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Abstract

Since higher-level cognitive processes generally involve the use of world knowledge,

computational models of these processes require the implementation of a knowledge base.

We identify and discuss four strategies for dealing with world knowledge in computational

models: disregarding world knowledge, ad hoc selection, extraction from text corpora, and

implementation of all knowledge about a simplified ‘microworld’. Each of these strategies

is illustrated by a detailed discussion of a model of discourse comprehension. It is argued

that seemingly successful modeling results are uninformative if knowledge is implemented

ad hoc or not at all; that knowledge extracted from large text corpora is not appropriate

for discourse comprehension; and that a suitable implementation can be obtained by

applying the microworld strategy.
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World Knowledge in Computational Models of Discourse

Comprehension

In order to explain experimental findings in cognitive psychology, models of the

underlying process are constructed. Often, such models are expressed only verbally, that

is, without equations or completely specified algorithms. As long as such a verbal model is

not too vague or too complex, it is possible to ascertain its internal consistency and to use

the model to make qualitative predictions. As a model’s complexity increases, however, it

becomes more difficult to test without turning it into a computational model, that is,

specifying it in enough detail and with sufficient precision to implement and run the

model as a computer program, the output of which can be compared to experimental

results. For a computational model to be regarded as a simulation of some cognitive

process, there should at least be a qualitative correspondence (i.e., a correspondence on an

ordinal scale) between the model’s outcome and the experimental data.

Simply demonstrating such a correspondence in one particular simulation is not

enough to conclude that the model simulates the cognitive process. Running a simulation

often involves choices and assumptions in addition to those for the construction of the

model itself, and it may be those additional choices, instead of the model, which are

(partly) responsible for seemingly successful modeling results. This issue is of particular

importance when dealing with models of higher-level cognitive processes. In general, the

higher the level of the simulated process, the larger the gap between experiment and

simulation that needs to be bridged. For instance, if the model does not include

lower-level, perceptual processes, its input must be a preprocessed version of experimental

stimuli, if there is any relation between the two at all. The particular way the input is

constructed will, of course, affect the model’s behavior. Also, processes such as

comprehension and common-sense reasoning often require the application of background



World Knowledge in Discourse-Comprehension Models 4

knowledge, but no realistic amount of such knowledge can be made available to a model.

Therefore, choices need to be made regarding the world knowledge that is included, and

these can have a profound effect on the model’s outcome.

We will discuss different strategies for dealing with world knowledge in

computational models. Potential pitfalls and opportunities arising from these strategies

are illustrated by in-depth discussions of several models of one particular high-level

cognitive process: the comprehension of discourse. As will become clear, the strong

influence of world knowledge on the comprehension process has as a consequence that

much of the alleged success in computational modeling hinges on details of knowledge

implementation and cannot be attributed to the models themselves but only to choices

made beyond those for model construction.

To clarify how the chosen strategy for world-knowledge implementation affects a

models’ outcome, it is necessary to go quite deeply into some of the details of the models.

Nevertheless, note that our concern is the comparison of the different knowledge-

implementation strategies, that is, our claims apply to these strategies and not to the

particular models. Indeed, as we argue in the Discussion, some models can use strategies

other than those with which they were originally designed. It is not our goal to identify

the models’ strengths and weaknesses or to make a direct comparison among the models.

The latter would be close to impossible considering the large variance among the models’

scopes and aims. The models are only investigated to illustrate the pros and cons of the

different knowledge-implementation strategies, and to show that problems that are likely

to arise from some of these strategies do in fact occur in practice.

Although we only discuss models of discourse comprehension, our claims generally

apply to computational models of cognitive processes that rely heavily on large amounts

of world knowledge. In fact, the scope of the models we discuss is not necessarily

restricted to discourse comprehension: Some of these models have been applied (or have
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at least inspired research) in fields as diverse as action planning (Doane & Sohn, 2000;

Mannes & Kintsch, 1991), human-computer interaction (Kitajima & Polson, 1995), skill

learning (Doane, Sohn, McNamara, & Adams, 2000), advertising (Luna, 2005; Yang,

Roskos-Ewoldsen, & Roskos-Ewoldsen, 2004), and philosophy of mind (Frank & Haselager,

2006).

Overview

In the following sections, we will argue that:

1. Any model of discourse comprehension should, at least in principle, be able to

handle all world knowledge that is potentially relevant to the simulated process. In

practice, however, models that are not designed to deal with knowledge tend to break

down when potentially relevant knowledge is added.

2. Limiting the implemented world knowledge to what is needed for the particular

text under consideration makes it impossible to test a model’s general properties or to

validate it against experimental data.

3. Although generally applicable knowledge can be implemented by automatic

extraction from large text corpora, this strategy results in knowledge of word meaning

rather than knowledge of causal relations in the world, making it unsuitable for most

aspects of discourse comprehension.

4. Since the implementation of realistic amounts of suitable world knowledge is

infeasible, the applicability of models needs to be restricted to a simplified world.

Apparent drawbacks of this ‘microworld strategy’ apply to other strategies to the same

extent at least.

5. Applying the microworld strategy to models that have not used it so far, may

facilitate model testing and improvement.
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Disregarding world knowledge

Since world knowledge permeates almost every aspect of text-comprehension (see

Cook & Guéraud, 2005, for an overview), it clearly cannot generally be disregarded in

models of this process. However, for particular low-level subprocesses, the influence of

world knowledge may seem small enough to be ignored. A model simulating only such a

subprocess would be able to do without any implementation of world knowledge. If,

however, world knowledge is potentially relevant to the simulated process, then the

inclusion of such knowledge in the model should at least be feasible in principle, even

when the current model does not deal with it. We illustrate this claim by discussing the

Resonance model (Myers & O’Brien, 1998), which is intended to simulate only a low-level

subprocess of discourse comprehension: the fluctuating activation of text items in the

reader’s mental representation of the text. As Myers and O’Brien acknowledge, the

reader’s knowledge can play a role in this process. Nevertheless, only information from the

text is implemented in the Resonance model in order to simplify the analysis. Below, we

explain the model, illustrate that it may require world knowledge, and, crucially, show

that it is likely to break down when extended with this knowledge.

The Resonance model

Simulated process. As reading proceeds, different parts of the representation of the

preceding text differ in their accessibility to the reader. For instance, concepts and

propositions that are central to the text can remain in working memory while less

important elements are backgrounded. However, previously backgrounded text items can

become reactivated if this is required or instigated by the sentence currently being read.

The phenomenon is know as reinstatement. According to Albrecht and Myers (1995),

reinstatement results from a bottom-up process by which previous text item ‘resonate’ to

the items in the current sentence. The Resonance model attempts to simulate this process
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of reinstatement-by-resonance.

The resonance process. The Resonance model processes the sentences of a text one

at a time. Each sentence is parsed into three types of items: concepts, propositions, and a

sentence marker. Every time a sentence enters the model, these items are added as nodes

to a network representing the text. These nodes can be connected to each other and to

the nodes corresponding to previous text items. Such links depend only on the items’

co-occurrence in a sentence and on propositional forms,1 and not on the meaning of items

or their relation to the reader’s knowledge. Since all network nodes follow directly from

the text and the links between them are based on formal, not semantic, considerations,

world knowledge is not present in the Resonance model. This absence of world knowledge

does not follow from any theoretical claim but is merely a simplification (Myers &

O’Brien, Note 2).

After adding the items from the current sentence to the text network, resonance

values and signal strengths of all network items are computed over a number of processing

cycles. An item’s resonance value can be interpreted as its availability in the reader’s

working memory, and its signal strength indicates the extent to which it can affect the

resonance values of other items. Initially, all resonance values are set to 0 and items from

the current sentence receive an initial signal strength. In each processing cycle, items that

have a signal strength send a signal to all connected items. As a result, the resonance of a

receiving item increases by the total amount of signal received. After computing the new

resonance values, signal strengths are updated. An item’s signal strength increases as its

resonance increases, but decays over processing cycles. The rate of this decay is controlled

by a parameter β that can take any positive value.

Resonances and signal strengths are repeatedly updated until all signal strengths

fall below a small threshold value. At this point, the sentence has been processed. The

four items that end up with the largest resonance values are said to remain in working
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memory. When processing the next sentence, not only the sentence’s items but also the

four items in working memory receive an initial signal strength.

