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Abstract

In this paper, we propose two new estimators of the multivariate rank correlation coefficient Spearman’s footrule which are based 
on two general estimators for Average Orthant Dependence measures. We compare the new proposals with a previous estimator 
existing in the literature and show that the three estimators are asymptotically equivalent, but, in small samples, one of the proposed 
estimators outperforms the others. We also analyse Pitman efficiency of these indices to test for multivariate independence as 
compared to multivariate versions of Kendall’s tau and Spearman’s rho.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).
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1. Introduction

Spearman’s footrule is a measure of association proposed by Spearman [36] for comparing pairs of ranks, that is 
closely related to Spearman’s rho but has been scarcely used in practice. Both coefficients can be written in terms 
of copulas and share some interesting properties; see Nelsen [25] for a detailed description in the bivariate case and 
Genest et al. [14] for a further discussion —see also the recent contributions of Genest and Jaworski [13] and Beliakov 
et al. [3] for bivariate copulas. However, the generalization of these coefficients to measure multivariate dependence 
is not straightforward since, as Durante et al. [9] point out, the pairwise properties do not always carry over to three 
(or more) dimensions. In this setting, and due to the increasing interest in measuring multivariate dependence, several 
multivariate (theoretical and empirical) versions of Spearman’s rho can be found in the literature; see, for instance, 
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Nelsen ([24], [26]), Dolati and Úbeda-Flores [7], Schmid and Schmidt [32], Nelsen and Úbeda-Flores [28], García 
et al. [11], Pérez and Prieto-Alaiz [29], García-Gómez et al. [12] and Liebscher [21], among others. By contrast, 
the literature on multivariate generalizations of Spearman’s footrule is scarce. Úbeda-Flores [38] proposed a copula-
based multivariate version of Spearman’s footrule and Genest et al. [14] surveyed the scattered literature on this 
coefficient. Pérez and Prieto-Alaiz [30] fit the multivariate Spearman’s footrule into the unifying framework of the 
Average Orthant Dependence (AOD) measures proposed by Dolati and Úbeda-Flores [7] and prove new results. More 
recently, Fuchs and McCord [10] provide further results on the best lower bound of multivariate Spearman’s footrule 
and Decancq [6] introduces two indices of diagonal multivariate dependence whose average equals the multivariate 
generalization of Spearman’s footrule in Úbeda-Flores [38].

Interest in Spearman’s footrule is partly motivated by its simplicity of calculation and its robustness, which makes 
it more suitable than Spearman’s rho in contexts where outlying observations are likely to occur, such as those en-
countered in Finance, Insurance, Welfare Economics, Hydrology or Environmental Science, for example. Because of 
its potential use to measure multivariate dependence in these areas and the scant existing literature on its estimation, 
a thorough discussion on the topic is required and this is the goal of this paper. In particular, we focus on the copula-
based multivariate version of Spearman’s footrule proposed by Úbeda-Flores [38] and further develop the problem 
of its estimation, beyond the succinct formula provided in that paper.1 To do so, we exploit that Spearman’s footrule 
belongs to the class of AOD measures and resort to some results for this class in Dolati and Úbeda-Flores [7].

Our contribution is fourfold. First, we propose two new nonparametric estimators which are based on two sample 
versions of the AOD measures proposed by Dolati and Úbeda-Flores [7], and provide new insights on the estimator in 
Úbeda-Flores [38], which was the only one existing in previous literature. We prove that, in the bivariate and trivariate 
case, one of our estimators coincides with that in Úbeda-Flores [38], but this coincidence does not longer hold for 
more than three dimensions. Moreover, we show that, under independence, this new estimator is unbiased regardless 
of the dimensions considered. Second, we demonstrate that the three estimators at hand are asymptotically equivalent, 
and we prove its asymptotic normality under milder conditions than those in Genest et al. [14], using a central limit 
theorem for non-degenerate U -statistics rather than the functional approach used by these authors. Third, we illustrate 
that the three estimators differ on their finite sample properties, through extensive Monte Carlo experiments based 
on some parametric well-known copulas. Our results show that, as expected, both bias and dispersion reduce as the 
sample size increases and the performance of the three estimators is quite similar in large samples. However, in small 
samples, one of the two estimators we propose clearly outperforms the other, especially in terms of bias, and it is 
nearly equivalent to the estimator already proposed in Úbeda-Flores [38]. Finally, we explore the possibility of using 
the estimators of the Spearman’s footrule as tests statistics for multivariate independence and carry out asymptotic 
relative efficiency comparisons with other well-known measures of association, like Spearman’s rho and Kendall’s tau, 
under local copula-based alternatives. Although no general recommendation can be made, our results are promising.

The rest of the paper is organized as follows. Section 2 briefly reviews the copula function and introduces the 
Spearman’s footrule as an AOD measure of multivariate association and summarizes its main properties. Section 3
is devoted to nonparametric estimation of Spearman’s footrule. We introduce two new estimators based on sample 
versions of the AOD measures and discuss their properties as compared to the other estimator previously proposed 
in the literature. Section 4 includes Monte Carlo experiments to compare finite sample performance of the estimators 
discussed in Section 3. In Section 5 the proposed estimators are also investigated in the light of their Pitman asymptotic 
relative efficiency, as compared to Spearman’s rho and Kendall’s tau, when they are used as statistics for testing 
multivariate independence. Finally, Section 6 gathers a summary of our main conclusions.

2. Preliminary concepts

For d ≥ 2, we consider the d-dimensional random vector X = (X1, . . . , Xd) with joint distribution function H , 
univariate marginal distribution functions F1, . . . , Fd , and copula C. Sklar’s Theorem (see Sklar [35]) says that H can 
be represented as

H(x) = C(F1(x1), . . . ,Fd(xd)) for x = (x1, . . . , xd) ∈Rd, (1)

1 Mesfioui and Quessy [23] propose a non-continuous multivariate version of Spearman’s footrule, but do not tackle its estimation, as they 
recognized that this is a difficult problem, even in the continuous case.
2



JID:FSS AID:8489 /FLA [m3SC+; v1.361] P.3 (1-32)

A. Pérez, M. Prieto-Alaiz, F. Chamizo et al. Fuzzy Sets and Systems ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
where the copula function C : [0, 1]d → [0, 1] is a d-dimensional joint distribution function whose margins are stan-
dard uniform U(0, 1). Throughout this paper, we will assume that the margins F1, . . . , Fd are all continuous and so 
the copula C in (1) is unique. For a complete survey on copulas, we refer to the monographs [8,27].

Let us define the probability integral transformations, Uj = Fj (Xj ), with j = 1, . . . , d , which are uniform U(0, 1)

and whose joint distribution function is the copula C, i.e., let U = (U1, . . . , Ud) ∼ C. Two examples of copulas are 
the independent copula � —or product copula— and the comonotonic copula M . The former denotes the copula of 
d independent random variables and is defined as �(u) =∏d

j=1 uj , for any real vector u = (u1, . . . , ud) ∈ [0, 1]d . 
The copula M represents maximal dependence, i.e., the case when each of the random variables X1, . . . , Xd is almost 
surely a strictly increasing function of any of the others. This copula and its associated survival function, M, are 
defined, for any real vector u = (u1, . . . , ud) ∈ [0, 1]d , as

M(u) = min
1≤j≤d

{uj }, (2)

M(u) = 1 − max
1≤j≤d

{uj }. (3)

Let Q′
d(C, M) be the probability of concordance between C and M defined as (see Nelsen [26])

Q′
d(C,M) =

∫
[0,1]d

(
M(u) + M(u)

)
dC(u).

For any d-copula C, the multivariate Spearman’s footrule ϕd(C) —or simply ϕd , if there is no confusion—, proposed 
by Úbeda-Flores [38] can be defined as

ϕd = Q′
d(C,M) − ad

bd − ad

, (4)

where

ad = Q′
d(�,M) =

∫
[0,1]d

(
M(u) + M(u)

)
d�(u) = 2

d + 1

and

bd = Q′
d(M,M) =

∫ 1

0

(
M(t, . . . , t) + M(t, . . . , t)

)
dt = 1;

that is,

ϕd = 1 − (d + 1)(1 − Q′
d(C,M))

(d − 1)
. (5)

Notice that ϕd can be alternatively written as

ϕd = 1 − d + 1

d − 1

∫
[0,1]d

(
max

1≤j≤d
{uj } − min

1≤j≤d
{uj }

)
dC(u). (6)

The coefficient ϕd in (4) is a particular member of the general class of AOD measures of multivariate association in-
troduced by Dolati and Úbeda-Flores [7]. In particular, ϕd can be regarded as a normalized probability of concordance 
between the distribution of X, as represented by their copula C, and the copula M , which represents maximal depen-
dence. When C = � (the case of independent variables), we have ϕd = 0 and when C = M (maximal dependence), 
we have ϕd = 1, and the inequality ϕd ≥ −1/d always holds. In the bivariate case (d = 2), if the underlying copula 
is the lower Fréchet-Hoeffding W , Spearman’s footrule attains its best-possible lower bound, that is, ϕ2 = −1/2. For 
higher dimensions (d ≥ 3), Fuchs and McCord [10] provides characterizations of the copulas attaining the best lower 
bound −1/d of multivariate Spearman’s footrule. Moreover, in the bivariate case (d = 2), the coefficient ϕd in (5)
becomes the bivariate footrule,

ϕ2 = 6
∫

2

M(u1, u2) dC(u1, u2) − 2,
[0,1]

3
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whereas in the trivariate case (d = 3), the coefficient ϕ3 can be written as

ϕ3 = ϕ
1,2
2 + ϕ

1,3
2 + ϕ

2,3
2

3
, (7)

where ϕi,j

2 denotes the corresponding Spearman’s footrule for the bivariate random variable (Xi, Xj), with 1 ≤ i <

j ≤ 3.
The following examples illustrate the values of ϕd for some d-copulas.

