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Abstract In this introduction we discuss the motivation behind the workshop

‘‘Towards a New Epistemology of Mathematics’’ of which this special issue con-

stitutes the proceedings. We elaborate on historical and empirical aspects of the

desired new epistemology, connect it to the public image of mathematics, and give a

summary and an introduction to the contributions to this issue.
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1 Introduction

Mathematics has been regarded as a very special science. This assessment is upheld

across widely different contexts: Philosophers have marvelled at and sometimes

tried to imitate the security of mathematical results, sociologists have shunned from

applying their observational techniques to mathematics, and the general public—

while not necessarily embracing mathematics as their favourite science—acknowl-

edges the special status of mathematics through widely accepted figures of speech

such as ‘‘mathematical precision’’.

Philosophically speaking, the special status of mathematics seems to derive from

its peculiar epistemology, which appears to be linked to a special technique,

mathematical proof. While all sciences justify their results, only a few sciences claim

to prove their results; among those, mathematics alone uses mathematical proof,
which conveys to its results the characteristic mathematical objectivity that other

sciences lack. This is, e.g., reflected in Descartes’ skeptical argument in the

Meditationes: Empirical knowledge is destroyed via the dream argument, whereas

Descartes has to invoke a genius malignus to doubt mathematical knowledge in his

thought experiment. According to the traditional philosophical analysis, mathemat-

ical theorems are a priori truths about acausal, non-spatio-temporal objects. Working

mathematicians themselves have a strong feeling that they are manipulating or

dealing with objects that provide resistance (Dilthey’s Widerstandsempfinden).

An adherent of the traditional, foundationalist view would subscribe to the

following claims about mathematics: ‘‘Mathematical statements are objectively true

or false’’, ‘‘There are no disputes about the validity of a mathematical statement once it

is established’’, ‘‘The history of mathematics doesn’t know any revolutions’’,1

‘‘Mathematics is a unique science; an ‘epistemic exception’’’.2

If foundationalism is correct and the special epistemic status of mathematics really

derives from its fundamental technique, i.e., mathematical proof, we should then be

able to describe what that is. Until the end of the 19th century, mathematics did not

have a precise answer to this question, but then the foundations of mathematics

became a central research interest. This resulted in a widely accepted notion of formal
derivation as the explication of mathematical proof. According to this doctrine, the

objectivity of mathematics rests on the pure form of mathematical argumentation, an

example of which can be seen in Fig. 1 (in one particular formal system).

In mathematical practice, proofs are written down in a more condensed, semi-

formal style, an example of which is given in Fig. 2. The traditional view would

consider these proofs enthymematic, leaving out technical detail for purely pragmatic

reasons (Fallis 2003). Therefore, it effectively suppresses any epistemological questions

about informal proofs by postulating that, for philosophical questions, the difference

between actual proofs and formal derivations can be (properly) ignored; it is part of this

traditional view that enthymematic proofs can be completed to formal derivations.

1 Cf. Grattan-Guinness (2004, p. 163): ‘‘Mathematics shows much more durability in its attention to

concepts and theories than do other sciences. For example Galen may not be of much use to modern

medicine, but one can still read and use Euclid’’.
2 Cf. Prediger (2006) for a discussion.

310 B. Buldt et al.

123



A closer look at mathematical practice leads to two important observations. First,

the completion of enthymematic, semi-formal proofs to formal derivations almost

never happens and hardly plays any rôle in the justification that mathematicians give

for their theorems; second, also the production of semi-formal proofs in the style of

Fig. 2 is only the final step of the mathematical research process. This final step,

while important for the documentation of results and crucial for the careers of

researchers, is not necessary for the acceptance of a proof by the mathematical

community. For this, different forms of proof are much more relevant: informal

sketches on the blackboard, or scribblings and drawing on napkins (see Fig. 3).

Shouldn’t these forms of proof replace the unrealistic notion of formal derivation in

our epistemology of mathematics?

The ideal of uncontroversial checkability of mathematical arguments, however,

seems to be related to formal derivations rather than scribblings on napkins. How can

we uphold the view that mathematical controversies are impossible, if mathematical

epistemology rests on a means of communication with no precise format? Possibly, we

can’t. Indeed, in the past years there have been prominent cases of mathematical proofs

whose correctness was disputed for an extensive period: Andrew Wiles’s proof of

Fermat’s last theorem, Grigori Perelman’s proof of the Poincaré conjecture, or

Thomas Hales’s proof of the Kepler conjecture.3 These cases have triggered a genuine

inner-mathematical debate4 which was duly noticed by the general public, as can be

seen from the following quote from the German weekly magazine Die Zeit:

Erstaunlicherweise sind ... die meisten [mathematischen] Beweise keine
Abfolge von Formeln, sondern sie sind in ganzen Sätzen gefasst, einige davon
lauten ‘‘Wie man leicht sieht, gilt ...‘‘, ’’ Ohne Beschränkung der Allgemeinheit
kann man annehmen, dass ...‘‘. Es wimmelt nur so von Andeutungen,
stillschweigenden Voraussetzungen und Appellen an den gesunden Mens-
chenverstand. Was als Beweis akzeptiert wird und was nicht, ist eine soziale
Konvention der mathematischen Community.

(Christoph Drösser, 27 April 2006)5

Γ ∆, A

¬A, Γ ∆
¬A, ¬A, Γ ∆

Γ∆ ∆Π
Γ, Π, A∆, ∆, B

Γ∆

Fig. 1 A formal derivation (in
Gentzen’s sequence calculus)

3 For overviews of these results and a discussion of the proofs, cf. the survey papers (Faltings 1995;

Mackenzie 2006; Morgan 2005), respectively.
4 A parallel case of an inner-mathematical debate is the so-called ‘‘Jaffe–Quinn debate’’, provoked by the

paper (Jaffe and Quinn 1993) about the differing standards of proof in mathematical physics and in pure

mathematics.
5 ‘‘Surprisingly, most mathematical proofs aren’t sequences of formulae but formulated in complete

sentences, some of which read ‘It is easy to see that ...,’ ‘Without loss of generality we can assume that ...’

All over the place, we find an abundance of allusions, tacit assumptions, and appeals to common sense.

