and SAR models, with respect to each other or with respect to alternative spatial models

(e.g., models that parametrize directly a covariance matrix). We hope these issues will receive more

attention in future econometric research.
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Appendix. Proofs

Proof of Lemma 2.6: Let the r-th derivative of a function f(x) be denoted by Drf(x), and

Drf(x) evaluated at ρ = 0 be denoted by Drf(0). Representation (8) is derived from the MacLaurin

expansion Σ∗i,j(ρ) =
P∞

r=0
1
r!D

rΣ∗i,j(0)ρ
r, by expressing each elementDrΣ∗i,j(0)/r! in terms of entries

of powers of W . This can be achieved as follows. For |ρ| < λ−1max and any i, j = 1, ..., n, write

Σ∗i,j(ρ) = Σi,j(ρ)η(v(ρ)), with η(z) = z−1/2 and v(ρ) = Σi,i(ρ)Σj,j(ρ). By Leibniz’s formula

1

r!
DrΣ∗i,j(0) =

rX
s=0

1

s!(r − s)!
Dr−sΣi,j(0)D

sη(v(0)). (22)

The term Dsη(v(0)) can be obtained by Faá di Bruno’s formula (e.g., Albramowitz and Stegun,

1979) as

Dsη(v(0)) =
X s!

k1!...ks!
(Dkη)(v(0))

sY
t=1

µ
Dtv(0)

t!

¶kt
, (23)

where k =
Ps

t=1 kt, the summation is over all s-tuples of non-negative integers (k1, ..., ks) such

that
Ps

t=1 tkt = s. We therefore need the terms (Dkη)(v(0)) (i.e., the k-th derivative of η(z)

evaluated at v(0)) andDtv(0)/t!. SinceDkη(z) = αkz
−1/2−k, with αk =

k−1Y
l=0

¡
−12 − l

¢
, and v(0) = 1,

(Dkη)(v(0)) = αk. From (6), we have

v(ρ) =
∞X

r,s=0

ρr+s(W r)i,i(W
r)j,j =

∞X
r=0

ρr
rX

u=0

(W r−u)i,i(W
u)j,j,

and hence

Dtv(0)

t!
=

tX
u=0

(W t−u)i,i(W
u)j,j .

Thus, since D1v(0) = 0, (23) yields Dsη(v(0)) = 0 if s = 1, and

Dsη(v(0)) =
X s!αk

k2!...ks!

sY
t=2

Ã
tX

u=0

(W t−u)i,i(W
u)j,j

!kt

, (24)

if s > 1, where
Ps

t=2 kt = k and the first summation is over all (s−1)-tuples of non-negative integers
(k2, ..., ks) such that

Ps
t=2 tkt = s. Substituting Dr−sΣi,j(0) = (r− s)!(W r−s)i,j and (24) into (22)

gives

1

r!
DrΣ∗i,j(0) = (W

r)i,j −
rX

s=2

(W r−s)i,j
X αk

k2!...ks!

sY
t=2

Ã
tX

u=0

(W t−u)i,i(W
u)j,j

!kt

,

which completes the proof of the lemma.

Proof of Proposition 2.10: When W = A, Wi,j = 1 and (W 2)i,j =
Pn

l1=1
Ai,l1Al2,j is equal

to the number of common neighbors of i and j, for any pair of neighbors i, j. On the other hand,

when W = D−1/2AD−1/2, Wi,j = (δiδj)
−1/2, for any pair of neigbors i, j. The proposition then

follows easily from expression (10).
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Proof of Proposition 2.14: Since (W d(i,j))i,j > 0 for any W and for any i, j = 1, ..., n,

expression (10) establishes that the larger d(i, j) is, the slower Σ∗i,j(ρ) goes to zero as ρ→ 0, proving

the desired result.

Proof of Proposition 2.15. Nonnegativity and irreducibility of W imply that at least one

term in (6) is positive when ρ > 0, proving the first part of the proposition. Representation (6) also

shows that if ρ < 0 and d(i, j) is odd (resp. even) then Σ∗i,j(ρ) < 0 (resp. Σ∗i,j(ρ) > 0) for small

enough ρ, since (W d(i,j))i,j > 0, for any W and any any i, j = 1, ..., n.

