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Highlights: 

 New methodology (TMA) aims to enhance the cost function of the process using transient 
data. 

 eMPC+TMA is applied in simulation and in a real-time pilot plant.  

 The methodology proposed increased the profit of both case studies significantly. 
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Abstract 

This paper presents a method to estimate process dynamic gradients along the transient that combined with 

the idea of Modifier Adaptation (MA) improves the economic cost fuction of the examples presented. The 

gradient estimation method, called TMA, aims to reduce the large convergence time required to traditional 

MA in processes of slow dynamics. TMA is used with an economic predictive control with MA 

(eMPC+TMA) and was applied in two case studies: a simulation of the Williams-Otto reactor and a hybrid 

laboratory plant based on the Van de Vusse reactor. The results show that eMPC+TMA could reach the plant 

real steady-state optimum despite process-model mismatch, due to the inclusion of the effect of process 

dynamics in the TMA algorithm. Despite the estimation errors, the proposed methodology improved the 

profit of the experimental case study, with respect to the use of an eMPC with no modifiers, by about 20% 

for the unconstrained case, and by 130% in the constrained case. 

Keywords: Real-time Optimization, Modifier Adaptation, Uncertainty, Transient Measurements, MPC, 

Hybrid Plant. 

1 Introduction  
 

Real-Time Optimization (RTO) is a largely used technique to increase the industry competitiveness, 

fulfilling quality, environmental, and security demands. RTO is formulated as an optimization problem that 

uses explicit process models to calculate the value of the decision variables with economic objectives. These 

values are used as setpoints for low-level controllers, commonly Model Predictive Controllers (MPC). The 

RTO problem generally consists in optimizing an economic cost function ϕ with respect to the decision 
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variables or inputs   (with lower and upper bounds,    and   , respectively) and constraints  , using a 

steady-state model as in equation (1). 

   
       

  ( ) 

        ( )    
(1) 

In the case of parametric and/or structural model-process mismatch, there is no guarantee that 

equation (1) will find the correct value of the process optimum. To overcome this issue, the modifier 

adaptation methodology (MA) proposes the modification of equation (1) to add first and zeroth-order 

corrections to the cost function and constraints (called modifiers) so that the optimum of the process and the 

model are identical, resulting in problem (2) (Marchetti et al., 2009).  
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where     is the modified cost function and     
  are the values of the decision variables applied into the 

process in the current steady-state. In equation (2),  ,  , and   are the modifiers computed as in (3), where 

the subscript   stands for quantities calculated with information from the plant. 
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The RTO+MA problem (2) is a static optimization problem that uses a different model than MPC. 

To avoid compatibility problems and to have benefits from considering dynamics, it is logical to think of 

integrating these two layers. For example, the economic aim of the RTO+MA could be used as an objective 

function of an economic MPC (eMPC). This integration could permit the MA modifiers update at the same 

frequency of the controller in order to react quicker to the disturbances that could change the economic 

objective. So another point to have in mind refers to how the process gradients are estimated. In traditional 

MA, process gradients in (3) are estimated using steady-state measurements, requiring quite a few steady 

states for problem (2) to reach the optimum. Therefore, when dealing with slow dynamics processes, as often 

happens in practice, the time required for computing corrective actions with RTO+MA can be so large that 
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when the the algorithm converges, the process may have changed and the MA method becomes impractical. 

Hence, an estimation of process gradients using transient measurements can be a good alternative to decrease 

the convergence time.  

Recent works have presented different formulations of the RTO+MA+MPC problem. Vaccari and 

Pannocchia (2016) designed an eMPC algorithm with MA where the target optimization problem has the 

correction term to enforce the necessary condition of optimality (NCO) of the problem. In this work, the 

gradients were considered known. After that, Pannocchia (2018) and Vaccari and Pannocchia (2018) 

estimated the plant gradients adding an identification stage in which an input-output plant model is estimated, 

from which they compute the process gradients. To guarantee the excitation needed, a random signal was 

included during a period of time, increasing the convergence time of the algorithm. Then, Hernández and 

Engell (2019) presented another formulation to an economic control based on MA where the corrections are 

made in the nominal dynamic plant model instead of the objective function. They identified linear dynamic 

models to approximate the true plant map and then calculate the plant gradients. As the estimated linearized 

model is only valid in the neighborhood of the current state, the sequence of optimal control moves is limited 

to this region.  Faulwasser and Pannocchia (2019) used the output modifier adaptation and the eMPC from 

previous work without the terminal constraint. The authors emphasized the importance of estimating correct 

plant gradients. In this work, the gradients were considered known. Recently, Vaccari et al. (2020) presented 

a technique for direct estimation of the modifiers using steady-state perturbations and a Broyden update 

algorithm. After that, Oliveira-Silva et al. (2021) presented a dynamic optimizer with MA (DOMA) and an 

algorithm to estimate directly the modifiers, avoiding the estimation of the process gradients, using transient 

information, the Dynamic Modifier Estimation (DME). DME uses an optimization algorithm executed on-

line to make the estimated modifiers converge to the ones in steady state required by MA. More recently, 

Vaccari et al. (2021) presented a extension of Vaccari et al. (2020) to compare two techniques to estimate 

either plant gradients or modifiers using steady-state measurements via Broyden’s update and linear 

regression. The eMPC schemes were tested in simulation in two benchmark examples, stressing the fact that 

the use of transient measurements to estimate the process gradients can be an interesting approach to speed 

up convergence. 

As can be seen in the papers mentioned, investigating how to estimate correctly plant 

gradients/modifiers to be used in a framework for RTO+MA+MPC is a continuing concern. Along this line, 

the major objective of this paper is to contribute to that research by proposing a new method to estimate 

dynamic process gradients using transient measurements that can be executed with the same sampling time of 

the MPC, aiming to reduce the convergence time of the method in processes with slow dynamics. To do so, 

in this new approach, intermediate gradients are estimated using the available transient measurements.  
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 An antecedent of this method appears in (Navia et al., 2017; Rodríguez-Blanco et al., 2017), but it 

was formulated for an RTO context and does not take into account dynamic effects, so only the dependence 

of past decision variables was considered. Because of that, optimization and control were applied at different 

time scales.   