Example 1. For d ≥ 2, let CFGM
θ be the d-copula given by

CFGM
θ (u) =

( d∏
i=1

ui

)[
1 + θ

d∏
i=1

(1 − ui)

]
, u ∈ [0,1]d , (8)

with θ in [0, 1]. CFGM
θ belongs to the Farlie-Gumbel-Morgenstern family of d-copulas (see Durante and Sempi [8] and 

Nelsen [27] for more details). We note that all the margins of any dimension j ≥ 2 of (8) are �, in the corresponding 
dimension j . Then we have

ϕd

(
CFGM

θ

)
= θ

(
1 + (−1)d

)
(d + 1)(d!)2

(d − 1)(2d + 1)! ; (9)

in particular,

ϕ2

(
CFGM

θ

)
= θ

5
, ϕ3

(
CFGM

θ

)
= 0, ϕ4

(
CFGM

θ

)
= θ

189
, . . .

Example 2. For d ≥ 2, let CCA
θ be a multivariate generalization of the (parametric) Cuadras-Augé family of copulas 

(see Cuadras and Augé [5]) given by

CCA
θ (u) = (�(u))1−θ (M(u))θ

for all u ∈ [0, 1]d and any θ ∈ [0, 1], for which CCA
0 = � and CCA

1 = M . For this d-copula, all the margins of any 
dimension j ≥ 2 belong again to the corresponding Cuadras-Augé family of j -copulas. Thus, after some algebra, we 
obtain

ϕd

(
CCA

θ

)
= 1 + d + 1

d − 1

(
1

d + 1 − (d − 1)θ
− 1

1 + θ
+ d!

(1 − θ)
∏d

i=0(β + i)

)
,

where β = (1 + θ)/(1 − θ), for θ ∈ [0, 1[. Note that, for instance,

ϕ2

(
CCA

θ

)
= ϕ3

(
CCA

θ

)
= 2θ

3 − θ
, ϕ4

(
CCA

θ

)
= − θ(21θ2 − 70θ + 61)

9θ3 − 60θ2 + 129θ − 90
, . . .

Example 3. For this example, we need to recall the concept of Archimedean d-copula. Let φ be a continuous strictly 
decreasing function from [0, 1] to [0, ∞] such that φ(0) = ∞ and φ(1) = 0, and let φ−1 be the inverse of φ. Then the 
function given by

Cφ(u) = φ−1

(
d∑

i=1

φ (ui)

)
, u ∈ [0,1]d ,

is a d-copula if, and only if, φ−1 is completely monotonic on [0, ∞[, i.e., (−1)k dk

dtk
φ−1(t) ≥ 0 for all t ∈]0, ∞[, 

k = 1, 2, . . ., where dk

dtk
denotes the k-th derivative. In such a case, we say that Cφ is an Archimedean d-copula, and 

the function φ is called a generator of Cφ. For more details, see McNeil and Nešlehová [22] and Nelsen [27]. Then, 
for d ≥ 2, we have
4
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ϕd

(
Cφ

)= −d2 + d − 2

2(d − 1)
+ d + 1

d − 1

⎡⎣ 1∫
0

φ−1 (d φ(t)) dt +
d∑

i=2

(−1)i
(

d

i

) 1∫
0

φ−1 (i φ(t)) dt

⎤⎦ .

Next we show the cases of two particular Archimedean d-copulas.

1. Consider the generator φθ(t) = t−θ − 1 for all t ≥ 0 and θ > 0, which generates a subfamily of the bivariate 
Clayton family of copulas (see Clayton [4]). Since φ−1

θ (t) = (1 + t)−1/θ and

(−1)k
dk

dtk
φ−1

θ (t) = (1 + t)−k−1/θ

θk

k−1∏
i=1

(1 + kθ) ≥ 0

for all t ≥ 0, then φ−1
θ is completely monotonic on [0, +∞[, and thus we obtain the d-copula

CC
θ (u) =

(
d∑

i=1

u−θ
i − d + 1

)−1/θ

, u ∈ [0,1]d, (10)

where CC
θ (u) = 0 when ui = 0 for some i ∈ {1, . . . , d}. This d-copula is a generalization of the Clayton family 

of 2-copulas for which limθ→0+ CC
θ (u) = �(u) and CC

θ (u) ≥ �(u) for all u ∈ [0, 1]d (see [27] for more details). 
Therefore, after some tedious —but elementary— algebra, we have

ϕd

(
CC

θ

)
= −d2 + d − 2

2(d − 1)

+ d + 1

2(d − 1)

[
d−1/θ

2F1

(
1

θ
,

2

θ
; 2

θ
+ 1; d − 1

d

)

+
d∑

i=2

(−1)i
(

d

i

)
i−1/θ

2F1

(
1

θ
,

2

θ
; 2

θ
+ 1; i − 1

i

)]
,

where 2F1 denotes the (Gaussian) hypergeometric function (see, e.g., Seaborn [33]). Since all the bivariate mar-
gins of (10) —which we denote by CC

ij,θ , for 1 ≤ i < j ≤ d— are equal, i.e.,

CC
ij,θ (u, v) = (u−θ + v−θ − 1

)−1/θ
(11)

for all (u, v) ∈ [0, 1]2, we have

ϕ2

(
CC

θ

)
= ϕ3

(
CC

θ

)
= 3 · 2−1/θ

2F1

(
1

θ
,

2

θ
; 2

θ
+ 1; 1

2

)
− 2

and

ϕ4

(
CC

θ

)
= −7

3
+ 5 · 2−1/θ

2F1

(
1

θ
,

2

θ
; 2

θ
+ 1; 1

2

)
− 10

3
· 3−1/θ

2F1

(
1

θ
,

2

θ
; 2

θ
+ 1; 2

3

)
+ 5

3
· 4−1/θ

2F1

(
1

θ
,

2

θ
; 2

θ
+ 1; 3

4

)
.

2. Consider the generator φθ(t) = ln
(

1−θ(1−t)
t

)
for all t ≥ 0, with θ ∈ [0, 1[. Since φ−1

θ (t) = 1−θ
et−θ

and

(−1)k
dk

dtk
φ−1

θ (t) =
(1 − θ)et

k−1∑
i=0

piθ
ie(k−i−1)t

(et − θ)k+1 ≥ 0

for all t ∈]0, +∞[, where pi > 0 for all i = 0, 1, . . . , k − 1, with p0 = pk−1 = 1 (see Lemma 1 in Appendix A), 
then φ−1

θ is completely monotonic for θ ∈ [0, 1[ and
5
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CAMH
θ (u) = φ−1

θ

(
d∑

i=1

φθ (ui)

)
= (1 − θ)

[
d∏

i=1

(
1 − θ

ui

+ θ

)
− θ

]−1

, u ∈ [0,1]d , (12)

is a d-copula (note that CAMH
0 = �), which is a generalization of the Ali-Mikhail-Haq (AMH, for short) family of 

bivariate copulas given by

CAMH
2,θ (u, v) = uv

1 − θ(1 − u)(1 − v)
(13)

for all (u, v) ∈ [0, 1]2 (see Ali et al. [1] and Nelsen [27]). We note that all the margins of any dimension j ≥ 2 of 
(12) belong to the corresponding AMH family of j -copulas. Therefore,

ϕd

(
CAMH

θ

)
= −d2 + d − 2

2(d − 1)
+ (d + 1)(1 − θ)

d − 1

[ 1∫
0

td

(θt − θ + 1)d − θtd
dt

+
d∑

i=2

(−1)i
(

d

i

) 1∫
0

t i

(θ t − θ + 1)i − θt i
dt

]
; (14)

and since all the bivariate margins of (12) are the 2-copulas given by (13), then we have

ϕ2

(
CAMH

θ

)
= ϕ3

(
CAMH

θ

)
= 6

1∫
0

t2

1 − θ(1 − t)2 dt − 2 = 6

(
1 + θ

2θ3/2 ln
1 + √

θ

1 − √
θ

+ 1

θ
ln(1 − θ) − 1

θ

)
− 2

(see Gradshteyn and Ryzhik [17, 2.175.4]) and

ϕ4

(
CAMH

θ

)
= 10(1 − θ)

3

1∫
0

4∑
i=2

(−1)i(5 − i)t i

(θ t − θ + 1)i − θt i
dt − 7

3
.

Fig. 1 depicts the behaviour of the Spearman’s footrule coefficient, ϕd (Cθ ), as a function of θ for the d-copulas 
studied throughout this section, with d = {3, 4, 6}. Notice that the y-axis scale for the FGM copula is different, as this 
copula models small departures from independence and so it results in much smaller values of the Spearman’s footrule 
than the others. The y-axis scale for the AMH is also different as this copula does not allow for higher dependencies 
either.

3. Estimation

In practice, the copula C is unknown and ϕd must be estimated from the data. Therefore, a sample version of 
ϕd is required. In order to do that, let Xi = (Xi1, . . . ,Xid), i = 1, . . . , n, be a sample of n serially independent 
random vectors from the d-dimensional vector X = (X1, . . . , Xd), and let (Ri1, . . . ,Rid), i = 1, . . . , n, denote the 
associated vectors of componentwise ranks of the sample, such that Rij is the rank of Xij among {X1j , . . . , Xnj }, with 
j = 1, . . . , d . Then, the d-variate empirical copula, Cn, is defined as the empirical cumulative distribution function 
computed from the scaled ranks, i.e.,

Cn(u) = 1

n

n∑
i=1

1
{

Ri1

n + 1
≤ u1, . . . ,

Rid

n + 1
≤ ud

}
,

for all u ∈ [0, 1]d , where 1{A} denotes the indicator function of a set A.
In this section, we first review the definition and main properties of the only estimator of ϕd previously proposed 

in the literature (to our knowledge), that will be called ϕ̂(1)
nd . Then, given that ϕd is an AOD measure, we draw on the 

two sample versions for AOD measures proposed in Dolati and Úbeda-Flores [7] and apply them to build up naturally 
two new estimators of Spearman’s footrule, say ϕ̂(2) and ϕ̂(3). The first one consists of only estimating the function 
nd nd

6
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Fig. 1. Behaviour of the d-dimensional Spearman’s footrule for three different dimensions, d = {3, 4, 6}, and four copulas: FMG, Cuadras-Augé, 
Clayton and AMH.

