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Abstract

In this paper we consider a single-server cyclic polling system consisting of two queues.
Between visits to successive queues, the server is delayed by a random switch-over time.
Two types of customers arrive at the first queue: high and low priority customers. For
this situation the following service disciplines are considered: gated, globally gated, and
exhaustive. We study the cycle time distribution, the waiting times for each customer type,
the joint queue length distribution at polling epochs, and the steady-state marginal queue
length distributions for each customer type.

Keywords: Polling, priority levels, queue lengths, waiting times

1 Introduction

A polling model is a single-server system in which the server S visits n queues Q1, . . . , Qn in
cyclic order. Customers that arrive at Qi are referred to as type i customers. The special feature
of the model considered in the present paper is that, within a customer type, we distinguish high
and low priority customers. More specifically, we study a polling system which consists of two
queues, Q1 and Q2. The first of these queues contains customers of two priority classes, high
(H ) and low (L). The exhaustive, gated and globally gated service disciplines are studied.

Our motivation to study a polling model with priorities is that scheduling through the introduction
of priorities in a polling system can improve the performance of the system significantly without
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having to purchase additional resources [15]. Priority polling systems can be used to study the
Bluetooth and 802.11 protocols, or scheduling policies at routers and I/O subsystems in web
servers. Different priority levels may be introduced to provide differentiated Quality-of-Service;
e.g. one could give highest priority to jobs with a service requirement below a certain threshold
level. Priority polling models also can be used to study traffic intersections where conflicting
traffic flows face a green light simultaneously; e.g. traffic which takes a turn may have to give
right of way to conflicting traffic that moves straight on, even if the traffic light is green for both
traffic flows.

Although there is quite an extensive amount of literature available on polling systems, only very
few papers treat priorities in polling models. Most of these papers only provide approximations
or focus on pseudo-conservation laws. Wierman, Winands and Boxma [15] have obtained exact
mean waiting time results using the Mean Value Analysis (MVA) framework for polling sys-
tems, developed in [16]. The MVA framework can only be used to find the first moment of the
waiting time distribution for each customer type, and the mean residual cycle time. The main
contribution of the present paper is the derivation of Laplace Stieltjes Transforms (LSTs) of the
distributions of the marginal waiting times for each customer type; in particular it turns out to be
possible to obtain exact expressions for the waiting time distributions of both high and low prior-
ity customers at a queue of a polling system. Probability Generating Functions (GFs) are derived
for the joint queue length distribution at polling epochs, and for the steady-state marginal queue
length distribution of the number of customers at an arbitrary epoch. Although we only consider
a polling system with two queues, and two priority classes in Q1, we believe that the results and
the approach can be extended to models with any number of queues and any number of customer
classes in each queue for the exhaustive, gated and globally gated service disciplines. This is the
topic of a forthcoming paper.

The present paper is structured as follows: Section 2 gathers known results of nonpriority polling
models which are relevant for the present study. Sections 3 (gated), 4 (globally gated), and 5 (ex-
haustive) give new results on the priority polling model. In each of the sections we successively
discuss the joint queue length distribution at polling epochs, the cycle time distribution, the
marginal queue length distributions and waiting time distributions. The mean waiting times are
given at the end of each section.

2 Notation and description of the nonpriority polling model

The model that is considered in this section, is a polling model with two queues (Q1 and Q2)
without priorities. We consider three service disciplines: gated, globally gated, and exhaustive.
The gated service discipline states that during a visit of S to Qi , S serves only those type i
customers who are present at the moment that S arrives at Qi . All type i customers that arrive
during the visit of S to Qi will be served during the next cycle. A cycle is the time between
two successive visit beginnings (or completions) to a queue. The exhaustive service discipline
states that when S arrives at Qi , all type i customers that are present at that polling epoch, and
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all type i customers that arrive during this particular visit of S to Qi , are served until no type i
customer is present in the system. We also consider the globally gated service discipline, which
is similar to the gated service discipline, except for the fact that the symbolic gate is being set at
the beginning of a cycle for all queues. This means that during a cycle only those customers will
be served that were present at the beginning of that cycle.

Customers of type i arrive at Qi according to a Poisson process with arrival rate λi (i = 1, 2).
Service times can follow any distribution, and we assume that a customer’s service time is inde-
pendent of other service times and independent of the arrival processes. The LST of the distribu-
tion of the generic service time Bi of type i customers is denoted by βi (·). The fraction of time
that the server is serving customers of type i equals ρi := λi E(Bi ). Switches of the server from
Qi to Qi+1 (all indices modulo 2), require a switch-over time Si . The LST of this switch-over
time distribution is denoted by σi (·). The fraction of time that the server is working (i.e., not
switching) is ρ := ρ1+ ρ2. We assume that ρ < 1, which is a necessary and sufficient condition
for the steady state distributions of cycle times, queue lengths and waiting times to exist.

This model has been extensively studied. Takács [14] studied this model, but without switch-
over times and only with the exhaustive service discipline. Cooper and Murray [7] analysed this
polling system for any number of queues, and for both gated and exhaustive service disciplines.
Eisenberg [8] obtained results for a polling system with switch-over times (but only exhaustive
service) by relating the GFs of the joint queue length distributions at visit beginnings, visit end-
ings, service beginnings and service endings. Resing [13] was the first to point out the relation
between polling systems and Multitype Branching Processes with immigration in each state. His
results can be applied to polling models in which each queue satisfies the following property:

Property 2.1 If the server arrives at Qi to find ki customers there, then during the course of
the server’s visit, each of these ki customers will effectively be replaced in an i.i.d. manner by
a random population having probability generating function hi (z1, . . . , zn), which can be any
n-dimensional probability generating function.

We use this property, and the relation to Multitype Branching Processes, to find results for our
polling system with two queues, two priorities in the first queue, and gated, globally gated, and
exhaustive service discipline. Notice that, unlike the gated and exhaustive service disciplines, the
globally gated service discipline does not satisfy Property 2.1. But the results obtained by Resing
also hold for a more general class of polling systems, namely those which satisfy the following
(weaker) property that is formulated in [1]:

Property 2.2 If there are ki customers present at Qi at the beginning (or the end) of a visit
to Qπ(i), with π(i) ∈ {1, . . . , n}, then during the course of the visit to Qi , each of these ki
customers will effectively be replaced in an i.i.d. manner by a random population having proba-
bility generating function hi (z1, . . . , zn), which can be any n-dimensional probability generating
function.

