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Conditional ages and residual service
times in the M/G/1 queue

Ivo Adan ∗and Moshe Haviv †‡

June 23, 2008

Abstract

In the paper we study the M/G/1 queue, and collect results on
the age, residual and length of service, conditional on the number of
customers present in the system. Special attention is given to the
M/M/1 queue.

1 Introduction

Consider the standard M/G/1 queueing model. The queueing regime can be
any non-preemptive, work-conserving and non-anticipating one. For exam-
ple, it can be first-come first-served. It is well known that the age and the
residual of the service length of the customer who is currently receiving ser-
vice are distributed according to the equilibrium distribution of the service
time. However, if additional information is available, such as the number of
customers currently present in the system, this is no longer true.

There is, of course, an interest in these conditional distributions. For
example, customers who observe the queue length upon arrival and who have
to decide whether or not to join queue, need to assess the residual service
time of the one in service (on top of how many are in the queue) in order to
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be able to estimate their future waiting time; see [10] on the behavior of a
‘smart’ customer, and [1, 5, 8] for non-cooperative games resulting when all
customers become smart. Also, there might be an interest in assessing the
age of service, when service is given in phases and each phase is performed
by a different processor. Hence, knowledge, or estimation, of the age can
be utilized in order to set the required processor on time. There is also an
interest in assessing the total service time of the one in service (which in
fact equals the age plus the residual). This is, for example, the case when
customers are paying some amount for service, which is a function of the
actual service length.

In this paper we derive the density function and the Laplace-Stieltjes
transform (LST) of the conditional age, residual and length of service, given
the number of customers in the system. Special attention is given to the case
where it is assumed additionally that service times follow an exponential dis-
tribution. Some of the reported results are known, but in this paper, all is put
in one unified form. In particular, short, straightforward and probabilistic
proofs will be given.

The paper is organized as follows. First, in Section 2 we present some
preliminaries needed for our derivations. In Section 3 we deal with the con-
ditional age while in Section 4 we do the same regarding the residual service
time. Section 5 comes with the conditional total service time. Some con-
cluding remarks and ideas for future research are given in Section 6.

2 Model

We consider the standard M/G/1 queue. Specifically, to a single server queue,
there is a Poisson arrival process whose rate is denoted by λ. Service times
are independent and their common distribution function is denoted by G(·)
with density g(·). The mean service time is denoted by x, and LST of G(·)
is

G̃(s) =

∫ ∞
x=0

e−sxg(x) dx, Re(s) ≥ 0. (1)

Service is granted on a first-come first-served basis. As always, for stability,
we require that

ρ = λx < 1,

and we assume that the system is in steady-state. Denote by Q the total
number of customers in the system (including the one in service) and let
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πn be the steady-state probability that Q = n, n ≥ 0. Recall that these
probabilities are also applicable at arrival and departure instants. It is well-
known that π0 = 1− ρ. The probability generating function (PGF) of πn is
denoted by

P (z) = E(zQ) =
∞∑
n=0

πnz
n, |z| ≤ 1. (2)

Also, the famous Pollaczek-Khinchin formula relates the above two trans-
forms (1) and (2) via the following formula:

P (z) = (1− ρ)
(1− z)G̃(λ(1− z))

G̃(λ(1− z))− z
. (3)

Further, let Q+ denote the conditional number of customers in the system,
given that the server is busy; that is, Q+ = Q|Q > 0, so

P(Q+ = n) =
πn

1− π0

=
πn
ρ
, n ≥ 1.

We denote by A and R the random variables which are the age and the
residual, respectively, of the service length of the customer who is currently
receiving service. Finally, let L = A + R be the total length of service
requirement of this customer. We like to remind the reader that A and R
are identically distributed (but of course they are not independent). Their
density function is fA(x) = fR(x) = (1 − G(x))/x, valid for x ≥ 0. Hence,
their LST equals

R̃(s) = Ã(s) = E(e−sA) =

∫ ∞
x=0

e−sxfA(x) dx =
1− G̃(s)

sx
.