What counts as a proof and what does not is a social convention of the mathematical community’’.
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These inner-scientific episodes, as witnessed by their public reflection, suggest

that one should consider a revision of the foundationalist epistemology of

mathematics. Indeed, philosophers like Wittgenstein, Lakatos, and Ernest have

been advocating the view that mathematics should not be considered special;

instead, they argue that its methodology is far more similar to that of the empirical

sciences than what the usual image of a ‘‘proving discipline’’ with its emphasis on a

specific formal methodology suggests. A radical denial of foundationalism is

offered by social constructivism (Ernest 1998), an approach that many researchers

in mathematics education embrace.

In our view, neither foundationalism nor social constructivism can offer

sufficient explanations of mathematical practice. On one hand, mathematical

knowledge does not solely emanate from formal derivations; on the other hand, the

epistemic status of a mathematical theorem is decidedly different from research

results in, e.g., paleoanthropology. This difference is not properly explained by

social constructivism. It is therefore a desideratum that philosophers of mathematics

develop a mediating position that strikes a balance between the special epistemic

character of mathematics and the social embedding of mathematical practice. Some

Fig. 2 A typical page from a mathematical research paper
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fruitful approaches exist, dispersed in the communities of mathematics education,

sociology of science, and philosophy of mathematics, but a concerted interdisci-

plinary effort is necessary in order to develop a truly adequate new epistemology of

mathematics.

This is the goal of the scientific network ‘‘Philosophy of Mathematics:

Sociological Aspects and Mathematical Practice’’ (PhiMSAMP) in which research-

ers from the universities of Amsterdam, Bonn, Brussels, Darmstadt, Dortmund, Fort

Wayne IN, Montréal QC, and Vienna collaborate. This collaboration brings together

researchers from the fields of philosophy, mathematics, mathematics education, and

history of mathematics in a series of workshops. The kick-off meeting,

PhiMSAMP�0; took place in Bonn in May 2005. This special issue of Erkenntnis
is a result of the first official activity of the network, the workshop PhiMSAMP�1

in Berlin in September 2006. Since then, the network has been involved in the

organization of the international conference Perspectives on Mathematical Practice
2007 (PMP 2007) in Brussels and the organization of the Novembertagung 2007 in

Fig. 3 Proofs from mathematical practice: a blackboard and a napkin. The picture of a napkin proof is
included with permission of Ivan José Varzinczak
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Bonn. The second official PhiMSAMP workshop, PhiMSAMP�2; was held in

Utrecht in October 2007; it featured a day of tutorials on various empirical research

techniques, in particular from sociology and cognitive science, that are intended to

play an important rôle in the development of the new epistemology. The question of

the special nature of mathematics will be raised again at PhiMSAMP�3 to be held

in Vienna, May 2008, which has as its motto ‘‘Is Mathematics Special?’’

Before giving an overview of the papers in this issue (Sect. 4), we shall now

highlight two dimensions of our practice-oriented philosophy of mathematics, both

of which we expect to become crucial for the development of our group’s new, more

adequate epistemology of mathematics. In Sect. 2, we shall pursue some historical

lessons that indicate how some traditional epistemological conceptions came about

and why they must fail. In Sect. 3 we sketch some general methodological issues of

using empirical data in philosophy in general, and in epistemology of mathematics

in particular.

2 Lessons from History

We argue, in this and the following subsection, that a historically informed view can

no longer subscribe to a number of assumptions we find embraced without much

ado by a majority of those who work in philosophy or mathematics. We claim in

particular that philosophers and mathematicians usually assume a continuity of

subject matters that doesn’t survive closer scrutiny. Neither the objects of

mathematics nor the philosophical reflection upon them display a continuity that

would justify expressions like ‘‘the triangle from Aristotle to Atiyah’’ or ‘‘the

philosophy of mathematics from Plato to Putnam’’.

In regards to mathematics we hold that the conceptual framework of mathematics

has changed so dramatically that, say, identifying Greek numbers with modern

axiomatic characterizations just seems outrageous. That it could seem to be

otherwise is basically the product of a modern myth, Cartesian dualism.

In regards to philosophy we show that philosophy of mathematics started its

career around 1,800 as a short-lived creature that sprang from Kant’s epistemology

and sunk into oblivion thereafter before it was reanimated by logical empiricism in

the early 20th century. On both occasions, Kantians and logical empiricists had

doctrinal reasons for assigning mathematics a distinguished epistemological status

that would elevate it above the sciences. Without subscribing to Kantian or

Viennese presuppositions, however, this alleged special status of mathematics

becomes simply unfounded. We hence claim that the special epistemological status

of mathematics (as traditionally understood and outlined above in Sect. 1) is another

myth.

Kant once coined the expression ‘‘usurpatory concepts’’. He defined them as

concepts for which, ‘‘though allowed to circulate by almost universal indulgence

[...], no clear legal title, sufficient to justify their employment’’6 can be obtained.

Kant was concerned about certain metaphysical notions, but we think that

6 (Kant, AA, III, p. 99 (=CPR, B117)).
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usurpatory concepts reflect a general phenomenon of language as it evolves over

time. Concepts are introduced at a certain moment in time to satisfy then current

needs; but over time they acquire a life of their own and either lose their original

meaning and take on a metaphorical one, or they turn into red herrings. Examples

are ubiquitous and easy to find; e.g., we still speak of ‘‘electrical currents’’ although

the theory that electricity is a kind of fluid has been obsolete for a long time. The

thesis, then, that we try to establish in this section is that (traditional) ‘‘philosophy of

mathematics’’ is an usurpatory concept as well. Doing work in the philosophy of

mathematics by starting from commonly accepted views about the Platonic

character of mathematics and its special epistemological status is like researching

electricity and assuming it is a fluid.7

A historical lesson from the philosophy of mathematics. In the year 1799, at a

time when Fichte was still very close with Schelling and the two brothers August

and Friedrich Schlegel, an idea emerged among them: the plan for a Jenaische
Colonie, a house-sharing community in Berlin. This idea came with another one,

namely, a plan for a new journal they would edit. One of the main motives for

founding a journal was that Fichte thought it necessary to have a durchgreifende
kritische Zeitschrift as an instrument not only to oppose the conservative camp but

also ‘‘[um] gewaltiger in die Wissenschaft, und den Geist des Zeitalters
einzugreifen’’.8 Provisionally entitled Kritisches Institut, the journal was envisaged

as a pragmatische Zeitgeschichte der Litteratur und Kunst.9 Fichte sketched the

blueprint for the treatment of mathematics in the new journal as follows:

Mathematische Wissenschaften. Das Bekannte wird vorausgesetzt. Vielleicht

verdienen neuerliche Entdeckungen in der Astronomie, und die combinatorische

Analyse für das vergangene, ehrenvolle Meldung. Mangel einer Philosophie der

Mathematik, und Nachtheile, die der Math.[ematik] daraus erwachsen; wird in

der Zeitgeschichte fortgesezt, bis diesem Mangel einst abgeholfen wird’’.