Reinstatement. The Resonance model has, for instance, been applied to the ‘captain

text’ (see Myers & O’Brien, 1998, Table 1), which introduces a captain sitting at his desk

in order to finish his ship’s inventory. However, before he starts the inventory, he is called

away, leaving the inventory forms on the desk. After this, the text has no more reference

to the unfinished inventory nor to the desk, until, at the end of the story, the captain is

said to return to his office and sit down at his desk. In this sentence, the concept desk is

assumed to activate the previous occurrence of desk in the text, reinstating the unfinished

inventory. Indeed, Albrecht and Myers (1995) found experimental support for such

reinstatement.

In the model, reinstatement consists in bringing certain critical items into working

memory. Therefore, the amount of reinstatement can be defined as the increase in the

number of critical items in working memory that is brought about by processing the

reinstating sentence. Since working memory consists of four items, this is the maximum

amount of reinstatement. When running the Resonance model on the captain text2 with

levels of decay rate β ranging from 0.005 to 0.7, we found reinstatement for

0.019 ≤ β ≤ 0.048 only, with the amount of reinstatement being at most two items.

For a successful simulation of the experiment by Albrecht and Myers (1995), there

should be less reinstatement in an alternative version of the story in which the desk is not

mentioned in the reinstating sentence. Indeed, Myers and O’Brien (1998, p. 148) report no

reinstatement of critical elements at all when processing this alternative story. When we

removed the proposition mentioning the desk from the reinstating sentence, we found a

decrease in amount of reinstatement from 2 to 1, for values of β ranging from 0.027 to

0.032.
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Recency and connectivity. The accessibility of text items depends on more than just

reinstatement. Two main experimental findings are that more recently read items are, in

general, more available than older items, and that items which are central to the text are

more accessible than less important items (Albrecht & Myers, 1991; O’Brien, 1987;

O’Brien, Albrecht, Hakala, & Rizzella, 1995). The Resonance model simulates both these

effects. First, items from the current sentence receive an initial signal and can therefore be

expected to end up with larger resonance values than other items, resulting in a recency

effect. Second, items that are more central to the text have many connections to other

items and are therefore more likely to receive large resonance values, resulting in a

connectivity effect.

The decay rate β can be expected to strongly affect the magnitudes of the recency

and connectivity effects. If the decay rate is large, signals decay quickly and resonance will

not spread far through the text network, resulting in a strong recency effect. For small

values of β the opposite happens: Signals keep spreading throughout the network and most

resonance will eventually settle on the items that have the largest number of connections.

The magnitude of the connectivity effect can be measured by the proportion of

variance in resonance values explained by the items’ numbers of connections. Likewise, the

size of the recency effect is measured by the proportion of this variance explained by

whether the items occurred in the current sentence or not. Figure 1 shows that, in our

simulations, a clear trade-off between the recency effect and the connectivity effect,

controlled by β, indeed occurs when processing the captain text.

The narrow range of decay rates (between 0.019 and 0.048) resulting in

reinstatement corresponds to a very weak recency effect. This is not surprising since a

weaker recency effect means that non-recent items have higher resonance values and, by

definition of reinstatement, critical items are not recent when the reinstating sentence is

being processed. However, a weak recency effect necessarily comes with a strong
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connectivity effect, as Figure 1 shows. If the value of β is too low, the effect of

connectivity can become so strong that reinstatement is no longer possible because

working memory is always occupied by the four most strongly connected items. For the

lowest decay rate at which reinstatement occurs (β = .019), connectivity already explains

almost 93% of variance in final resonance values.

World knowledge in the Resonance model

The captain text showed that bottom-up reinstatement can be simulated by a

resonance process without including world knowledge. However, in another text to which

Myers and O’Brien (1998) applied the Resonance model, one of the concepts church or

barn is to be reinstated by the mention of building. This reinstatement requires

knowledge about semantic relations between these concepts. Contrary to the normal rules

for connecting text items, connections between building and church and between

building and barn were added to the network (Myers & O’Brien, note to Table 2),

implementing precisely the piece of information needed for reinstatement. This example

shows that world knowledge cannot completely be ignored for the simulated process.

Importantly, if some piece of knowledge about the semantic relations between text

concepts can be required for a particular case of reinstatement, then any semantic relation

in the text could become relevant. Consequently, such semantic relations should be

generally available to the model.

As shown above, the model’s ability to simulate reinstatement depends on a delicate

balance between recency and connectivity effects. Crucially, this balance is disturbed

when semantic knowledge is included in the model. Connecting all pairs of semantically

related concepts leads to a strong increase in the number of connections of some concepts

in the network. Because of the strong connectivity effect that comes with the small effect

of recency that is required, these concepts will often occupy working memory, preventing
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reinstatement. Indeed, after connecting all of the captain text’s semantically related

concepts to each other,3 we no longer found any reinstatement, regardless of the level of

β. That is, the Resonance model no longer functions when potentially relevant knowledge

is included.

Conclusion

In particular instances, such as the captain text, the activation of text items by a

bottom-up resonance process can be simulated without resorting to world knowledge.

However, the fact that this is not so in general (as we have seen for the church–

building–barn example), entails that models of this process should at least be

compatible with the presence of knowledge of word semantics. The Resonance model was

never intended to function with a large amount of added knowledge. Consequently, it

cannot deal with the highly connected network that results from including semantic

relations, as was shown by our discussion of the recency-connectivity balance, coupled

with the model’s failure on the captain text when semantic knowledge was added.

More generally, any cognitive model should be compatible with the presence of all

knowledge that is potentially relevant to the simulated process. However, it is to be

expected that, by its sheer abundance, the inclusion of this knowledge will come to

dominate the processing of any model that has not been designed to take knowledge into

account. An obvious way out is to include only a small amount of knowledge such that the

model’s process will not become disrupted. For instance, the Resonance model achieved

reinstatement of church or barn by the ad hoc inclusion of nothing more than two

required connections, namely from building to church and barn. As will be discussed

in the next section, this ‘solution’ of including only the specific pieces of knowledge needed

for the case at hand is applied more widely with other models and has the unwanted

consequence of making proper investigation or validation of these models impossible.
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Ad hoc selection of world knowledge

All models of discourse comprehension require information in addition to the input

text. Such additional information is encoded in the setting of parameters. Note that we

use the term ‘parameter’ in a fairly broad sense, to refer not only to quantitative variables

(i.e., those having numerical values), but also to qualitative variables, such as whether or

not a particular fact from world knowledge is made available to the model.

Parameters can also be classified by the role they play in the simulation. For our

objective, an important distinction is between free and fixed parameters (each of which

can be either quantitative or qualitative). Free parameters may vary over simulation runs,

and can therefore be considered part of the input to the model rather than part of the

model itself. Their values are set by the modeler on an ad hoc basis. A quantitative

parameter like ‘activation decay rate’, for instance, is a free parameter if its value is

chosen dependent on the particular text to be processed. Ideally, a model should not

include any free parameters because seemingly successful simulation results that depend

crucially on the particular choice of free parameter values may incorrectly be attributed to

the properties of the model itself.

Fixed parameters, in contrast, have values that remain the same whatever the

model’s input, so can be viewed as part of the model itself. Static aspects of the

experimental context should correspond to fixed parameters in the simulation of the

experiment. Qualitative fixed parameters are of great importance to models of discourse

comprehension. Understanding a text always takes place within the context of the

reader’s background knowledge, so it is necessary for the model to have access to a

knowledge base. To the extent that the reader’s world knowledge is assumed constant

among or within readers, its implementation in the model should be fixed, that is, take

the form of fixed parameters.

When the choice between providing or not providing the model with some specific
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piece of world knowledge nevertheless depends on the text to be processed, this comes

down to the setting of a qualitative free parameter. Several discourse-comprehension

models use such a strategy: Pieces of world knowledge that seem relevant to the particular

text under consideration are hand-picked and only those are provided to the model. This

prevents technical problems with running a model in the context of large amounts of

knowledge, but introduces free parameters.