The joint density of A and R is fA,R(x, y) = g(x+ y)/x and the joint LST is

J̃(s, t) = E(e−sA−tR) =
G̃(t)− G̃(s)

(s− t)x
.

The density of function L equals fL(`) = `g(`)/x and its LST is

L̃(s) = −G̃
(1)(s)

x
,

where the notation f (n)(x) denotes the n-th derivative of the function f(x).
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Initiating with π0 = 1 − ρ, the rest of the limit probabilities can be
computed via the well-known recursion (see, e.g., [12], p. 178),

πi+1 =
1

α0

(
πi − π0αi −

i∑
j=1

πjαi+1−j

)
, i ≥ 0 (4)

where αi stands for the probability that exactly i customers arrive during a
single service period. In other words,

αi =

∫ ∞
t=0

(λt)i

i!
e−λtg(t) dt, i ≥ 0.

Note that α0 = G̃(λ), which, coupled with (4) for i = 0, leads to

π1 = π0
1− α0

α0

= (1− ρ)
1− G̃(λ)

G̃(λ)
. (5)

An alternative to recursion (4), avoiding subtractions, is (see, e.g., [11])

πi+1 =
1

α0

(
π0βi +

i∑
j=1

πjβi+1−j

)
, i ≥ 0 (6)

where βi =
∑∞

j=i+1 αj.

In the next section we will start to study the conditional age.

3 Conditional service age

Let fA|Q+=n(·) denote the conditional density of the age of service given
Q+ = n, n ≥ 1, customers are present in the system (including the one in
service). We next give an explicit expression for it for any n ≥ 1. This result
appeared in [2], but below a shorter and more revealing proof is provided.
Also, in the case where n = 1, expression (9) below agrees with [12], p. 392.
The proof is based on the following simple observation; the random variable
Qb denotes the number of customers at the current service commencement,
inclusive the one being served.
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Lemma 3.1 The probability distribution of Qb is equal to

P(Qb = 1) = π0 + π1, P(Qb = n) = πn, n ≥ 2. (7)

Moreover, Qb is independent of A and of R.

Proof. First recall that the distribution of the number at departure instants
in the same as the distribution at a random time. Then, with the exception
of Qb = 1, the one who commences service sees Qb customers (including
himself), which is as many as left behind by the previously serviced customer.
The case where Qb = 1 is possible when the previously serviced customer
leaves behind zero or one customers. The independence of A and of R is
obvious, as the service time does not depend on the number in the system.
�

Theorem 3.1 The conditional density of the age fA|Q+=n(·), n ≥ 1, equals

fA|Q+=n(a) =
ρ

πn
fA(a)

[
(1− ρ)

(λa)n−1

(n− 1)!
+

n∑
i=1

πi
(λa)n−i

(n− i)!

]
e−λa, a > 0.

(8)
In particular,

fA|Q+=1(a) =
ρ

1− G̃(λ)
fA(a)e−λa = λ

1−G(a)

1− G̃(λ)
e−λa. (9)

Proof. For any n ≥ 1,

fA|Q+=n(a) =
fA(a)P(Q+ = n|A = a)

P(Q+ = n)
.

Note first that P(Q+ = n) = πn/ρ. Hence, it remains to determine P(Q+ =
n|A = a). In order to have n customers in the system at this stage of service,
there must have been i customers there upon this service commencement for
some i, 1 ≤ i ≤ n. Clearly,

P(Q+ = n|A = a) =
n∑
i=1

P(Qb = i)e−λa
(λa)n−i

(n− i)!
, n ≥ 1. (10)

Substituting (7) completes the proof. Finally, the special expression for n = 1
is based on (5) above. �
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Remark. From (8), we can see that in order to determine fA|Q+=n(a), one
needs to have in hand the values of πi, 0 ≤ i ≤ n. In particular, there is no
need to compute in advance the entire stationary distribution of Q in order
to compute this conditional density. This is of particular importance, since
the vector πi, i ≥ 0, can be computed recursively, initiating with π0 = 1− ρ
as can be seen by (4) or (6) above.