In this paper, that approach was reformulated from a dynamic perpective and an eMPC+MA 

environment, and two applications, one in simulation and other in a pilot plant working in real-time were 

used to show its performance. We will denote the new gradient estimation method as TMA (Transient 

Modifier Adaptation), which will give rise to eMPC+TMA when using it in the eMPC+MA scheme. 

 The paper is organized as follows. The structure of the eMPC with Modifier Adaptation used in the 

paper is presented in Section 2. Then, Section 3 describes the algorithm to estimate gradients with transient 

data, as well as its fundamentals and implementation. To evaluate its performance, the eMPC+TMA is 

applied to two case studies: first in Section 4 to a simulated benchmark example of the Williams-Otto reactor 

and then in Section 5 in real-time to a laboratory plant based on the Van de Vusse reactor. Finally, some 

conclusions are presented in the last section. 

2 eMPC+MA formulation 
 

Some eMPC formulations are based on a two-step approach: first solve an economic problem in 

steady state and then use the solution as setpoints for the MPC. In our formulation instead, we use a single-

step approach in which the economic target at the end of the prediction horizon is driving directly the 

dynamic operation of the controller. The eMPC+MA is formulated with a cost function that mixes the 

optimizer and the controller as in problem (4). That objective function is composed of three terms, denoted as 

A, B, and C. (A) corresponds to the economic objective function evaluated at the end of the prediction 

horizon. (B) represents an MA-type first-order correction of the objective function to reduce the difference of 

the gradient of the economic objective function between the process and the model, where    is defined as in 

(3). (C) is a regularization term to smoothen the trajectories of the decision variables proposed by the 

dynamic optimization as it is usual in MPC. The modified constraints of the optimization problem are    , 

and the dynamic model implemented in the eMPC is  .  ̂  and    represent estimates of the current process 

states and disturbances respectively, while   
  and    are MA-type first and zeroth-order modifiers of the 

model-based inequality constraints respectively, which are defined as in (3). Besides,    is the current 

sampling time,       refers to the end of the prediction horizon of the controller,       and    are the 

numbers of sampling times of the controller used for the prediction and control horizon respectively, while  ̅ 

is the value of the decision variables at      . For further information on this formulation please refer to 

Oliveira-Silva et al. (2021). 
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The eMPC+MA controller is implemented in an iterative way using a receding horizon strategy, which 

implies that problem (4) must be solved at every sampling time of the controller. Before solving (4) it is 

necessary to estimate the current states, the disturbances, and the first and zeroth-order modifiers. The states 

and the disturbances can be calculated using a moving horizon estimator (MHE) (Rawlings et al., 2019), 

while to calculate the value of the modifiers it is necessary to estimate first the process derivatives. These 

estimations must be done with the available data, measured in previous sampling times. Figure 1 summarizes 

the implementation of the eMPC+MA algorithm, where       represents the vector of dependent variables 

measured at past instants k-i for       , being    the number of previous instants needed for the 

estimation. The modifiers estimated from equation (3) can be filtered to improve the convergence of the 

algorithm as in traditional MA (Marchetti et al., 2009).  

 

Figure 1: eMPC+MA architecture. 
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MHE is a dynamic optimization problem to find the best state trajectory to minimize the errors between 

model and measurements caused by unknown disturbances that affect the process. In this paper, the MHE has 

been chosen because its optimization problem is similar to a MPC problem, besides the fact that it allows the 

estimation of process disturbances and, if necessary, it can include constraints. The equations of the MHE 

problem used are presented in Appendix A. 

 

3 Modifier Adaptation using transient measurements for the estimation of process 

gradients (TMA) 
 

When proposing a method for estimating on-line process derivatives, the overall performance of the 

algorithms must be taken into account. From the point of view of the precision of the algorithm, an accurate 

estimation of static process gradients, which implies collecting information of the process in these conditions, 

allows a precise detection of the real optimum of the process. However, the time spent in the estimation is an 

important issue, as this affects the time operating in sub-optimal conditions. It can even make the 

implementation of MA impractical for processes with large settling times, if process gradients are estimated 

with steady-state data. Then, the use of transient measurements seems to be an interesting alternative to 

reduce the time needed to reach the convergence for all the RTO+MA+MPC approaches already mentioned 

in the introduction of this work. 

For generalization purposes, let us define the variable     as the set of process variables for which 

we need to estimate the derivatives i.e.,   
 
 
 [      

 
 
 ]. The dynamical behaviour of a system from a 

certain time instant can be approximated as a contribution of  the free dynamic evolution of the process and 

the effect of recent input moves from steady state. The approximation is correct for linear systems and may 

contain a certain error for nonlinear ones. 

 

3.1 On-line predictions of     

 

We are interested in developing an expression for the value of    at time   using plant information 

up to time    .  The contribution of what can be called the free dynamic evolution of a variable of a 

process can be computed from data using the values of the variable    available at time     and previous 

time instants, e.g. using a polynomial approximation that goes through the previous     values of     as in 

Figure 2. This polynomial can then be used to extrapolate the values of the variable at time  . For 

                  



 

8 

 

extrapolation, values of the time derivatives of       are required, and we can perform first, second or 

higher-order extrapolations with these derivatives. 

 

Figure 2: Polynomial approximation of a function. 

