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Abstract – The low-energy dynamics of the anti-ferromagnetic Heisenberg spin S chain in the
semiclassical limit S→∞ is known to map onto the O(3) nonlinear σ-model with a θ term in
1+1 dimension. Guided by the underlying dual symmetry of the spin chain, as well as by the
recently established topological significance of “dangling edge spins”, we report an exact mapping
onto the O(3) model that avoids the conventional large-S approximation altogether. Our new
methodology demonstrates all the super universal features of the θ-angle concept that previously
arose in the theory of the quantum Hall effect. It explains why Haldane’s original ideas remarkably
yield the correct answer in spite of the fundamental complications that generally exist in the idea
of semiclassical expansions.

Copyright c© EPLA, 2008

In 1983, Haldane proposed that the low-energy dynam-
ics of the anti-ferromagnetic Heisenberg spin S chain can
be taken from the O(3) nonlinear σ-model (NLSM) in
1+1 dimension and in the presence of the θ term [1].
At least within the limitations of a large-S approxima-
tion the parameter θ was found to take on the values 0 or
π only, depending on whether S is integral or half-integral,
respectively. Since the standard O(3) model with θ= 0 is
known to display a mass gap [2], Haldane concluded that
the integral spin chain is always gapped. This is unlike the
S = 1/2 chain, for example, which from the Bethe ansatz
solution is known to display gapless excitations [3]. Based
on numerical work it is now generally accepted that the
uniform integral spin chain is always gapped, whereas the
half-integral spin chain is generally gapless.
It has recently been pointed out, however, that a

universal topological feature of the θ-angle concept has
historically been overlooked [4]. The θ-vacuum quite
generally displays massless chiral edge excitations [5]
that have important consequences for the theory on
the strong-coupling side. Within the Grassmannian
U(M +N)/U(M)×U(N) nonlinear sigma model
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Italy, EU.

approach to localization and interaction phenomena, for
example, it was shown that the massless edge excitations
are directly related to the existence of robust topological
quantum numbers that explain the stability and precision
of the quantum Hall effect [6]. This has led to the idea of
super universality of quantum Hall physics that, unlike the
common belief in the field, is independent of the details
of the theory such as the number of field components and
in particular, the replica limit M,N → 0 [6].
Based on the Haldane mapping it is next natural

to expect that the super-universality statement can be
extended to also include quantum spin liquids. Indeed,
renormalization group studies have clearly indicated that
the dimerised S = 1/2 spin chain displays all the basic
features of the quantum Hall effect [4] in much the same
manner as what has recently been observed, for example,
in the exactly solvable large-N limit of the CPN−1

model [7]. The dynamics of the dangling edge spins of
the chain thereby plays a role that is in many ways the
same as that of the massless chiral edge excitations of the
θ-vacuum. Unfortunately, a generalized Haldane mapping
that includes the dangling spins at the edges of the spin S
chain has so far been obtained only for the semiclassical
S =∞ limit [4]. Given the extensive literature on the
subject of quantum spin chains, it is somewhat surprising
to know that not a single attempt has been reported that
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would in principle resolve this longstanding drawback and
extend the Haldane mapping to include finite values of S.
One of the main objectives of the present letter is to

show that the statement of super universality of quantum
spin liquids cannot in general be established by using the
semiclassical large-S idea alone. To illustrate the problems
we first recall the Hamiltonian of the spin chain

H= J
S

∑
I

(SI1 ·SI2+κ SI2 ·SI+1 1). (1)

Here, J > 0 favors the anti-ferromagnetic (Néel) ordering,
the integer I is the dimer index and the subscripts 1 and 2
denote the two sites within each dimer. The variable κ with
0<κ<∞ is the dimensionless nearest-neighbor coupling
between the dimers. The path integral representation
involves O(3) vectors n̂(t) with n̂2 = 1 and t denoting the
imaginary time. The action is [8]

S = iS
∑
I

Ω[n̂I1] +Ω[n̂I2]

+SJ
∑
I

∮ (
n̂I1 · n̂I2+κn̂I2 · n̂I+1 1

)
. (2)