Example: M/M/1. In the special case where service is exponentially
distributed with rate µ, πi = (1− ρ)ρi, i ≥ 0 and fA(a) = µe−µa, (8) equals

fA|Q+=n(a) = µe−(λ+µ)a (µa)n−1

(n− 1)!
+ λe−(λ+µ)a

n∑
i=1

(µa)n−i

(n− i)!
. (11)

Also, since G̃(s) = µ/(µ+ s), and hence G̃(λ) = 1/(1 + ρ), (9) equals

fA|Q+=1(a) = (µ+ λ)e−(λ+µ)a, (12)

namely, in the case of an empty queue, the service age of the one in service
follows an exponential distribution with parameter λ + µ. Note that (12)
agrees with [12], p. 392.

Using the identity∫ ∞
a=0

an−ie−(λ+s)afA(a)da = (−1)n−iÃ(n−i)(λ+ s),

it is now straightforward to find the LST of A|Q+ = n, resulting in:

Corollary 3.1 The LST of A|Q+ = n equals

E(e−sA|Q+ = n) =

∫ ∞
a=0

e−safA|Q+=n(a) da

=
ρ

πn

[
π0

(−λ)n−1

(n− 1)!
Ã(n−1)(λ+ s) +

n∑
i=1

πi
(−λ)n−i

(n− i)!
Ã(n−i)(λ+ s)

]
.

Example: M/M/1. In this case the LST of the age, given a queue length
of n, n ≥ 1, equals

E(e−sA|Q+ = n) = ρ1−n

[
µλn−1

(µ+ λ+ s)n
+

n∑
i=1

ρi
µλn−i

(µ+ λ+ s)n−i+1

]
.
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The following result gives the joint transform of A and Q+.

Theorem 3.2 For Re(s) ≥ 0, |z| ≤ 1, the joint transform of A and Q+ is

E(e−sAzQ
+

) = (π0(z − 1) + P (z)) Ã(λ(1− z) + s) (13)

=
(1− ρ)zÃ(λ(1− z) + s)

1− ρÃ(λ(1− z))
. (14)

Proof. Recall that Qb denotes the number of customers present upon the
service commencement. The number of Poisson arrivals during the age A is
denoted by N(A). Then, Q+ = Qb + N(A), where, by Lemma 3.1, Qb is
independent of N(A) and A. Hence,

E(e−sAzQ
+

) = E(e−sAzN(A))E(zQ
b

). (15)

By (7) we have

E(zQ
b

) =
∞∑
i=1

P(Qb = i)zi = π0(z − 1) + P (z). (16)

Then (13) readily follows by substitution of (16) into (15), together with

E(e−sAzN(A)) =

∫ ∞
a=0

e−saE(zN(a))fA(a)da

=

∫ ∞
a=0

e−sae−λa(1−z)fA(a)da

= Ã(s+ λ(1− z)),

where the second equality is based on the observation that N(a) is Poisson
distributed with mean λa, the PGF of which is equal to e−λa(1−z). By use
of (3), which can be rewritten as

P (z) =
(1− ρ)G̃(λ(1− z))

1− ρÃ(λ(1− z))
, (17)

the version (14) readily follows. �
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Example: M/M/1. In the M/M/1 case, formula (14) reduces to

E(e−sAzQ
+

) =
(µz − λz)(µ+ λ− λz)

(µ− λz)(µ+ λ− λz + s)
.

By differentiating (14) with respect to s, multiplying by −1 and setting
s = 0 yields

E(AzQ
+

) =
∞∑
n=0

E(A;Q+ = n)zn

= −(1− ρ)zÃ(1)(λ(1− z))

1− ρÃ(λ(1− z))
. (18)

In special cases, transform (18) can be inverted to obtain the conditional
expectations:

E(A|Q+ = n) =
E(A;Q+ = n)

P(Q+ = n)
.