Proof of Proposition 2.16: If the graph underlying a CAR(1) model is bipartite, then λ1 =

λmax (because of Lemma 2.3 and the fact that |λ1| ≤ λmax by the Perron-Frobenius theorem), and

consequently representation (6) holds over the whole parameter space of the model. By the same

representation, Σi,j(ρ), for any |ρ| < λ−1max and any i, j = 1, ..., n, is an odd function if (W r)i,j = 0

for even r, whereas it an even function if (W r)i,j = 0 for odd r. We now show that when the

underlying graph is bipartite, (W r)i,j = 0 if r and d(i, j) have different parity. If (W r)i,j were

different from zero for r and d(i, j) with different parity, then there would be a closed walk of length

r + d, which would be odd. But this is impossible, because a closed walk of odd length always

contains a cycle of odd length, and a bipartite graph does not contain any cycles of odd length. We

can therefore conclude that Σi,j(ρ), i, j = 1, ..., n, is an odd function if d(i, j) is odd, whereas it is an

even function if d(i, j) is even. The proof is completed on noting that, under bipartiteness, Σi,i(ρ),

i = 1, ..., n, is an even function, since d(i, i) = 0.

Proof of Proposition 2.17: Consider the spectral decomposition W =
Pn

l=1 λlqlq
0
l, where ql

is an eigenvector ofW associated to λl. Then, (I−ρW )−1 =
Pn

l=1(1−ρλl)−1qlq0l. According to the
Perron-Frobenius theorem, λmax is a simple eigenvalue and qn can be taken to be entrywise positive.

It follows that the (eigenprojection) matrix qnq
0
n is entrywise positive, from which it is easily seen

that, as ρ→ λ−1max, Σ
∗
i,j(ρ)→ (qn)i(qn)j/[(qn)

2
i (qn)

2
j ]
1/2 = 1, for any i, j = 1, ..., n, proving the first

part of the proposition. Similarly, as ρ → λ−11 , Σ
∗
i,j(ρ) →

Pm1

l=1(ql)i(ql)j/[
Pm1

l=1(ql)
2
i

Pm1

l=1(ql)
2
j ]
1/2.

Depending on q, this limit can take any value in [−1, 1], and the particular cases in (11) are easily
established.

Proof of Proposition 2.25: From (12), write

Γi,j(ρ) =
∞X

r,s=0

(
ρr+s

nX
l=1

(W r)i,l(W
s)j,l

)
,

for |ρ| < λ−1max. If the graph underlying the SAR(1) model is bipartite, then no l exists such that

(W r)i,l(W
s)j,l > 0 for r + s and d(i, j) having different parity. This is because if such an l existed,

then there would be a closed walk of length d(i, j) + r + s, which would be odd, and hence the

graph could not bipartite, for a closed walk of odd length always contains a cycle of odd length.

The proposition then follows using the same arguments as in Proposition 2.16.

Proof of Proposition 2.26: Let η1, ..., ηn denote the eigenvalues of Γ(ρ) in non-decreasing

order, and let v1, ..., vn denote a set of orthonormal eigenvectors of Γ(ρ), with vl associated to ηl,
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l = 1, ..., n. Since W is nonnegative and irreducible, the matrix (I − ρW )−1 is entrywise positive

for any 0 < ρ < λ−1max (e.g., Gantmacher 1974, p. 69). It follows that, for any 0 < ρ < λ−1max, Γ(ρ) is

entrywise positive and hence, by Perron’s theorem (e.g., Horn and Johnson, 1985, Theorem 8.2.11),

that ηn is simple. Observe also that ηn is the only eigenvalue of Γ(ρ) that does not have a finite

limit as ρ→ λ−1max, because the eigenvalues of Γ(ρ) are continuous in ρ, and rank[(I −λ−1maxW
0
)(I −

λ−1maxW )] = rank[(I−λ−1maxW )] = n−1, for λmax is a simple eigenvalue ofW by the Perron-Frobenius

theorem. Next, observe that, as ρ→ λ−1max, vn → qn, where qn is an eigenvector of W associated to

λmax (because when ρ = λ−1max, Γ
−1(ρ) has an eigenvector qn corresponding to its smallest eigenvalue

0). Using the spectral decomposition
Pn

l=1 ηlvlv
0
l of Γ(ρ) in Γ

∗
i,j(ρ) = Γi,j(ρ)/(Γi,i(ρ)Γj,j(ρ))

1/2,

it is easily seen that as ρ → λ−1max, Γ
∗
i,j(ρ) → (vn)i(vn)j/[(vn)

2
i (vn)

2
j ]
1/2 = 1, for i, j = 1, ..., n,

establishing the first part of the proposition. Similarly to above, η1 is the only eigenvalue of Γ(ρ)

that does not have finite limit as ρ → λ−1min, because the eigenvalues of Γ(ρ) are continuous in ρ,

and rank[(I − λ−1minW
0
)(I − λ−1minW )] = rank[(I − λ−1minW )] = mmin. Then, as ρ→ λ−1min, Γ

∗
i,j(ρ)→Pmmin

l=1 (vl)i(vl)j/[
Pmmin

l=1 (vl)
2
i

Pmmin

l=1 (vl)
2
j ]
1/2. The particular cases in (15) follow easily from the

fact that when mmin = 1, v1 → qmin, because Γ−1(λ
−1
min) has an eigenvector q1 corresponding to its

smallest eigenvalue 0. In the remaining cases, the limit can take any value in [−1, 1], depending on
v1, ..., vmmin .