(Fichte, III/4, p. 171)10

Fichte did hence not only notice the non-existence of a philosophy of

mathematics but was also concerned that this might have detrimental effects for

mathematics itself. Accordingly, the following year he urged Schelling to produce a

Grundzüge einer Philosophie der Mathematik for the first volume of the journal. But

Schelling, having too much on his plate already, tried to get (Adolph Karl August

von) Eschenmayer involved instead who was a well-known medical doctor and

natural philosopher.

7 In order to avoid excessive scholarly clutter, we will give explicit references only for those claims we

expect to be unfamiliar to the average reader of this journal. The full version of the arguments, of which

the current paragraph is a short excerpt from (Buldt 2004) and will be published separately (and partly

also in Buldt (?b) and Buldt and Van Kerkhove (?)) with rich historical evidence from various sources.
8 ‘‘have a more powerful influence on sciences and arts and the spirit of the age’’.
9 (Fichte, III/4, p. 169) (emphasis surpressed).
10 ‘‘Mathematical Sciences. We assume what is well-known. Recent discoveries in astronomy and the

combinatorial analysis should possibly get their proper due. Lack of a philosophy of mathematics, and the

disadvantages this causes for mathematics; to be continued in the section on current events until the

situation is remedied’’.
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Nothing came out of all these plans, though. The journal was never lauched and

no one wrote a separate philosophy of mathematics; Schelling at least admitted that

he failed to give mathematics a proper treatment in the System des transzendentalen
Idealismus (1800).11 Fichte, however, who had made philosophy of mathematics a

topic already in the so-called ‘‘Platner lectures’’12 he gave in Jena from 1794

through 1797, continued to devote several lectures to the philosophy of mathematics

during the time he read logic and metaphysics in Erlangen;13 and as late as 1812 he

still outlined a scheme for a separate philosophy of mathematics, a plan he could not

pursue as he died about a year later.14

Although Fichte obviously pushed harder than the brothers Schlegel, Schelling,

or Eschenmayer, it is a noteworthy fact that no one involved in the project ever

doubted that it was highly advisable or even mandatory to come forward with a

philosophy of mathematics. This fact becomes even more baffling when one realizes

that the ‘‘Fichte Circle’’ from around 1800 was by no means alone. The (Kantian)

philosopher Jacob Friedrich Fries (1773–1843)—who should much later influence

the development of Hilbert’s program via Paul Bernays—started mentioning a

philosophy of mathematics in his manuscripts and letters around 1795;15 indepen-

dently of Fichte, though. The same holds true for a Polish mathematician who lived

in France and whose name lives on in the determinants that carry his name (the

Kantian) Hoëné-Wronski (1778–1853); Wronski published a philosophy of

mathematics in 1811.16 This list, which would then include besides Kantians also

students of Schelling and Hegel as well as mathematicians, would grow

considerably longer if we were to include all those, who, without calling it

‘‘philosophy of mathematics’’, worked on the same, similar, or closely connected

questions.17

We suggest that this convergence of opinions among philosophers and

mathematicians happened for a reason and that the key for understanding this

phenomenon lies in a name: Kant.

What we have in mind is neither the fact that Kant tried to contribute to a

persistent though suppressed undercurrent of mainstream mathematics during the

18th century, namely, the discussion of foundational issues (see, e.g., the 1786

Preisfrage on the mathematical infinite initiated by the Berlin Academy of Science);

Berkeley did it before with his pamphlet The Analyst (1734). Nor is it Kant’s

intention to secure the working mathematician a solid foundation through

philosophical analysis and reflection; Plato did it earlier with distinguishing

11 ‘‘wegen der Mathematik [...] eine große Lücke gelassen [zu haben], die ich recht wohl fühle’’,

(Schelling, I/9.2, p. 287).
12 Cf. Vorlesungen über Logik und Metaphysik als populäre Einleitung in die gesamte Philosophie. Nach
Platners Philosophischen Aphorismen (Jena, Summer 1797), in (Fichte, IV/1).
13 Cf. Institutiones omnis philosophiae, in (Fichte, II/9, pp. 124–135).
14 Cf. (Fichte, II/5, p. 583).
15 Cf. Pulte (1999, p. 74), for a summary.
16 Cf. Wronski (1811).
17 One must exercise caution, though, for not every book that has ‘‘philosophy’’ and ‘‘mathematics’’ in its

title deals with philosophy of mathematics sensu stricto; many are just introductory textbooks that add

some philosophical language on top of definitions and proofs; cf., e.g., Bledsoe (1873).
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‘‘ ’’ from ‘‘ ’’, with the latter being a philosophical foundation

for the (mathematical) former. Rather, in the first step, Kant’s innovations were to

assign mathematics its own cognitive faculties, i.e., the pure intuitions of space and

time. Before Kant, ‘‘[ließ] man sich gar nicht einfallen ..., daß Sinne auch a priori
anschauen sollten.’’18 Doing so, in a second step, he claimed a distinguished, special

epistemological status for mathematics.

This new Kantian epistemology with its close ties to mathematics, its promising

new features, and its unclear and confusing conceptual patchwork, inspired and

challenged those who worked in Kant’s wake. Fichte, e.g., felt forced to deduce in

his own system what Kant had simply presupposed, namely, that space is three-

dimensional, while Fries introduced a Hilbertian distinction according to mathe-

matics and metamathematics. The towering figure Kant was at that time, it is thus

neither a wonder nor an accident that Kantians and anti-Kantians busied themselves

with something new, a philosophy of mathematics.

It is a familiar observation in the history of the science that a discipline or a

community of inquiry acquires a name of its own only when it comes of age, so to

speak; like British, French, and German physicists in the early 19th century, who could

no longer stand to be called ‘‘natural philosophers’’, started to call themselves

‘‘physicist’’, ‘‘physicien’’, or ‘‘Naturforscher’’ respectively. The same now seems to be

true for our case: philosophy of mathematics as a separate philosophical endeavor, a

specialized field of its own, is a product of Kant’s epistemology. And, even more, it is

his creature; philosophy of mathematics in its initial shape exclusively dealt with

questions that emerged from a Kantian angle and couched its answers in (Neo-)

Kantian terms as well. This claim is further supported by the observation that, once

Kant’s epistemology had lost its initial luster, the new expression was no longer used.