One example, when the service time follows an exponential distribution, is
given next.

Example: M/M/1. For the M/M/1 with arrival rate λ and service rate µ
we have

G̃(s) = Ã(s) =
µ

µ+ s
, πn = (1− ρ)ρn, n ≥ 0,

and substitution in (18) gives

E(AzQ
+

) = −
(1− ρ)z −µ

(µ+λ(1−z))2

1− ρ µ
µ+λ(1−z)

=
(1− ρ)z

µ(1− ρz)(1 + ρ(1− z))

=
1− ρ
λρ

{
1

1− ρz
− 1

1− ρz/(1 + ρ)

}
.

Hence,

E(A;Q+ = n) = (1− ρ)ρn−1 1

λ

(
1− 1

(1 + ρ)n

)
.
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Dividing by P(Q+ = n) = (1− ρ)ρn−1 for n ≥ 1, we conclude that

E(A|Q+ = n) =
1

λ

(
1− 1

(1 + ρ)n

)
, n ≥ 1. (19)

Hence, the more customers present, the longer the mean service age is. Also,
the unconditional mean age equals

E(A) =
∞∑
n=1

E(A|Q+ = n)P (Q+ = n) =
∞∑
n=1

1

λ

(
1− 1

(1 + ρ)n

)
(1−ρ)ρn−1 =

1

µ
.

Note that the value for E(A) here is not solely due to the memoryless
property of service times, but rather due to the time-reversibility of the
M/M/1 queue (see also the second proof of Theorem 3.3 below). Specifically,
when the orientation of time is reversed, the M/M/1 queue behaves statis-
tically the same (under steady-state conditions). Thus, ages in the original
process, correspond to residual service times in the time-reversed process,
which, now by the memoryless property, follow the exponential distribution
with parameter µ. For more on the concept of time-reversibility, see [7].

Remark. It is clear from (8) that the joint probability-density function
p(n, a) for the pair (n, a), assuming (but not conditioning) n ≥ 1, equals

p(n, a) = P(Q = n)fA|Q=n(a)

= πnfA|Q+=n(a)

= ρfA(a)

[
(1− ρ)

(λa)n−1

(n− 1)!
+

n∑
i=1

πi
(λa)n−i

(n− i)!

]
e−λa, a > 0.

An alternative result is given in [12], pp.388–392. Specifically, let

G(z, a) =
∞∑
n=1

p(n, a)zn, a > 0.

Then, it is shown in [12] that

G(z, a) = G(z, 0)e−λ(1−z)a(1−G(a)), a ≥ 0

where

G(z, 0) = (1− ρ)
λz(1− z)

G̃(λ(1− z))− z
.

9



In the following subsection we show that, for the special case of the
M/M/1 queue, the density of the conditional age can be found directly by
employing probabilistic arguments.

3.1 Conditional age for the M/M/1

In this section we consider the special case of exponential service times with
rate µ.

Theorem 3.3 In an M/M/1 queueing system with an arrival rate of λ and
a service rate of µ, the conditional age of service A|Q+ = n is distributed as

A|{Q+ = n} d
= min{Y, Z(n)}, n ≥ 1, (20)

where the random variables Y and Z(n) are independent, Y is exponentially
distributed with parameter λ and Z(n) is Erlang-n distributed with scale pa-
rameter µ.

Proof 1. The proof is by direct verification. First note that

P(min{Y, Z(n)} ≥ a) = P(Y ≥ a)P(Z(n) ≥ a) = e−λa
n−1∑
i=0

e−µa
(µa)i

i!
.