Q′
d(C, M) in (4), whereas the second one is obtained by estimating in (4) the function Q′

d(C, M) as well as the 
coefficients ad and bd . We show that the three estimators at hand are asymptotically equivalent and so the asymptotic 
normality of only one of them, namely ϕ̂(2)

nd , is proved.

3.1. First estimator

As far as we know, Úbeda-Flores [38] proposed the only empirical version of ϕd , given by

ϕ̂
(1)
nd = 1 − d + 1

d − 1

1

n2 − 1

n∑
i=1

Li, (15)

where, for each i ∈ {1, ..., n}, Li is defined as

Li = max
1≤j≤d

(Rij ) − min
1≤j≤d

(Rij ). (16)

As expected, when the ranks in each dimension coincide, i.e., in the case of perfect positive dependence, ϕ̂(1)
nd = 1. 

Due to the lack of motivation in the original proposal of this estimator, we will discuss later two other estimators based 
on expression (4). Before that, we briefly summarize the main properties of ϕ̂(1)

nd .

3.1.1. Particular cases
• When d = 2, the expression in (15) reduces to the sample bivariate Spearman’s footrule —known as fS— given 

by

ϕ̂
(1)
n2 := fS = 1 − 3

n2 − 1

n∑
i=1

|Ri1 − Ri2|. (17)

• In the trivariate case (d = 3), the sample version of Spearman’s footrule in (15) is equal to the average of the three 
pairwise sample Spearman’s footrule coefficients, that is, property (7) continues to hold for the corresponding 
empirical coefficients; see Pérez and Prieto-Alaiz [30].
7
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3.1.2. Asymptotic distribution
Genest et al. [14] consider an alternative expression of the estimator ϕ̂(1)

nd , which is based on (6), namely

ϕ̂
(1)
nd = 1 − d + 1

d − 1

n

n − 1

∫
[0,1]d

(
max

1≤j≤d
{uj } − min

1≤j≤d
{uj }

)
dCn(u),

and show that, under fairly general conditions —the d-copula C admits continuous (first-order) partial derivatives 
on ]0, 1[d—, ϕ̂(1)

nd is asymptotically unbiased, though it is biased in finite samples. Moreover, they show that ϕ̂(1)
nd is 

asymptotically normally distributed, i.e.,
√

n
(
ϕ̂

(1)
nd − ϕd

)
d−→ N

(
0, σ 2

ϕC

)
, (18)

where 
d−→ denotes the convergence in distribution and σ 2

ϕC
is defined in equation (A5) in Genest et al. [14].

3.1.3. Moments at independence
Genest et al. [14] show that, under the hypothesis of independence, that is, when the underlying copula is �, we 

have

E�

(
ϕ̂

(1)
nd

)
= 1 − d + 1

d − 1

n

n − 1

{
1 − 2

(n + 1)nd

n∑
i=1

id

}
. (19)

Noticeably, when d = {2, 3}, this expectation vanishes, i.e., E�

(
ϕ̂

(1)
n2

)
= E�

(
ϕ̂

(1)
n3

)
= 0. When d > 3, this expecta-

tion is only O(1/n2). For instance, when d = 4, it becomes E�

(
ϕ̂

(1)
n4

)
= 1/(9n2). Hence, under independence, the 

estimator ϕ̂(1)
nd is unbiased for d = {2, 3} but it is biased for d > 3. Genest et al. [14] also provides the expression of 

the large-sample variance of the asymptotic distribution in (18) when the underlying copula is �, which is

σ 2
� = 2

(
d + 1

d − 1

)2 { 2 + 4d − d2 + d3

d(d + 2)(2d + 1)(d + 1)2 − B(d, d + 2)

d + 1

}
,

where B denotes the Beta function. This can be rearranged as

σ 2
� = 2

d(2d + 1)

(
d + 1

d − 1

)2
(

1 − d(5d + 1)

(d + 2)(d + 1)2 −
(

2d

d

)−1
)

, (20)

giving σ 2
� = {2/5, 2/15, 149/2268, 11/280} for d = {2, 3, 4, 5}, respectively, and showing that σ 2

� decays as 1/d2

when d grows.

3.2. Second estimator

To look for alternative empirical versions of ϕd , we will make use of the fact that ϕd is an AOD measure and we 
will propose two new estimators based on the two sample versions for AOD measures given in Dolati and Úbeda-
Flores [7]. In doing so, our goal is twofold. First, we want to compare the properties of the new proposals with the 
estimator ϕ̂(1)

nd previously discussed, but we also intend to shed light on the definition of ϕ̂(1)
nd .

One possible estimator of ϕd based on (4) is given by

ϕ̂
(2)
nd = Q̂′

nd(C,M) − ad

bd − ad

, (21)

where the estimator Q̂′
nd for Q′

d is given by

Q̂′
nd(C,M) = 1

n

n∑
i=1

(
M

(
Ri1

n + 1
, . . . ,

Rid

n + 1

)
+ M

(
Ri1

n + 1
, . . . ,

Rid

n + 1

))

= 1 − 1

n(n + 1)

n∑
Li, (22)
i=1

8
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where Li is defined in (16). Hence, ϕ̂(2)
nd can be written as

ϕ̂
(2)
nd = 1 − d + 1

d − 1

1

n(n + 1)

n∑
i=1

Li. (23)

This estimator is closely related to the estimator ϕ̂(1)
nd previously discussed. Actually, the following relationship holds:

ϕ̂
(2)
nd = 1

n
+
(

1 − 1

n

)
ϕ̂

(1)
nd . (24)

Hence, both estimators are asymptotically equivalent. Moreover, when the ranks in each dimension coincide, i.e., in 
the case of perfect positive dependence, ϕ̂(1)

nd = ϕ̂
(2)
nd = 1, otherwise, ϕ̂(2)

nd > ϕ̂
(1)
nd . Therefore, if ϕ̂(1)

nd attains its best-

possible lower bound, ϕ̂(1)
nd = −1/d , then ϕ̂(2)

nd will not, since the inequality ϕ̂(2)
nd > −1/d always holds. Notice also 

that, in the bivariate case, ϕ̂(1)
n2 attains the best-possible lower bound, ϕ̂(1)

n2 = −1/2, in case the ranks in one dimension 

are just the reversed of the other dimension and with n odd, but ϕ̂(2)
n2 does not.

3.2.1. Particular cases
• When d = 2, the coefficient in (23) becomes

ϕ̂
(2)
n2 = 1 − 3

n(n + 1)

n∑
i=1

|Ri1 − Ri2| = 1 − n − 1

n

3

(n2 − 1)

n∑
i=1

|Ri1 − Ri2|,

which does not exactly coincide with the sample bivariate Spearman’s footrule in (17) due to the (negligible) 
factor (n − 1)/n.

• When d = 3, the coefficient in (23) is not equal to the average of the three pairwise Spearman’s footrule coeffi-
cients, that is, in this case, property (7) does not hold for the corresponding empirical coefficients.

3.2.2. Asymptotic distribution
In order to derive the asymptotic distribution of ϕ̂(2)

nd , we first notice that, from (4) and (21), we have:

√
n
(
ϕ̂

(2)
nd − ϕd

)
= d + 1

d − 1

√
n
(
Q̂′

nd(C,M) − Q′
d(C,M)

)
.

We introduce the following assumption:

Assumption AC . Let Cjk be the bivariate copula of the random pair 
(
Xj ,Xk

)
, for 1 ≤ j < k ≤ d . Assume that 

the partial derivatives of Cjk with respect to the first argument —denoted by C(1)
jk — exist and are continuous on a 

neighbourhood 
{
(u, v) ∈ [0,1]2 : |u − v| < η

}
of the diagonal, where η > 0. �

Remark 1. Let CAMH
θ be the generalization of the AMH d-copula given by (12). Since all the bivariate margins are 

given by (13), then we have

C
AMH (1)
jk,θ (u, v) = v(1 − θ(1 − v))

(1 − θ(1 − u)(1 − v))2 .

Observe that the domain is the set given by 
{
(u, v) ∈ [0,1]2 : θ(1 − u)(1 − v) �= 1

}
, and the bivariate margins of 

CAMH
θ fulfil Assumption AC . Also note that the bivariate margins of the FGM family of d-copulas given in Example 1

trivially satisfy Assumption AC .
However, the generalization of the Cuadras-Augé d-copula given in Example 2 does not, since it has a singular 

component (coming from M) such that CCA (1)
jk does not exist at the diagonal (see Nelsen [27] for details). Further-

more, the generalization of the Clayton d-copulas given by (10) does not satisfy the assumption either since, from 
(11), we have

C
C (1)

(u, v) = u−θ−1 (u−θ + v−θ − 1
)−1/θ−1

,
jk,θ

9



JID:FSS AID:8489 /FLA [m3SC+; v1.361] P.10 (1-32)

A. Pérez, M. Prieto-Alaiz, F. Chamizo et al. Fuzzy Sets and Systems ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
so that l := lim(u,v)→(0,0) C
C (1)
jk,θ (u, v) is different for different trajectories, e.g. l = 2−(θ+1)/θ for v = u and l =

3−(θ+1)/θ for v = 2u; therefore CC (1)
jk,θ is not continuous at the origin.

The following theorem provides the asymptotic normality for Q̂′
nd(C, M) and ϕ̂(2)

nd .