On and off, it made a reappearance also later in the 19th century, but only as a title for

some dissertation: X’s philosophy of mathematics.

Philosophy of mathematics became respectable again in the early 20th century.

On one hand, Logical Empiricism replaced traditional epistemology with a different

enterprise, the philosophy of science. Following Frege’s lead, logical empiricists

replaced the ‘‘mentalese’’ of traditional epistemology, i.e., the idiom of ‘‘ideas’’,

‘‘representations’’, ‘‘judgements’’, etc., with a study of the syntax and semantics of

those languages used in scientific textbooks and research papers. Besides a common

logical core all these languages were supposed to share, each language is different

enough to justify a separate treatment. Unsurprisingly, we hence find what formerly

was one epistemology now to be split up in various ‘‘philosophies’’, namely, a

philosophy of physics, a philosophy of biology, a philosophy of sociology, etc.

Philosophy of mathematics thus re-emerged as a discipline of its own as a by-

product of substituting traditional epistemology with a philosophy of science

program.

John Stuart Mill was proud to be the first philosopher to give, unlike Locke and

Hume, a comprehensive and at the same time thoroughly empiricist account of

mathematics. His approach, however, fell prey to Frege’s sharp criticism and was

18 ‘‘no one considered that the senses should also intuit a priori’’. (Kant, AA, IV, p. 375, note

(=Prolegomena, A207)).
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hence no longer acceptable to empirical-minded philosophers in the late 19th or

early 20th century. Their solution was to adopt Russell’s logicist thesis that every

mathematical concept can be defined in the language of logic and that every

mathematical proof can be replaced by a purely logical derivation using the logical

definitions of the concepts involved; hence the label ‘‘Logical Empiricism’’. The

result is a philosophy that ascribes mathematics a special epistemological status;

mathematics is just applied logic, and as such it cannot be compared with any other

science.

We find most modern analytic philosophers of mathematics subscribing to the

Kant–Carnap thesis (that mathematics demands a special epistemology); probably,

because the unhistorical stance taken by most of them never made them question

this assumption.

Like in Kant’s case before, we thus see, again, that the distinguished

epistemological status of mathematics is not the result of a careful inspection of

what mathematics is or what mathematicians do but an artifact of a philosophical

program. It does not mean to make light of their accomplishments when we state we

have plenty of reasons to be neither a Kantian nor a logical empiricist. But if this is

true, then we have lost any prima facie justification to assume that mathematics

would require a philosophical analysis that is different from that of any other

science.

We also see that—contrary to the Neo-Kantian conception of the history of

philosophy that is still predominant is most quarters of philosophy—there is, if we

look at the facts, no continuity in the field that would span centuries and millennia;

it doesn’t make sense to speak of a ‘‘philosophy of mathematics from Plato to

Putnam’’. Before Kant, philosophers accounted, in varying degrees, for mathematics

in their systems; no doubt about it. But no one felt the need for a separate

epistemological treatment. It would be an anachronism to ascribe to them a

philosophy of mathematics sui generis, thereby projecting back onto them a

conception they simply could not have. Philosophy of mathematics as we know it

today is a product of Logical Empiricism; it emerged in a unique historical situation

and was meant to satisfy specific philosophical needs of the time. To ignore this fact

means to fake history and to work within an outdated philosophical framework

instead of questioning it.

A historical lesson from the ontology of mathematics. In the times before

Descartes, it went mostly without saying that a soul without a body is an incomplete

substance and that assuming immortality of the soul would therefore require the

resurrectionem carnis of the Apostle’s Creed. Accordingly, and in opposition to

what Boëthius and Augustine had said earlier, (a student of) Thomas Aquinas

defended the opinion that ‘‘certain corporeal places are appointed to them [the

souls]’’.19 Descartes, who, unlike Thomas, was under no obligation to defend

doctrines about the purgatory, widened the traditional gap between body and soul

even further by declaring the res cogitans to have no spatial extension or location

whatsoever. Both Descartes and Aquinas agreed, though, that, while perception

requires the cooperation of both body and soul, ‘‘quaedam operationes sunt animae,

19 (Aquinas, Summa theol., p. 3 suppl., quest. 69, art. 1).
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quae exercentur sine organo corporali, ut intelligere et velle’’.20 and that

‘‘huiusmodi potentiae necesse est quod maneant in anima, corpore destructo’’.21

The philosophical and religious backdrop of this view, however, has gone

missing. Supporting religious beliefs are either waning, or contravening scientific

results, or both; and philosophy follows suit. Asked either to abandon Cartesian

dualism or to renounce mental causation—for, by scientific lights, the two are not

compatible with each other22—it is ontological dualism that usually has to go, for

this leaves us with a physicalism that we expect to cohere well with the scientific

knowledge we embrace.23

We thus face a situation in which an important fragment of our everyday

language, the ‘‘mentalese’’ of folk psychology, has lost its semantics; for the

ontological dualism that this language presupposes and which underlies our mind-

body distinction and is so well-entrenched in Western thought is no longer

available. One important task for the philosophy of mind, provided it doesn’t waste

its time on some vain rearguard actions, is hence to work out the details of a new

semantics for the mentalese we speak and which we cannot dismiss.

Philosophy of mathematics seems to lag behind. Given the above-mentioned

assumptions on the soul, combined with an ontology that rested, basically, on an

Aristotelian notion of substance, mathematical Platonism was a very natural

position to adopt. And most mathematicians and philosophers continue to speak

some sort of ‘‘platonese’’, for it is, no doubt, a very convenient language to speak

when it comes to mathematics. But ‘platonese’ has lost its semantics like

‘mentalese’ did. We no longer embrace, like Aquinas did in the above-cited

quotations, the idea of an immortal non-physical soul that is the seat of reason and

harbors, among other eternal entities, mathematical objects; reasoning and its

objects are, ultimately, functions of the brain and products of its activity.24 In short,

an ontology of mathematics that assumes an immortal soul harboring mathematical

objects doesn’t seem to be available any longer.