Although the outcomes of models that use free parameters for world-knowledge

implementation have been claimed to support the models’ validity, most of these results

are in fact direct reflections of the ad hoc and subjective selection and implementation of

world knowledge. The Construction-Integration (CI) model (Kintsch, 1988, 1998), which

has been widely applied and has stimulated much experimental research, is the most

influential discourse-comprehension model using this strategy for world knowledge

implementation. By a detailed discussion of the CI model, we intend to show that this

strategy makes it impossible to determine whether the model’s results reflect properties of

the model or only of the parameter setting.

The Construction-Integration model

Simulated process. Most texts do not explicitly mention everything that is needed

for comprehension. To make sense of a text, inferences need to be made by applying world

knowledge to the text-given information. The CI model simulates this inference process.

It assumes that text comprehension takes place in two phases. In the first phase, called

construction, world knowledge items that are potentially relevant to the text are selected.

Next, from the resulting collection of text and knowledge items, less relevant or

inappropriate items are discarded in the integration phase.

Construction. The model takes as input a collection of concepts and propositions

that correspond to the text being processed. For example, Kintsch (1988) parses the short
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text The lawyer discussed the case with the judge. He said “I shall send the defendant to

prison.” into the five text propositions labeled ‘T’ in Table 1. Two of these correspond to

the text’s incorrect interpretation in which the ambiguous pronoun he refers to the lawyer,

and two others correspond to the correct reading in which he is the judge.

During the construction phase, each concept and proposition from the text retrieves

a small number of items from the reader’s world knowledge in a context-free manner.

Knowledge items have a better chance at being retrieved if, according to the reader’s

knowledge, their association to the text item is stronger (Kintsch, 1988, p. 166). It is

important to note that, in theory, only this association strength has an effect on the

retrieval process. It is not possible for context information to influence which knowledge

items are chosen. As Kintsch (1988) puts it: “The construction process lacks guidance and

intelligence; it simply produces potential inferences, in the hope that some of them might

turn out to be useful” (p. 167). In practice, however, the construction process is strongly

guided by the modeler’s intelligence. Since the ‘real’ association strengths between the

items from the text and those from reader’s knowledge are unknown, it is up to the

modeler to decide which knowledge items are important to the text at hand. For instance,

the five text propositions in Table 1 are assumed to retrieve two world-knowledge

propositions in total: Text proposition (T3) send(lawyer, defendant, prison) does

not retrieve any items, since the reader does not know anything about lawyers sending

defendants to prison. On the other hand, the proposition (T5) send(judge, defendant,

prison) does retrieve two items from world knowledge. These propositions, labeled ‘A’ in

Table 1, are (A1) sentence(judge, defendant) and a proposition (A2) imply(A1, T5),

stating that sentencing the defendant implies sending him or her to prison. None of the

other text propositions are associated to any world-knowledge item. Clearly, selecting

(A1) and (A2), and just these two, comes down to a setting of qualitative free parameters.

So far, the construction process resulted in a collection of unconnected concepts and
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propositions, originating both from the text and from world knowledge. Next, these items

are connected to each other, forming a network called the enriched textbase (Kintsch,

1988, p. 166) in which each connection is assigned a weight. The enriched-textbase

network resulting from the ‘lawyer and judge’ example, including connection weights, is

shown in Figure 2.

There is no agreement about objective rules for choosing the weight values. Even

the set of weights that is used varies strongly among different applications of the model.

Kintsch (1988) uses real values between −1 and +1, but in most other studies, weights are

taken from a small set of integer values. For instance, Kintsch and Welsch (1991) use only

weights of 0, 1, and 2, while Tapiero and Denhière (1995) also include weights of −3. The

integer values 0 to 5 are used in three different studies (Kintsch, Welsch, Schmalhofer, &

Zimny, 1990; Radvansky, Zwaan, Curiel, & Copeland, 2001; Schmalhofer, McDaniel, &

Keefe, 2002), but Schmalhofer et al. use a different assignment of these weights to the

connections. In Otero and Kintsch (1992), connections have a weight of −1, 0, 1, 2, or 10,

but Singer (1996) uses −1, 0, and 1, while Singer and Halldorson (1996) also include 1
2 .

Also, it is not clear whether items should be connected to themselves. In Kintsch (1988)

they are not, but according to Kintsch (1998) they are. Kintsch (1992) even uses the

weights of these self-connections to indicate which propositions are emphasized by the

text, while others vary them to simulate differences in the reader’s goal (Schmalhofer et

al.), strategy (Otero & Kintsch), or age (Radvansky et al.). This lack of consistency shows

that the connection weights are quantitative free parameters.

Integration. The integration phase of the CI model takes as input the enriched

textbase that resulted from the construction phase and selects which nodes of this network

can be discarded because they are less relevant to the text than others, or because they

are inconsistent with the rest of the enriched textbase. This is accomplished by assigning

an initial activation value to items originating from the text. The integration process
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spreads the activation among the network over a number of processing cycles until the

average difference between the old and new activation values falls below some small fixed

value. The items that now have the highest activation values are assumed to be the most

relevant. Highly activated items originating from world knowledge are the inferences that

were drawn from the text.

In the enriched textbase of Figure 2, proposition T5 has more positive connections

than its competitor T3 and will therefore receive a higher activation value during

integration. As a result, proposition T4 is connected to a more active node than its

competitor T2, so it too will receive more activation. Eventually, the activations of T2

and T3 (the lawyer-nodes) become 0, while the activations of T4 and T5 (the

judge-nodes) remain high. The incorrect interpretation of the pronoun is discarded, while

the correct one is kept: It is the judge, and not the lawyer, who says that he shall send the

defendant to prison.

World knowledge in the CI model

Selection of associated knowledge items. In theory, the particular knowledge items

that become connected to the text during the construction phase, are selected by a ‘dumb’

process of association. In practice, exactly the items necessary for comprehension of the

text, together with just a few distracting items, are carefully chosen by the modeler. Since

this constitutes a setting of many free parameters, there exists a serious risk that a

successful outcome of the integration process reflects the aptness of this choice rather than

the aptness of the model.

To give an illustrative example of this, Kintsch, Patel, and Ericsson (1999; Kintsch,

2000b) apply CI to the ambiguous newspaper headline Iraqi head seeks arms. They report

that, for the integration process to deactivate the incorrect reading of the sentence, several

world-knowledge propositions were needed: ‘Iraq is a country’, ‘Countries have
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governments’, ‘Governments have heads’, and ‘Arms are weapons’. After applying the

integration process to the enriched textbase network including these propositions, the

items corresponding to the correct reading of the sentence (‘The government of Iraq wants

weapons’) had higher activation values than the items corresponding to the incorrect

reading. However, this result depends critically on the specific knowledge-based

propositions that were chosen to be included, since all of these were only connected to the

text items corresponding to the correct reading. As a result, these ‘correct items’ have

more positive connections than the ‘incorrect items’ so they receive more activation. If

propositions related to the other reading had been selected (e.g., ‘An Iraqi is a person’, ‘A

person has a body’, ‘Heads and arms are parts of the body’), the incorrect reading of the

sentence would have resulted from the integration process.4

Connection weight setting. As noted above, the choice of connection weights, like

that of associated world knowledge items, is an ad hoc and subjective setting of free

parameters. Such freedom can lead to modeling results that are almost completely

determined by the particular choices made. Consider, for example, the following sentence,

taken from Till, Mross, and Kintsch (1988): The townspeople were amazed to find that all

the buildings had collapsed except the mint. Obviously, mint refers to the building and not

the candy. Kintsch (1988) uses the CI model to solve this lexical ambiguity. A small part

of the enriched textbase is shown in Figure 3.

The concept mint is assumed to retrieve from world knowledge the concepts candy

and money, which are connected by a weight of −1 since they exclude each other (only

one of them can end up in the interpretation of the sentence). Also, a connection of −.5 is

added between candy and building, “because the homophone mint contributed

associations to the subset that refers to both of its senses” (Kintsch, 1988, p. 173). During

the integration process, the activation of candy becomes 0 while money ends up with an

activation of .074, indicating that the model found the intended meaning of mint (or,
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rather, discarded the unintended meaning).