Theorem 1. Assume that F1, F2, . . . , Fd are continuous and, for any d-copula C, AC is fulfilled. Then

√
n
(
Q̂′

nd(C,M) − Q′
d(C,M)

) d−→N
(

0, σ 2
)

,

where σ 2 is given by expression (50) in Appendix B. Moreover,

√
n
(
ϕ̂

(2)
nd − ϕd

)
d−→ N

(
0,

(
d + 1

d − 1

)2

σ 2

)
. (25)

Proof. See Appendix B. �
As expected, the asymptotic distribution in (25) coincides with the asymptotic distribution of ̂ϕ(1)

nd derived in Genest 
et al. [14], but Theorem 1 above requires milder conditions. Proposition 3 of Genest et al. [14] uses the stronger 
assumption that the partial derivatives of the whole copula C : [0, 1]d → [0, 1] are continuous. Moreover, Genest et al. 
[14, Proposition 3] provide a sophisticated expression for the asymptotic variance of ϕ̂(1)

nd depending on covariances 

of Gaussian processes defined in terms of the copula. By contrast, our formula 
(

d+1
d−1

)2
σ 2 for the asymptotic variance 

of ϕ̂(2)
nd in (25) is explicit through the expression (50) for σ 2. Furthermore, the variance σ 2 in Theorem 1 above can be 

estimated as explained in Appendix C.
In the paper by Genest et al. [14] the functional approach is applied for proving asymptotic normality. In the proof 

of our Theorem 1, the crucial point is the use of a central limit theorem for non-degenerate U -statistics. This central 
limit theorem is proved utilizing Hoeffding’s projection method.

Theorem 1 can be used to establish confidence intervals for ϕd . Moreover, tests about ϕd can be constructed, for 
example the test of the hypothesis H0 : ϕd ≥ K , H1 : ϕd < K , where K > 0 is a given number.

3.2.3. Moments at independence

Taking into account the relationship in (24) and the formula of E�

(
ϕ̂

(1)
nd

)
in (19), it turns out that, under indepen-

dence, the estimator ϕ̂(2)
nd is always biased, even for d = {2, 3}. In particular, we have that, under independence

E�

(
ϕ̂

(2)
n2

)
= E(ϕ̂

(2)
n3 ) = 1

n
,

E�

(
ϕ̂

(2)
n4

)
= 9n2 + n − 1

9n3 .

To sum up, the estimator ϕ̂(2)
nd is well-motivated and it is asymptotically equivalent to the estimator ϕ̂(1)

nd , but the latter 
has better properties in finite samples. Moreover, the former takes a narrower range of values than it should be.

3.3. Third estimator

The last estimator of the coefficient ϕd we consider, is based on estimating in (4) both the function Q′
d(C, M) and 

the coefficients ad and bd , that is,

ϕ̂
(3)
nd = Q̂′

nd(C,M) − ând

b̂nd − ând

, (26)

where Q̂′ (C, M) is given in (22) and
nd

10
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ând = 1

nd

n∑
i1=1

· · ·
n∑

id=1

[
M

(
i1

n + 1
, . . . ,

id

n + 1

)
+ M

(
i1

n + 1
, . . . ,

id

n + 1

)]
,

b̂nd = 1

n

n∑
i=1

[
M

(
i

n + 1
, . . . ,

i

n + 1

)
+ M

(
i

n + 1
, . . . ,

i

n + 1

)]
.

Now, from (2) and (3), we obtain:

ând = 1 − 1

nd(n + 1)

n∑
i1=1

· · ·
n∑

id=1

[max(i1, . . . , id ) − min(i1, . . . , id )] ,

b̂nd = 1,

and, putting these expressions back into (26), we have:

ϕ̂
(3)
nd = 1 − nd−1

Snd

n∑
i=1

Li, (27)

where Li is defined in (16) and Snd is as follows (see Appendix D):

Snd = (n + 1)nd − 2
n∑

i=1

id = d − 1

d + 1
nd+1 − 2

d + 1

�d/2
∑
k=1

(
d + 1

2k

)
B2kn

d+1−2k, (28)

where �x
 denotes the floor of x and Bm is the corresponding Bernoulli number, i.e., {B2k}∞k=1 = {1/6, −1/30, 1/42,

−1/30, 5/66, . . .}.
Now, the question arises on how the estimator ϕ̂(1)

nd in (15) compares with the new estimator ϕ̂(3)
nd in (27). As 

expected, when the ranks in each dimension coincide, i.e., in the case of perfect dependence, both estimators coincide 
and attain their maximum value, i.e., ϕ̂(1)

nd = ϕ̂
(3)
nd = 1. Moreover, the following relationship holds:

ϕ̂
(3)
nd = 1 + d − 1

d + 1

(n2 − 1)nd−1

Snd

(ϕ̂
(1)
nd − 1).

3.3.1. Particular cases
• In the bivariate case (d = 2), the expression in (28) becomes Sn2 = n(n2 − 1)/3. Now, putting this back into (27), 

we obtain

ϕ̂
(3)
n2 = 1 − n

Sn2

n∑
i=1

|Ri1 − Ri2| = 1 − 3

(n2 − 1)

n∑
i=1

|Ri1 − Ri2|,

which is the sample bivariate Spearman’s footrule fS in (17). Therefore, when d = 2, both the estimator in (15)
and that in (27) coincide and reduce to the sample bivariate Spearman’s footrule in (17), i.e. ϕ̂(1)

n2 = ϕ̂
(3)
n2 = fS .

• In the trivariate case (d = 3), the expression in (28) becomes Sn3 = n2(n2 − 1)/2, and so,

ϕ̂
(3)
n3 = 1 − n2

Sn3

n∑
i=1

Li = 1 − 2

(n2 − 1)

n∑
i=1

Li.

Noticeably, if we evaluate the estimator ϕ̂(1)
nd in (15) for d = 3, the expression above also comes up. That is, when 

d = 3, both the coefficient in (15) and that in (27) coincide, i.e. ϕ̂(1)
n3 = ϕ̂

(3)
n3 , and both are equal to the average of 

the three pairwise sample Spearman’s footrule coefficients.
• In higher dimensions (d > 3), both estimators no longer coincide unless they are both equals to 1. The proof is as 

follows. Using (15) and (27), it turns out that ϕ̂(1)
nd = ϕ̂

(3)
nd if and only if

(n2 − 1) = d + 1

d − 1

Snd

nd−1 . (29)
11
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But, taking into account (28), the left hand side of (29) becomes

d + 1

d − 1

Snd

nd−1 = n2 − cd + ε(n, d),

where

cd = 2B2

d − 1

(
d + 1

2

)
= d(d + 1)

6(d − 1)
,

and ε(n, d) is given, for d > 3, by

ε(n, d) = 2

d − 1

�d/2
∑
k=2

(
d + 1

2k

)
B2kn

2−2k = O(n−2).

Therefore, for d > 3, the estimators ϕ̂(1)
nd and ϕ̂(3)

nd will not coincide unless ε(n, d) = 0 and cd = 1, but the former 
is not possible and the latter implies d(d + 1) = 6(d − 1), and the roots of this quadratic equation are d = {2, 3}.

3.3.2. Asymptotic distribution
Notice that, as n2 − 1 and n2 − cd + ε(n, d) are asymptotically equal (meaning that their quotient tends to 1 as 

n → ∞), the estimators ϕ̂(1)
nd and ϕ̂(3)

nd are asymptotically equivalent. Even more, we have n
(
ϕ̂

(1)
nd − ϕ̂

(3)
nd

)→ 0 because

lim sup
n→∞

n
∣∣ϕ̂(1)

nd − ϕ̂
(3)
nd

∣∣= d + 1

d − 1
lim sup
n→∞

(∣∣∣∣ n

n2 − 1
− n

n2 − cd

∣∣∣∣ n∑
i=1

Li

)

and 0 ≤ Li ≤ n implies that the limit above is zero. A similar argument shows that, in fact, nα
(
ϕ̂

(1)
nd − ϕ̂

(3)
nd

)→ 0 for 
any α < 2.

Remark 2. We want to note that, since the random variables are measurable functions, the limits are at almost every 
point, whence the convergence is almost surely (a.s.).

3.3.3. Moments at independence
From the result on the expectation of ϕ̂(1)

nd in (19), it turns out that, under independence,

E�

(
n∑

i=1

Li

)
= n(n + 1) − 2

nd−1

n∑
i=1

id .

Therefore, taking into account (27), when the underlying copula is �, we have

E�

(
ϕ̂

(3)
nd

)
= 1 − nd−1

Snd

[
n(n + 1) − 2

nd−1

n∑
i=1

id

]
,

and the first equality for Snd in (28) shows that the expression above vanishes. That is, under independence, the 
estimator ϕ̂(3)

nd , unlike the two estimators previously discussed, is always unbiased, regardless of the value of d , i.e., 
we have

E�

(
ϕ̂

(3)
nd

)
= 0.

To summarize, the new estimators ϕ̂(2)
nd and ϕ̂(3)

nd are well-motivated and they are asymptotically equivalent to the 

estimator ϕ̂(1)
nd first introduced by Úbeda-Flores [38]. Moreover, ϕ̂(1)

nd and ϕ̂(3)
nd share some interesting properties. For 

instance, they coincide for d = {2, 3}. Actually, in the bivariate case (d = 2), they both reduce to the well-known 
empirical bivariate Spearman’s footrule whereas in the trivariate case (d = 3), they both become the average of the 
corresponding pairwise estimators. By contrast, the estimator ϕ̂(2)

nd does not fulfil any of these properties. Noticeably, 

the estimator ϕ̂(3) has generally better finite sample properties. For instance, under the hypothesis of independence, 
nd

12
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it is always unbiased, regardless of the dimension d , whereas the others are not: ϕ̂(2)
nd is always biased and ϕ̂(1)

nd is 

only unbiased for d = {2, 3}, in which case it coincides with ϕ̂(3)
nd . Hence, it seems that, among the three estimators 

considered, ϕ̂(3)
nd is preferable, especially in small samples, but ϕ̂(1)

nd also makes sense and can be a useful estimator in 

the bivariate and trivariate case, where it coincides with ϕ̂(3)
nd .