The claim that mathematics is a human activity that creates its own objects is

further supported by a look at the history of mathematics—provided, of course, we

look without the familiar Plato-tinted spectacles but

20 ‘‘Some operations of the soul are performed without a corporeal organ, like reasoning and willing’’

(Aquinas, Summa theol., p. 1, quest. 77, art. 5).
21 ‘‘these powers must remain in the soul, after the destruction of the body’’ (Aquinas, Summa theol., p.

1, quest. 77, art. 8).
22 Any two of the following propositions will contradict the third:

(1) Mental phenomena are non-physical phenomena;

(2) Mental phenomena are causal efficient among physical phenomena;

(3) The realm of physical phenomena is causally closed

(taken from Bieri (1981, p. 5)); cf. Kim (2006, Chaps. 2 & 7) for a more detailed overview of the

arguments that cause most people to reject dualism and favour some sort of physicalism instead.
23 Cf., e.g., Churchland (1986, 2002).
24 Cf., e.g., Dehaene et al. (2004). Accordingly, an important task for the philosophy of mathematics—

provided it doesn’t waste its time on vain rearguard actions either—is, then, to work out the details of a

new semantics for the platonese we still prefer to speak. Devlin’s paper in this issue attempts just this; see

also Buldt (?a) for a different, though similar, approach with the same goal.

Towards a New Epistemology of Mathematics 319

123



[...] take a view of mathematical activity drawn from observed facts in

opposition to the normative assertions of certain philosophers of mathematics.

An honest conception [...] must emerge from a dispassionate examination of

what mathematicians do, rather than from what mathematicians say they do, or

from what philosophers think mathematicians ought to do’’.

(Rota 1991, p. 108)

Let us look at the concept of continuity as an example:

The idea of a mathematical continuum is intimately connected to and has actually

been motivated by physics in general and by questions of mathematical models for

the kinematics and dynamics of bodies in particular. This holds true for the physics

of Aristotle, and becomes a predominant theme in Leibniz who even made the lex
continuationis, the loy de la continuité, the most basic principle to govern his

research in mathematics, the sciences, and philosophy. The idea was to model

physical change with the help of continuous functions such that changes in the

physical world (say, location, velocity, potential energy, etc.) are reflected by a

corresponding change of function values. Leibniz worked with the notion of an

infinitesimal, an infinitely small quantity, and mathematical research was done

within this conceptual framework for nearly two centuries.

Only a few complained about the lack of a more rigorous conceptual foundation,

but when the climate began to change because mathematicians found themselves

unable to make any progress unless more rigorous definitions had replaced the

language of infinitely small quantities, Cauchy satisfied his own research needs by

introducing the convergence criterion for sequences that still carries his name.25

Subsequent conceptual honing finally led to Weierstrass’ famous e-d-technique of

defining mathematical properties of continuity (and differentiability). The new

language of limits, however, required in turn a more rigorous definition of the

concept of real number which was delivered by Dedekind among others. And

because it worked out well, mathematicians were happy to accept these new notions

and to identify the continuum with the set of real numbers.

Further research, however, suggested that the continuity of a function is not

really a property of the function but of the underlying space; for, provided one has

appropriate spaces S and T, every function from S onto T will be continuous, say, if

S has the discrete (every subset is open) or if T has the indiscrete topology (only the

set itself and [ are open). This is why we currently conceive of continuity as a

topological property and define continuity accordingly in terms of open sets and

their preimages (which have to be open again).26

We hence witness major conceptual changes for the notion of continuity (and,

along with that, the notion of a function and other related concepts.

– In the wake of Leibniz the continuity of a function, or, to be more precise, the

continuity of the graph of a function results from the fact that everything obeys

the law of continuity. Neither is it necessary to prove a function to be continuous

25 A sequence han; n 2 Ni is convergent if and only if for every e[ 0 there is a number ne (so large) such

that |an-am| \ e, for all m, n [ ne.
26 Cf., e.g., Crossley (2005, p. 17 seq).
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(why belabor the obvious) nor to guarantee its continuity by, say, reducing it to a

paradigmatic case. Everything that is continuous, and if two arbitrary curves

intersect, then there must be a point in which they intersect. The prevailing

general point of view in ontology is monistic, everything shares the property of

being continuous. Kant turned this view into a law a priori by making it,

respectively what he called the ‘‘anticipations of perception’’,27 a synthetic

principle of pure understanding.

– In the tradition of Cauchy, Cantor, Dedekind, and Weierstrass continuity is the

property of a function (now conceived of as a set of n-tuples) which is defined

on a point set continuum. The continuity of a function is no longer guaranteed

but has to be established, and any other type of continuity is reduced to the set of

reals as the paradigmatic case of continuity. The prevailing general point of

view in ontology is bottom-up, everything is built from up from certain basic

objects (usually sets).

– Currently, the continuity of a function is conceived of as being induced by

properties of the underlying space; continuity is a topological property. Previous

questions about the point set continuum as the one distinguished model of

continuity have lost much of their former luster since Cohen forcing has shown

that the continuum, understood as 2x, can be anything, say, that is not cofinal

with x (like, x2, xx1
, etc.) or that is weakly inaccessible.28 The prevailing

general point of view in ontology is structural, while objects no longer really

matter; this approach shows itself most clearly in category theory.

Examples like this, which could easily be multiplied, make us believe that the

idea of unchangeable mathematical objects is a red herring. The fact that in

mathematics most results carry over from one period to the next doesn’t imply

that the objects remain the same, or that a long-winding and sometimes crooked

road eventually leads us to the discovery of their true nature. Rather, it seems

advisable to admit that, if some old mathematical order persists, then it ‘‘does so

under different terms, in radically altered or expanded contexts. (Dauben 1984, p.

52)’’

If we face the fact that we can no longer build our ontology of mathematics on

the conception of an immortal soul harboring mathematical objects, then taking a

fresh look (i.e., without Platonic blinders) at the history of mathematics will provide

us with further evidence that

mathematics is man-made; its vital basis is the social inter-action of

mathematicians in their scientific community. No mathematician starts from

nothing. He has to build upon mathematical tradition. In the course of his

mathematical education, be it formal or otherwise, he acquires a ‘tacit

knowledge’ about mathematics, the way to talk about it, its aims and methods,

which enables him to communicate with his fellow mathematicians. He

27 ‘‘In allen Erscheinungen hat das Reale, was ein Gegenstand der Empfindung ist, intensive Größe, d. i.
einen Grad’’ (In all appearances, the real that is an object of sensation has intensive magnitude, that is, a

degree) (Kant, AA, III, p. 151 (=CPR, B 207)) (emphasis suppressed).
28 Cf. Kunen (1980, pp. 209 seq).
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becomes a member of their community, more or less conforming to its way of

doing things and to its norms. He strives for recognition by his colleagues.