Had the negative connection between candy and building not been added, the

network would be completely symmetric with regard to candy and money so these two

concepts would have received the same final activation and the ambiguity would remain

unresolved. Since there is no reason to assume there is a negative association between the

concepts candy and building in world knowledge (see also under ‘LSA for Construction-

Integration’ in the next section), the negative connection between them seems to have

been added to make sure the integration process would produce the desired result.

Conclusion

Since different texts usually require different knowledge bases, implementing only

text-relevant knowledge seems to make sense. However, this comes down to the

introduction of many free parameters. With enough parameters to set, models can produce

almost any desired output. As we have shown, in several applications of the CI model,

presented results directly resulted from convenient choices regarding world knowledge. By

implementing world knowledge subjectively and on an ad hoc basis, no conclusion about a

model’s properties or qualities can be drawn from its output, because many other

outcomes would also have been possible. This is not to say that such models must be

flawed, but only that they cannot be properly validated until all parameters are fixed.

The ‘Connectionist Extension to CI’ model (Sanjosé, Vidal-Abarca, & Padilla, 2006)

deals with some of these issues by computing connection weights from activation values

rather than choosing them subjectively. However, this does not solve the problems that

associated world-knowledge needs to be selected subjectively and that some initial

connection weights are set by hand to encode the reader’s prior knowledge (Sanjosé et al.,

p. 12).

So far, we have presented CI as a model of knowledge-based inference in which the
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activation of an item is interpreted as its relevance to the text. The model has also been

widely applied to predict experimental data by comparing activation values to

experimental measures. According to Schmalhofer et al. (2002), a proposition’s activation

predicts the naming time of a word that is part of the proposition. They use CI to

account for text priming effects on these naming times. For simulating experiments in

which participants had to indicate whether a target sentence occurred in a previously read

text, activation values are taken as a prediction of response times (Caillies, Denhière, &

Kintsch, 2002) or sentence recognition probabilities (Caillies & Denhière, 2001; Kintsch

et al., 1990; Radvansky et al., 2001). Tapiero and Denhière (1995) interpret activation of a

text proposition as its probability of free recall. For propositions denoting a fact from

world knowledge, Singer (1996) and Singer and Halldorson (1996) take the activation to

predict the time needed to verify whether the fact is true or not.

In these studies, the correspondence between model results and experimental data

has been established extensively. Since qualitatively different inferences can easily be

obtained by setting free parameters accordingly (as our discussion of several CI

simulations has made clear), it stands to reason that the parameter setting also strongly

affects the much subtler quantitative correspondences between model outcomes and

experimental data. The fact that each text comes with its own parameters setting raises

the question how persuasive these correspondences are.

This is also apparent in two other models that implement world knowledge as free

parameters: the Landscape model (Van den Broek, Young, Tzeng, & Linderholm, 1999)

and the model by Langston and Trabasso (1999). The latter model takes as input a

network of nodes that represent text clauses. Text-specific knowledge about causality, as

judged by the modeler, is implemented by weighted links that represent causal relations

between the events referred to by the clauses. As we discussed extensively in a previous

paper (Frank, Koppen, Noordman, & Vonk, 2005), the model’s output is virtually
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identical to this input. Consequently, the output also encodes the text’s causal structure.

Since causal structure is a major factor affecting discourse comprehension, the output of

the Langston and Trabasso model corresponds to a lot of experimental data. However,

this correspondence is no evidence in support of the model whatsoever because the same

data is accounted for by the model’s input. This makes the Langston and Trabasso model

a very clear example of how the selection of world knowledge can have a larger impact on

model results than does the actual model.

In the Landscape model, a similar problem arises when input values are mistakenly

interpreted as model outputs. The model’s input takes the form of activation values of

items from the text and, if necessary, items that are assumed to be inferred from the

reader’s world knowledge. An item can receive activation because it is mentioned in the

text, or because it is somehow related to an item that is activated. Which items receive

activation, and how much, can be chosen by the modeler to implement a particular theory

of text processing or differences in reading goal.

In Linderholm, Virtue, Tzeng, and Van den Broek’s (2004) simulation of the

difference between reading for study and reading for entertainment, the difference between

the two reading purposes is assumed to lie in the standard of coherence readers attempt to

obtain. When reading for entertainment, only explicit and referential relations are

identified in the text, while a study purpose also requires finding causal, logical, and

contrastive relations (Linderholm et al., p. 173). Note that the differences in these

standards of coherence entail a difference in required world knowledge.

To implement this, the explicit, referential, causal, logical, and contrastive relations

in a text were analyzed. The choice of input activation was based on the relations that

were found: Simulating the processing of a sentence from the text involved activating the

propositions from earlier in the text that were explicitly or referentially related to the

sentence being processed. In the study-purpose simulation, but not in the entertainment-
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purpose simulation, input activation was also provided to earlier propositions that had a

causal, logical, or contrastive relation to the current sentence. As a result, more input

activation is present in the study-purpose simulation, which, of course, means that there is

more overall activation. According to Linderholm et al., “This finding suggests that, in

the computational simulation . . . reading for study results in the activation of more

elements throughout reading” (p. 173). However, this so-called finding is actually the

manipulation of parameters (i.e., which propositions receive input activation depending on

the task being simulated). The same is true for the second finding from this simulation,

which is that propositions causally related to the current sentence receive activation in the

study-purpose simulation but not in the entertainment-purpose simulation (Linderholm

et al., Figure 1). Clearly, this difference in activation values between the two simulated

tasks is precisely the applied manipulation of input activations rather than a prediction of

the model.

Extracting knowledge from text corpora

As argued in the previous section, implementing only text-specific world knowledge

comes down to an unacceptable setting of free parameters. It would be better to have one

fixed knowledge base that can be applied to many different texts, that is, to implement

world knowledge as a setting of fixed, rather than free, parameters.

One method for constructing a generally applicable knowledge base is to compute,

from large text corpora, word representations that encode semantic relations among the

words. A well known technique that accomplishes this is Latent Semantic Analysis (LSA;

Landauer & Dumais, 1997), in which each word is represented as a vector in a

high-dimensional semantic space. The similarity between two word vectors, measured by

the cosine of the angle between them, is a value between −1 and +1 that indicates the

semantic relatedness of the two words.
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LSA has been used to reduce the number of subjective choices in CI-model

simulations, and has served as the basis for an implementation of world knowledge to be

used by computational accounts of discourse comprehension. However, as we will argue,

LSA cosines cannot directly replace the hand-picked connection weights in the CI model.

More importantly, only knowledge of word meaning can be extracted from text corpora,

while sentential meaning is more important to discourse comprehension, for one, because

it is crucial for knowledge-based causal inferencing. Although it has been claimed that the

information in LSA vectors can be used to drive causal inference (Kintsch, 2001), we will

show that such claims do not hold.

LSA for Construction-Integration

Kintsch (1998, 2000b; Kintsch et al., 1999) discusses how hand coding in the CI

model can be prevented by using LSA. Instead of subjectively deciding which knowledge

items become associated to the text items during the construction phase, the text items’

nearest neighbors in LSA’s semantic space can be selected objectively. The cosine between

the vectors then becomes the weight of the connection between the corresponding network

nodes. Since the LSA vectors do not depend on the particular text or task, this method

does away with the ad hoc nature of world knowledge in the CI model.

However, this scheme will not generally result in a useful weight setting. For

instance, in the mint-example discussed in our evaluation of the CI model, a negative

weight between mint’s associates candy and building was needed to disambiguate the

word (see Figure 3). However, the LSA website (lsa.coloradu.edu) reports a positive cosine

of +.14 between them. The cosine between money and building is also +.14, so letting

LSA determine these connection weights would not have worked in this example.

Moreover, LSA would not have come up with the associations money and candy at all

since they are, respectively, only the 25th and 79th nearest neighbor of mint. The 10
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nearest neighbors of mint in semantic space are all related to the ‘money’-sense of the

word, and the 11th is related to the ‘herb’-sense. The first word that could in any way be

associated to the ‘candy’-sense of mint is crisp, which is the 17th nearest neighbor. This

shows that the number of associates a text item retrieves from world knowledge needs to

be much larger than the CI model assumes.