Globally gated and gated are special cases of the synchronised gated service discipline, which
states that only customers in Qi will be served that were present at the moment that the server
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reaches the “parent queue” of Qi : Qπ(i). For gated service, π(i) = i , for globally gated service,
π(i) = 1. The synchronised gated service discipline is discussed in [12], but no observation
is made that this discipline is a member of the class of polling systems satisfying Property 2.2
which means that results as obtained in [13] can be extended to this model.

Borst and Boxma [2] combined the results of Resing [13] and Eisenberg [8] to find a relation
between the GFs of the marginal queue length distribution for polling systems with and without
switch-over times, expressed in the Fuhrmann-Cooper queue length decomposition form [9].

2.1 Joint queue length distribution at polling epochs

The probability generating function hi (z1, . . . , zn) which is mentioned in Property 2.1 depends
on the service discipline. In a polling system with two queues and gated service we have
hi (z1, z2) = βi (λ1(1− z1)+ λ2(1− z2)). For exhaustive service this GF becomes hi (z1, z2) =

πi (
∑

j 6=i λ j (1 − z j )), where πi (·) is the LST of a busy period (BP) distribution in an M/G/1
system with only type i customers, so it is the root of the equation πi (ω) = βi (ω+λi (1−πi (ω))).
We choose the beginning of a visit to Q1 as start of a cycle. In order to find the joint queue length
distribution at the beginning of a cycle, we have to define the immigration GF and the offspring
GF analogous to [13]. The offspring GFs for queues 2 and 1 are given below.

f (2)(z1, z2) = h2(z1, z2),

f (1)(z1, z2) = h1(z1, f (2)(z1, z2)).

The immigration GFs are:

g(2)(z1, z2) = σ2(λ1(1− z1)+ λ2(1− z2)),

g(1)(z1, z2) = σ1(λ1(1− z1)+ λ2(1− f (2)(z1, z2))).

The total immigration GF is the product of these two GFs:

g(z1, z2) =

2∏
i=1

g(i)(z1, z2) = g(1)(z1, z2)g(2)(z1, z2).

We define the GF for the nth generation of offspring recursively:

fn(z1, z2) = ( f (1)( fn−1(z1, z2)), f (2)( fn−1(z1, z2))),

f0(z1, z2) = (z1, z2).

The joint queue length GF at the beginning of a cycle (starting with a visit to Q1) is

P1(z1, z2) =

∞∏
n=0

g( fn(z1, z2)). (2.1)
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Resing [13] proves that this infinite product converges if and only if ρ < 1.

We can relate the joint queue length distribution at other polling epochs to P1(z1, z2). We denote
the GF of the joint queue length distribution at a visit beginning to Qi by Vbi (·), so P1(·) =

Vb1(·). The queue length at a visit completion to Qi is denoted by Vci (·). The following relations
hold:

Vb1(z1, z2) = Vc2(z1, z2)σ2(λ1(1− z1)+ λ2(1− z2))

= Vb2(z1, h2(z1, z2))σ2(λ1(1− z1)+ λ2(1− z2))

= Vb2(z1, f (2)(z1, z2))g(2)(z1, z2), (2.2)
Vb2(z1, z2) = Vc1(z1, z2)σ1(λ1(1− z1)+ λ2(1− z2))

= Vb1(h1(z1, z2), z2)σ1(λ1(1− z1)+ λ2(1− z2)). (2.3)

2.2 Cycle time

The cycle time, starting at a visit beginning to Q1, is the sum of the visit times to Q1 and Q2,
and the two switch-over times which are independent of the visit times. Since type 2 customers
who arrive during the visit to Q1 or the switch from Q1 to Q2 will be served during the visit to
Q2, it can be shown that the LST of the distribution of the cycle time C1, γ1(·), is related to P1(·)

as follows:

γ1(ω) = σ1(ω + λ2(1− φ2(ω)))σ2(ω)P1(φ1(ω + λ2(1− φ2(ω))), φ2(ω)), (2.4)

where φi (·) is the LST of the distribution of the time that the server spends at Qi due to the
presence of one type i customer there. For gated service φi (·) = βi (·), for exhaustive service
φi (·) = πi (·). A proof of (2.4) can be found in [5].

In some cases it is convenient to choose a different starting point for a cycle, for example when
analysing a polling system with exhaustive service. If we define C1 to be the time between two
successive visit completions to Q1, the LST of its distribution, γ1(·), is:

γ1(ω) = σ1(ω + λ1(1− φ1(ω))+ λ2(1− φ2(ω + λ1(1− φ1(ω)))))

· σ2(ω + λ1(1− φ1(ω)))Vc1(φ1(ω), φ2(ω + λ1(1− φ1(ω)))), (2.5)

with Vc1(z1, z2) = P1(h1(z1, z2), z2).

2.3 Marginal queue lengths and waiting times

We denote the GF of the steady-state marginal queue length distribution of Q1 at the visit begin-
ning by Ṽb1(z) = Vb1(z, 1). Analogously we define Ṽb2(·), Ṽc1(·), and Ṽc2(·). It is shown in [2]
that the steady-state marginal queue length of Qi can be decomposed into two parts: the queue
length of the corresponding M/G/1 queue with only type i customers, and the queue length at
an arbitrary epoch during the intervisit period of Qi , denoted by Ni |I . Borst [2] shows that by
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virtue of PASTA, Ni |I has the same distribution as the number of type i customers seen by an
arbitrary type i customer arriving during an intervisit period, which equals

E(zNi |I ) =
E(zNi |Ibegin )− E(zNi |Iend )