Differentiating and multiplying by −1 yields for the density function of
min{Y, Z(n)} that

fmin{Y,Z(n)}(a) = λe−λa
n−1∑
i=0

e−µa
(µa)i

i!
+ e−λaµe−µa

(µa)n−1

(n− 1)!
(21)

which in fact coincides with (11). �

Proof 2. The proof of Theorem 3.3 is technical and hence does not reveal
why Equation (20) holds. However, this equation immediately follows from
the time-reversibility property which is possessed by the M/M/1 system. De-
tails are given next. In the time-reversed queue-length process, every arrival
corresponds to a departure in the original process and vise versa. Moreover,
in an M/M/1 queue, the time-reversed queue-length process is statistically
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identical to the original process (i.e., the M/M/1 queue process is time-
reversible). Now suppose there are n customers in the system, for some
n ≥ 1. Then the age of the one in service is, in the time-reversed process,
the residual of the inter-arrival time (which is exponentially distributed with
parameter λ). This is true, except when the residual inter-arrival time is
greater than the sum of the (residual) service times of the n customers cur-
rently in the system. In this case the age is the sum of these n service times.
Thus, since exponential random variables are memoryless, we can conclude
that the age is the minimum of an exponential random variable with param-
eter λ and the sum of n independent and exponential random variables, each
of which with parameter µ. �

The representation in Theorem 3.3 leads to the mean conditional age,
and this result already appeared above in (19). Two alternative proofs are
given below.

Theorem 3.4 In an M/M/1 queueing system with arrival rate of λ and
service rate of µ, the mean conditional age equals

E(A|Q+ = n) =
1

λ
− 1

λ

1

(1 + ρ)n
, n ≥ 1. (22)

In particular, E(A|Q+ = n) is increasing in n.

Proof 2. Denote E(A|Q+ = n) by an, n ≥ 1. Suppose there are n customers
in the system and consider the time-reversed process. Then an is the expected
time until the first arrival or until the system is empty, whichever happens
first. Clearly, the expected time until the first event is 1/(λ+ µ). The event
is an arrival with probability λ/(λ+µ), and it is a departure with probability
µ/(λ + µ), in which case n − 1 customers remain in the system. Hence, by
conditioning on the first event, we get the recursion

an =
1

λ+ µ
+

µ

λ+ µ
an−1, n ≥ 1 (23)

where a0 = 0. In particular, a1 = 1/(λ + µ). This is a system of difference
equations. A particular solution to this system is the constant 1/λ and the
solution to the homogeneous system is µn/(λ+ µ)n, n ≥ 1. Thus,

an =
1

λ
+ C

µn

(λ+ µ)n
, n ≥ 1,
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for some constant C. As a1 = 1/(λ + µ) we conclude that C = −1/λ. This
completes the proof. �

Remark. Alternatively, it is possible to prove that the expression in (22)
solves (23) uniquely by the use of an induction argument initiating with
a1 = 1/(λ+ µ).

Proof 3. Theorem 3.4 can also be proved by a straightforward integration,

E(A|Q+ = n) =

∫ ∞
a=0

afA|Q+=n(a) da

where fA|Q+=n(a) can be read from (21). However, it is even simpler to use

E(A|Q+ = n) = E(min{Y, Z(n)}) = E(Y )−E(Y−Z(n)|Y > Z(n))P (Y > Z(n)),

where Y and Z(n) are defined in Theorem 3.3. From the memoryless property
of exponential random variables, we conclude that E(Y −Z(n)|Y > Z(n)) =
E(Y ) = 1/λ and further that,

P (Y > Z(n)) =

(
µ

λ+ µ

)n
,

from which Theorem 3.4 immediately follows. �

The following is an immediate corollary of the previous theorem.

Corollary 3.2 In an M/M/1 queueing system with arrival rate of λ,

lim
n→∞

E(A|Q+ = n) =
1

λ
.

Remark. The above corollary implies that in an M/M/1 queue, no matter
how long the queue is, the one in service cannot be blamed for so far holding
the server for time longer than (on average) 1/λ. Of course, he will keep
holding the server for time which is exponentially distributed with parameter
µ. Recall that the unconditional mean age is 1/µ which is of course smaller
than 1/λ.
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4 Conditional residual service time

Our next step is to find the density of the residual service time, conditioned
on Q+ = n, n ≥ 1. Clearly,

fR|A=a(r) =
g(a+ r)

1−G(a)
, a, r ≥ 0.