 

In the context of numerical methods to solve time-dependent systems of differential equations 

(ODE), Backward Differentiation Formulas give approximations to a derivative of a dependent variable  ( ) 

at a time   , in terms of the value of    and earlier values (Bank et al., 1993). In addition, Nordsieck (1962) 

derived a procedure based on a polynomial expression of     order to estimate the time derivatives for 

numerical integration methods of ODE systems. Combining these two approaches, one can implement an 

estimator for the time derivative of process variables using, for instance, a third-degree Nordsieck vector 

using past data, as presented in equation (5). 
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For example, a first-order estimation of the free evolution of     could be computed using (5) as in 

Equation (6). 
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Notice that equation (5) also calculates higher-order terms with respect to time that can be used in 

higher-order extrapolations. 

Obviously, equation (6) reflects the influence of almost all past control actions on the evolution of 

the system except the effect of the recent control actions       performed at time     that also impacts on 

the value of    . Notice that, if there is a delay  , this comment extends to      . So, in order to predict 

correctly the value of    , we have to consider the additional effects of the changes of these control variables 

on    . The corresponding changes on    ,             , have to be estimated as if the plant were at steady 

state at the moment when the changes in       took place, to make them independent of the evolution due to 

its past history as reflected in (6). Approximations of different orders for this component             can be 

obtained by means of the expansion (7), where it is clear that the             depends only on the most recent 

actions and not on past history: 
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Here       refers to                         and 
   

     
|
   

stands for the partial derivative of    with 

respect to the decision variables applied at     , estimated at time instant      starting from steady state. 

Joining together (6) and (7), ―free response‖ and ―forced response‖, we can write an expression for 

the prediction of     based on plant data such as the equation (8):  
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(8) 

where      represents the current change in the process variables with respect to the ones measured in the 

previous sampling time.    is a noise term that reflects the different errors that result from the polynomial 

approximations and for adding (6) and (7) as the system is normally nonlinear. 

The interest of (8) resides in the fact that we have process data and the (unknown) process gradients 

related to the ones necessary for MA in the same expression. However, it is important to remark that the 

derivatives estimated from equation (8) are not the steady-state process gradients, but dynamic ones, that 

change at every time step. The derivatives in (8) describe the effect of a change in   on    from steady state 

at a certain time instant during the transient. 
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The problem now is to estimate the unknown process gradients. The terms of equation (8) can be 

truncated including terms up to a certain order, as in equation (9), where we considered, for instance, that the 

delay is one sampling period, using a second-order approximation with respect to the decision variables and a 

first-order one w.r.t. time.  
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After that, one can rearrange the terms of equation (8), defining a vector      with known variables 

(measured or estimated), and the vector  ̂    with the coefficients to be estimated, as equation (10) shows.  

      ̂       
     

 ̂    [
   

     
|
   

    

     
 |
   

 ̂] 

    
  [     

 
 

 
          

 
   

  
|

̂

   
     ] 

(10) 

 

Here, vector  ̂    contains the unknown values to be estimated, where the gradients of the process variables 

with respect to the decision variables appear in the first positions of the vector. Vector     
  contains values 

of past moves known at time   or that can be computed with information up to time   as the time derivatives. 

To consider the estimation error of the time derivatives, an additional coefficient  ̂ has been defined. As 

equation (10) has the form of a typical model used in parameter identification problems, current data of the 

measured      and     
  can be used to estimate the process derivatives by solving a recursive identification 

problem.  

During the transient, the estimated gradients are not the required gradients for MA, so that, over this 

time, the controller will only implement partial corrections. These partial corrections made during the 

transient will improve the overall performance of the real process in comparison with a standard RTO. 

 

 

 

 

                  



 

11 

 

3.2 Identification algorithm 

 

 

As we mentioned before, equation (10) has the form of a typical linear model used in parameter 

identification problems, so that we can use a recursive identification algorithm to estimate the unknown 

vector   containing the process derivatives.  

Notice that   is a time-varying vector, as it contains the dynamic gradients, so that the recursive 

identification should take into account this circumstance. Also, notice that only the identified components of 

  corresponding to the first-order gradients      ⁄   are required for the MA corrections. As the iterations 

run, if the identification algorithm performs well, and the process converges to a steady state, the identified 

gradients will be closer and closer to the static ones required by the MA corrections so that the system should 

be able to converge to the real process optimum.  

Of course, the success of this scheme is linked to the ability of the identification algorithm to 

converge to the time-varying parameters, which depends for each particular application on both the 

identification method chosen and the excitation of the control signals. 

In this work, the normalized least mean square algorithm (NLMS) has been used as identification 

algorithm. NLMS is formulated in the parameter space, using as target to minimize directly the module of the 

distance,  , from the current estimate of   to the real value of the parameters    as in equation (11). The 

NLMS algorithm has been chosen because it is easy to implement, and it is computationally less expensive 

than other recursive methods (Isermann and Münchhof, 2011). Furthermore, the gain of the estimator is 

different from zero, so it can be applied to time-varying problems (Goodwin and Sin, 1984). In equation (12), 

  is a small positive constant to prevent the numerical difficulties associated with a denominator close to 

zero, and   is a gain constant that must be between 0 and 2 in order to decrease the difference between the 

current estimate of   and the real one (Richalet, 1991). 

  ‖    ‖ (11) 

 ̂   ̂     
[         

  ̂   ]

  ‖  
 ‖ 

         (12) 

NLMS is globally exponentially convergent to the real   if some conditions are fulfilled (Goodwin 

and Sin, 1984).  
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After estimating the process gradients, equation (3) is applied to finally calculate the modifiers. 

Figure 3 describes the two-step identification procedure proposed (TMA), coupled with the eMPC+MA 

problem. In Figure 3 and hereafter, the hat over the variables stands for estimated quantities.  

Figure 3: eMPC+TMA architecture. 

 

4 Williams-Otto case study 
 

As the first case study, the Williams-Otto reactor benchmark example has been used to evaluate the 

performance of the proposed eMPC+TMA approach (Williams and Otto, 1960). The process consists of a 

continuous stirred tank reactor (CSTR) where the reactants A and B are combined to generate four species C, 

E, G, P in three different reactions. 