The quantity Ω[n̂Iα] is the solid-angle term associated

with each lattice site Iα and
∮
=
∫ β
0
dt. To extract the

low-energy dynamics of the spin chain from eq. (2) several
basic assumptions are necessary. The historical procedure
was based on the change of variables [9]

mI =
1

2
(n̂I1− n̂I2), lI =

1

2
(n̂I1+ n̂I2), (3)

where m̂I =mI/|mI |, which is a measure of the Néel
ordering, is taken as the soft mode in the problem that
should be retained. The field variable lI , on the other
hand, is taken as the hard mode that should be integrated
out. The simplest way to do this is by using semiclassical
approximations. Assuming S→∞ then eq. (2) can be
evaluated at the saddle point which in the long-wavelength
limit (slowly varying m̂I) yields the NLSM in the presence
of the θ-angle [4,9]. The complications, however, occur in
the computation of the 1/S corrections that all diverge as
β→∞. The origin of the divergences is easily understood
from the following exact expression for the solid-angle
term of each dimer [10]:

Ω[n̂I1] +Ω[n̂I2] = 2

∮
lI · m̂I × ∂tm̂I . (4)

The action of the “hard” modes has therefore no time
derivatives and this, in turn, implies that coincident
operators lI(t) have a divergent expectation value. What
this simple example is telling us is that semiclassical
expansions are quite generally plagued by ambiguities that
are inherent in the bosonic path integral representation of
eq. (2). These ambiguities, as we shall see later on in this
letter, are the main reason why the general theory of the
Heisenberg anti-ferromagnet has not advanced beyond the
naive S =∞ saddle point limit.

Fig. 1: The 3-spin problem with relative bond strengths 1
and κ.

Three-spin problem. – As the most important step
next we introduce a novel mapping onto the NLSM that
avoids the use of semiclassical approximations altogether.
This is accomplished if, instead of eq. (3), we pursue an
effective action of the spin chain as defined by decimation,
i.e. by eliminating the spins on one sublattice (say, n̂I1)
while retaining those on the other (n̂I2). The primary
focus will be on open spin chains containing 2N +1 sites
since they display both the subtleties of “dangling edge
spins” and “dual invariance.” By dual invariance we mean
that the dimerised spin system described by eqs. (1) and
(2) is invariant under the interchange between the weak
and strong bonds

J→ Jκ, κ→ 1
κ
. (5)

For simplicity we first consider the three-spin system as
sketched in fig. 1 which is the simplest possible system
with edges that is manifestly self-dual. It is advanta-
geous to express the O(3) vector field n̂ in terms of a
Grassmannian field variable Q= n̂ · τ ∈ SU(2)/U(1), with
τ denoting the Pauli matrices. This leads to the three-spin
action

S[Q1, Q2, Q3] = iS
{
Ω[Q1] +Ω[Q2] +Ω[Q3]

}

+
1

2
SJ

∮
tr(Q1+κQ3)Q2. (6)

We can always write Q= T−1τzT with T ∈ SU(2) such
that the solid-angle term can be expressed explicitly
according to iΩ[Q] = iΩ[T ] =

∮
trT∂tT

−1τz [4]. The deci-
mation of the three-spin system is defined as follows:

e−Seff [Q1,Q3] =
∫
D[Q2]e−S[Q1,Q2,Q3]. (7)

To evaluate Seff we notice that the matrix Q1+κQ3 in
eq. (6) is Hermitian and traceless. Therefore, let us write

J (Q1+κQ3) =BV
−1τzV, (8)

B = J(1+κ)

√
1− κ

2(1+κ)2
trδQδQ, (9)

where V ∈ SU(2) and δQ=Q3−Q1 which is taken as
a small quantity. Similarly, we expand the matrix V in
powers of the differential δT = T3−T1,

V = T1+
κ

1+κ
δT +O(δ2). (10)

Based on eqs. (8)–(10) we obtain Seff order by
order in a derivative expansion. To see this we replace
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Q2→ V −1Q2V such that eq. (6) can be rewritten as
S = iS(Ω[T1] +Ω[T3])+S0[Q2] + S̃[Q1, Q2, Q3], (11)

S0[Q2] = S
∮
tr

(
T2∂tT

−1
2 +

B0

2
Q2

)
τz, (12)

S̃[Q1, Q2, Q3] = S
∮
tr

(
V ∂tV

−1+
δB

2
τz

)
Q2 (13)

with B0 = J(1+κ) and δB =B−B0. Notice that the
piece S0 in eqs. (11) and (12) is the action of a single
spin S in a constant magnetic field B0 which is exactly
solvable. Of interest are the non-vanishing one- and two-
point correlations of the Q2 =Q

σσ′
2 matrix field [4,5],

〈Q2〉=−τz, 〈Q212 (0)Q122 (t)〉=
2

S
ϑ(t)e−B0t. (14)