4. Finite sample comparisons

This section is devoted to present the results of a simulation study of the three estimators discussed in the previous 
sections in order to evaluate their practical performance. The results presented below are quite suggestive of the 
applicability of the large-sample theory to finite samples.

We carry out a set of Monte Carlo simulations for the FGM d-copula described in Example 1 and the AMH d-
copula described in Example 3 —the Monte Carlo simulations have been implemented using the R package copula 
in Hofert et al. [18]. As a benchmark, we also simulate the d-dimensional independent copula �. We consider three 
different dimensions, d = {3, 4, 5}, and five sample sizes, n = {10, 20, 50, 100, 500}. For each copula, each parameter 
value and each dimension d , we generate 1000 Monte Carlo replicates of size n and for each replicate, we compute 
the three estimators of the coefficient ϕd defined in the previous section, namely ϕ̂(1)

nd , ϕ̂(2)
nd and ϕ̂(3)

nd . For the sake 
of simplicity, we only fully report the results for d = 4 and n = {50, 500}. The results for d = 3 and d = 5 and 
other sample sizes are not displayed here to save space, but they are available as additional material. Interestingly, 
conclusions remain unchanged.

Tables 1 and 2 report summary statistics for the three estimators under all considered models with n = 50
and n = 500, respectively. These tables display, for each copula and estimator, the true multivariate Spearman’s 
footrule (true), the mean, the standard deviation (sd), the root mean square error (rmse), the 2.5th percentile (q2.5), 
the first quartile (q25), the median (q50), the third quartile (q75) and the 97.5th percentile (q97.5). The investigated 
copulas are the independence copula, which appears under the case θ = 0, the FGM copula with parameter values 
θ = {0.25, 0.5, 0.75, 0.95} and the AMH copula with parameter values θ = {0.2, 0.4, 0.6, 0.8}. To enhance the global 
picture of the finite performance of the three estimators, Fig. 2 and Fig. 3 display the box-plots of the empirical distri-
bution of the three estimators for FGM and AMH copulas, respectively, with dimension d = 4 and three sample sizes 
n = {50, 100, 500}. The true value of the multivariate Spearman’s footrule for each simulated model is also displayed 
as a horizontal line. The independence copula will be further analyzed in Fig. 4.

As we can see, when n = 50, the small sample performance of ̂ϕ(2)
nd is quite different from the other two estimators, 

which display hardly no differences between them. First, ̂ϕ(1)
nd and ̂ϕ(3)

nd tend to underestimate the true footrule, whereas 

ϕ̂
(2)
nd tends to overestimate it. Second, there is a clear superior performance of the former estimators due to their smaller 

bias. For example, in the AMH model, the maximum relative bias does not exceed 7% in both ϕ̂(1)
nd and ϕ̂(3)

nd while the 

relative bias in ϕ̂(2)
nd could reach nearly 40%. The median follows the same pattern as the sample mean for the three 

estimators, which suggests a symmetric sampling distribution, a feature confirmed in Figs. 2 and 3. So, the larger bias 
of ̂ϕ(2)

nd is not due to asymmetry of its sampling distribution, but it could be related to the relationship between the three 

estimators set in Section 3. At a glance, the more limited values that ϕ̂(2)
nd can take —recall that ϕ̂(1)

nd < ϕ̂
(2)
nd — push its 

sampling distribution up, making this estimator not so well behaved, in terms of bias, as the other two estimators.
By contrast, in terms of dispersion, the differences between the three estimators are not so marked. The standard 

deviation of three estimators reported in Table 1 are nearly the same, so their performance in terms of rmse is similar 
to that in terms of bias. Moreover, the length of the intervals with the 50% and 95% of values of the three estimators 
are very similar, although the quantiles which defined such intervals are quite different in the case of ϕ̂(2)

nd .
The large sample performance of the three estimators drawn from the Monte Carlo simulations is consistent with 

our theoretical results; see Table 2 and the box-plots shown in Fig. 2 and Fig. 3. As expected, as the sample size 
increases, bias and dispersion tend to reduce and the differences between the three estimators become negligible. The 
same conclusion emerges comparing the quantiles: looking across the entries of the Table 2, we can observe that the 
quantiles of the three estimators are pretty equal for all models considered, although the sampling distribution of ϕ̂(2)

nd

seems to be still slightly upwards.
Finally, to get a better insight on the approximation to the asymptotic distribution, Fig. 4 displays the empirical 

distribution of the three estimators (rescaled by 
√

n) for the independent copula � and d = 4, with the corresponding 
13
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Table 1
Bias, standard deviation, rmse and different quantiles of three estimators of the Spearman’s footrule coefficient. Computations are based on 1000 
Monte Carlo replicates of size n = 50 of the Farlie–Gumbel–Morgenstern d-copula with d = 4 and parameter values θ = {0.25, 0.5, 0.75, 1} and 
the Ali-Mikhail-Haq d-copula with d = 4 and parameter values θ = {0.2, 0.4, 0.6, 0.8}. The case θ = 0 stands for independence.

asymptotic Normal distribution. Note that closed-form expressions for the asymptotic variance are rare, but in the 
case of independence, we do have an explicit formula for the asymptotic variance; see equation (20). Noticeably, the 
approximation to the Normal distribution for the estimators ϕ̂(1)

nd and ϕ̂(3)
nd is very good, even for small samples. How-

ever, that is not the case for the estimator ϕ̂(2)
nd , which is clearly upward biased, as previously remarked. Nevertheless, 

as the sample size increases, the bias decreases, the differences between the three estimators reduce and the Normal 
approximation becomes appropriate for the three of them.

To sump up, the results do suggest that, in small samples, ϕ̂(1)
nd and ϕ̂(3)

nd outperform ϕ̂(2)
nd since the former are sys-

tematically less biased and the dispersion of the three estimators are similar. However, in large samples, the differences 
between the three estimators are quite negligible and, so, large sample theory can be applied to evaluate their practical 
performance.
14
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Table 2
Bias, standard deviation, rmse and different quantiles of three estimators of the Spearman’s footrule coefficient. Computations are based on 1000
Monte Carlo replicates of size n = 500 of the Ali-Mikhai-Haq d-copula with d = 4 and parameter values θ = {0.2, 0.4, 0.6, 0.8} and the Farlie–
Gumbel–Morgenstern d-copula with d = 4 and parameter values θ = {0.25, 0.5, 0.75, 1}. The case θ = 0 stands for independence.

5. Asymptotic relative efficiency

Empirical Spearman’s footrule, as well as other copula-based measures, like Spearman’s rho or Kendall’s tau, are 
natural statistics for testing independence. Hence, it makes sense to compare them to help the user make a substan-
tiated choice of the most efficient one. In this section, we undertake such comparison by looking at their Pitman’s 
asymptotic relative efficiencies (ARE) as test statistics for independence. In particular, we will compute Pitman’s 
ARE using the classical formulation for asymptotically normally distributed statistics; see Serfling [34]. This requires 
introducing some further notation. First, let Cθ denote a one-parameter d-copula such that C0 = �, so the hypothesis 
of independence can be regarded as H0 : θ = 0, and let ϕd = ϕd(θ) be the population Spearman’s footrule for this 
copula Cθ . Second, given that the three empirical versions of Spearman’s footrule in Section 3 are asymptotically 
15
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Fig. 2. Empirical distribution of three estimators of Spearman’s footrule coefficient for the Farlie–Gumbel–Morgenstern d-copula with d = 4, 
parameter values θ = {0.25, 0.5, 0.75, 0.95} and sample sizes n = {50, 100, 500}. Horizontal red line in each graph sets the true value of Spearman’s 
footrule.

equivalent, here ownwards we will drop the superscript and denote the empirical footrule as ϕ̂nd . From the results in 
Section 3, we know that 

√
n (ϕ̂nd − ϕd) is an asymptotically zero-mean normal variable, whose limiting variance, say 

σ 2
ϕ (θ), depends on the underlying copula Cθ . Let Vn be another statistic for independence, such that 

√
n (Vn − μV (θ))

is also an asymptotically zero-mean normal variable with limiting variance σ 2
V (θ) under Cθ . Thus, provided that the 

copula Cθ meets mild regularity conditions, the Pitman’s ARE of ϕ̂nd compared with Vn will be calculated as

ARE(ϕ̂nd,Vn) =
(

ϕ′
d(0)

σϕ(0)

)2
/(

μ′
V (0)

σV (0)

)2

, (30)

where ϕ′
d(0) and μ′

V (0) are the derivatives with respect to θ of the asymptotic means ϕd(θ) and μV (θ), respectively, 
evaluated at θ = 0, i.e., μ′ (0) = (∂μV (θ)/∂θ)|θ=0 and ϕ′ (0) = (∂ϕd(θ)/∂θ)|θ=0, and σ 2

ϕ (0) and σ 2 (0) stand for 
V d V

16



JID:FSS AID:8489 /FLA [m3SC+; v1.361] P.17 (1-32)

A. Pérez, M. Prieto-Alaiz, F. Chamizo et al. Fuzzy Sets and Systems ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
Fig. 3. Empirical distribution of three estimators of Spearman’s footrule coefficient for the Ali-Mikhail-Haq d-copula with d = 4, parameter values 
θ = {0.2, 0.4, 0.6, 0.8} and sample sizes n = {50, 100, 500}. Horizontal red line in each graph sets the true value of Spearman’s footrule.

the asymptotic variances of ϕ̂nd and Vn, respectively, at independence. Note that the expression of σ 2
ϕ(0) is given in 

equation (20), where it was denoted as σ 2
�. If ARE (ϕ̂nd,Vn) > 1, Spearman’s footrule will be a locally more powerful 

test statistic for independence than Vn, whereas ARE (ϕ̂nd,Vn) < 1 will indicate that Vn is more powerful.
As far as we know, the only paper comparing the merits of the tests based on Spearman’s footrule with other test 

statistics for independence is Genest et al. [14], who confine their analysis to the bidimensional case and conclude 
that no general recommendation can be made, as the results depend on the specific class of alternatives. In a mul-
tivariate setting, Stepanova [37] establishes conditions for Pitman optimality of multivariate tests for independence 
based on multivariate versions of Kendall’s tau and Spearman’s rho. In particular, the author proves that the average 
pairwise Kendall’s tau and the average pairwise Spearman’s rho are asymptotically equivalent (in the Pitman’s sense) 
and they are Pitman optimal for some particular copulas, whereas for other alternatives, the multivariate version of 
Spearman’s rho proposed by Joe [19] is Pitman’s optimal. Quessy [31] complements the findings in Stepanova [37]
17
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Fig. 4. Empirical distribution (rescaled by 
√

n) of three estimators of Spearman’s footrule coefficient for the independent d-copula with d = 4 and 
sample sizes n = {50, 100, 500}. The corresponding asymptotic Normal distribution under independence is also displayed.

by comparing eight Spearman-type statistics for independence under different copula models and also concludes that 
their performance can vary depending on the kind of local alternatives encountered.