 Figure 4 represents the schematic of the simulated reactor operating at temperature  . In Figure 4, 

   and    represent the volumetric flow of the influents containing pure A and B at molar concentrations 

given by     and     respectively;    represents the volumetric flow of the effluent of the reactor with molar 

concentrations of the components denoted by      *           +. The system has two degrees of 

freedom (   and  ) that can be manipulated by a supervisory layer, while    can be considered as a measured 

disturbance. As the outlet of the reactor is located at the top of the vessel, the total volume of the reaction 

(  ) can be considered constant. In addition, the mixer allows assuming that the system behaves as an ideal 
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CSTR. It is also assumed that the measurements of the molar concentrations of C and B in the effluent are 

unavailable, while the rest of the variables are measured.  

Figure 4: Schematic of the Williams-Otto reactor. 

The process-modeling mismatch has been emulated using a simplified dynamic model to solve the 

model-based optimization in the controller. The simplified model considers only two reactions and neglects 

the existence of component C, which implies a structural mismatch. In addition, parametric uncertainty has 

been incorporated using different values for the model parameters and real process model parameters. The 

model that emulates the real process and the simplified one are based on mass balances for each component 

and the elemental kinetics with Arrhenius temperature dependence. More details of both models can be found 

in Appendix B.  

To evaluate the performance of the proposed algorithm, two problems have been considered. The 

first problem is presented in equation (13), and it consists of optimizing an economic objective function with 

no inequality constraints in the dependent variables, which implies that only the modifiers of the objective 

function are used. The second problem, defined as equation (14), includes constraints on the molar 

concentration of A and G in the effluent. The upper bound for    and    have been chosen such that these 

constraints are active in the optimum of the process. This implies that the modifiers of these constraints are 

needed for the convergence of the algorithm. 
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4.1 Results 

 

In both problems, the initial states and the disturbances in each iteration k of the controller were 

provided by the MHE module. To evaluate the effect of the proposed eMPC+TMA algorithm, each problem 

was solved with three strategies: (a) estimating the process gradients using the TMA, (b) estimating the 

process gradients neglecting the time derivative in equation (8) that it is equivalent to the gradient estimation 

strategy proposed by  Rodríguez-Blanco et al., (2017), and (c) solving the eMPC without modifiers 
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(equivalent to setting the value of the modifiers to zero). In addition, another experiment for problem (13) 

was conducted; including an additive Gaussian noise in the measurements of the molar concentrations of the 

effluent. This experiment was only solved with strategy (a), as the objective was to evaluate the effect of 

measurement noise in the behavior of the TMA.  

The simulation of the reactor and the dynamic optimization problem in the MHE and the economic 

controller have been formulated in a continuous-time domain in MATLAB. The controller was implemented 

using the nlmpc object. Both the MHE and the controller were solved using the sequential quadratic 

algorithm, available in the fmincon NLP solver. On average, the whole problem (MHE + controller) took 6 

seconds to be solved in each sampling time of the supervisory layer, in a PC under Windows10, Intel Core i5 

processor running at 3.2GHz and 16GB of memory.  

For problems (13) and (14), the supervisory layer was executed every 2 minutes. The control and 

prediction horizons were chosen as      and         , respectively. The MA filter was set as         

and the move suppression parameter for both decision variables was          . The NLMS parameters 

were fixed to       and       . The first 8 minutes were used to collect the data needed for the 

identification algorithm. The controller started at minute 10. 

4.1.1 Unconstrained Problem 

 

Figure 5 shows the trajectories of the objective function and the decision variables using the three 

solution strategies tested in problem (13). It can be seen that each algorithm reaches a different steady state, 

depending on the method to estimate the value of the modifiers. 
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Figure 5: Evolution of cost function and manipulated variables for problem (13). (–) Plant optimum, (--o--) 

eMPC+TMA, (-- --)  eMPC+MA without time derivatives, (-- --)  eMPC. 

 

For the case of the eMPC, as no correction is implemented in the objective function, the controller 

drives the process into the optimum of the model (                and         ), which is identical to 

the expected results of RTO without the modifiers to correct the structural uncertainty. These decision 

variables applied to the simplified stationary model without MHE corrections (the same dynamic model 

where the derivatives are set to zero) would result in a profit of ~11259 €. However, as can be seen in Figure 

5, these values applied to the real process achieve a much lower profit (~8686€). Meanwhile, for the case of 

the eMPC+TMA algorithm, the controller detects the real optimum of the process and drives the system to a 

profit of ~11593 €, a value far greater than the profit obtained without MA. Also, notice that in the 

eMPC+TMA case the closed-loop system stabilizes around 50 min, which is, approximately, twice the time 

of the reactor open-loop response time (30 min), and similar to the stabilization time of the eMPC. As the 

system converges on the expected value, it can be assumed that the TMA allows a correct calculation of the 

process gradients. This implies that the first-order correction of the objective function agrees in finding the 
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stationary condition of the process. To evaluate if this is a consequence of the inclusion of the time derivative 

in the identification step, this result can be compared with the trajectory given by the eMPC+MA where the 

supervisory layer fails to detect the optimum of the process despite the inclusion of    in the objective 

function, since the gradient estimation step does not consider the effect of time. It can be noticed that before 

     min the decision variables proposed by the controller are closer to the optimum of the process, but 

after this time the supervisory layer suggests a different steady state condition that is kept until the end of the 

experiment. The failure in detecting the optimum for the eMPC+MA can be explained considering that in the 

interval from 20 to 25 min the changes in the decision variables become smaller than the previous ones; 

however, the cost function is affected by the process dynamics. This implies that the effect of time in the 

objective function emerges as relatively more important than the effect of the decision variables, a condition 

that produces a miscalculation in the gradient of the process due to not including the time derivative in this 

case.  