Another problem with the LSA-approach is that it fails when propositions need to

be retrieved from world knowledge, as was the case in the ‘lawyer and judge’ example of

Table 1. Although, as is discussed next, vector representations of propositions can be

defined given the vectors of the proposition’s predicate and argument(s), there are no

‘nearest proposition neighbors’ of a text item pre-defined in semantic space. As a result,

choosing the associated world-knowledge propositions remains a setting of free

parameters, again involving the risk that choices are made with the desired result in mind.

The standard approach for computing the LSA vector representation of a sentence

or text is to simply take the (weighted) sum of the vectors of its individual words (e.g., see

Foltz, Kintsch, & Landauer, 1998). However, since this method regards a sentence as a

collection of individual words, it cannot account for sentential meaning in general. If the

same approach would be applied to propositions, it would be impossible to take into

account the different roles of predicates and arguments. The Predication model (Kintsch,

2001) offers a possible solution to this problem.

The Predication model

Simulated process. The Predication model computes a vector representation of a

proposition given the LSA vectors of the proposition’s predicate and argument(s), but

extends LSA’s simple summing rule by not treating predicate and argument(s) equally.

Importantly, the resulting proposition vectors form an implementation of world knowledge

that can be used for processing any text. The model itself does not simulate any cognitive
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process but does make claims about the mental representation of discourse statements and

world knowledge. These representations have been applied to several aspects of cognition,

such as judgements of similarity, causal inferencing, and metaphor comprehension

(Kintsch, 2000a, 2001; Kintsch & Bowles, 2002).

Constructing proposition vectors. According to the Predication model, the vector

representing a proposition of the form P (A), with predicate P and a single argument A, is

computed from the LSA vectors for P and A by first finding a small number of vectors

closest to (i.e., having the largest cosine with) P . From those, a subset of vectors closest

to A is selected. These vectors and the vectors for P and A themselves are summed to

form the vector representing P (A) (Kintsch, 2001, pp. 180–181). Vectors representing a

proposition of the form P (A1, A2), carrying two arguments, can be computed similarly

(Kintsch, 2001, pp. 189–190).

One important thing to note is that the predicate P has a larger impact on the

proposition’s vector than does the argument A (or the two arguments A1 and A2). By

first selecting the nearest neighbors of P and then selecting from these the vectors closest

to A, Predication biases the vector sum towards P . As a result, the vector for P (A)

usually is closer to P than to A.

Interpreting vectors. To investigate the meaning of a proposition vector, it is

compared to several so-called ‘landmark’ vectors, which are the LSA vectors of words

considered to be related to the proposition’s meaning. For the propositions ran(horse)

and ran(color), Kintsch (2001, Table 2) uses as landmarks the vectors for gallop and

dissolve. The first of these landmarks is closer to ran(horse) while the second has a

larger cosine with ran(color). It is concluded that the Predication algorithm correctly

resulted in a vector for ran(horse) that ‘is like’ gallop, and a vector for ran(color)

that ‘is like’ dissolve. This result shows how the meaning of propositions is reflected in
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the distance between their vector representations, as was the case for LSA’s word vectors.

World knowledge in the Predication model

The Predication model has access to the knowledge of word semantics that LSA

extracted from text corpora. For discourse comprehension, however, causal knowledge is

at least as important because causal inferences are often required to understand a text.

Indeed, the Predication model has also been applied to causal inferencing, for example to

infer that the statement The student washed the table implies that as a consequence The

table was clean. If Predication picks up this causal relation, the vector for

washed(student, table) should have a larger cosine with clean(table) than with, for

instance, clean(student). Kintsch (2001, Table 1) shows that this is indeed the case.

More importantly, the difference between the two cosines is less when the sum of just the

vectors student, washed, and table is chosen to represent The student washed the

table. This is taken as evidence that, for causal inferences, the Predication model performs

better than LSA’s method of simply summing the vectors of the words involved.

At first glance, Predication seems to solve the world-knowledge implementation

problem: Knowledge that is extracted from large text corpora can be applied generally, so

computational models can use it as fixed parameters, for instance for a task as crucial to

text comprehension as causal inferencing. However, it turns out the alleged

demonstrations of causal inference are not what they seem. Since interpreting the model’s

output requires comparing it to landmark vectors, the interpretation depends strongly on

the landmarks that are chosen. By taking into account that proposition vectors are biased

towards the predicate (in the above example, the verb washed), it can be shown that in

all nine cases of causal inference presented by Kintsch (2001), the particular choice of

landmarks was responsible for incorrectly interpreting the model’s outcome as reflecting

causal relations.
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The last column of Table 2 shows that the cosine between the words washed and

table (cos = .25) is much larger than between washed and student (cos = .02).

Biasing the proposition vector towards the verb therefore results in a vector closer to

table than to student, and closer to clean(table) (cos = .83) than to

clean(student) (cos = .62). If the landmarks The table was tired and The student was

tired are chosen to test causal inferences, the model incorrectly concludes that washing the

table is more tiring for the table than it is for the student: We found a cosine between

washed(student, table) and landmark tired(student) of .66, compared to a cosine

with landmark tired(table) of .81.

In three out of four cases in Table 2, the landmark closest to the test proposition

was the one whose argument was closest to the proposition’s predicate.5 Only in the

example drank(doctor, water) did this not occur: Even though drank is closer to

water than to doctor, the model seems to have concluded correctly that it was the

doctor, and not the water, who must have been thirsty. However, changing the landmarks

shows that, again, the interpretation of the model’s output depends critically on the

landmarks chosen. Drinking the water will refresh the doctor and not the water, but we

found a much smaller cosine of drank(doctor, water) with refreshed(doctor)

(cos = .38) than with refreshed(water) (cos = .69).6

Kintsch (2001, p. 192) gave five more examples of causal inference by the

Predication model. In each of these examples, shown in Table 3, there was only one

landmark (e.g., The pain went away), which was compared to two test propositions

varying only in the predicate. One of these formed a direct cause for the landmark (e.g.,

Sarah took the aspirin) and the other did not (e.g., Sarah found the aspirin). In all five

cases, Kintsch (2001) found that the causally related proposition was closer to the

landmark than the non-related proposition. However, we found that all these cases could

be explained by simply looking at the cosine between predicates of the test propositions
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and of the landmark (see Table 3). The landmark’s predicate is always closer to the

predicate of the causally related test proposition than to the other predicate. For instance,

went is closer to took (cos = .74) than to found (cos = .39). Since a proposition’s

vector is usually closest to its predicate, this explains why these five landmark propositions

are closer to the causally related propositions than to less related propositions.

Conclusion

Using LSA and the Predication model results in a knowledge-implementation that is

fixed and can be applied to many different texts. However, understanding text requires

understanding its propositions, and there is an important difference between words and

propositions that the Predication model ignores: Unlike words, propositions are

statements to which a truth value can be assigned. Causal inferencing is based on such

truth values and therefore requires propositions: If it is true that Sarah took the aspirin,

then it is likely that the pain will go away. LSA constructs a semantic space in which the

cosine between vectors is a measure for the semantic relatedness between the

corresponding words. If the Predication model could indeed turn such semantic relations

into causal relations, that would be a spectacular result. However, Predication takes the

LSA vectors and constructs from them other vectors in the same space. Relations that

depend on truth values (such as causal relations) do not correspond to any measure in the

semantic space. This is easily shown by comparing the vectors for clean(table) and its

negation not(clean(table)). These vectors are very similar (their cosine is .91),

showing that they do not represent the opposite meanings of the propositions. Instead,

Predication vectors correspond to words adjusted to a specific context. The vector that is

claimed to represent the sentence The horse runs should actually be interpreted as

meaning something like horselike running, since it takes the verb runs and adjusts it to

the context of horse.
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This point is also made clear by results reported by Burgess, Livesay, and Lund

(1998), who developed another method for automatically constructing vector

representations of word meaning from text corpora: the Hyperspace Analog to Language

(HAL) model. Burgess et al. (pp. 234–236) constructed vectors representing sentences by

summing the sentence’s word vectors (weighted by inverse word frequency). These

sentences described goals and corresponding means, such as be less sarcastic (goal) by

thinking twice before I say anything (means). A comparison of the distances among

vectors for goals and means revealed that knowledge about their relation was not captured

in their vector representations. Since such knowledge is a kind of causal knowledge (means

can cause a goal to be reached), this negative result is exactly what could be expected

considering that HAL vectors encode information about words only. Knowledge about the

causal relation between statements does not simply follow from the meaning of the

individual words in these statements.