(1− z)(E(Ni |Iend)− E(Ni |Ibegin))
,

where Ni |Ibegin is the number of type i customers at the beginning of an intervisit period Ii , and
Ni |Iend is the number of type i customers at the end of Ii . Since the beginning of an intervisit
period coincides with the completion of a visit to Qi , and the end of an intervisit period coincides
with the beginning of a visit, we know the GFs for the distributions of these random variables:
Ṽci (·) and Ṽbi (·). This leads to the following expression for the GF of the steady-state queue
length distribution of Qi at an arbitrary epoch, E[zNi ]:

E[zNi ] =
(1− ρi )(1− z)βi (λi (1− z))

βi (λi (1− z))− z
·

Ṽci (z)− Ṽbi (z)
(1− z)(E(Ni |Iend)− E(Ni |Ibegin))

. (2.6)

Keilson and Servi [10] show that the distributional form of Little’s law can be used to find the LST
of the marginal waiting time distribution: E(zNi ) = E(e−λi (1−z)(Wi+Bi )), hence E(e−ωWi ) =

E[(1− ω
λi
)Ni ]/βi (ω). This can be substituted into (2.6):

E[e−ωWi ] =
(1− ρi )ω

ω − λi (1− βi (ω))
·

Ṽci

(
1− ω

λi

)
− Ṽbi

(
1− ω

λi

)
(E(Ni |Iend)− E(Ni |Ibegin))ω/λi

= E[e−ωWi |M/G/1]E

[(
1−

ω

λi

)Ni |I
]
. (2.7)

The interpretation of this formula is that the waiting time of a type i customer in a polling model
is the sum of two independent random variables: the waiting time of a customer in an M/G/1
queue with only type i customers, Wi |M/G/1, and the remaining intervisit time for a customer
that arrives at an arbitrary epoch during the intervisit time of Qi .

For gated service, the number of type i customers at the beginning of a visit to Qi is exactly
the number of type i customers that arrived during the previous cycle, starting at Qi . In terms
of GFs: Ṽbi (z) = γi (λi (1 − z)). The number of type i customers at the end of a visit to Qi
are exactly those type i customers that arrived during this visit. In terms of GFs: Ṽci (z) =
γi (λi (1 − βi (λi (1 − z)))). We can rewrite E(Ni |Iend) − E(Ni |Ibegin) as λi E(Ii ), because this is
the number of type i customers that arrive during an intervisit time. In Section 2.4 we show that
λi E(Ii ) = λi (1 − ρi )E(C). Using these expressions we can rewrite Equation (2.7) for gated
service to:

E[e−ωWi ] =
(1− ρi )ω

ω − λi (1− βi (ω))
·
γi (λi (1− βi (ω)))− γi (ω)

(1− ρi )ωE(C)
. (2.8)

For exhaustive service, Ṽci (z) = 1, because Qi is empty at the end of a visit of S to Qi . The
number of type i customers at the beginning of a visit to Qi in an exhaustive polling system is
equal to the number of type i customers that arrived during the previous intervisit time of Qi .
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Hence, Ṽbi (z) = Ĩi (λi (1 − z)), where Ĩi (·) is the LST of the intervisit time distribution for Qi .
Substitution of Ĩi (ω) = Ṽbi (1−

ω
λi
) in (2.7) leads to the following expression for the LST of the

steady-state waiting time distribution of a type i customer in an exhaustive polling system:

E[e−ωWi ] =
(1− ρi )ω

ω − λi (1− βi (ω))
·

1− Ĩi (ω)

ωE(Ii )
. (2.9)

To the best of our knowledge, the following result is new.

Proposition 2.3 Let the cycle time Ci be the time between two successive visit completions
to Qi . The LST of the cycle time distribution is given by (2.5). An equivalent expression for
E[e−ωWi ] if Qi is served exhaustively, is:

E[e−ωWi ] =
1− γi (ω − λi (1− βi (ω)))

(ω − λi (1− βi (ω)))E(C)
(2.10)

= E[e−(ω−λi (1−βi (ω)))Ci,res],

where Ci,res is the residual length of Ci .

Proof:
The cycle time is the length of an intervisit period Ii plus the length of a visit Vi , which is the time
required to serve all type i customers that have arrived during Ii , and their type i descendants.
Hence, the following equation holds:

γi (ω) = Ĩi (ω + λi (1− πi (ω))). (2.11)

We use this equation to find the inverse relation:

Ĩi (ω + λi (1− πi (ω))) = γi (ω)

= γi (ω + λi (1− πi (ω))− λi (1− πi (ω))

= γi (ω + λi (1− πi (ω))− λi (1− βi (ω + λi (1− πi (ω))))).

If we substitute s := ω + λi (1− πi (ω)), we find

Ĩi (s) = γi (s − λi (1− βi (s))). (2.12)

Substitution of (2.12) into (2.9) gives (2.10). �

Remark 2.4 We can write (2.11) and (2.12) as follows:

γi (ω) = Ĩi (ψ(ω)),

Ĩi (s) = γi (φ(s)),

with φ(·) the Laplace exponent of the Lévy process
∑N (t)

i=1 B1,i − t , where N (t) is a Poisson
process with intensity λi , and with ψ(ω) = ω+ λi (1−πi (ω)), which is known to be the inverse
of φ(·).
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2.4 Moments

The focus of this paper is on LST and GF of distribution functions, not on their moments. Mo-
ments can be obtained by differentiation or Taylor series expansion, and are also discussed in
[15]. In this subsection we will only mention some results that will be used later.

First we will derive the mean cycle time E(C). Unlike higher moments of the cycle time, the
mean does not depend on where the cycle starts: E(C) = E(S1)+E(S2)

1−ρ . This can easily be seen,
because 1 − ρ is the fraction of time that the server is not working, but switching. The total
switch-over time is E(S1)+ E(S2).

The expected length of a visit to Qi is E(Vi ) = ρi E(C). The mean length of an intervisit period
for Qi is E(Ii ) = (1 − ρi )E(C). Notice that these expectations do not depend on the service
discipline used. The expected number of type i customers at polling moments does depend on the
service discipline. For gated service the expected number of type i customers at the beginning
of a visit to Qi is λi E(C). For exhaustive service this is λi E(Ii ). The expected number of type i
customers at the beginning of a visit to Qi+1 is λi (E(Vi )+E(Si )) for gated service, and λi E(Si )

for exhaustive service.