Figure 6 presents the evolution of the eMPC+TMA with measurement noise in the molar 

concentrations. Note that the algorithm is capable of finding the optimum of the process, stabilizing the 

system in about 60 minutes, which is 20% larger than the noise-free example. This difference can be 

attributed to the oscillations that the temperature presents before minute 25, and because of the additional 

time that the controller needs to bring the value of    closer to the optimum. This is a consequence of the 

effect that noise has in the MHE and in the gradient estimation step, probably related to the linear model 

assumed in time dependence. The loss of optimality associated with the extra time needed to converge, due to 

the additive noise of a standard deviation of 5% with respect to the expected span of the measurement, seems 

reasonable, especially considering that the process optimum was detected despite the measurement noise.  
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Figure 6: Evolution of cost function and manipulated variables for problem (13) with measurement 

noise. (–) Plant optimum, (--o--) eMPC+TMA. 

 

4.1.2 Constrained Problem 

 

The evolution of the cost function, molar fractions of A and G, and decision variables for problem 

(14) are presented in Figure 7 for the three strategies tested. Similar behavior to the one observed for the 

unconstrained case can be seen, i.e., the value of the modifiers determines the steady state reached. As in this 

case the NCO of the process implies that the inequality constraints on    and    are active, the accuracy of 

 ,  , and   is relevant to detect the optimum of the process. The eMPC converges to a point that is the model 

optimum at steady state and is not the process optimum, as the eMPC problem does not consider first and 

zeroth-order corrections in the model. The effect of using these corrections can be seen in the trajectory of 

the eMPC+TMA. Notice that this controller is capable of detecting the optimum of the process and converges 

to this value, which implies an increase in the profit of the process of almost 20% as a result of the correct 

estimation of the modifiers using the TMA strategy. Also, notice that both constraints are satisfied after a 

while, even though    starts at an unfeasible value. The evolution of the process using eMPC+MA shows 

that the algorithm cannot converge to the process optimum, although the modifiers have been included. As 
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discussed for the unconstrained case, this difference can be attributed to the effect of the miscalculation of the 

modifiers because the value of the time derivatives is neglected in this process gradient estimation procedure. 

This miscalculation becomes more critical when the system tends to stabilize, as can be observed in the 

interval from      to      min. In this interval, the decision variables remain practically constant while 

the cost function and the constrained variables are still changing in time because of the inertia of the process. 

These findings support the need to include the dynamics in the process gradient estimation step to calculate 

the modifiers used in the eMPC+MA formulation. An additional consequence of not including the dynamics 

in the calculation of the modifiers is the increase in the settling time of the controller because of the changes 

in the value of the proposed steady state.  

  

 
 

Figure 7: Evolution of cost function and manipulated variables for problem (14). (–) Plant optimum, (--o--) 

eMPC+TMA, (-- --) eMPC+MA without time derivatives, (-- --) eMPC. 
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5 Hybrid laboratory plant case study 
 

The second case study for evaluating the performance of the TMA methodology is a system 

implemented in a hybrid laboratory plant (Figure 8) that emulates the behavior of a CSTR with the Van de 

Vusse reactions (Van de Vusse, 1964). Hybrid plants are real processes with some simulated components. 

They have been used in metallurgical processes as an alternative to validate the performance of supervisory 

algorithms in more realistic situations than the ones given by computational experiments (Bergh and 

Yianatos, 2014; Navia et al., 2019, 2016). The concept of hybrid plants is based on the fact that the essential 

phenomena occurring in a real process can be divided into two aspects: fluid dynamics and physicochemical 

mechanisms. Fluid dynamics can be emulated using an experimental set-up and a fluid with similar 

characteristics to the original one, while physicochemical mechanisms can be emulated using a first-

principles model that uses the experimental measurements to close the degrees of freedom. This 

configuration allows defining two kinds of decision variables: experimental and virtual. Experimental 

decision variables are associated with the variables that can be manipulated in the actual experimental set-up, 

such as flows, pressure, or liquid level. Virtual decision variables can be any variable that affects the output 

of the process, such as the simulated properties of the raw materials. The use of hybrid plants permits 

studying the effect of experimental errors in the behavior of supervisory algorithms, knowing part of the 

modeling mismatch and also facilitates the maintenance of pilot plants in a lab.  

The schematic of the experimental set-up is presented in Figure 8 (Montes et al., 2021). It consists 

of a CSTR exothermic reactor with four temperature sensors (TT-01 to 04) and two flowmeters (FT-01 and 

02). The final control elements (experimental decision variables) are the peristaltic reagent pump (P-101) and 

the coolant valve (V-101). The pump P-102 allows emulating the reactants leaving the reactor by overflow. 

The power of two heating coils located at the bottom of the vessel can be manipulated by a power amplifier 

in J-101. The system uses water as the working fluid and the chemical reactions are simulated using a 

chemical model executed in real time and with process data.  
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Figure 8: Laboratory plant P&ID. 

 

The chemical model, integrated in the process as component UX-100, has been obtained from the 

description of the system. The process consists of the three Van de Vusse reactions, where component B is 

the desired product: 

 
  
→  

  
→  

  
  
→  

 

Assuming that the physical properties of water are constant within the range of the operating 

conditions and the vessel is perfectly agitated, a first-principles model of the reactions based on mass 

balances for each component can be derived. Equations (15) to (18) represent the dynamic mass balances for 

each compound, whereas equations (19) to (21) describe the respective reaction rates assuming elemental 

kinetics and Arrhenius dependence with temperature. Equation (22) computes the heat that is applied to the 

reactor by means of the amplifier J-101 in real-time. 
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where    represents the molar concentration of component   in the effluent,   is the total volumetric flow,     

is the molar concentration of component A in the influent and   is the reaction volume. For the kinetic 

expressions   ,     and    are the reaction rate, exponential constant, and activation energy of reaction   

respectively, while   is the temperature in the reactor. Equation (22) defines the conversion between the heat 

generated by reactions (     is the heat of the reaction  ) to the heat power applied by the electrical 

resistances denoted as  .  