Following this literature, we investigate Pitman’s ARE of multivariate Spearman’s footrule with respect to multi-
variate versions of Kendall’s tau and Spearman’s rho. In particular, we consider the multivariate coefficients in Nelsen 
[24], which can be written as follows:

τd = τd(θ) = 1

2d−1 − 1

⎡⎣2d

⎛⎝1 −
1∫

0

K(t, θ)dt

⎞⎠− 1

⎤⎦ , (31)

ρ+
d = ρ+

d (θ) = d + 1

2d − d − 1

⎡⎢⎣2d

∫
d

u dCθ(u) − 1

⎤⎥⎦ ,
[0,1]

18
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ρ−
d = ρ−

d (θ) = d + 1

2d − d − 1

⎡⎢⎣2d

∫
[0,1]d

Cθ (u)du − 1

⎤⎥⎦ , (32)

where Cθ is a one-parameter d-dimensional copula, with d ≥ 2, and K(t, θ) is the so-called Kendall’s distribution 
function of Cθ ; see Barbe et al. [2] and Genest et al. [16]. Nelsen [24] notes that, when d = 3, τ3 coincides with the 
average of the three possible pairwise Kendall’s tau. For further comparisons of our results with previous literature, 
we also consider another multivariate version of Spearman’s rho, defined as the average of all possible pairwise 
Spearman’s correlation coefficients, i.e.2

ρ∗
d = ρ∗

d (θ) = 2

d(d − 1)

∑
j<k

⎡⎢⎣12
∫

[0,1]2

Cθ(uj , uk)duj duk − 3

⎤⎥⎦ .

The corresponding statistics for testing independence, based on a random sample Xi = (Xi1, ..., Xid), i = 1, . . . , n, 
of a continuous random vector X with copula Cθ , are the following:

τ̂nd = 1

2d−1 − 1

[
−1 + 2d

n(n − 1)

∑
i �=j

1{Xi ≤ Xj }
]

,

ρ̂+
nd =

[
1

n

n∑
i=1

d∏
j=1

Rij −
(

n + 1

2

)d
]/[

1

n

n∑
i=1

id −
(

n + 1

2

)d
]

,

ρ̂−
nd =

[
1

n

n∑
i=1

d∏
j=1

Rij −
(

n + 1

2

)d
]/[

1

n

n∑
i=1

id −
(

n + 1

2

)d
]

,

ρ̂∗
nd = 12

n2 − 1

[
2

d(d − 1)

∑
1≤j<k≤d

1

n

n∑
i=1

RijRik −
(

n + 1

2

)2
]

,

where Rij are the ranks defined in Section 3 and Rij = n + 1 − Rij . The statistic ̂τnd is taken from Genest et al. [15], 
whereas the statistic ρ̂+

nd is in Joe [19], Stepanova [37] and Pérez and Prieto-Alaiz [29], the statistic ρ̂−
nd is taken from 

Pérez and Prieto-Alaiz [29] and ρ̂∗
nd is taken from Joe [19] and Stepanova [37]. These last three statistics are slightly 

different to those in Quessy [31] and Schmid and Schmidt [32], but they are asymptotically equivalent. Noticeably, 
for d = 3, the statistic ̂τn3 becomes the average of the three possible empirical pairwise Kendall’s tau.

Under certain regularity conditions, Genest et al. [15] show that the statistic 
√

n (̂τnd − τd) is an asymptotically 
zero-mean normal variable whose limiting variance, under the null hypothesis of independence, i.e., when C0 = �, is

σ 2
τ (0) = 2

(2d−1 − 1)2

[(
4

3

)d

+
(

2

3

)d

− 2

]
. (33)

Similarly, it can be proved (see Quessy [31], Schmid and Schmidt [32] and Stepanova [37]) that the statistics √
n
(
ρ̂+

nd − ρ+
d

)
, 
√

n
(
ρ̂−

nd − ρ−
d

)
and 

√
n
(
ρ̂∗

nd − ρ∗
d

)
are asymptotically zero-mean normal variables, whose limiting 

variances under independence are:

σ 2
ρ−(0) = σ 2

ρ+(0) = (d + 1)2

(2d − d − 1)2

[(
4

3

)d

− d

3
− 1

]
. (34)

σ 2
ρ∗(0) = 2

d(d − 1)
. (35)

Now, using equation (30), the Pitman’s ARE of the empirical Spearman’s footrule with respect to the empirical 
Kendall’s tau, for instance, is computed as

2 Notice that Quessy [31] and Schmid and Schmidt [32] denote the coefficients ρ−
d

, ρ+
d

and ρ∗
d

as ρ1,d , ρ2,d and ρ3,d , respectively, whereas Joe 
[19] denoted ρ−

d
and ρ+

d
as ω and ω, respectively, and Wolff [40] introduced ρ−

d
as ρd .
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Table 3
Asymptotic relative efficiency of multivariate Spearman’s footrule with respect to multivariate Kendall’s tau and Spearman’s rho.

Model FGM AMH

Statistic d = 2 d = 4 d = 6 d = 2 d = 3 d = 4 d = 5 d = 6

τ̂nd 0.9 1.898 2.030 0.9 0.9 0.859 0.787 0.701

ρ̂+
nd

0.9 2.313 2.869 0.9 0.810 0.705 0.597 0.496

ρ̂−
nd

0.9 2.313 2.869 0.9 1.266 1.712 2.242 2.876

ρ̂∗
nd

0.9 – – 0.9 0.9 0.875 0.831 0.780

ARE(ϕ̂nd, τ̂nd) =
(

ϕ′
d(0)

σϕ(0)

)2
/(

τ ′
d(0)

στ (0)

)2

,

where σ 2
τ (0) is given in (33) and τ ′

d(0) = (∂τd(θ)/∂θ)|θ=0 will be calculated for each particular alternative. The 
Pitman’s ARE of ϕ̂nd compared with ρ̂−

nd , ρ̂+
nd and ρ̂∗

nd are computed in a similar way.
To illustrate our results, we will chose as alternatives the multivariate FMG copula in Example 1 (notice that this 

generalization is different from that used in Quessy [31] and Stepanova [37]) and the multivariate AMH copula in 
Example 3. These two families are one-parameter d-copulas, say Cθ , that reduce to the independence copula when 
θ = 0, i.e., C0 = �, so the hypothesis of independence can be regarded as H0 : θ = 0 in both cases. Moreover, the 
election of these families enables comparing our results with the existing literature mentioned above. Given below are 
the results for the cases d = {3, 4, 5, 6}. As a benchmark, we also compute the results for d = 2 (recall that, in this 
case, ρ−

2 = ρ+
2 = ρ∗

2 and ρ̂−
n2 = ρ̂+

n2 = ρ̂∗
n2).

Example 4. Let CFGM
θ be the FGM d-copula in equation (8). As shown in Úbeda-Flores [38], when d is odd, one 

gets τd = ϕd = 0. Hence, for this family we will only perform comparisons for d = {2, 4, 6}. Moreover, for d ≥ 3, all 
the margins of any dimension j ≥ 2 are � in the corresponding dimension j and so, the average pairwise Spearman’s 
rho ρ∗

d equals 0. Hence, for d ≥ 3, the corresponding statistic ρ̂∗
nd will not be considered. Noticeably, for this family 

it is possible to work out closed-form expressions of the four coefficients to be analysed. In particular, the expression 
of multivariate Spearman’s footrule is given in equation (9) and, from this equation, one easily deduces3

ϕ′
d

(
CFGM

0

)
= (1 + (−1)d)(d + 1)(d!)2

(d − 1)(2d + 1)! .

An explicit expression of multivariate Kendall’s tau for this family is given in Genest et al. [15], from which it is 
obtained immediately

τ ′
d

(
CFGM

0

)
= (1 + (−1)d)

3d(2d−1 − 1)
.

Finally, in Appendix E, we derive closed-form expressions of multivariate Spearman’s ρ+
d and ρ−

d for this copula 
model. From these formulae, one deduces

ρ+′
d

(
CFGM

0

)
= (−1)d(d + 1)

3d(2d − d − 1)
, ρ−′

d

(
CFGM

0

)
= (d + 1)

3d(2d − d − 1)
.