Moments of the waiting time distribution for a type i customer at an arbitrary epoch can be
derived from the LSTs given by (2.8), (2.9) and (2.10). We only present the first moment:

Gated: E(Wi ) = (1+ ρi )
E(C2

i )

2E(C)
, (2.13)

Exhaustive: E(Wi ) =
E(I 2

i )

2E(Ii )
+

ρi

1− ρi

E(B2
i )

2E(Bi )
,

= (1− ρi )
E(C2

i )

2E(C)
. (2.14)

Notice that the start of Ci is the beginning of a visit to Qi for gated service, and the end of a
visit for exhaustive service. Equations (2.13) and (2.14) are in agreement with Equations (4.1)
and (4.2) in [3]. Although at first sight these might seem nice, closed formulas, it should be
noted that the expected residual cycle time and the expected residual intervisit time are not easy
to determine, requiring the solution of a large set of equations. MVA is an efficient technique to
compute mean waiting times, the mean residual cycle time, and also the mean residual intervisit
time. We refer to [16] for an MVA framework for polling models.

3 Gated service

In this section we study the gated service discipline for a polling system with two queues and two
priority classes in the first queue: high (H ) and low (L) priority customers. All type H and L
customers that are present at the moment when the server arrives at Q1, will be served during the
server’s visit to Q1. First all type H customers will be served, then all type L customers. Type
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H customers arrive at Q1 according to a Poisson process with intensity λH , and have a service
requirement BH with LST βH (·). Type L customers arrive at Q1 with intensity λL , and have a
service requirement BL with LST βL(·). If we do not distinguish between high and low priority
customers, we can still use the results from Section 2 if we regard the system as a polling system
with two queues where customers in Q1 arrive according to a Poisson process with intensity
λ1 := λH + λL and have service requirement B1 with LST β1(·) =

λH
λ1
βH (·)+

λL
λ1
βL(·).

We follow the same approach as in Section 2. First we study the joint queue length distribution
at polling epochs, then the cycle time distribution, followed by the marginal queue length dis-
tribution and waiting time distribution. The last subsection provides the first moment of these
distributions.

3.1 Joint queue length distribution at polling epochs

Equations (2.2) and (2.3) give the GFs of the joint queue length distribution at visit beginnings,
Vbi (z1, z2). A type 1 customer entering the system is a type H customer with probability λH/λ1,
and a type L customer with probability λL/λ1. We can express the GF of the joint queue length
distribution in the polling system with priorities, Vbi (·, ·, ·), in terms of the GF of the joint queue
length distribution in the polling system without priorities, Vbi (·, ·).

Lemma 3.1
Vbi (zH , zL , z2) = Vbi

(
λH zH + λL zL

λ1
, z2

)
. (3.1)

Proof:
Let X H be the number of high priority customers present in Q1 at the beginning of a visit to Qi ,
i = 1, 2. Similarly define X L to be the number of low priority customers present in Q1 at the
beginning of a visit to Qi . Let X1 = X H + X L . Since the type H /L customers in Q1 are exactly
those H /L customers that arrived since the previous visit beginning at Qi , we know that

P(X H = i, X L = k − i |X1 = k) =
(

k
i

)(
λH

λ1

)i (
λL

λ1

)k−i

.

Hence

E[zX H
H zX L

L |X1 = k] =
∞∑

i=0

∞∑
j=0

zi
H z j

L P(X H = i, X L = j |X1 = k)

=

k∑
i=0

(
k
i

)(
λH

λ1
zH

)i (
λL

λ1
zL

)k−i

=

(
λH zH + λL zL

λ1

)k

.
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Finally,

Vbi (zH , zL , z2) =

∞∑
i=0

∞∑
j=0

(
λH zH + λL zL

λ1

)i

z j
2 P(X1 = i, X2 = j)

= Vbi

(
1
λ1
(λH zH + λL zL), z2

)
.

�

3.2 Cycle time

The LST of the cycle time distribution is still given by (2.4) if we define λ1 := λH + λL and
β1(·) :=

λH
λ1
βH (·)+

λL
λ1
βL(·), because the cycle time does not depend on the order of service.

3.3 Marginal queue lengths and waiting times

We first determine the LST of the waiting time distribution for a type L customer, using the fact
that this customer will not be served until the next cycle (starting at Q1). The time from the start
of the cycle until the arrival will be called “past cycle time”, denoted by C1P . The residual cycle
time will be denoted by C1R . The waiting time of a type L customer is composed of C1R , the
service times of all high priority customers that arrived during C1P +C1R , and the service times
of all low priority customers that have arrived during C1P . Let NH (T ) be the number of high
priority customers that have arrived during time interval T , and equivalently define NL(T ).

Theorem 3.2

E
[
e−ωWL

]
=
γ1(λH (1− βH (ω))+ λL(1− βL(ω)))− γ1(ω + λH (1− βH (ω)))

[ω − λL(1− βL(ω))]E(C)
.
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Proof:

E
[
e−ωWL

]
=E

[
e−ω(C1R+

∑NH (C1P+C1R )
i=1 BH,i+

∑NL (C1P )
i=1 BL ,i )

]
=

∫
∞

t=0

∫
∞

u=0

∞∑
m=0

∞∑
n=0

E
[
e−ω(u+

∑m
i=1 BH,i+

∑n
i=1 BL ,i )

]
· P(NH (C1P + C1R) = m, NL(C1P) = n) dP(C1P < t,C1R < u)

=

∫
∞

t=0

∫
∞

u=0
e−ωu

∞∑
m=0

∞∑
n=0

E
[
e−ω

∑m
i=1 BH,i

]
E
[
e−ω

∑n
i=1 BL ,i

]
·
(λH (t + u))m

m!
e−λH (t+u) (λL t)n

n!
e−λL t dP(C1P < t,C1R < u)

=

∫
∞

t=0

∫
∞

u=0
e−t (λH (1−βH (ω))+λL (1−βL (ω)))e−u(ω+λH (1−βH (ω))) dP(C1P < t,C1R < u)