To clarify the relationship between the experimental and the simulated variables, Table 1 

summarizes how the value of each variable is obtained. Note that as   ,     and     are parameters assumed 

to be known so that the model of the process can be simulated.  

 

Table 1: Description of the source of the variables for the hybrid process.  

Variable Source 

     *       + Calculated from the chemical model 

     *     + Calculated from the chemical model 

  Calculated from the chemical model 

  Measured from FT-01 

  Measured from TT-04 

  Defined as the volume of the vessel 

    Defined by the user (fixed value) 

 

The value of the heat of reaction calculated from the chemical model is used as a set-point of J-101, 

which allows emulating the effect of the exothermic reactions in the experimental set-up.   

As internal model of the eMPC+TMA and MHE, a simplified nonlinear dynamic model that 

neglects the existence of reaction 3 and component D has been implemented in the supervisory layer 

(eMPC+TMA and MHE), which defines a structural uncertainty in the available model. The experimental 

system has two decision variables: the flowrate of the reactants (manipulated with P-101), and the flowrate of 

                  



 

23 

 

the coolant (manipulated with V-101). The model is based on mass and energy balances and a description of 

how the heat is transferred from the vessel to the coolant. Equations (23) to (30) summarize the model. 
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where   and    are the temperatures of the reactant and coolant streams respectively. The subindex    and 

    indicates if it is the temperature of the inlet or outlet stream.    and   are the heat capacity and density of 

the coolant.    is the heat transferred,    is the coolant flowrate and    is the volume of the cooling coil.  

Note that equation (30) approximates Newton’s law of cooling, where the overall heat transfer coefficient has 

been defined as a function of the coolant flowrate with parameters    and   . 

The value of the parameters used in this case study is presented in Table 2.  In Table 2 and hereafter, 

―Chemical model‖ refers to the model used to emulate the physicochemical mechanisms in the hybrid plant 

(equations (15) to (22)), while ―eMPC model‖ is used for the model implemented in the supervisory layer 

(equations (23) to (30)).  
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Table 2: Value of the parameters used in the case study.  

Parameter 
Chemical 

Model 

eMPC 

Model 
Parameter 

Chemical 

Model 

eMPC 

Model 

    (   
  )                        (      

  )        - 

    (   
  )                       ( )           

    

(             ) 
          -    ( ) -     

   (        )             (       ) -     

   (        )            
   

(           ) 
-      

   (        )       -     (       )         

    (        )                  -     

    (      
  )                 -     

 

Note that the uncertainty of the model-based optimization can be considered structural because both 

reaction 3 and component D have been disregarded and the model of the heat transfer is a simplification. 

Additionally, there is also parametric uncertainty as shown in Table 2.   

The objective of the supervisory layer is to maximize the economic benefit, which can be defined as 

the income related to selling the desired product B minus the costs of the reactants and coolant, manipulating 

  and   . Analogous to section 4, two dynamic optimization problems have been considered for this case 

study. The first problem consists in the optimization of the benefit with no inequality constraints in the 

dependent variables, implying that only the modifiers of the cost function are needed as presented in equation 

(31). The second problem includes an additional inequality constraint for the reactor temperature. For this 

constrained problem we have used the output MA (MAy) formulation to solve the optimization problem. 

This MAy formulation includes the modifiers in the output variables as presented in equation (32). According 

to Papasavvas et al. (2019), this formulation improves the convergence of the MA-type algorithms. In both 

problems, their formulations follow the structure presented in problem (4), while the value of the prices and 

costs are given in Table 3. 
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s.t. Nonlinear model (23) to (30) plus disturbances from MHE ,    [        ] 
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s.t. Same constraints from problem (31) 
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Table 3: Cost and prices for the case study.  

Parameter Description Value 

   Price of component B              

   Cost of component A             

   Cost of coolant           

5.1 Results 

 

To evaluate the effect of the proposed algorithm, each problem was solved with two strategies: (a) 

estimating the process gradients using the TMA and (b) solving the eMPC without modifiers. For both 

problems, the simulation of the equations of the hybrid process (the chemical model) was developed with 

EcosimPro (EA Int., 2020) and encapsulated as an OPC-DA server generated in the same environment.  

 

5.1.1 Unconstrained Problem 

 

For problem (31), the control and the prediction horizons were defined as      and          

respectively, and the move suppression parameter was fixed to          . The parameters for the NLMS 

algorithm were set to       and       . The dynamic optimization problem was solved using the 

simultaneous approach, discretizing the dynamic model using the orthogonal collocation method. The 

resulting algebraic problem was implemented in Pyomo (Hart et al., 2017, 2011), using IPOPT as an NLP 

solver. The supervisory layer started at time t = 3 min and was executed every 30s, with an average 

computation time of 0.5s in a PC under Windows10, Intel Core i5-4460 processor at 3.2GHz and 8GB of 

RAM.  

Figure 9 shows the evolution of the objective function and the decision variables of two experiments 

performed using the eMPC+TMA (left), and the eMPC with no correction (right) under similar conditions. 

The two lines that appear in each figure of   and    correspond to: the dashed line is the set point (decision 

variable) of a PID governing that variable (i.e., is the decision variable generated by the controller) and the 

continuous line is the current value of the variable. It can be noticed that both algorithms converge on 

different steady states. Table 4 summarizes the 99% confidence intervals for the mean of the profit and the 

decision variables at the end of the experiments for both algorithms.  
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Table 4: 99% confidence intervals of the mean of the convergence point for both algorithms in problem (31). 