Also, given A, the random variables Q+ and R are independent. Thus, with
the aid of Theorem 3.1 we get (as [2]):

Theorem 4.1 The conditional density of the residual service time fR|Q+=n(·),
n ≥ 1, equals

fR|Q+=n(r) =

∫ ∞
a=0

fA|Q+=n(a)fR|A=a(r) da (24)

=
λ

πn

∫ ∞
a=0

[
π0

(λa)n−1

(n− 1)!
e−λa +

n∑
i=1

πi
(λa)n−i

(n− i)!
e−λa

]
g(a+ r) da, r > 0.

Remark. The remark following Theorem (3.1) applies here too: Only the
stationary probabilities πi, 0 ≤ i ≤ n, are needed in order to compute
fR|Q+=n(r).

Remark. For an alternative recursion to compute these conditional densi-
ties and their LSTs, which does not call for the prior computation of any
stationary probabilities, see [7]. In fact, the recursion in [7] holds also for the
case where the arrival rates are queue-length dependent.

Example: M/M/1. In case of exponential service times with parameter µ
we have

g(a+ r)

x
= g(a)g(r),

and then the conditional density of the residual service time given in (24),
simplifies to

fR|Q+=n(r) =
ρ

πn

[
π0αn−1 +

n∑
i=1

πiαn−i

]
g(r),

where αi denotes the probability of i arrivals during a service time. The
term between brackets can be recognized as the probability that a departing
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customer leaves behind n− 1 customers, so it equals πn−1. Hence, using the
fact that ρπn−1/πn = 1, for the M/M/1 queue we get that

fR|Q+=n(r) =
ρπn−1

πn
g(r) = g(r),

as expected. Indeed, in the M/M/1 model, Q+ and R are independent.
Hence, due to this triviality, we do not exemplify further this section’s result
for this special case.

The following result gives the joint transform of R and Q+. This trans-
form appeared already in [13] (but note that in [13] the transform is with
respect to Q and not Q+ as below).

Theorem 4.2 For Re(s) ≥ 0, |z| ≤ 1, the joint transform of R and Q+ is

E(e−sRzQ
+

) = (π0(z − 1) + P (z)) J̃(λ(1− z), s) (25)

=
(1− ρ)zJ̃(λ(1− z), s)

1− ρÃ(λ(1− z))
. (26)

Proof. We have (see the proof of Theorem 3.2),

E(e−sRzQ
+

) = E(e−sRzQ
b+N(A)) = E(e−sRzN(A))E(zQ

b

).

Since E(zQ
b
) = π0(z − 1) + P (z) and

E(e−sRzN(A)) =

∫ ∞
a=0

∫ ∞
r=0

e−srE(zN(a))fA,R(a, r)dadr

=

∫ ∞
a=0

∫ ∞
r=0

e−sre−λa(1−z)fA,R(a, r)dadr

= J̃(λ(1− z)), s),

Equation (25) immediately follows. As before, the final expression uti-
lizes (17). �

By differentiating (25) with respect to s, multiplying by −1 and setting
s = 0 yields

E(RzQ
+

) =
∞∑
n=0

E(R;Q+ = n)zn

=
π0(z − 1) + P (z)

ρ(1− z)

[
x− 1− G̃(λ(1− z))

λ(1− z)

]
,
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which by substituting the Pollaczek-Khinchin formula (3) reduces to

E(RzQ
+

) =
(1− ρ)(ρz − P (z) + π0)

λρ(1− z)

=
1− ρ

λρ(1− z)

(
∞∑
i=1

πiz −
∞∑
i=1

πiz
i

)

=
1− ρ
λρ

∞∑
i=1

πi
z − zi

1− z

=
1− ρ
λρ

∞∑
i=1

πi

i−1∑
n=1

zn

=
1− ρ
λρ

∞∑
n=1

zn
∞∑

i=n+1

πi

Hence, we obtain

E(R;Q+ = n) =
1− ρ
λρ

∞∑
i=n+1

πi, n ≥ 1. (27)

Dividing the above quantity by P(Q+ = n) (which equals πn/ρ), yields the
following result, which also appeared in [9, 4]:

Theorem 4.3 The mean conditional residual service time equals

E(R|Q+ = n) =
1− ρ
λ

1− hn
hn

, n ≥ 1, (28)

where hn = πn/Σ
∞
i=nπi, n ≥ 0.