=
γ1(λH (1− βH (ω))+ λL(1− βL(ω)))− γ1(ω + λH (1− βH (ω)))

[ω − λL(1− βL(ω))]E(C)
. (3.2)

For the last step in the derivation of (3.2) we used

E[e−ωP C1P−ωRC1R ] =
E[e−ωP C1] − E[e−ωRC1]

(ωR − ωP)E(C)
,

which is obtained in [4]. �

Remark 3.3 The Fuhrmann-Cooper decomposition [9] still holds for the waiting time of type L
customers, because (3.2) can be rewritten to

E
[
e−ωWL

]
=

(1− ρL)ω

ω − λL(1− βL(ω))

·
γ1(λH (1− βH (ω))+ λL(1− βL(ω)))− γ1(ω + λH (1− βH (ω)))

(1− ρL)ωE(C)
. (3.3)

We recognise the first term on the right-hand side of (3.3) as the LST of the waiting time distribu-
tion of an M/G/1 queue with only type L customers. An interpretation of the second term can
be found when regarding the polling system as a polling system with three queues (Q H , QL , Q2)

and no switch-over time between Q H and QL . The service discipline of this equivalent system
is synchronised gated, which is a more general version of gated. The gates for queues Q H and
QL are set simultaneously when the server arrives at Q H , but the gate for Q2 is still set when
the server arrives at Q2. In the following paragraphs we show that the second term on the right-

hand side of (3.3) can be interpreted as E[
(

1− ω
λL

)NL|I
], where NL|I is the number of type L

customers at a random epoch during the intervisit period of QL .
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The expression for the LST of the distribution of the number of type L customers at an arbitrary
epoch is determined by first converting the waiting time LST to sojourn time LST, i.e., multiply-
ing expression (3.3) with βL(ω). Second, we apply the distributional form of Little’s law [10]
to (3.3). This law can be applied because the required conditions are fulfilled for each customer
class (H, L, and 2): the customers enter the system in a Poisson stream, every customer enters the
system and leaves the system one at a time in order of arrival, and for any time t the entry pro-
cess into the system of customers after time t and the time spent in the system by any customer
arriving before time t are independent. The result is:

E
[
zNL

]
=
(1− ρL)(1− z)βL(λL(1− z))

βL(λL(1− z))− z
·

ṼcL (z)− ṼbL (z)
(1− z)(E(NL|Iend)− E(NL|Ibegin))

. (3.4)

In this equation ṼbL (z) denotes the GF of the distribution of the number of type L customers at
the beginning of a visit to QL , and ṼcL (z) denotes the GF at the completion of a visit to QL :

ṼbL (z) = Vb1(βH (λL(1− z)), z, 1)
= γ1(λH (1− βH (λL(1− z)))+ λL(1− z)),

ṼcL (z) = Vb1(βH (λL(1− z)), βL(λL(1− z)), 1)
= γ1(λH (1− βH (λL(1− z)))+ λL(1− βL(λL(1− z)))).

The last term in (3.4) is the GF of the distribution of the number of type L customers at an
arbitrary epoch during the intervisit period of QL , E[zNL|I ]. Substitution of ω := λL(1 − z) in
(3.4), and using (E(NL|Iend)− E(NL|Ibegin)) = λL E(IL), shows that the last term of (3.3) indeed

equals E[
(

1− ω
λL

)NL|I
].

The derivation of the LSTs of WH and W2 is similar and leads to the following expressions:

E
[
e−ωWH

]
=

(1− ρH )ω

ω − λH (1− βH (ω))
·
γ1(λH (1− βH (ω)))− γ1(ω)

(1− ρH )ωE(C)
, (3.5)

E
[
e−ωW2

]
=

(1− ρ2)ω

ω − λ2(1− β2(ω))
·
γ2(λ2(1− β2(ω)))− γ2(ω)

(1− ρ2)ωE(C)
. (3.6)

Remark 3.4 Equations (3.5) and (3.6) are equivalent to the LST of Wi in a nonpriority polling
system (2.8), which illustrates that the Fuhrmann-Cooper decomposition also holds for the wait-
ing time distributions of high priority customers in Q1 and type 2 customers in a polling system
with gated service.

Application of the distributional form of Little’s law to these expressions results in:

E
[
zNH

]
=
(1− ρH )(1− z)βH (λH (1− z))

βH (λH (1− z))− z
·
γ1(λH (1− βH (λH (1− z))))− γ1(λH (1− z))

λH (1− ρH )(1− z)E(C)
,

E
[
zN2
]
=
(1− ρ2)(1− z)β2(λ2(1− z))

β2(λ2(1− z))− z
·
γ2(λ2(1− β2(λ2(1− z))))− γ2(λ2(1− z))

λ2(1− ρ2)(1− z)E(C)
.
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Remark 3.5 If the service discipline in Q2 is not gated, but another branching type service
discipline that satisfies Property 2.1, (3.6) should be replaced by the more general expression
(2.7).

3.4 Moments

As mentioned in Section 2.4, we do not focus on moments in this paper, and we only mention
the mean waiting times of type H and L customers. For a type H customer, it is immediately
clear that E(WH ) = (1 + ρH )E(C1,res). The mean waiting time for a type L customer can be
obtained by differentiating (3.2). This results in:

E(WL) = (1+ 2ρH + ρL)E(C1,res).

These formulas can also be obtained using MVA, as shown in [15].

4 Globally gated service

In this section we discuss a polling model with two queues (Q1, Q2) and two priority classes (H
and L) in Q1 with globally gated service. For this service discipline, only customers that were
present when the server started its visit to Q1 are served. This feature makes the model exactly
the same as a nonpriority polling model with three queues (Q H , QL , Q2). Although this system
does not satisfy Property 2.1, it does satisfy Property 2.2 which implies that we can still follow
the same approach as in the previous sections.

4.1 Joint queue length distribution at polling epochs

We define the beginning of a visit to Q1 as the start of a cycle, since this is the moment that de-
termines which customers will be served during the next visits to the queues. Arriving customers
will always be served in the next cycle, so the three offspring GFs are:

f (i)(zH , zL , z2) = hi (zH , zL , z2) = βi (λH (1−zH )+λL(1−zL)+λ2(1−z2)), i = H, L , 2.