Here, the limit β→∞ (β being the inverse temperature) is
understood and ϑ(t) denotes the Heaviside step function.
The piece S̃ in eqs. (11) and (13) contains derivatives
acting on the “soft” modes Q1 and Q3 and can be treated
in a cumulant expansion. This leads to Seff obtained to
lowest orders in ∂t and δ,

Seff [Q1, Q3] = iSΩ[T3] +S κ

κ+1

×
∮
tr

{
J

4
(δQ)2+

1

Jκ
(∂tQ)

2− δ(T∂tT−1τz)
}
. (15)

Exact mapping. – Equation (15) can be directly
generalized to obtain the effective action Soexact for the
dimerised spin chain with 2N +1 sites and the result is

Soexact =
N∑
m=1

{
Seff [Q2m−1, Q2m+1]− iS Ω[T2m+1]

}

+iS Ω[T2N+1]. (16)

In the continuum limit we obtain the NLSM,

Soexact =
1

g

∫
tr

{
1

c
(∂tQ)

2+ c(∂xQ)
2

}
+ iθ C[Q]

+iS Ω[T (L)]. (17)

Here,
∫
denotes the space-time integral

∮
dt
∫ L
0
dx,

L= 2Na with a the lattice constant. C[Q] is the topologi-
cal charge of the matrix field Q,

C[Q] = 1

16πi

∫
trεµνQ∂µQ∂νQ=

Ω[T (0)]−Ω[T (L)]
4π

(18)
and the NLSM parameters are given by1

θ(κ) = 4πS
κ

1+κ
, g(κ) =

1+κ

S
√
κ
, c(J, κ) = aJ

√
κ.

(19)

We will next employ these results to draw important
conclusions that are valid for arbitrary values of S.

1As explained later in the text the same expressions are obtained
in the naive S =∞ approximation [4,9].

Duality and super universality. – The solid-angle
term in eq. (17) is clearly the action of a single “edge spin”
that makes all the difference between an open spin chain
and closed one. In anticipation of the fact that the “bulk”
of the system is periodic in the “angle” θ we write

θ(κ) = θB(κ)+ 2πk(κ), (20)

where −π < θB(κ)� π denotes the fractional piece and
k(κ) = 0, 1, . . . , 2S the integral piece of θ(κ). Notice that
under the transformation of eq. (5), the NLSM parameters
are replaced by

θB(1/κ) = −θB(κ), k(1/κ) = S− k(κ),
g(1/κ) = g(κ), c(Jκ, 1/κ) = c(J, κ).

(21)

Equation (20) therefore permits a splitting of eq. (17) into
a “bulk” part SB [Q] and an “edge” part SoE [T ] that are
decoupled under the dual transformation. Specifically, we
rewrite
Soexact = SB [Q] +SoE [T ], (22)

SB [Q] = 1
g

∫
tr

{
1

c
(∂tQ)

2+ c(∂xQ)
2

}
+ iθBC[Q], (23)

SoE [T ] = i
k

2
Ω[T (0)]+ i

(
S− k
2

)
Ω[T (L)]. (24)

These final expressions are the principal results of this
letter. Notice that eq. (24). is a fundamental statement
made on the “edge’ of the θ-vacuum that has traditionally
gone unnoticed [4,6]. Following eqs. (12) and (14) it is
the critical action of “dangling edge spins” and should
therefore be regarded as an integral part of the low-energy
dynamics of the spin chain [11]. To understand this aspect
of the problem we first consider the class of topological
field configurations Q0 for which C[Q0] is strictly an
integer. As is well known, this class sets the stage for
the “instanton picture” of the θ-angle and is geometrically
defined by identifying the edge as a single point, i.e. Q0
is a constant matrix along the edge of the system, say
Q0 = τz [6]. The action for the edge equation (24) is
now a trivial phase factor and we immediately recognize
Soexact = SB [Q0] as the theory of the “bulk” of the system
that only depends on θ(κ) modulo 2π.
To incorporate the edge excitations we write Q=
U−1Q0U . Here U ∈ SU(2) represents the “fluctuations”
about the boundary condition Q0 = τz that carry a frac-
tional topological charge. Discarding unimportant phase
factors eq. (24) now reads SoE [T ] = SoE [U ] indicating that
the matrix U is the basic field variable for the “edge.”
Of primary interest is the effective action for “edge”
excitations S̃oE [U ] which is given by [4,6]

e−S̃
o
E [U ] = e−S

o
E [U ]

∫
∂V

D[Q0]e−SB [U−1Q0U ]. (25)