Note that here, as in (8), in order to compute E(R|Q+ = n), n ≥ 1, all
is required from the stationary probabilities are the first n+ 1 among them,
namely, πi, 0 ≤ i ≤ n, which, as denoted above, can be computed recursively
starting with π0 = 1 − ρ. In fact, things simplify even further. Specifically,
from (28), and the facts that π0 = 1−ρ and that π1 = (1−ρ)(1−G̃(λ))/G̃(λ)
(see (5)), we conclude that

E(R|Q+ = 1) =
x

1− G̃(λ)
− 1

λ
,
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(an expression which already appeared in [9, 4, 5]). This value can serve as
an initial value for a recursive computation for E(R|Q+ = n). The recursion
itself is

E(R|Q+ = n+ 1) =
1− ρ
λ

∑∞
i=n+2 πi

πn+1

=
1− ρ
λ

∑∞
i=n+1 πi − πn+1

πn+1

=
πn
πn+1

1− ρ
λ

∑∞
i=n+1 πi

πn
− 1− ρ

λ

=
πn
πn+1

E(R|Q+ = n)− 1− ρ
λ

, n ≥ 1,

which is also derived in [7].

Remark. Theorem 4.3 is so clean, suggesting that a much simpler derivation
should be feasible. Indeed, it can be established by the application of Little’s
law as done in [4]. For the sake of completeness, the proof is repeated here.
First, Theorem 4.3 can be stated as

qn+1 = λπnE(R|Q = n) + λqn+1x, n ≥ 1, (29)

where qn = Σ∞i=nπi, namely the probability that the number of customers in
the system is at least n, n ≥ 1. Obviously, for all n ≥ 1,

E(R|Q = n) = E(R|Q+ = n).

We next prove (29) using Little’s law. Specifically, consider position n + 1
in the system (or the n-th in the queue) for n ≥ 1. Note that the server
corresponds to position one. The number of customers there is zero or one
with probabilities 1−qn+1 and qn+1, respectively. Thus, the expected number
in this position is qn+1. Assume now that all cross this position (including
those who find n− 1 or less customers upon arrival and move to their right
position in no time). The arrival rate to this position is hence λ. Finally, we
look at the expected time spent in this position per customer. Those who
arrive and find less than n customers in the system, a fraction of 1− qn−1 of
the customers, spend zero time there. A fraction πn of the customers arrive
straight there and spend there an expected time of E(R|Q = n). The rest,

16



a fraction of qn+1, join position n + 2 or higher and hence stay in position
n+ 1 a full service period, whose mean is x. Thus, by Little’s law, we get

qn+1 = λ(πnE(R|Q = n) + qn+1x),

as promised.

Remark. Denoting by Wq the queueing time (excluding service), we have

E(Wq|Q+ = n) = (n− 1)x+
1− ρ
λ

1− hn
hn

, n ≥ 1.

5 Conditional service length

In this section we derive the distribution of L, the total service time (age plus
residual) for the customer currently in service given the number of customers
in the system. We like to note that as opposed to the previous two sections,
the resulting process (Q(t), L(t)), where Q(t) is the number of customers at
time t, and where L(t) is the total service requirement for the one being
served at time t, is not a Markov process.

Theorem 5.1 The conditional density of the total service time fL|Q+=n(·),
n ≥ 1, equals

fL|Q+=n(`) =
g(`)e−λ`

πn

[
(1− ρ)

(
1−

n−1∑
i=0

(λ`)i

i!

)
+

n∑
i=1

πi

(
1−

n−i∑
j=0

(λ`)j

j!