The two immigration functions are:

g(i)(zH , zL , z2) = σi (λH (1− zH )+ λL(1− zL)+ λ2(1− z2)), i = 1, 2.

Using these definitions, the formula for the GF of the joint queue length distribution at the be-
ginning of a cycle is similar to the one found in Section 2:

P1(zH , zL , z2) =

∞∏
n=0

g( fn(zH , zL , z2)). (4.1)
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Notice that in a system with globally gated service it is possible to express the joint queue length
distribution at the beginning of a cycle in terms of the cycle time LST, since all customers that
are present at the beginning of a cycle are exactly all of the customers that have arrived during
the previous cycle:

P1(zH , zL , z2) = γ1(λH (1− zH )+ λL(1− zL)+ λ2(1− z2)). (4.2)

4.2 Cycle time

Since only those customers that are present at the start of a cycle, starting at Q1, will be served
during this cycle, the LST of the cycle time distribution is

γ1(ω) = σ1(ω)σ2(ω)P1(βH (ω), βL(ω), β2(ω)). (4.3)

Substitution of (4.2) into this expression gives us the following relation:

γ1(ω) = σ1(ω)σ2(ω)γ1(λH (1− βH (ω))+ λL(1− βL(ω))+ λ2(1− β2(ω))).

Boxma, Levy and Yechiali [4] show that this relation leads to the following expression for the
cycle time LST:

γ1(ω) =

∞∏
i=0

σ(δ(i)(ω)),

where σ(·) = σ1(·)σ2(·), and δ(i)(ω) is recursively defined as follows:

δ(0)(ω) = ω,

δ(i)(ω) = δ(δ(i−1)(ω)), i = 1, 2, 3, . . . ,
δ(ω) = λH (1− βH (ω))+ λL(1− βL(ω))+ λ2(1− β2(ω)).

4.3 Marginal queue lengths and waiting times

For type H and L customers, the expressions for E(e−ωWH ) and E(e−ωWL ) are exactly the same
as the ones found in Section 3.3, but with γ1(·) as defined in (4.3).

The expression for E(e−ωW2) can be obtained with the method used in Section 3.3:

E
[
e−ωW2

]
= σ1(ω)

γ1(
∑

i=H,L ,2 λi (1− βi (ω)))− γ1(ω +
∑

i=H,L λi (1− βi (ω)))

[ω − λ2(1− β2(ω))]E(C)

= σ1(ω) ·
(1− ρ2)ω

ω − λ2(1− β2(ω))

·
γ1(
∑

i=H,L ,2 λi (1− βi (ω)))− γ1(ω +
∑

i=H,L λi (1− βi (ω)))

(1− ρ2)ωE(C)
.
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We can use the distributional form of Little’s law to determine the LST of the marginal queue
length distribution of Q2:

E
[
zN2
]
= σ1(λ2(1− z))

(1− ρ2)(1− z)β2(λ2(1− z))
β2(λ2(1− z))− z

·
γ1(
∑

i=H,L ,2 λi (1− βi (λ2(1− z))))− γ1(λ2(1− z)+
∑

i=H,L λi (1− βi (λ2(1− z)))

λ2(1− ρ2)(1− z)E(C)
.

Remark 4.1 The Fuhrmann-Cooper queue length decomposition also holds for all customer
classes in a polling system with globally gated service.

4.4 Moments

The expressions for E(WH ) and E(WL) from section 3.4 also hold in a globally gated polling
system, but with a different mean residual cycle time. We only provide the mean waiting time of
type 2 customers:

E(W2) = E(S1)+ (1+ 2ρH + 2ρL + ρ2)E(C1,res).

5 Exhaustive service

In this section we study the same polling model as in the previous two sections, but the two
queues are served exhaustively. The section has the same structure as the other sections, so we
start with the derivation of the LST of the joint queue length distribution at polling epochs, fol-
lowed by the LST of the cycle time distribution. LSTs of the marginal queue length distributions
and waiting time distributions are provided in the next subsection. In the last part of the section
the mean waiting time of each customer type is studied.

It should be noted that, although we assume that both Q1 and Q2 are served exhaustively, a
model in which Q2 is served according to another branching type service discipline, requires
only minor adaptations.

5.1 Joint queue length distribution at polling epochs

We can derive the joint queue length distribution at the beginning of a cycle for a polling system
with two queues and two priority classes in Q1, P1(zH , zL , z2), directly from expression (2.1)
for P1(z1, z2). Similar to the proof of Lemma 3.1, we can prove that

P1(zH , zL , z2) = P1

(
1
λ1
(λH zH + λL zL), z2

)
.

The same holds for Vb2(·, ·, ·) and visit completion epochs Vci (·, ·, ·), for i = 1, 2.
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5.2 Cycle time

For the cycle time starting with a visit to Q1, (2.4) is still valid by defining λ1 := λH + λL and
β1(·) :=

λH
λ1
βH (·) +

λL
λ1
βL(·). However, when studying the waiting time of a specific customer

type in an exhaustively served queue, it is convenient to consider the completion of a visit to Q1
as the start of a cycle. Hence, in this section the notation C1, or the LST of its distribution, γ1(·),
refers to the cycle time starting at the completion of a visit to Q1. Equation (2.5) gives the LST of
the distribution of C1, again with the definitions λ1 := λH+λL and β1(·) :=

λH
λ1
βH (·)+

λL
λ1
βL(·).

5.3 Marginal queue lengths and waiting times

Analysis of the model with exhaustive service requires a different approach. The key observation,
made by Fuhrmann and Cooper [9], is that the polling system from the viewpoint of a type i
customer is an M/G/1 queue with multiple server vacations. The M/G/1 queue with priorities
and vacations has been extensively analysed by Kella and Yechiali [11]. We use their approach
to find the waiting time LST for type H and L customers. Kella and Yechiali [11] distinguish
between systems with single and multiple vacations, and preemptive resume and nonpreemptive
service. In the present paper we do not consider preemptive resume, so we only use results
from the case labelled as NPMV (nonpreemptive, multiple vacations) in [11]. We consider the
system from the viewpoint of a type H and type L customer separately to derive E[e−ωWH ] and
E[e−ωWL ].