World knowledge about causality is of major importance to understanding text, so

models of this process require an implementation of causal knowledge. Although LSA and

HAL manage to encode a large amount of realistic knowledge, they do not represent causal

knowledge, limiting their value to computational models of discourse comprehension. This

is not just a technical problem with LSA and HAL, that could be overcome by using some

other method. Such methods cannot extract causal knowledge from text corpora, because

world knowledge does not follow from word knowledge. Nevertheless, world knowledge can

be obtained by a similar ‘extraction’-strategy, as we discuss next.

The microworld strategy

Knowledge about the world cannot be automatically extracted from text corpora, so

the question arises what sort of corpus is needed for this. For such a scheme to work, the

corpus should not consist of texts but of events or situations in the world. Unlike large
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and general corpora of naturally occurring texts, however, corpora of real world events are

not readily available. Therefore, event corpora need to be constructed from scratch. As a

result, the knowledge that can be encoded is at best that of a tiny subset of the real

world: a ‘microworld’.7

A model that uses this microworld strategy can process only texts dealing with the

microworld. In contrast to models that use only text-relevant knowledge, however,

microworld-based models can process several texts without requiring any parameter

adjustment because all knowledge about the microworld is encoded in fixed parameters.

Such models can be run on different texts, while making sure that positive results are not

simply caused by the modeler’s interference.

One model that makes use of microworld knowledge extracted from an event corpus

is the Distributed Situation Space model (Frank, Koppen, Noordman, & Vonk, 2003). As

we hope to show from our discussion of that model below, using the microworld strategy

leads to models whose properties can be thoroughly investigated.

The Distributed Situation Space model

Simulated process. The DSS model simulates the same process as the CI model: the

knowledge-based drawing of inferences from a text. Nevertheless, the two models view the

inference process very differently. Whereas CI simulates inference as activation and

selection of world knowledge, DSS treats it as a process of pattern completion.

The microworld. The microworld is very simple, having only two characters, called

Bob and Jilly, who can engage in a small number of activities and be in a small number of

states. For instance, it can be the case that ‘Bob is outside’, ‘Bob and Jilly play soccer’,

or ‘Jilly wins’. In total, 14 so-called ‘basic propositions’ (listed in Table 4) are needed to

describe any situation that can occur in the microworld. The number of possible

microworld situations is much larger, because the basic propositions can be combined
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using the boolean operators of negation, conjunction, and disjunction.

Of course, some situations are more likely to occur than others. For instance, it is

more likely that Bob and Jilly are both outside than that only one of them is. Some

situations are even impossible. For instance, it never happens that Bob or Jilly wins while

they are not playing a game. In addition to these differences in the likelihood of

situations, there are also constraints regarding temporal sequences of situations. For

instance, when someone is tired, the other is more likely to win the game they are playing.

Also, when Bob and Jilly are tired, they are not very likely to start playing soccer.

World-knowledge representation. Just like LSA vectors encode word knowledge

based on the words’ co-occurrences in texts, vectors in the DSS model encode world

knowledge based on the events’ co-occurrences in the microworld. The event corpus is a

hand-crafted sequence of 250 microworld situations, which abides by the microworld’s

probabilistic constraints. Each of the situations is represented as a 14-element binary

vector, with a 0 for each basic proposition that is not the case in the situation, and a 1 for

each basic proposition that is. Next, a Self-Organizing Map (SOM; Kohonen, 1995) is

trained on these 250 vectors. As a result, each basic proposition comes to be represented

by a pattern of activation over the 150 cells of the SOM, or, equivalently, as a 150-element

vector. Using well-known equations from fuzzy logic, these vectors can be combined into

representations of any microworld situation. For this reason, the vectors are called

‘situation vectors’.

Situations that are alike result in vectors that are alike. In practice, this means that

from any situation vector X, the probability that any of the 14 basic propositions is the

case can quite accurately be estimated by comparing X to the vector representation of the

desired basic proposition. Such an estimated probability, or belief value, can also be

computed for any combination of basic propositions, that is, for any microworld situation.

Knowledge about the temporal constraints between microworld situations is also
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extracted from the event corpus. This knowledge is encoded in a 150× 150 matrix W .

The inference process. A story is a description of a temporal sequence of situations

occurring in the microworld. Usually, this description is incomplete: A story does not

state everything that does and does not happen. The model’s task is to take as input the

vectors representing the incomplete story situations and infer what else is likely to be the

case at each moment in the story.

Situations in the microworld are assumed to follow one another in discrete time

steps, indexed by t. The vector representing the situation at some time step t is denoted

Xt, so the input to the model is the sequence of vectors 〈X1, X2, . . .〉. This is called the

story’s trajectory through situation space.

The situation vectors enter the model one at a time. After a new vector is added,

the temporal world-knowledge matrix W is applied to the story trajectory so far. The

DSS model adopts the mathematical basis from Golden and Rumelhart’s (1993)

story-comprehension model to compute the most likely trajectory given the current

trajectory and matrix W . The trajectory is adapted towards this most likely trajectory,

such that the vectors come to represent situations that are more fully specified. This

simulation of the inference process adds information to the original, incomplete

specifications of situations.

The process halts when the rate of change of the trajectory falls below a particular

level, controlled by a ‘depth-of-processing’ parameter. At that moment, the next story

situation vector enters the model. The variable amount of processing time needed to

update the trajectory serves as the model’s analog of sentence reading time.

The model in practice. Table 5 shows an example of a simple story. It consists of

four consecutive situations. First, Bob and Jilly are stated as being outside. Next, it is

claimed that they are playing together. In the microworld, this means that they either
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play soccer, hide-and-seek, both play a computer game, or both play with the dog. Since

they were outside, it is unlikely that they play a computer game (it is not impossible,

however, because they might have moved inside by t = 2). Integrating X1 and X2 should

therefore result in an updated vector X2 that represents a situation in which B comp ∧

J comp is unlikely. Contrary to this, the information that Bob and Jilly are outside

increases the likelihood of soccer, which is always played outside, but does not affect the

probability of hide because hide-and-seek can be played inside or outside. Next, the story

states that Bob or Jilly wins. This means that they could not have been playing with the

dog at t = 2. Integrating X2 and X3 should therefore decrease the belief value of B dog

∧ J dog in X2. The story ends by stating that Bob and Jilly are not tired.

The result of processing the story of Table 5 is shown in Figure 4. When the first

two story situations are integrated, the belief value of B comp ∧ J comp at t = 2

decreases, and the belief value of soccer increases, because of the information that they

are outside. After 5.27 units of processing time, integration has stabilized enough to allow

the third situation to enter the model. At this point, the belief value of B dog ∧ J dog

at t = 2 decreases because of the information that the game they played has a winner. In

short, whenever a new story statement is included in the model, it makes the correct

inferences by updating its representation of the story’s situations in accordance with its

temporal knowledge of the microworld.

World knowledge in the DSS model

The DSS model can process any story taking place in the microworld without the

need for setting free parameters, because the same world knowledge and other parameter

values are used in many simulation runs. The model does have many knowledge-

implementing parameters (i.e., the situation vectors and matrix W ) but these are all fixed.

This means that the pattern of results over many texts can be relied upon to indicate
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properties of the model and not just of the parameter setting. For instance, Frank et al.

(2003) show that the model’s processing time is lower for stories that are more coherent,

which is in accordance with experimental data (Golding, Millis, Hauselt, & Sego, 1995;

Myers, Shinjo, & Duffy, 1987). Since this result is based on processing many different

stories and the parameter setting was the same for each of these, the predicted relation

between coherence and processing time reveals an actual property of the model rather

than the accidental outcome of some parameter setting.

As was the case for LSA’s semantic vectors, the DSS model’s situation vectors and

temporal knowledge matrix result from an unsupervised training process, that is, the

knowledge base is task-independent and can be probed in many different ways. Indeed,

the DSS model’s world-knowledge implementation has not only been applied to

inferencing but also to modeling story retention (Frank et al., 2003), and ambiguity

resolution (Frank, Koppen, Noordman, & Vonk, in press). In these simulations, the model

successfully predicted experimental data concerning free recall rates, reading times, and

disambiguation errors.