Variable eMPC+TMA eMPC 

       (     ) ,         -  ,          -  

  (     ) ,         -  ,          -  

   (     ) ,       -  ,          -  

 

From the point of view of the profit, the inclusion of the modifiers represents a significant 

improvement in the economic results of the process of 19% on average. Table 4 shows that the confidence 

interval of the decision variables obtained with the eMPC is very close to the optimum of the model, which is 

consistent with the results obtained for the case study of section 4. The convergence point of the 

eMPC+TMA supports the hypothesis that the inclusion of the modifiers allows improving the performance of 

the process, correcting the optimum computed with a model with structural modeling mismatch. However, it 

is not possible to evaluate if the steady state reached by the eMPC+TMA is the process optimum because a 

―perfect model‖ is never available when dealing with real processes. Nevertheless, analyzing the results, the 

prices, and the projected consequence of the modeling mismatch some comments can be made. From the 

economic point of view, as the price of B is three orders of magnitude larger than the price of A, and two 

orders of magnitude larger than the price of the coolant, it is expected that the process optimum result 

increases the production of component B as much as possible. So the flow of   is set to its upper bound, 

condition reached for both algorithms (no statistical differences are observed for   in Table 4). As   is fixed 

in the optimum, the remaining degree of freedom (  ) must be selected to maximise the concentration of B. 

Assuming unlimited cooling capacity, this is equivalent to finding the value of    that maximizes    using 

equations (15) to (21) for the process, and equations (23) to (27) for the model, both in steady state. Unlike 

the original problem, the cooling assumption removes the experimental uncertainty and a comparison can be 

made by solving this surrogate steady-state optimization problem with fixed              , and using the 

parameters given in Table 2. The solution shows that the process optimal temperature is 8ºC larger than the 

model optimum. This difference in temperature between process and model implies that the correct process 

optimum should reduce the use of coolant, as is observed in Figure 9 where    is close to its lower bound at 

the end of the experiment.  

From the point of view of the process dynamic behavior, as in both cases the system reaches a 

steady state, the inclusion of the modifiers does not affect the stability of the controller for this case study. 

However, from the evolution of the objective function, it can be noticed that the closed-loop system stabilizes 

                  



 

28 

 

in around 60 minutes for the eMPC+TMA, which is twice the stabilization time of the eMPC. This could be 

explained by comparing the transient behavior of    for both algorithms. Notice that the eMPC detects a 

target value that remains constant during the whole experiment, unlike the eMPC+TMA that changes three 

times the target value of   : (1) for     min the system behaves in a similar way than the eMPC, looking 

for the optimum of the model; (2) from      to      min the controller proposes a decrease in    which 

improves the objective function; and (3) from      min ahead, where the expected optimum of the process 

is identified. The observed changes in the target value of    are similar to the behavior of the decision 

variables from section 4 when the estimation of the process gradients neglects the effect of time (denoted as 

eMPC+MA in Figure 5 and Figure 7). Probably due to the presence of measurement noise in the 

experimental variables, the assumption of linear dependence on time in the TMA is not enough to detect the 

correct value during the transient. However, as the identification algorithm implemented in the TMA 

(NLMS) is recursive, the increase of its accuracy as more data is available produces successive changes in 

the decision variable, improving the objective function as a consequence of including the time dependency, 

which makes the algorithm converge to the expected value.  Regarding the value of  ,  model and process 

coincide, and the eMPC+TMA is continuously driving the process to the right value, independently of the 

supposed estimation error of the experimental gradient. 

An alternative to avoid the undesired behavior observed in    and reduce the convergence time of 

the algorithm can be adding additional dependencies on time in the TMA, using higher-order Taylor 

expansions. This can be an interesting future research direction.  
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Figure 9: Cost function and manipulated variables over time for problem (31). (--) Proposed decision 

variables, (—) Measured decision variables. 
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5.1.2 Constrained Problem 

For this example, an additional constraint in the upper bound of the temperature of the reactor 

        has been introduced to modify the expected optima of the unconstrained case, where its final 

value measured was          . The MAy (output MA) approach has been implemented in the modified 

problem (32), so the first and zeroth-order modifiers have been calculated for    and   , which are the 

dependent variables that explicitly appear in the objective function and the inequality constraint. The first-

order modifiers for    (   and   ) and for    (   and   ) were calculated using their respective process 

gradients estimated by the TMA approach. This implies that in this example    ,     - for the TMA. 

The control and the prediction horizons were defined as      and          respectively. The 

suppression parameters were fixed to          and         . The parameters for the NLMS algorithm 

were set to        and       . The rest of the specifications are the same as for the unconstrained 

case. 

The evolution of the objective function, reactor temperature (constrained variable), and decision 

variables are presented in Figure 10 for the eMPC+TMA (left), and the eMPC (right). 
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Figure 10: Cost function, constrained variable, and manipulated variables over time for problem (32). (--) 

Proposed decision variables, (—) Measured decision variables, (—) Upper bound for   . 

                  



 

32 

 

Figure 10 shows a similar behavior as the previous examples, where both strategies converge to different 

steady states, implying that the value of the modifiers affects the economic target of the controller. The 99% 

confidence intervals for the objective function, reactor temperature, and decision variables obtained with both 

strategies are summarized in Table 5.  

Table 5: 99% confidence intervals of the mean of the convergence point for both algorithms for problem 

(32). 

Variable eMPC+TMA eMPC 

       (     ) ,         -  ,        -  

  (  ) ,         - ,         - 

  (     ) ,         -  ,          -  

   (     ) ,       -  ,        -  

 

Table 5 shows that the profits obtained with both methods are significantly different with a 99% of 

confidence. This difference implies that the use of the eMPC+TMA in this process reports an increase of 

130% on average in the economic benefit of the process compared to the eMPC results. As the upper bound 

of the temperature is smaller than its final value for the unconstrained case, it is expected that the algorithm 

proposes a final condition such that this constraint is active, increasing the flowrate of coolant with respect to 

previous results, keeping the value of   in its upper bound. The confidence intervals of    from Table 4 and 

Table 5 shows that the eMPC+TMA proposes a significant increase of 27% with respect to the unconstrained 

example. However, Table 5 and Figure 10 shows that the algorithm is not capable of detecting the active 

constraint of   , even though its value is close to the upper bound. The ―experimental optimality gap‖ 

observed could be produced by a constant error in the estimation of the first-order modifiers for    as a 

consequence of the experimental noise, which can also explain the decrease in the final value of 13% in   

with respect to its upper bound.  