)]
(30)

Proof. We have

fL|Q+=n(`) =

∫ ∞
a=0

fA|Q+=n(a)fL|A=a(`) da

=

∫ `

a=0

fA|Q+=n(a)fL|A=a(`) da

=

∫ `

a=0

fA|Q+=n(a)
g(`)

1−G(a)
da ,

which by (8) expands to

fL|Q+=n(`) =
ρg(`)

πnx

∫ `

a=0

[
(1− ρ)

(λa)n−1

(n− 1)!
e−λa +

n∑
i=1

πi
(λa)n−i

(n− i)!
e−λa

]
da.
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The result now follows from the fact that∫ `

a=0

λ
(λa)n−1

(n− 1)!
e−λada = 1−

n−1∑
i=0

(λ`)i

i!
e−λ`.

�

Remark. Note that fL|Q+=n(`), n ≥ 1, is also function only of πi, 0 ≤ i ≤ n.

Remark. It is clear that
∞∑
i=1

πn
1− π0

fL|Q+=n(`) =
`g(`)

x
, ` ≥ 0.

Coupled with Theorem 5.1, this leads to the conclusion that

∞∑
n=1

[
(1− ρ)

(
1−

n−1∑
i=0

(λ`)i

i!

)
+

n∑
i=1

πi

(
1−

n−i∑
j=0

(λ`)j

j!

)]
e−λ` = λ` . (31)

Note that the right-hand side is not a function of the service distribution.
This, of course, should then be the case regarding the left-hand side. How-
ever, from inspecting the left-hand side of (31), this is far from being obvious.

Theorem 5.1 immediately leads to the LST of L|Q+ = n (cf. Corollary
3.1).

Corollary 5.1 The LST of L|{Q+ = n} is equal to

E(e−sL|Q+ = n) =
1

πn

[
π0

(
G̃(λ+ s)−

n−1∑
i=0

(−λ)i

i!
G(i)(λ+ s)

)

+
n∑
i=1

πi

(
G̃(λ+ s)−

n−i∑
j=0

(−λ)j

j!
G(j)(λ+ s)

)]
.

In the same spirit as Theorems 3.2 and 4.2, we can derive the joint trans-
form of L and Q+, which is presented in the following theorem.

Theorem 5.2 For Re(s) ≥ 0, |z| ≤ 1, the joint transform of L and Q+ is

E(e−sLzQ
+

) = (π0(z − 1) + P (z)) J̃(s+ λ(1− z), s)

=
(1− ρ)zJ̃(s+ λ(1− z), s)

1− ρÃ(λ(1− z))
.
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Finally, in order to find E(LzQ
+

), one simply needs to sum up E(AzQ
+

)
and E(RzQ

+
) as they appear in (18) and in (27), respectively (or one can use

the joint transform in Theorem 5.2).

6 Concluding remarks

In this paper we derived for the M/G/1 queueing model, the density functions
and the LSTs of the age, residual and length of service for the customer who
is currently in service, given the queue length behind him. We also derived
the joint transforms of the queue length with any of these three random vari-
ables. Special treatment and analysis was given to the M/M/1 case. Some
of the reported results were known, but all has been put in one unified form.
When different proofs highlighted various probabilistic phenomena we pre-
sented them all.

Some interesting questions are still open. For example, what are the dis-
tributions of the age and of the residual queueing time of a customer who is
in line with m customers in front of him (including the one in service) and n
behind him? True, the residual queueing time issue can be derived from our
above analysis, as it equals R|Q+ = n + m + 1 plus m − 1 independent full
service times, but this is not the case regarding the age. Another challeng-
ing problem is to consider the G/M/1 model. Of course, the residual service
time is a trivial task, but this is not the case regarding the age. In particular,
distributions at arrival epochs may differ from those at random times. Other
possible questions can relate to correlation between random variables. In [3]
one can find the correlation between Q and R. A similar question can be
asked regarding the correlation between Q and A.
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