Now, simple calculations based on the expressions above and those in equations (33)-(34), yield the results displayed 
in the first columns of Table 3. As expected, for d = 2, Spearman’s footrule is less efficient than Kendall’s tau and 
Spearman’s rho, which are equivalent. Recall that the latter are optimal for the bivariate FGM; see Stepanova [37]. 
However, for d ≥ 3, the Spearman’s footrule is always the best, while ̂τnd is the second one and ρ̂−

nd and ρ̂+
nd , which 

are asymptotically equivalent, are not worth considering for these local alternatives. Hence, for this family and d ≥ 3, 
the statistics can be ordered in terms of their asymptotic efficiency, from the best to the worst, as

3 To avoid possible confusion, ϕ′
d

(
CFGM

0

)
will stand for the value of ϕ′

d (0) in the FGM copula, τ ′
d

(
CFGM

0

)
for the value of τ ′

d (0) in the FGM 
copula, and so on. An equivalent notation will be used for the AMH copula.
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ϕ̂nd > τ̂nd > ρ̂−
nd = ρ̂+

nd

Example 5. Let CAMH
θ be the AMH d-copula in equation (12). Unlike Example 4, in this case, there are no simple 

closed-form expressions of the coefficients to be analysed. For the Spearman’s footrule, we do have an explicit formula 
in Equation (14), from which it is a routine exercise to check that

ϕ′
d

(
CAMH

0

)
= d

(d + 2)(2d + 1)
+ d + 1

d − 1

[
d∑

i=2

(−1)i
(

d

i

)
i(i − 1)

(i + 1)(i + 2)(2i + 1)

]
.

For the other four coefficients, we directly focus on computing and evaluating their derivatives under θ = 0. Regarding 
Kendall’s tau, in Appendix E we derive a recursive general formula to compute τ ′

d(0) for Archimedean d-copulas, 
using the results in Barbe et al. [2] and Genest et al. [16] based on the Kendall’s distribution function. From this 
formula, the following particular values for the AMH come up

τ ′
2

(
CAMH

0

)
= τ ′

3

(
CAMH

0

)
= 0.222, τ ′

4

(
CAMH

0

)
= 0.194, τ ′

5

(
CAMH

0

)
= 0.156, τ ′

6

(
CAMH

0

)
= 0.120.

In turn, the derivatives of the multivariate Spearman’s ρ+
d , ρ−

d and ρ∗′
d for the AMH copula, evaluated at θ = 0, are 

(see Quessy [31])

ρ+′
d

(
CAMH

0

)
= (d + 1)

(2d − d − 1)

[(
4

3

)d

− d

3
− 1

]
,

ρ−′
d

(
CAMH

0

)
= (d + 1)

(2d − d − 1)

[(
2

3

)d

+ d

3
− 1

]
,

ρ∗′
d

(
CAMH

0

)
= 1

3
.

From these expressions above and those in (33)-(35), the results displayed in the last columns of Table 3 come up. One 
sees that, for d = 2, the results for the bivariate FGM and AMH copulas coincide. This does not come as a surprise 
since, in the bivariate case, ϕ′

2

(
CAMH

0

) = ϕ′
2

(
CFGM

0

)
, τ ′

2

(
CAMH

0

) = τ ′
2

(
CFGM

0

)
, and ρ′

2

(
CAMH

0

) = ρ′
2

(
CFGM

0

)
. For 

d ≥ 3, Spearman’s footrule is always more efficient than ρ̂−
nd , which becomes the poorest statistic for this kind of 

alternatives. By contrast, Spearman’s footrule is always less efficient than Kendall’s tau and Spearman’s ρ̂∗
nd and ρ̂+

nd , 
and the latter always dominates the others. Keeping in mind that ρ̂+

nd is as its best under AMH kind of alternatives 
(see Quessy [31]), Spearman’s footrule remains a good competitor, especially when d is small. As expected, for 
d = 3, Kendall’s tau and Spearman’s ρ̂∗

n3 become equivalent; recall that Stepanova [37] shows that average pairwise 
Spearman’s and average pairwise Kendall’s are asymptotically equivalent (in the Pitman sense). Hence, for this family 
and d ≥ 3, the statistics can be ordered in terms of their asymptotic efficiency, as

ρ̂+
nd > τ̂nd ≥ ρ̂∗

nd > ϕ̂nd > ρ̂−
nd .

Other comparisons are not computed, but one can recover, for instance, the ARE
(
ρ̂−

nd, ρ̂+
nd

)
, via the relationship

ARE
(
ρ̂−

nd, ρ̂+
nd

)= ARE
(
ϕ̂nd , ρ̂+

nd

)
ARE

(
ϕ̂nd , ρ̂−

nd

) .
In doing so, the values obtained for the AMH copula coincide with those in Quessy [31, Table 2], as expected.

6. Conclusions

In this paper, we propose two new nonparametric estimators of multivariate Spearman’s footrule which are based 
on two sample versions of AOD measures of multivariate concordance and compare them with a previous estimator 
proposed in Úbeda-Flores [38]. We show that, one of the estimators proposed share some interesting features with the 
estimator in Úbeda-Flores [38]. In particular, they coincide in the bivariate case, where both reduce to the well-known 
empirical bivariate Spearman’s footrule, whereas, in the trivariate case, they both become the average of the corre-
sponding pairwise estimators. Moreover, we show that the three estimators analysed are asymptotically equivalent and 
21
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we derive their asymptotic distribution under milder conditions and using a different approach than those in Genest et 
al. [14]. Furthermore, we show that, under independence, one of the new estimators proposed outperforms the others, 
since it is unbiased regardless of the dimensions considered. These results are further illustrated with Monte Carlo 
experiments based on the independent copula and two well-known one parameter copulas, namely a multivariate FGM 
copula and a multivariate Archimedean copula. These experiments also reveal that, in small samples, the performance 
of the three estimators considered is different. In particular, one of the two estimators proposed is nearly equivalent 
to the estimator in Úbeda-Flores [38] and clearly outperforms the others, especially in small samples. The paper also 
investigates the performance of this estimator, in terms of their Pitman asymptotic relative efficiency, as compared to 
Spearman’s rho and Kendall’s tau, when they are used as statistics for testing multivariate independence. As one could 
expect, the results vary considerably depending on the kind of alternatives encountered: Spearman’s footrule seems to 
be locally optimal for the multivariate FGM alternative when d ≥ 3, but it is less efficient when the alternative is the 
multivariate AMH, where Spearman’s ρ̂+

nd and ρ̂−
nd seem to be the most and least efficient, respectively. Further com-

parisons with other multivariate measures of association, like Gini’s gamma or Blomqvist beta, would be interesting 
for future works.
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Appendix A

Lemma 1. Let f (t) = 1−θ
et−θ

for all t ≥ 0, with θ ∈ [0, 1[. Then

(−1)k
dk

dtk
f (t) =

(1 − θ)et
k−1∑
i=0

piθ
ie(k−i−1)t

(et − θ)k+1 (36)

for all t ∈]0, +∞[, where pi > 0 for all i = 0, 1, . . . , k − 1, with p0 = pk−1 = 1.

Proof. We prove this result by induction on k. If k = 1, then

(−1)
d

dt
f (t) = (1 − θ)etp0

(et − θ)2 = f ′(t)

for all t > 0. Now, assume the result is true for any value 2, . . . , k. Then, by using (36), we have

− d

dt

(
(−1)k

dk

dtk

)
f (t)

= −(1 − θ)et

(
k−1∑
i=0

piθ
ie(k−i−1)t +

k−2∑
i=0

piθ
i(k − i − 1)e(k−i−1)t

)
(et − θ) −

k−1∑
i=0

piθ
ie(k−i−1)t (k + 1)et

t k+2
(e − θ)
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= −(1 − θ)et

(et − θ)

k−1∑
i=0

piθ
i(k − i)e(k−i−1)t − (k + 1)

k−1∑
i=0

piθ
ie(k−i)t

(et − θ)k+2

= −(1 − θ)et

k−1∑
i=0

piθ
i(k − i)e(k−i)t −

k∑
i=1

pi−1θ
i(k − i + 1)e(k−i)t −

k−1∑
i=0

piθ
i(k + 1)e(k−i)t

(et − θ)k+2

=
(1 − θ)et

k∑
i=0

qiθ
ie(k−i)t

(et − θ)k+2

for all t > 0, with q0 = p0 = 1, qk = pk−1 = 1 and qi = (i + 1)pi + (k − i + 1)pi−1 > 0 for every i = 1, . . . , k − 1, 
whence the result follows. �
Appendix B. Proof of Theorem 1

To prove Theorem 1 we need additional notation and some preliminary results. We denote the empirical distribution 
function of the d-dimensional vector X = (X1, . . . , Xd) by Hn, defined as

Hn(x) = 1

n + 1

n∑
i=1

1 {Xi ≤ x}

for x = (x1, . . . , xd) ∈ Rd , where Xi , for i = 1, . . . , n, is a sample of n independent random vectors from X, and 
Xi ≤ x means Xij ≤ xj , for all j = 1, . . . , d , and we denote the empirical marginal distribution of Xij by Fnj , defined 
as

Fnj (z) = 1

n + 1

n∑
i=1

1
{
Xij ≤ z

}
.

Note that in the case of data without ties, we have

Fnj

(
Xij

)= Rij

n + 1
,

where Rij denotes the rank of Xij among {X1j , . . . , Xnj }, with j = 1, . . . , d .
Consider

An = 1

n

n∑
i=1

M(Fn1(Xi1), . . . ,Fnd(Xid)) −
∫

[0,1]d
M(u) dC(u), (37)

Bn = 1

n

n∑
i=1

M(Fn1(Xi1), . . . ,Fnd(Xid)) −
∫

[0,1]d
M(u) dC(u). (38)

Now we have

Q̂′
nd(M,C) − Q′

d(M,C) = An + Bn, (39)

and

An = A∗
n + 1

n

n∑
i=1

(M(Fn1(Xi1), . . . ,Fnd(Xid)) − M(F1(Xi1), . . . ,Fd(Xid))) ,

Bn = B∗
n + 1

n

n∑(
M(Fn1(Xi1), . . . ,Fnd(Xid)) − M(F1(Xi1), . . . ,Fd(Xid))

)
,

i=1
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where

A∗
n = 1

n

n∑
i=1

(M(F1(Xi1), . . . ,Fd(Xid)) −EM(F1(Xi1), . . . ,Fd(Xid))) , (40)

B∗
n = 1

n

n∑
i=1

(
M(F1(Xi1), . . . ,Fd(Xid)) −EM(F1(Xi1), . . . ,Fd(Xid))

)
. (41)

We next give an auxiliary proposition, where ω denotes the elementary event and ω → no(ω) is a random number.