Proof of Proposition 3.3: Setting ρ0 = −1 and W0 = I, it is readily verified that a CAR

model is a family of densities (21) with ηh = ρh/(2τ
2) and sh(y) = y0L−1Why, for h = 0, 1, ..., p.

Since the matrices Wh are assumed to be linearly independent, the (p + 1)-dimensional statistic

s(y) is minimal sufficient. The canonical parameter space Ω is the set of parameters ηh such that

Σc,p = −(
Pp

h=0 ηhWh)
−1L is p.d. For any p and any W1, ...,Wp, |Σc,p| is a continuous function

of η0, ..., ηp, by the definition of determinant of a square matrix. Thus, |Σc,p| → |L| as
¡
η1, ..., ηp

¢
approaches the p-dimensional zero vector, with the consequence that there is always a non-empty

p-ball centered at the p-dimensional zero vector where Σc,p is p.d. That is, the parameter space of

the model is non-empty for any p and any choice of the matricesW1, ...,Wp. Continuity of |Σc,p| also
implies that Ω is open, which completes the proof of part (a) of the proposition. We now move to part

(b). It is easily seen that a SAR(p) model is embedded in a regular exponential family with sufficient

statistics y0Bh1,h2y, h1 = 0, 1, ..., p, h2 = 0, 1, ..., h1, where Bh1,h2 =W 0
h1
Wh2 +(1− δh1,h2)W

0
h2
Wh1 ,

δh1,h2 being the Kronecker delta, equal to 1 if h1 = h2, to 0 otherwise. Let∆p be the subspace (of the

vector space of all n×n real symmetric matrices) spanned by the matrices Bh1,h2 , for h1 = 0, 1, ..., p

and h2 = 0, 1, ..., h1. The dimension of ∆p, to be denoted by dim(∆p), is the dimension of a

minimal sufficient statistic in a SAR(p) model. Since the matrices Bh,0, h = 0, 1, ..., p, are linearly

independent (because the matrices Wh are linearly independent by assumption), dim(∆p) ≥ p+ 1,

and a SAR(p) model is a regular exponential family if dim(∆p) = p+1, a curved exponential family

if if dim(∆p) > p + 1 (see, e.g., Amari, 1990, p. 109, and note that openness of the canonical

parameter space follows by the same argument as the one used above for a CAR(p) model). To

complete the proof it remains to show that dim(∆p) > p + 1 if I −
Pp

h=1 ρhWh is not full. To
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see this, consider two units i∗, j∗ at distance 2 in the graph having adjacency matrix
Pp

h=1 ρhWh.

When I −
Pp

h=1 ρhWh is not full, existence of two such units is guaranteed by the assumption

of irreducibility of
Pp

h=1 ρhWh, which implies that the underlying graph is connected and n > 2.

Observe thatWh(i
∗, j∗) = 0, for any h = 1, ..., p, and that there exist some h∗1, h

∗
2 = 1, ..., p such that

W 0
h∗1
Wh∗2

(i∗, j∗) > 0. It follows, by assumption (ii) of Section 2, that Bh∗1,h
∗
2
is linearly independent

of Bh,0, for any h = 0, 1, ..., p, which implies dim(∆p) > p+ 1.

Proof of Proposition 3.5: Let Γp denote the covariance matrix of a SAR(p) model. The

matrix Γ−1p is the square of a matrix belonging to the (p+ 1)-dimensional subspace Ψp. Therefore,

if Ψp is a quadratic subspace, Γ−1p ∈ Ψp, and hence the SAR(p) model is a regular exponential family.
Conversely, assume that a SAR(p) model is a regular exponential family. Then, Γ−1p must belong to

a (p+ 1)-dimensional subspace, say Θp, of L(n). It follows that all the matrices W0, ...,Wp belong

to Θp and, since they are linearly independent by assumption, that they span Θp. Hence Θp = Ψp,

which implies that Ψp is a quadratic subspace, Definition 3.4 being satisfied with Q = Γ
−1/2
p .

Proof of Proposition 4.4: When W = A in a CAR(1) or SAR(1) model, and for |ρ| < λ−1n

and any i = 1, ..., n, var(yi) =
P∞

r=0 αrρ
r(Ar)i,i, with αr = 1 for a CAR(1) model, αr = r + 1 for

a SAR(1) model (having fixed σ2 = τ2 = 1). Since (Ar)i,i is equal to the number of closed r-walks

starting at i, it follows that, for |ρ| < λ−1n , var(yi) is independent of i if and only if G is walk-regular.