Of course, the model also suffers from several limitations. For instance, it cannot

infer at which story time steps situations take place so these must enter the model in

chronological order. Also, the model does not simulate how text processing can lead to

updated world knowledge. Moreover, it lacks an attention mechanism as well as an

account of working-memory limitations. Note, however, that these shortcomings are

specific to the model rather than resulting from the microworld approach to

world-knowledge implementation.

Conclusion

Extracting world knowledge from a description of events in the world and

implementing all of this knowledge for use by a computational model, results in fixed
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rather than free parameters. Consequently, the model can be tested on several texts

without changing the parameter setting, making it possible to investigate the model and

its predictions more thoroughly. For this method to be feasible, the world to which the

model is applied needs to be simplified considerably, making it a microworld. In contrast

to knowledge extracted from text corpora, microworld knowledge deals with the

situational rather than the word level, making it more useful for discourse comprehension.

Other microworld models. When using the microworld strategy, care needs to be

taken to make sure that the knowledge base is not too task specific. Two examples of

microworld-based models that suffer from this problem are the Story Gestalt model

(St.John, 1992) and the DISPAR model (Miikkulainen & Dyer, 1991). Both use recurrent

neural networks that are trained on script-based stories, represented as a sequence of

predicates and arguments. The models extract microworld (script) knowledge from these

training stories.

The training task is different for the two models. Story Gestalt learns to answer

specific types of questions about the story, while DISPAR is trained to paraphrase the

stories it processes. Both these tasks require the drawing of inferences, using background

knowledge, when gaps in the stories need to be filled in. The two models manage to learn

the task, showing that they apply world knowledge when needed. However, it can be

argued that the networks do not actually have any declarative knowledge about the

microworld, but only procedural knowledge that tells them how to answer questions or

paraphrase stories. This is because, during the supervised training process, the neural

networks adapt to the task they are to perform. The resulting connection weights (i.e., the

implementation of world knowledge) do not encode knowledge in general because their

only purpose is to be useful for either answering questions or paraphrasing stories.

Consequently, the weights are not useful for any other task. For example, Story Gestalt is

trained on questions that take the form of a predicate from the story. To answer the
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question, the network has to give the predicate’s arguments. Since the network is never

trained to answer a question like ‘what happened next?’, it would need to be retrained

completely if it is to answer such questions.

Possible drawbacks of the microworld strategy. A question that arises when using

the microworld strategy is whether the model can be scaled up to more realistic amounts

of knowledge. To be regarded a viable cognitive model, it should be able to handle

amounts of knowledge much larger than that of a small microworld. To what extent the

DSS model can be scaled up is still an open question. This question is rarely posed when

discussing models that only use text-specific knowledge, presumably because the presence

of additional world knowledge is simply ignored. Nevertheless, the issue matters to such

models as well because the amount of knowledge that is relevant to the text may be very

large indeed. Using the microworld strategy forces the modeler to design the model to

always take all existing knowledge into account. As a result, the scalability issue becomes

apparent more easily when dealing with a microworld than with text-specific knowledge

only. This may actually be an advantage of the microworld strategy, rather than a

drawback.

Another issue for models that have only microworld knowledge is that they cannot

be used to process texts dealing with events outside the microworld, such as most natural

texts. This incapability of using natural text input seems like a major limitation because

it makes detailed, quantitative comparisons between simulation results and experimental

data impossible. However, qualitative comparisons can still indicate whether or not the

model adequately simulates human discourse-comprehension processes. For example,

without predicting reading times for realistic texts, the DSS model provides an account of

the relation between text coherence and reading times. Moreover, it can be argued that

models that only include text-specific knowledge (or none at all) do not process natural

texts either, since a text can only be considered natural when embedded in a large amount
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of world knowledge. For example, when some network node in a CI simulation is labeled

send(judge, defendant, prison), it is this label that activates our knowledge of the

legal system, making it seem to us as if it represents a bit of natural text. To the model,

however, there is no label. Within a simulation, a node can only acquire meaning to the

extent that it is connected to nodes representing world knowledge. If these are (largely)

absent, the node remains meaningless and the text it represents is anything but natural.

To summarize, drawbacks of the microworld strategy apply as well to models that

rely on free parameters. First, upscaling is an important open issue for all models of

discourse comprehension. It is just harder to ignore when using a microworld. Second,

although microworlds may provide only a small-scale embedding in world knowledge, an

ad hoc selection of knowledge for each individual text amounts to an even smaller,

disposable ‘nanoworld’ instead of one reusable microworld.

Discussion

Strategies for world-knowledge implementation

We identified four different strategies for dealing with world knowledge in

computational models: disregarding world knowledge, treating it as a free parameter

setting, treating it as a fixed parameter setting obtained from text corpora, and treating it

as a fixed parameter setting obtained from event corpora.

Obviously, world knowledge is only left out of models in order to simplify them, that

is, it is acknowledged that the simulated cognitive process is, in reality, embedded in world

knowledge. Such a simplification comes with the risk that the model’s algorithm only

functions without world knowledge because the presence, and possible influence, of

knowledge was not taken into account when the model was designed. In that case, it

cannot be an adequate description of the cognitive process. We have shown this to be the

case for the Resonance model, whose simulation of the ‘true’ resonance process is ruined
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by the addition of knowledge about semantic relations, even though such knowledge is

used by the cognitive process.

Leaving knowledge out of the model makes it impossible to process texts for which

some piece of knowledge is required. This can be solved by inserting bits of knowledge as

needed. Whenever the knowledge that is implemented depends on the particular text

being processed, world knowledge is treated as a setting of free parameters. The

underlying idea is that any text activates or requires only a small amount of world

knowledge, which is all that needs to be implemented. Of course, the problem is that

nobody knows which particular bit of world knowledge becomes activated when processing

a certain text. In practice, therefore, the modeler implements an ad hoc and subjective

selection of world knowledge. Making this selection often comes down to performing the

task that the model is supposed to simulate, resulting in correct model outcomes that

nevertheless do not allow for any claims about the performance of the model itself. We

have shown this to occur in simulations using the CI, Landscape, and Langston and

Trabasso models. This is not because of the models themselves but because of the

presence of free parameters. Whenever a modeler has the freedom to steer each simulation

individually by adjusting free parameters, it becomes unclear if the model’s outcomes

reflect its own internal processes or mainly those of the modeler.

If a discourse-comprehension model is to be validated against experimental data, or

if its properties are to be rigorously investigated, it has to be applied to a large number of

texts. Implementing a different subset of world knowledge for each of these comes down to

setting many free parameters, making it impossible to draw conclusions about the model

itself. We have seen an example of this in the Resonance model: Its failure on the captain

text with semantic knowledge included indicates that its success on the church–barn

reinstatement depended critically on the inclusion of no more than two specific

connections. In such a way, this ‘success’ actually hides a shortcoming of the model. What
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is needed for ascertaining a model’s general properties is a fixed parameter setting, that is,

a single knowledge base to be applied to several texts.

By automatically extracting knowledge about word meaning from large text

corpora, LSA and HAL construct meaningful and widely applicable vector representations

of words. These vectors can serve as a fixed knowledge base, preventing the problems

caused by the use of free parameters. However, when it comes to discourse comprehension,

the meaning of propositions is more important than that of words and causal relations are

at least as relevant as semantic relations. Such more sophisticated knowledge does not

follow from mere word co-occurrences. Claims to the contrary turned out not to be

warranted: The Predication model’s alleged handling of causal inference was based on the

misinterpretation of its output vectors, resulting from the particular choice of landmark

vectors to which the model’s output was compared.

Computational models of discourse comprehension are faced with the dilemma that

no small subset of world knowledge can a priori be marked as ‘relevant to the text’, in

particular when dealing with narratives, while the implementation of (a substantial subset

of) true human knowledge is far from feasible. By implementing knowledge about a small

and clearly defined microworld, and restricting the input texts to those describing events

taking place in this microworld, the introduction of free parameters is prevented. This is

the strategy applied by the DSS model. As we have argued, its results do not crucially

depend on a clever setting of free parameters, that is, on text-specific and subjective

knowledge selection and implementation. Consequently, these results can be relied upon

to give information about the properties of the model.