From the viewpoint of a type H customer and as far as waiting times are considered, a polling
system is a nonpriority single server system with multiple vacations. The vacation can either
be the intervisit period I1, or the service of a type L customer. The LSTs of these two types of
vacations are:

E[e−ωI1] = P1(1− ω/λ1, 1), (5.1)

E[e−ωBL ] = βL(ω).

Equation (5.1) follows immediately from the fact that the number of type 1 (i.e. both H and L)
customers at the beginning of a visit to Q1 is the number of type 1 customers that have arrived
during the previous intervisit period: P1(z, 1) = E[e−(λ1(1−z))I1].

The key observation is that an arrival of a tagged type H customer will always take place within
either an IH cycle, or an L H cycle. An IH cycle is a cycle that starts with an intervisit period
for Q1, followed by the service of all type H customers that have arrived during the intervisit
period, and ends at the moment that no type H customers are left in the system. Notice that at
the start of the intervisit period, no type H customers were present in the system either. An L H
cycle is a similar cycle, but starts with the service of a type L customer. This cycle also ends at
the moment that no type H customers are left in the system.

The fraction of time that the system is in an L H cycle is ρL
1−ρH

, because type L customers arrive
with intensity λL . Each of these customers will start an L H cycle and the length of an L H cycle
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equals E(BL )
1−ρH

:

E(L H cycle) = E(BL)+ λH E(BL)E(BPH )

= E(BL)+ λH E(BL)
E(BH )

1− ρH

= (1+
ρH

1− ρH
)E(BL) =

E(BL)

1− ρH
,

where E(BPH ) is the mean length of a busy period of type H customers.

The fraction of time that the system is in an IH cycle, is 1 − ρL
1−ρH

=
1−ρ1
1−ρH

. This result can
also be obtained by using the argument that the fraction of time that the system is in an intervisit
period is the fraction of time that the server is not serving Q1, which is equal to 1− ρ1. A cycle
which starts with such an intervisit period and stops when all type H customers that arrived
during the intervisit period and their type H descendants have been served, has mean length
E(I1)+ λH E(I1)E(BPH ) =

E(I1)
1−ρH

. This also leads to the conclusion that 1−ρ1
1−ρH

is the fraction of
time that the system is in an IH cycle. A customer arriving during an IH cycle views the system
as a nonpriority M/G/1 queue with multiple server vacations I1; a customer arriving during an
L H cycle views the system as a nonpriority M/G/1 queue with multiple server vacations BL .

Fuhrmann and Cooper [9] showed that the waiting time of a customer in an M/G/1 queue with
server vacations is the sum of two independent quantities: the waiting time of a customer in a
corresponding M/G/1 queue without vacations, and the residual vacation time. Hence, the LST
of the waiting time distribution of a type H customer is:

E[e−ωWH ] =
(1− ρH )ω

ω − λH (1− βH (ω))
·

[
1− ρ1

1− ρH
·

1− Ĩ1(ω)

ωE(I1)
+

ρL

1− ρH
·

1− βL(ω)

ωE(BL)

]
. (5.2)

Equation (5.2) is in accordance with the more general equation in Section 4.1 in [11].

Remark 5.1 The term 1− Ĩ1(ω)
ωE(I1)

in (5.2), which is the LST of the residual intervisit time distribu-
tion, is the only difference between E[e−ωWH ] and E[e−ωWH |M/G/1], the LST of the waiting time
distribution of a high priority customer in a two priority M/G/1 queue without vacations:

E[e−ωWH |M/G/1] =
(1− ρ1)ω + λL(1− βL(ω))

ω − λH (1− βH (ω))
(5.3)

=
(1− ρH )ω

ω − λH (1− βH (ω))
·

[
1− ρ1

1− ρH
+

ρL

1− ρH
·

1− βL(ω)

ωE(BL)

]
.

The LST of the distribution of the waiting time of a high priority customer in a two priority
M/G/1 queue usually appears in a form similar to (5.3) (see e.g. [6], Chapter 3), but as shown
above it can be rewritten as the LST of the waiting time distribution of a customer in a nonpriority
M/G/1 queue, where the server occasionally goes on a vacation. The customers in this system
arrive with intensity λH and have service requirement LST βH (ω). With probability 1−ρ1

1−ρH
the

waiting time of a customer is the waiting time in an M/G/1 queue with no vacations, and with
probability ρL

1−ρH
the waiting time of a customer is the sum of the waiting time in an M/G/1

queue and the residual length of a vacation with length BL .
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Remark 5.2 Substitution of (2.12) in (5.2) leads to a different expression for E[e−ωWH ]:

E[e−ωWH ] =
1− γ1(ω − λH (1− βH (ω))− λL(1− βL(ω)))+ λL(1− βL(ω))E(C)

(ω − λH (1− βH (ω)))E(C)
. (5.4)

The concept of cycles is not really needed to model the system from the perspective of a type L
customer, because for a type L customer the system merely consists of IH L cycles. An IH L cycle
is the same as an IH cycle, discussed in the previous paragraphs, except that it ends when no type
H or L customers are left in the system. So the system can be modelled as a nonpriority M/G/1
queue with server vacations. The vacation is the intervisit time I1, plus the service times of all
type H customers that have arrived during that intervisit time and their type H descendants. We
will denote this extended intervisit time by I ∗1 with LST

Ĩ ∗1 (ω) = Ĩ1(ω + λH (1− πH (ω))).

The mean length of I ∗1 equals E(I ∗1 ) =
E(I1)
1−ρH

.

We also have to take into account that a busy period of type L customers might be interrupted by
the arrival of type H customers. Therefore the alternative system that we are considering will not
contain regular type L customers, but customers still arriving with arrival rate λL , whose service
time equals the service time of a type L customer in the original model, plus the service times
of all type H customers that arrive during this service time, and all of their type H descendants.
The LST of the distribution of this extended service time B∗L is

β∗L(ω) = βL(ω + λH (1− πH (ω))).