Here, ∂V reminds us of the boundary condition Q0 = τz.
Next, we make use of the fact that the two-dimensional
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theory of eq. (23) develops a mass gap when θB(κ)≈ 0
or θ(κ)≈ 2πk(ν) [2]. A finite mass gap in the “bulk”
means that the functional integral of eq. (25) is insen-
sitive to changes in the boundary conditions and, hence,
S̃oE [U ]≡SoE [U ] except for U -independent terms. We there-
fore conclude that the dimerised spin chain with varying
values of κ displays 2S+1 different topological phases,
labelled by the integer k(κ), where the low-energy excita-
tions are solely those of the “dangling edge spins” with
quantum numbers k(κ)/2 and S− k(κ)/2, respectively.
These phases must in general be separated by quantum
phase transitions (or a vanishing mass gap in the bulk)
occurring at intermediate values of κ where θB(κ) makes a
“jump’ from +π to −π. Notice that gapless excitations are
in general necessary in order for the spin chain to be able
to transport a spin- 12 quantum over macroscopic distances
from one edge to the other. Moreover, in complete anal-
ogy with the “electrodynamics picture” of the θ-angle [12]
one may interpret the “jump” in θB(κ) in terms of the
creation of “Coleman charges” that move to the opposite
edges so as to maximally shield the “background electric
field” θ(κ) (see footnote 2).
In summary, emerging from eqs. (22)–(25) are precisely

the super universal features of the θ-vacuum concept
that have previously been discovered in the context of
the quantum Hall effect [6]. The statement of super
universality becomes all the more transparent when, for
example, the “dangling edge spins” are identified with the
phenomenon of massless chiral edge excitations, the spin
chain parameter θ(κ)/2π is replaced by the filling fraction
of the Landau levels and, finally, the integer k(κ) is
recognized as the robustly quantized Hall conductance [4].
For completeness we list the results for eq. (24) for open
spin chains (SeE) and closed ones SpE) that contain an even
number of sites,

SeE [U ] = i
k

2

{
Ω[U(0)]−Ω[U(L)]

}
, SpE [U ] = 0. (26)

Semiclassical theory. – Next, it is of interest to
know what our explicit and exact results teach us about
the problem of semiclassical expansions that to date has
spanned the subject. For this purpose we address the
single-spin problem of eq. (12) and employ the Schwinger
boson representation Qσσ

′
2 = δσσ′ − 2zσz∗σ′ with z∗ · z= 1.

Fixing the U(1) gauge such that z1 = z
∗
1 =
√
1− z∗2z2, the

Q2 matrix field can be written as

Q2 =−

 1− 2z∗2z2 2z2

√
1− z∗2z2

2z∗2
√
1− z∗2z2 −1+2z∗2z2


 . (27)

2Coleman’s charges are distinctly different from the massless edge
excitations that fundamentally explain the quantum Hall effect.
As explained in the text, these edge excitations are a previously
unrecognized universal feature of the θ-angle concept that resolves,
amongst many other things, the longstanding conflicts between
“large-N picture” and the “instanton picture,” see, e.g., [7].

The single-spin action of eq. (12) becomes simply

S0 = 2S
∮ {
z∗2(t)∂tz2(t)+B0z

∗
2(t− ε)z2(t)

}
. (28)

For reasons to be explained shortly, we have introduced an
infinitesimal time-splitting quantity ε > 0 in the definition
of S0. In the large-S limit the propagator becomes

〈z∗2(0)z2(t)〉=
1

2S
ϑ(t− ε)e−B0t. (29)

It can be shown that eqs. (27)–(29) are completely equiva-
lent to the Holstein-Primakoff representation of the single
spin. The effect of our introduction of the time-splitting
quantity ε in eqs. (28) and (29) is to render the expecta-
tion value of coincident operators identically equal to zero.
The remarkable conclusion that one can draw from all this
is that the exact correlations of eq. (14) are obtained in
the limit S→∞ and the corrections are zero to all orders
in 1/S [13].
The subtle but crucial feature of coincident operators

is generally lost in eqs. (2) and (12), a drawback of the
bosonic path integral that explains why the traditional
saddle point or large-S technique is complicated. On the
other hand, the present theory fundamentally resolves
these ambiguities since our exact and semiclassical results
can be compared directly with the knowledge obtained
from different sources, notably the Hamiltonian formalism.
Finally, our methodology is not specifically designed for
SU(2) spins alone. It can also be applied to the SU(n)
case, for example, as well as to the Heisenberg anti-
ferromagnet in higher dimensions [14].
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