Since the microworld strategy is not a model in itself, it is certainly not sufficient for

successful modeling. Our claim is merely that it is a necessary approach to discourse-

comprehension modeling as long as relevant amounts of human ‘macroworld’ knowledge

cannot be implemented.
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Applying the microworld strategy to other models

The modeling problems we identified are first of all caused by the handling of world

knowledge, and less so by the models themselves. In some cases, the microworld strategy

may very well be applicable to models that have so far used some other method. If this is

indeed possible, it is an appropriate step for testing and improving the models.

As we have argued above, the Resonance model is not likely to be successful if it has

to deal with larger networks, so simply plugging knowledge into Resonance will not work.

However, the microworld strategy may help in developing an improved resonance

algorithm that can deal with larger and more densely connected networks, that is,

networks that include relevant amounts of semantic knowledge.

Other models may be better than Resonance at dealing with the relatively large

amount of world knowledge that is implemented in the microworld strategy. The

Construction-Integration model, for instance, can quite easily be supplied with knowledge

of a microworld. Of course, this is not implemented as a DSS-like situation space but

should take the form of a large network of concepts and propositions. During the

construction phase, many knowledge items could then be associated to the text items in a

context-independent fashion, without any interference by the modeler. Also, connection

weights in the microworld-knowledge network would be fixed, doing away with any free

parameters. In fact, this is how the model is originally presented: Kintsch (1988, pp.

166–167) assumes that the reader’s world knowledge is stored in a ‘knowledge net’

consisting of concepts and propositions connected by weighted links. The probability that

a particular knowledge item becomes associated to a text item is proportional to the

connection weight between these two items in the knowledge net, and weights in the

enriched text base are inherited from weight in the knowledge net. However, these ideas

are not put into practice when the CI model is used. The reader’s knowledge net is, of

course, unknown and not implementable, so associated knowledge items and connection
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weights are chosen freely by the modeler. If, instead, a microworld knowledge net would

have been implemented, it could have been used for processing several texts without

changing the parameter setting. For any model of discourse comprehension, such a

strategy is necessary to reveal the model’s general properties.
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Footnotes

1The sentence marker is connected to the propositions in the sentence; concepts are

connected to the propositions that have them as an argument; and propositions are

mutually connected if they have identical arguments (Myers & O’Brien, 1998, pp.

143–144).

2The text was parsed into 103 items, based on those provided by J.L. Myers

(personal communication, September 20, 1995) and Weeber (1996). The critical items are

the concept inventory, the propositions of which it is an argument, and the markers of

the sentences that contain them (Myers & O’Brien, 1998, p. 147).

3Semantic relations between concepts were found by using Latent Semantic Analysis

(LSA), discussed later in this paper. Two concepts were connected if their semantic

relatedness according to LSA’s cosine score was at least as large as the cosine between

building and church, which is .10. This resulted in 53.3% of concept pairs becoming

connected. In total, the number of connections in the network increased by 60%.

4Kintsch et al. (1999) acknowledge that, in this example, the world-knowledge items

in the enriched textbase do not result from a context-free construction process, but

instead from a ‘goal directed inference process’ (p. 197). This inference process must have

disambiguated the sentence to come up with these particular world-knowledge items,

raising the question what use the subsequent integration process is.

5Note that the Predication model does not make the correct causal inference in the

last example: The vector representing The hunter shot the elk is closer to The hunter is

dead than to The elk is dead.

6In constructing the vector for refreshed(doctor), LSA came up with the

following nearest neighbors: ocassion [sic], hogarthian, gethsemane, chinoiserie,

and carissima. All of these occur only once in the corpus that was used to construct the

semantic space, so their vectors have an extremely short length (0.03). Replacing them
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with the next five, more acceptable, words sleeping, awake, soundly, evening, and

sleep, resulted in a vector for refreshed(doctor) that had a cosine of .42 with

drank(doctor, water).

7Note that, in principle, microworld knowledge could also be implemented directly,

that is, without extracting it from an event corpus. However, we do not know of any

discourse-comprehension model that obtains its world knowledge in such a way.
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Table 1

Five propositions, labeled ‘T’, taken from the text The lawyer discussed the case with the

judge. He said “I shall send the defendant to prison.”, and the two propositions, labeled ‘A’,

that become associated during the construction phase (Kintsch, 1988, p. 169).

label proposition

T1 discuss(lawyer,judge,case)

T2 say(lawyer,T3)

T3 send(lawyer,defendant,prison)

T4 say(judge,T5)

T5 send(judge,defendant,prison)

A1 sentence(judge,defendant)

A2 imply(A1,T5)
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Table 2

Cosines between four test propositions and landmark propositions, according to Kintsch

(2001, Table 3); and cosines between the test proposition’s predicate and the landmarks’

arguments, according to the LSA website at lsa.colorado.edu.

proposition (pr) landmarks (lm) cos(pr, lm) cos(Ppr, Alm)

washed(student,table)
clean(student) .62 .02

clean(table) .83 .25

dropped(student,glass)
broken(student) .87 .10

broken(glass) .91 .23

drank(doctor,water)
thirsty(doctor) .83 .05

thirsty(water) .78 .26

shot(hunter,elk)
dead(hunter) .73 .41

dead(elk) .70 .24
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Table 3

Cosines between five landmark propositions and test propositions, according to Kintsch

(2001, p. 192); and cosines between the predicates of the test propositions and the landmark,

according to the LSA website at lsa.colorado.edu.

test propositions (pr) landmark (lm) cos(pr, lm) cos(Ppr, Plm)

took(sarah,aspirin)
went(pain,away)

.89 .74

found(sarah,aspirin) .47 .39

exploded(harry,paper bag)
jumped(he, in alarm)

.32 .36

inflated(harry,paper bag) .28 .07

shot(hiker,deer)
died(deer)

.74 .34

aimed(hiker, at deer) .56 .18

scrubbed(ted,pot)
shone(pot,brightly)

.45 .25

found(ted,pot) .41 .19

lost(camper,knife)
sad(camper)

.48 .37

dropped(camper,knife) .37 .27
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Table 4

Basic propositions and their intended meanings.

label meaning

sun The sun shines.

rain It rains.

B out Bob is outside.

J out Jilly is outside.

soccer Bob and Jilly play soccer.

hide Bob and Jilly play hide-and-seek.

B comp Bob plays a computer game.

J comp Jilly plays a computer game.

B dog Bob plays with the dog.

J dog Jilly plays with the dog.

B tired Bob is tired.

J tired Jilly is tired.

B wins Bob wins.

J wins Jilly wins.
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Table 5

A sequence of situations (‘story’) processed by the DSS model, and a corresponding story

text.

t Microworld situation Possible text

1 B out ∧ J out Bob and Jilly are outside

2 soccer ∨ hide ∨ (B comp ∧ J comp) ∨ (B dog ∨ J dog) They are playing together

3 B wins ∨ J wins One of them wins

4 ¬B tired ∧ ¬J tired They are not tired
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Figure Captions

Figure 1. Proportion of variance in resonance values explained by recency or connectivity,

as a function of decay parameter β, after processing the reinstating sentence of the

captain text.

Figure 2. Enriched textbase network corresponding to the propositions in Table 1,

including the connection weights (Kintsch, 1988, pp.169–170). Weights between text

propositions depend on their distance in the text. The connections to, and between,

associated propositions are assumed to have a weight of .5. Propositions corresponding to

different interpretations of the pronoun are maximally negatively connected (indicated by

dashed lines), since they exclude each other.

Figure 3. Part of the enriched textbase network of The townspeople were amazed to find

that all the buildings had collapsed except the mint, including connection weights.

Rectangles are items originating from the text, ovals are the associated world-knowledge

items. Dashed lines indicate negative connections (Kintsch, 1988, pp.172–173).

Figure 4. Result of processing the story of Table 5 by the DSS model. Plotted is the

change in belief values for four games at story time step t = 2, as a function of the model’s

processing time. Integration of the first two situations begins at processing time 0. At

time 5.27, the third situation is added.
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