This extended service time is often called completion time in the literature. In this alternative
system, the mean service time of these customers equals E(B∗L) =

E(BL )
1−ρH

. The fraction of time

that the system is serving these customers is ρ∗L =
ρL

1−ρH
= 1− 1−ρ1

1−ρH
.

Now we use the results from the M/G/1 queue with server vacations (starting with the Fuhrmann-
Cooper decomposition) to determine the LST of the waiting time distribution for type L cus-
tomers:

E[e−ωWL ] =
(1− ρ∗L)ω

ω − λL(1− β∗L(ω))
·

1− Ĩ ∗1 (ω)
ωE(I ∗1 )

=
(1− ρ1)(ω + λH (1− πH (ω)))

ω − λL(1− βL(ω + λH (1− πH (ω))))
·

1− Ĩ1(ω + λH (1− πH (ω)))

(ω + λH (1− πH (ω)))E(I1)
. (5.5)

The last term of (5.5) is the LST of the distribution of the residual intervisit time, plus the time
that it takes to serve all type H customers and their type H descendants that arrive during this
residual intervisit time. The first term of (5.5) is the LST of the waiting time distribution of a
low-priority customer in an M/G/1 queue with two priorities, without vacations (see e.g. (3.76)
in [6], Chapter 3).
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Remark 5.3 The M/G/1 queue with two priorities can be viewed as a nonpriority M/G/1
queue with vacations, if we consider the waiting time of type L customers. We only need to
rewrite the first term of (5.5):

E[e−ωWL|M/G/1] =
(1− ρ1)(ω + λH (1− πH (ω)))

ω − λL(1− βL(ω + λH (1− πH (ω))))

=
(1− ρ∗L)ω

ω − λL(1− β∗L(ω))
·

1− ρ1

1− ρ∗L
·
ω + λH (1− πH (ω))

ω

= E[e−ωW ∗L|M/G/1]

[
(1− ρH )+ ρH

1− πH (ω)

ωE(BPH )

]
,

where E[e−ωW ∗L|M/G/1] is the LST of the waiting time distribution of a customer in an M/G/1
queue where customers arrive at intensity λL and have service requirement LST βL(ω+ λH (1−
πH (ω))). So with probability 1 − ρH the waiting time of a customer is the waiting time in an
M/G/1 queue with no vacations, and with probability ρH the waiting time of a customer is the
sum of the waiting time in an M/G/1 queue and the residual length of a vacation, which is a
busy period of type H customers.

Remark 5.4 Substitution of (2.12) in (5.5) leads to a different expression for E[e−ωWL ]:

E[e−ωWL ] =
1− γ1(ω − λL(1− βL(ω + λH (1− πH (ω)))))

(ω − λL(1− βL(ω + λH (1− πH (ω)))))E(C)
= E[e−(ω−λL (1−βL (ω+λH (1−πH (ω)))))C1,res]. (5.6)

The waiting time of type 2 customers is not affected at all by the fact that Q1 contains multiple
classes of customers, so (2.9) is still valid for E(e−ωW2).

We will refrain from mentioning the GFs of the marginal queue length distributions here, because
they can be obtained by applying the distributional form of Little’s law as we have done before.

5.4 Moments

The mean waiting times for high and low priority customers can be found by differentiation of
(5.2) and (5.5):

E(WH ) =
ρH E(BH,res)+ ρL E(BL ,res)

1− ρH
+

1− ρ1

1− ρH
E(I1,res),

E(WL) =
ρH E(BH,res)+ ρL E(BL ,res)

(1− ρH )(1− ρ1)
+

1
1− ρH

E(I1,res).
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Differentiation of (5.4) and (5.6) leads to alternative expressions, that can also be found in [15].

E(WH ) =
(1− ρ1)

2

1− ρH

E(C2
1)

2E(C)
,

E(WL) =
(1− ρ1)

2

(1− ρH )(1− ρ1)

E(C2
1)

2E(C)

=

(
1−

ρL

1− ρH

)
E(C2

1)

2E(C)
.

6 Example

Consider a polling system with two queues, and assume exponential service times and switch-
over times. Suppose that λ1 =

6
10 , λ2 =

2
10 , E(B1) = E(B2) = 1, E(S1) = E(S2) = 1. The

workload of this polling system is ρ = 8
10 . This example is extensively discussed in [16] where

MVA was used to compute mean waiting times and mean residual cycle times for the gated and
exhaustive service disciplines.

In this example we show that the performance of this system can be improved by giving higher
priority to jobs with smaller service times. We define a threshold t and divide the jobs into two
classes: jobs with a service time less than t receive high priority, the other jobs receive low
priority. Figures 1 and 2 show the mean waiting time for type 1 customers in the system without
priorities, the mean waiting time for type H and type L customers, and the weighted average of
these two, as a function of the threshold t . The figures show that a unique optimal threshold exists
that minimises the mean weighted waiting time for customers in Q1. This value depends on the
service discipline used and is discussed in [15]. In this example the optimal threshold is 1 for
gated, and 1.38 for exhaustive. Figure 1 confirms that the mean waiting times for type H and L
customers in the gated model only differ by a constant value: E(WL)− E(WH ) = ρ1 E(C1,res).
For globally gated service no figure is included, because we again have E(WL) − E(WH ) =

ρ1 E(C1,res). The mean residual cycle time is different from the one in the gated model, but this
does not affect the optimal threshold which is still t = 1. In the exhaustive model we have
the following relation: E(WL) − E(WH ) =

ρ1(1−ρ1)
1−ρH

E(C1,res). If we increase threshold t , the
fraction of customers in Q1 that receive high priority grows, and so does their mean service time.
This means that ρH increases as t increases, so E(WL)− E(WH ) gets bigger, which can be seen
in Figure 2. Notice that E(WH )

E(WL )
= 1− ρ1, so it does not depend on t .

20



0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

8

10

12

14

16

EHW L

Type H

Avg. H and L

No priorities

Type L

Figure 1: Mean waiting time of customers in Q1 in the gated polling system, versus threshold t .
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Figure 2: Mean waiting time of customers in Q1 in the exhaustive polling system, versus thresh-
old t .
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