The condition extends to all values of ρ such that the covariance matrices of the models are p.d.,

because var(yi), i = 1, ..., n, is an analytic function of ρ and as such completely determined by the

values they take on any non-empty open interval contained in its domain.

Proof of Theorem 4.7: Assume that the graph G with diameter ξ is distance-regular. Then,

the distance matrices A0, A1, ..., Aξ of G span a Bose-Mesner algebra; see, for instance, Bannai and

Ito (1984). Since a Bose-Mesner algebra is closed under matrix generalized inversion, it follows

that for any 1 ≤ p ≤ ξ, the covariance matrix of a CAR(p) model on G is a linear combination

of A0, A1, ..., Aξ , i.e., according to Definition 4.3, the CAR(p) model is G-stationary. Closure

under matrix multiplication of a Bose-Mesner algebra entails that the same conclusion holds for

a SAR(p) model on G, proving the sufficiency of the condition in the proposition. Conversely,

assume that a CAR(p) or SAR(p) model on a graph G with diameter ξ is G-stationary, i.e., that

its covariance matrix, say Σp, belongs to Span {A0, ..., Aξ}. Then, Ah
1 ∈ Span {A0, ..., Aξ}, for

h = 0, 1, ..., because there always exists an open p-ball Θp centered at the p-dimensional zero vector

such that for ρ1, ..., ρp ∈ Θp, Σp =
P∞

r=0 αr (
Pp

h=1 ρhAh)
r, with αr = 1 for a CAR(p) model,

αr = r + 1 for a SAR(p) model. Since A01, ..., A
ξ
1 are linearly independent (because, if A

t
1 (i, j) 6= 0

for some t = 1, ..., d, then Ah
1 (i, j) = 0, for any h = 0, ..., t− 1), it follows that they form a basis for

Span {A0, ..., Aξ}. Thus, A0, ..., Aξ are polynomials of maximum degree ξ in A1, which is a sufficient

condition for G to be distance-regular (Bannai and Ito, 1984, pp. 190-192).

Proof of Theorem 4.8: IfG is distance-regular with diameter p, then A0, ..., Ap span an algebra

of symmetric matrices; e.g., Bannai and Ito (1984). Since an algebra of symmetric matrices is a

quadratic subspace, the sufficiency of the condition in the proposition is a consequence of Proposition
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3.5. Conversely, assume that a SAR(p) model on a graph G is a regular exponential family, and let Γp

denote its covariance matrix. Then, Γ−1p belongs to a (p+ 1)-dimensional subspace, say Φp, of L(n).
It follows that Ah

1 ∈ Φp, for any h = 0, 1, ..., because there is always an open p-ball Θp centered at

the p-dimensional zero vector such that, for any ρ1, ..., ρp ∈ Θp, Γ−1p =
P∞

r=0(r + 1) (
Pp

h=1 ρhAh)
r.

But, since the matrices A01, ..., A
p
1 are linearly independent, they form a basis for Φp, and hence G

is distance-regular, by the final argument used in the proof of Theorem 4.7.
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Figure 1: The correlations, as a function of ρ, implied by a CAR(1) model with (b) W = A, (c) W =

D−1/2AD−1/2 between the 107 pairs of contiguous US states, with emphasis on Missouri and Tennessee

(crosses) and Maine and New Hampshire (dark solid line).
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Figure 2: (b) The correlations, as a function of ρ, implied by a CAR(1) model with W = A for a pair of

neighbors (darker line; Maine and New Hampshire) and for a pair of non-neighbors (lighter line; Oklahoma

and Nebraska). (d) The correlations, as a function of ρ, implied by a CAR(1) model withW = D−1/2AD−1/2

for a pair of neighbors (darker line; Missouri and Tennessee) and for a pair of non-neighbors (lighter line;

Vermont and Connecticut).
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Figure 3: The correlations, as a function of ρ, implied by a SAR(1) model with (b)W = A, (c)W = D−1A

between the 107 pairs of contiguous US states, with emphasis on Missouri and Tennessee (crosses) and Maine

and New Hampshire (dark solid line).
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Figure 4: (b) The correlations, as a function of ρ, implied by a SAR(1) model with W = A for a pair of

neighbors (darker line; Maine and New Hampshire) and for a pair of non-neighbors (lighter line; Oklahoma

and Nebraska). (d) The correlations, as a function of ρ, implied by a SAR(1) model with W = D−1A

for a pair of neighbors (darker line; Missouri and Tennessee) and for a pair of non-neighbors (lighter line;

Vermont and Connecticut).



Figure 5: A planar configuration of observational units and a corresponding graph.

Figure 6: A vertex-transitive graph (left) and an edge-transitive graph (right).