(Mehrtens 1976, p. 30)

Consequently, as mentioned above, we embrace a very broad approach to the

philosophy of mathematics that includes, among others, cognitive science, math

education, and sociology.

Also, if we take the idea of the historicity of mathematics seriously, then we can

no longer treat Plato (or others) as one of ours peers. Mathematics at Plato’s times

was different from ours,29 and we cannot expect to communicate well across the

centuries; proving the ‘same’ result by gnomons and by induction indicates that we

are talking about two different concepts that have not much more in common than

some number names. We understand perfectly well that a naive substance ontology

underlying the ‘platonese’ mathematicians came to speak suggests otherwise; but

besides the concerns that arise from taking the historicity of mathematics seriously,

we ask to bear in mind that such a substance ontology doesn’t sit well with modern

structuralism either and is at odds with the view from category theory;30 in short, it

is hardly compatible, for mathematical reasons alone, with modern mathematics.

3 Methodological Issues of Philosophy of Mathematics

We mentioned in Sect. 1 above why we think sociological studies are important; a point

that was reaffirmed in Mehrtens’s statement that the ‘‘vital basis’’ of mathematics is

‘‘social interaction of mathematicians in their scientific community’’. If this is indeed the

case, then one should expect that the scientific community of mathematicians is the

object of sociological studies. What we find, however, is that in general the sociology of

mathematics is severely underrepresented in the field of sociology of science.31

Some of the central questions of philosophy of mathematics, in particular those

related to mathematical practice, have an empirical core, though. Some of the

statements that one finds in philosophical texts about mathematics are empirical

claims, and the most natural way to find out whether they are true or false is to test

them. Very few philosophers of mathematics take this last step, and it is not an easy

step to take, as data on these questions are not readily available.

Philosophy of mathematics, like other areas of philosophy, relates phenomena (in

this case, mathematics) to a philosophical theory. Whether the philosophical theory

is correct or not is not independent of the phenomena. Analytic Philosophy, and in

29 Remember, e.g., that, probably due to Eleatic thought, the Greeks considered natural numbers to be

composed out of units; thus two was the first natural number, but neither one nor zero were. At the same

time they thought of numbers in geometrical terms and not as abstract quantities: ‘‘With rare exceptions

[...] the theory of numbers was only treated in connexion with geometry, and for that reason only the

geometrical form of proof was used [...]’’ (Heath 1921, p. 16).
30 Cf., e.g., Awodey (2004).
31 Cf. Heintz (2000, p. 9): ‘‘[d]ie Soziologie [begegnet] der Mathematik mit einer eigentümlichen
Mischung aus Devotion und Desinteresse’’ (sociology approaches mathematics with a peculiar mix of

humbleness and indifference). Her study thus reconfirms the earlier assessment of Latour (1987, pp. 245

seq).
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particular philosophical logic, often analyze phenomena by a technique that one

could call, in analogy to the well-known technique of mathematical modelling in

applied mathematics, conceptual modelling, philosophical modelling, or logical
modelling. This technique consists of a number of natural steps, one of which is to

confront the philosophical model with the phenomena. We claim that in many areas

of philosophy, especially in the case of philosophy of mathematics, this step is

highly underdeveloped.

In a joint paper with Eva Wilhelmus, two of us proposed the development of a

philosophical study of mathematics as a discipline based on empirical facts

(Löwe et al. 2007). Such an approach could be called ‘‘naturalistic’’, as in Maddy

(1997), or it could be called a ‘‘Second Philosophy of Mathematics’’, as in

Maddy (2007). We shall use the label ‘‘Empirical Philosophy of Mathematics’’ in

order to stress the fact that there is actual empirical work to be done. The project

Empirical Philosophy of Mathematics consists of a theoretical foundation together

with a potentially unlimited number of questions and practical projects. Some

first steps towards such an Empirical Philosophy of Mathematics have been

documented in Löwe and Müller (2008) and Löwe (2007). The theoretical

foundation should contain a sustained argument for the methodology of

conceptual modelling, and should contain in particular an argument for the

necessity to empirically check those philosophical theories that were established

via this method. In Wilhelmus (2007), the author investigated the philosophical

question ‘‘Is formalizability of an argument a necessary condition for mathe-

matical knowledge?’’, using the empirical method of an online questionnaire, and

gave a negative answer.32

Mathematical modelling. The notion of a model has acquired a prominent place

in contemporary philosophy of science. A great variety of uses of the term ‘‘model’’

has been studied.33 There is widespread agreement that models play a crucial rôle in

scientific practice, and that a fair amount of that practice consists in modelling. We

shall describe the practice of mathematical modelling, as exemplified in the

sciences, not to give an in-depth account of mathematical modelling, but to

highlight some of its features relevant for the present discussion.

One can formulate an iterative method of mathematical modelling as we find it in

applications of mathematics to science:

– Step 1. One starts with a class of models that appear to be reasonable candidates.

This class may be determined by pre-theoretical insight, or by earlier steps in the

iteration.

– Step 2. One collects data and tries to achieve a best fit within the available class

of models.

– Step 3. One determines the goodness of fit and will either be satisfied or revert to

step 1, having chosen a different class of models.

Statistical tools have been developed for assessing the ‘‘goodness of fit’’ of

models and data, and there is usually an additional layer of modelling for the data

32 Cf. Löwe et al. (2007) for an overview of the results with some theoretical background.
33 Cf. Frigg and Hartmann (2006) for an overview.
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themselves (in order to handle measurement errors). The crucial step in mathemat-

ical modelling is to confront the selected model with the data. As every scientist will

be proud to say, honesty with respect to that step is the hallmark of good science.

Conceptual Modelling. Viewed abstractly, the aim of establishing a ‘‘philosophy

of X’’ is quite similar to finding a ‘‘model for Y’’ in the sciences: One wishes to gain

theoretical insight into (some) aspects of a certain phenomenon by representing

them in a specific way. To give an example: One of the key questions in

epistemology is what knowledge is. The traditional conception of knowledge as

justified true belief (dating back to Plato’s Meno) was challenged by data taking the

form of counterexamples: Gettier constructed plausible scenarios in which persons

have justified true belief, but not knowledge (Gettier 1963). The ensuing debate led

to a repertoire of test cases that serves as a benchmark for theories of knowledge.