Concerning the eMPC results, notice that the evolution of   , and the confidence interval at steady 

state show that the modeling mismatch causes an overestimation of    (this also can be noted from the results 

of the eMPC for the unconstrained case). This overestimation is translated into the decrease in 50% in the 

proposed value of   with respect to the unconstrained solution of the eMPC. Finally, as commented before, 

the estimated value of the modifiers   ,    in the eMPC+TMA case might have persistent errors, causing the 

constant gap in the NCO of the modified problem. Because of that, one can conclude that the overestimation 

of    can be reduced by TMA, but it is still preserved.  
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6 Conclusions 
 

The main objective of this work was to present and test a practical methodology that applies the 

concepts of modifier adaptation approach to improve the long-term economic performance of a process. The 

methodology includes changes in the value of the decision variables during the dynamic transitions, updating 

the expected value of the steady-state process optimum, using the available measurements to estimate the 

process derivatives. To do this, we have proposed the use of a single layer economic nonlinear predictive 

controller, modified with first and zeroth-order correctors. The states and disturbances were estimated with a 

moving horizon estimator. The first-order modifiers were calculated using an estimation of the process 

gradient obtained from an approximated model of the dependent variables that explicitly considers the 

dependence on time and the decision variables. To calculate the process derivatives, we have proposed a two-

step identification algorithm named TMA. The TMA uses the available measurements from the process to 

estimate the time derivative using Nordsieck’s vector, followed by the estimation of the process dynamic 

derivatives with respect to the decision variables using a recursive normalized least square algorithm. Even 

though the algorithm does not estimate the gradients in steady state but at intermediate point, the results 

obtained were better than the standard eMPC. Actuallly considering good initial values for the estimation, the 

result could also achieve the true optimum of the plant. The modified dynamic real-time optimization with 

the identification algorithm proposed is called eMPC+TMA.  

The eMPC+TMA has been tested in two case studies with simulation and experimental components, 

solving in both cases optimization problems with and without uncertain inequality constraints. The 

simulation case study has been implemented in the Williams-Otto reactor evaluating the effect of including 

the modifiers, and the effect of including the time dependence in the estimation of the process gradients. In 

addition, the effect of measurement noise in the TMA was evaluated including an additive white noise. The 

experimental case study consists of a hybrid plant that emulates the Van der Vusse reactor, where we have 

evaluated the effect of including the modifiers.    

The results allow us to conclude that the use of modifiers in a dynamic economic optimization 

problem permits improving the economic performance of an uncertain system, detecting the steady-state 

optimum of the process during the dynamic transition provided the process gradients are correctly calculated. 

It can also be concluded that, to have a better estimation of the dynamic process gradients from the transient 

measurements using the proposed approximated model of the dependent variables, it is necessary to include 

not only the decision variables but also the dependence on time. Besides, it is important to guarantee that the 

process has the necessary excitation so the identification method can estimate properly the gradients. 

                  



 

34 

 

Finally, it is important to remark that the inclusion of the modifiers calculated with the TMA has 

increased the profit of the process significantly for both experimental examples, reducing the optimality gap 

related to the process-modeling mismatch.   
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Appendix A. MHE  
 

MHE uses the dynamic optimization problem (A.1) to estimate values for the states   and disturbances  . 

The problem is executed at every sample time  , considering a past horizon   [        ], where    is the 

MHE past horizon. The MHE problem objective function (A.1a) contains three terms. The first one aims to 

minimize the difference between the output computed by the model   using (A.1b-c) and its measurement 

  . The second one penalizes the distance of the current decision variable       and the value estimated at 

the previous sample time       ( ̂    ). Finally, the last one, minimizes the magnitude of the estimated 

disturbances     . The parameters    ,    and    are positive definite matrices, with weighting and 

normalization factors. The MHE problem also includes the inequality constraints (A.1d) to avoid non-

desirable values of the process variables and it bounds the disturbances in the allowed range (A.1f).  
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         (A.1f) 

                             (A.1g) 

              ̂     (A.1h) 

 

The solution of problem (A.1) gives      
  and     

        . To obtain  ̂  the model equations (A.2) 

must be integrated over   [        ] starting from      
 , using the estimated disturbances     

 ,   

      , and applying     . 

 

 ( ̇       )        [        ]   (     )       
  (A.2) 

 

The states calculated at time    from (A.2) are defined as the initial value for the MPC problem as in 

Equation (A.3).  

 

 ̂   (  ) (A.3)  

 

For more detailed information about the implementation of the MHE algorithm please refer to Oliveira-Silva 

et al. (2021). 

Appendix B. Williams-Otto model equations 
 

The full model that emulates the real process and the simplified model used in the supervisory layer 

(eMPC+MHE) of the Williams-Otto reactor in Section 4 are presented in the Table B.1. The parameters used 

in each model are in Table B.2 and the prices and costs used in the economic problem are in Table B.3. For 

more detailed information about the models please refer to Oliveira-Silva et al. (2021). 

 

 

 

 

Table B.1: Equations of the models presented in Section 0. 

 Full Model Simplified Model 

Kinetics 
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Table B.2: Parameters of Williams-Otto reactor models. 

Parameter Full model Simplified Model Unit 
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Table B.3: Cost of the reactants and price of products. 

Reactant or product Value 
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