But the issue of what are the data and what is the model is much more subtle than it

is in the typical case of modelling in the natural sciences. Both the traditional model

of knowledge as justified true belief and the data in the form of counterexamples

derive from our intuitions about knowledge, and thus are two aspects of the same

phenomenon. Testing one against the other might involve some circularity.

If one wishes to mirror the scientific method of mathematical modelling in a

philosophical context, one needs to be very careful with the source and the nature of

both theory and data. Thus, conceptual modelling of a phenomenon X takes the form

of an iterative process:

– Step 1. Theory formation. Guided by either a pre-theoretical understanding of X
or the earlier steps in the iteration, one develops a structural philosophical

account of the phenomenon X, keeping track of the source and the development

of the theory in order to be able to distinguish it from the data in step 2.

– Step 2. Phenomenology. With a view towards step 3, one collects independent

data about the phenomenon X that is able either to corroborate or to question the

current theory.

– Step 3. Reflexion. In a circle between the philosophical theory, its formation

process, and the phenomenological data, one assesses the adequacy of the theory

and potentially revises it by reverting to step 1.

In many debates of contemporary epistemology, Step 2 consists of a presentation

of the author’s intuitions about the case at hand, possibly supported by anecdotal

evidence. While this may be enough if there is widespread consensus about the

analysis, a different solution needs to be found if one has to decide between

competing models. The obvious solution, in view of the scientific modelling

practice, is to supply more data from a more varied range of sources, including data

established via accepted empirical methods. On this view, the key to successful

conceptual modelling lies in strengthening Step 2 of the above iterative scheme. In

epistemology, the necessary data might be supplied, e.g., by empirical linguistics,

sociology, or cognitive science.

As mentioned above, sociology of science has, with few exceptions, shunned

away from taking mathematics as an object of study—mostly for a simple reason:

preconceived philosophical convictions made such studies appear senseless or

impossible. The first large-scale socio-empirical study published was Heintz’s work
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about the culture and practice of mathematics as a scientific discipline.34 The work

of Wilhelmus (2007) shows that this approach can yield genuine philosophical

conclusions.

Cognitive science has to offer a number of interesting results with various

philosophical implications as well. For instance, the cognition of basic mathematical

operations has been intensively studied.35 This work, however, stays very much

within the confines of the algorithmic or computational part of mathematics, and

does not touch upon higher mathematics. As explained in Sect. 1 above, it is

mathematics as a proving discipline that is in our focus. Developing a cognitive

theory of what is happening in the proving mind is central to understanding the

special status of mathematics. In his paper ‘‘A mathematician reflects on the useful

and reliable illusion of reality in mathematics’’ in this special issue, Keith Devlin

speculates on the philosophical conclusions one could derive from such a deeper

understanding of the cognitive processes involved in research-level mathematics.

We shall come back to his paper at the end of our list of contributions.

4 The Contributions of This Special Issue

Although the contributions in this issue are arranged by alphabetical order, we

introduce them here in a somewhat more systematic fashion. We start with Larvor’s

paper on the rôle of history and continue with three papers that have an historical

component (Schlimm and Easwaran on axiomatics, Bråting & Pejlare on

visualization). Then we introduce two papers that touch on experimental mathe-

matics (Van Bendegem & Van Kerkhove and Baker) and conclude with Devlin’s

paper on ‘‘neuromathematics’’.

Brendan Larvor’s contribution entitled ‘‘What can the philosophy of mathematics

learn from the history of mathematics’’ is considering whether the marriage between

the philosophy and the history of mathematics can be a happy one. One overarching

theme he spells out in various details throughout his paper is that ‘‘historians [as

opposed to philosophers] do not explain events by subsuming them under general

schemes, but rather by setting events in their proper historical contexts’’. By further

juxtaposing the different approaches of history and philosophy, he then tries to

promote a philosophy of mathematics that does no longer proceed blindly, but is

enlightened by methodological insights from history; his final plea is for a

‘‘historically and self-aware philosophy’’.

Dirk Schlimm’s research project on the relationship between the axiomatic

method and historical developments in mathematics is the background of his paper

‘‘On the importance of asking the right research questions: Could Jordan have

proved the Jordan-Hölder Theorem?’’. The paper corrects a long-standing though

erroneous ‘‘result’’ in the historiography of modern algebra, viz. that Jordan was

34 Before Heintz (2000), Markowitsch used qualitative sociological studies (interviews with mathema-

ticians) in his Markowitsch (1997).
35 Cf., e.g., (Koedinger and Anderson 1990; Siegler and Stern 1998; Neth 2004; Anderson 2005; Landy

and Goldstone ?a; Landy and Goldstone ?b).
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‘‘conceptually unable’’ to prove Hölder’s generalization of his theorem providing an

important case study of how abstraction works in mathematical practice.

In his ‘‘The role of axioms in mathematics’’, Kenny Easwaran wants to correct

another aspect that received wisdom has to offer on axiomatics. Building on

Feferman’s distinction between structural axioms (say, for algebraic entities) and

foundational axioms (say, for numbers or sets), he assumes that the question is not

whether we need new structural axioms or not (we always will) but whether or not

we need new foundational axioms. The thesis he defend and investigates from

various angles is that foundational axioms have an important social rôle to play

within the community of mathematics: they save mathematicians (useless)

philosophical controversy and allow them to do instead what they love to do:

proving new theorems.

In their paper ‘‘Visualization in Mathematics’’, Kajsa Bråting and Johanna

Pejlare bring together historical and empirical approaches to one of the most hotly

debated questions in the philosophy of mathematics: What is the rôle of

visualization in mathematics? From a historical, diachronic perspective, this may

amount to asking: Which rôle has visualization played in the historical development

of mathematics? How has the mathematical community assessed visualization as a

part of mathematical practice, and how did this assessment change over time? From

a synchronic perspective, the empirical side of the question about visualization can

focus on a multitude of facets, too: The actual use of different types of visualization

in various mathematical contexts, the use of visualization in mathematics education,

cognitive mechanisms involved in the use of visualization, etc. Accordingly, the

authors bring together two historical case studies on the use of visualization in the

17th and the 19th century and an empirical study on first year students’ difficulties

with interpreting visualizations.

The first historical case study presented pertains to the criticism and the eventual

decline of visualization in mathematics triggered by geometrical and analytical

argumentations drifting apart in the course of the rigourization of analysis in the

19th century. The second case study, focussing on visual argumentation in 17th

century mathematics, brings to the fore the need for an interpretation of

visualizations. Interpretation is also the key aspect of diagrammatic reasoning that

the authors put forward against Giaquinto’s attempt at distinguishing visual from

non-visual branches of mathematics. This discussion leads naturally to their

presentation of an empirical study conducted among first-year university students. It

turns out that in themselves, the pictures given to the students are not sufficient to

show them what is happening in a construction; instead, a certain skill of

interpreting the pictures, which would be acquired by studying mathematics,

appears to be a necessary precondition for getting the right results.

‘‘Pi on Earth’’ is a paper by Jean-Paul Van Bendegem and Bart Van Kerkhove which

emphasizes a completely different link between mathematics and the empirical world

than what we discussed in Sect. 3 above. Whereas we stressed the importance of

empirical research for the philosophy of mathematics, Van Bendegem and Van

Kerkhove stress the empirical character of some mathematical practices. They discuss

non-formal arguments, mathematical experiments, inductive reasoning, and proba-

bilistic proof. In the end, they discuss two hypothetical scenarios and their
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consequences for the empirical character of mathematics. In the second scenario, they

employ Malament–Hogarth spacetimes, a theory that recently gained a lot of attention

in the computability community as these solutions to the Einstein equations of General

Relativity allowing for an infinite amount of time to pass in what is a finite amount of

time for an observer. They use these scenarios to argue that mathematical practice

depends on contingent facts about the physical world.

In his ‘‘Experimental Mathematics’’, Alan Baker develops a theme from another

paper by Van Bendegem (1998) and asks for the scope and the philosophical

implications of the new field of experimental mathematics. Does the emergence of this

field endanger the traditional foundations of mathematics? In his discussion of the

scope of experimental mathematics, Baker revisits some of the topics discussed in the

paper by Van Bendegem and Van Kerkhove, both number-crunching and inductive

arguments show up. However, whereas Van Bendegem and Van Kerkhove conclude

by saying that experimental methods and an empirical basis form an indispensible

backdrop for mathematical practice, Baker goes the other way and says that the fact

that mathematicians use experiments in the context of discovery is ‘‘compatible with

the view that mathematics is a priori and deductive at its core’’.

We end our list of contributions to this special issue with Keith Devlin’s

intriguing paper ‘‘A mathematician reflects on the useful and reliable illusion of

reality in mathematics’’. Devlin very clearly states that the paper ‘‘is not intended to

be a ‘philosophy paper’ ... but very much in ... the spirit of the GAP.6 workshop, ...

rais[ing] possibilities that might merit further consideration’’. Devlin goes back to

one of the central observations about mathematical research practice, the

Widerstandsempfinden, repeatedly mentioned in Sect. 1 and also elaborated in

Buldt (?a). This Widerstandsempfinden is one of the reasons for mathematicians to

adopt the belief that mathematics is not just a mental figment, but rather about the

manipulation of real objects. Devlin asks where this resistance comes from and

decides to look for its origin at the human brain. We are of course far from

understanding the way the human brain actually works, and thus any reduction of

the Widerstandsempfinden to the workings of the brain must be preliminary, but

Devlin’s ideas certainly are stimulating and in accord with current neuroscience.

Open Access This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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1925).

Jaffe, A., & Quinn, F. (1993). Theoretical mathematics’’: Toward a cultural synthesis of mathematics and

theoretical physics. Bulletin of the American Mathematical Society 29, pp. 1–13, 1993. Replies:

(Thurston, 1994); M. Atiyah et al., Responses, Bulletin of the American Mathematical Society, Vol.

30, pp. 178–207, 1994; A. Jaffe, F. Quinn, Response, Bulletin of the American Mathematical
Society, Vol. 30, pp. 208–211, 1994.

Kant, I. Gesammelte Schriften (=Akademieausgabe, AA), Ed. Königlich Preußische Akademie der

Wissenschaften, de Gruyter, Berlin, 1902 seqq.

Kim, J. (2006). Philosophy of mind. Cambridge MA: Westview Press.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of

expertise in geometry. Cognitive Science, 14, 511–550.

Korten, H., & Ziche, P. (Eds.), Schelling, Friedrich Wilhelm Joseph: Historisch-kritische Ausgabe, Reihe

I: Werke, Band 9, 1–2: System des transscendentalen Idealismus (1800), Frommann, Stuttgart-Bad

Cannstatt, 2005.

Kunen, K. (1980). Set theory. An introduction to independence proofs. Amsterdam: North-Holland.

Landy, D., & Goldstone, R. L. (?a). Formal notations are diagrams: evidence from a production task, to

appear in: Memory and Cognition.

Landy, D., & Goldstone, R. L. (?b). How abstract is symbolic thought?, to appear in: Journal of
Experimental Psychology: Learning, Memory, and Cognition.

Latour, B. (1987). Science in action. How to follow scientists and engineers through society. Cambridge

MA: Harvard University Press.

Lauth, R., & Gliwitzky, H. (Eds.). (1973). Johann Gottlieb Fichte, Gesamtausgabe der Bayerischen
Akademie der Wissenschaften, Band III, 4: Briefe 1799–1800, Frommann, Stuttgart-Bad Cannstatt.

328 B. Buldt et al.

123



Lauth, R., & Gliwitzky, H. (Eds.). (1977). Johann Gottlieb Fichte, Gesamtausgabe der Bayerischen
Akademie der Wissenschaften, Band IV, 1: Kollegnachschriften 1796–1798, Frommann, Stuttgart-

Bad Cannstatt.

Lauth, R., & Gliwitzky, H. (Eds.). (1979). Johann Gottlieb Fichte, Gesamtausgabe der Bayerischen
Akademie der Wissenschaften, Band II, 5: Nachgelassene Schriften 1796–1801, Frommann,

Stuttgart-Bad Cannstatt.

Lauth, R., & Gliwitzky, H. (Eds.). (1993). Johann Gottlieb Fichte, Gesamtausgabe der Bayerischen
Akademie der Wissenschaften, Band II, 9: Nachgelassene Schriften 1805–1807, Frommann,

Stuttgart-Bad Cannstatt.
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