Proposition 1. Assume that the (univariate) distributions F1, . . . , Fd are continuous. Then

a) max
j=1...d

sup
x∈R

∣∣Fjn(x) − Fj (x)
∣∣= OP (n−1/2), and

b) max
j=1...d

sup
x∈R

∣∣Fjn(x) − Fj (x)
∣∣≤ κ1

√
ln lnn

n
a.s.

for n ≥ n0(ω) with a constant κ1 > 1
2

√
2.

Proof. Assertion a) is a consequence of the Dvoretzky-Kiefer-Wolfowitz inequality (see van der Vaart [39], p.268):

P

{√
n sup

x∈R

∣∣Fjn(x) − Fj (x)
∣∣> t

}
≤ 2e−2t2

for n, t > 0, j = 1, . . . , d .
Assertion b) follows from van der Vaart [39], p. 268, for example. �

Lemma 2. Consider the expressions (37), (38), (40) and (41), and suppose that Assumption AC is fulfilled. Then we 
have

i. An − A∗
n = Dn + oP

(
n−1/2

)
, where

Dn =
d∑

j=1

1

n

n∑
i=1

(
Fnj (Xij ) − Fj (Xij )

)
1
{
Fj (Xij ) < Fl(Xil) ∀l �= j

}
.

ii. Bn − B∗
n = En + oP

(
n−1/2

)
, where

En =
d∑

j=1

1

n

n∑
i=1

(−Fnj (Xij ) + Fj (Xij )
)

1
{
Fj (Xij ) > Fl(Xil) ∀l �= j

}
.

Proof. Firstly, note that 1(A ∩ B) = 1(B) − 1(A ∩ B) for any two events A, B , and

P
{
Fj (Xij ) = Fl(Xil)

}= 0 for l �= j.

We prove part i. We obtain

An − A∗
n =

d∑
j,k=1

1

n

n∑
i=1

(
Fnk(Xik) − Fj (Xij )

)
1
{
Fnk(Xik) < Fnl(Xil) ∀l < k,Fnk(Xik) ≤ Fnl(Xil) ∀l > k,

Fj (Xij ) < Fm(Xim) ∀m �= j
}

= Dn + Dn1 − Dn2 a.s., (42)

where
24
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Dn1 =
d∑

j=1

∑
1≤k≤d
k �=j

1

n

n∑
i=1

(
Fnk(Xik) − Fj (Xij )

)
1
{
Fnk(Xik) < Fnl(Xil) ∀l < k,Fnk(Xik) ≤ Fnl(Xil) ∀l > k,

Fj (Xij ) < Fl(Xil) ∀l �= j
}
,

Dn2 =
d∑

j=1

1

n

n∑
i=1

(
Fnj (Xij ) − Fj (Xij )

)
1
{
max{(Fnj (Xij ) ≥ Fnl(Xil) for some l < j), (Fnj (Xij ) > Fnl(Xil) for some l > j)},

Fj (Xij ) < Fm(Xim) ∀m �= j
}
.

Define

γn := max
j=1...d

sup
x∈R

∣∣Fjn(x) − Fj (x)
∣∣ and γ̄n := κ1

√
ln lnn

n
,

with κ1 as in Proposition 1. For Fnk(Xik) ≤ Fnj (Xij ), Fj (Xij ) < Fk(Xik), we have

Fnk(Xik) − Fj (Xij ) ≤ Fnj (Xij ) − Fj (Xij ) ≤ γn,

Fnk(Xik) − Fj (Xij ) > Fnk(Xik) − Fk(Xik) ≥ −γn a.s., (43)

whenever k �= j . On the other hand,

Fk(Xik) − γn ≤ Fnk(Xik) ≤ Fnj (Xij ) ≤ Fj (Xij ) + γn < Fk(Xik) + γn a.s. (44)

Hence

|Dn1| ≤ γn

d∑
j=1

∑
1≤k≤d
k �=j

1

n

n∑
i=1

1
{
Fnk(Xik)≤Fnj (Xij ), Fj (Xij ) < Fk(Xik)

}

≤ γn

d∑
j=1

∑
1≤k≤d
k �=j

1

n

n∑
i=1

1
{
Fk(Xik) − 2γn≤Fj (Xij ) < Fk(Xik)

}

≤ γn

d∑
j=1

∑
1≤k≤d
k �=j

1

n

n∑
i=1

1
{−2γ̄n≤Fj (Xij ) − Fk(Xik) < 0

}
a.s.

Applying the law of iterated logarithm for empirical processes (cf. Van der Vaart [39], p. 268) on the sample 
{Fj (Xij ) − Fk(Xik)}i=1...n, it follows that

|Dn1| ≤ γn

⎛⎜⎜⎝O(γ̄n) +
d∑

j=1

∑
1≤k≤d
k �=j

P
{−2γ̄n ≤ Fj (Xij ) − Fk (Xik) < 0

}⎞⎟⎟⎠ a.s.

Let us fix j, k, j �= k, and Ui = Fj

(
Xij

)
and Vi = Fk (Xik). Therefore, by assumption AC , it follows that C(1)

jk is 
uniformly continuous on a neighbourhood of the diagonal and

P
{
−2γ̄n ≤ Fj (X

(j)
i ) − Fk(X

(k)
i ) < 0

}
=

1∫
0

P {−2γ̄n ≤ Ui − Vi < 0 | Ui = u}du

=
1∫ (

C
(1)
jk (u,u + 2γ̄n) − C

(1)
jk (u,u)

)
du
0

25
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= O(1),

and therefore,

|Dn1| = oP

(
n−1/2

)
. (45)

Now notice that 
(⋃

l �=j El

)
∩ G ⊂⋃l �=j (El ∩ Gl) for events E1, . . . , Ed, G1, . . . , Gd , and where G =⋂d

m=1 Gm. 
Then an application of Proposition 1 leads to

|Dn2| ≤ γn

d∑
j=1

1

n

n∑
i=1

1
{
Fnj (Xij ) ≥ Fnl(Xil) for some l �= j, Fj (Xij ) < Fm(Xim) ∀m �= j

}
≤ γn

d∑
j=1

∑
1≤l≤d
l �=j

1

n

n∑
i=1

1
{
Fnj (Xij ) ≥ Fnl(Xil), Fj (Xij ) < Fl(Xil)

}
= oP

(
n−1/2

)
, (46)

the latter identity analogously to the considerations on Dn1. Thus, part i. of the lemma is a consequence of (42)–(46).
Now we prove part ii. We obtain

Bn − B∗
n =

d∑
j,k=1

1

n

n∑
i=1

(−Fnk(Xik) + Fj (Xij )
)

1
{
Fnk(Xik) > Fnl(Xil) ∀l < k,Fnk(Xik) ≥ Fnl(Xil) ∀l > k, Fj (Xij ) > Fm(Xim) ∀m �= j

}
= En + En1 − En2 a.s., (47)

where

En1 =
d∑

j=1

∑
1≤k≤d
k �=j

1

n

n∑
i=1

(−Fnk(Xik) + Fj (Xij )
)

1
{
Fnk(Xik) > Fnl(Xil) ∀l < k,Fnk(Xik) ≥ Fnl(Xil) ∀l > k,Fj (Xij ) > Fm(Xim) ∀m �= j

}
,

En2 =
d∑

j=1

1

n

n∑
i=1

(−Fnj (Xij ) + Fj (Xij )
)

1
{
max{(Fnj (Xij ) ≤ Fnl(Xil) for some l < j)(Fnj (Xij ) < Fnl(Xil) for some l > j)},

Fj (Xij ) > Fm(Xim) ∀m �= j
}
.

For Fnk(Xik) ≥ Fnj (Xij ) and Fj (Xij ) > Fk(Xik), it follows that

−Fnk(Xik) + Fj (Xij ) ≤ −Fnj (Xij ) + Fj (Xij ) ≤ γn,

−Fnk(Xik) + Fj (Xij ) > −Fnk(Xik) + Fk(Xik) ≥ −γn,

whenever k �= j . On the other hand,

Fk(Xik) + γn ≥ Fnk(Xik)≥Fnj (Xij )≥Fj (Xij ) − γn > Fk(Xik) − γn.

Taking (43) and (44) into account and applying Proposition 1, we derive

|En1| ≤ γn

d∑
j=1

∑
1≤k≤d
k �=j

1

n

n∑
i=1

1
{
Fnk(Xik)≥Fnj (Xij ), Fj (Xij ) > Fk(Xik)

}

≤ γn

d∑
j=1

∑
1≤k≤d

1

n

n∑
i=1

1
{
Fj (Xij ) − 2γn≤Fk(Xik) < Fj (Xij )

}
.

k �=j

26
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Analogously to the considerations in part i., we obtain

|En1| = oP

(
n−1/2

)
. (48)

By Proposition 1 and considerations in part i., we have

|En2| ≤ γn

d∑
j=1

∑
1≤l≤d
l �=j

1

n

n∑
i=1

1
{
Fnj (Xij ) ≤ Fnl(Xil), Fj (Xij ) > Fl(Xil)

}
= oP

(
n−1/2

)
. (49)

Identities (47)–(49) lead to part ii. of the lemma, and this completes the proof. �
Let Vn be a U -statistic with symmetric real-valued kernel function � (symmetric means that interchanging the 

arguments does not affect the values of �):

Vn =
(

n

2

)−1 ∑
1≤i1<i2≤n

�
(
Yi1,Yi2

)
,

where Y1, . . . , Yn is the sample of i.i.d. random vectors. Define

λ(y) := E�(y,Y2),

ζ1 := V (λ(Y1)),

β := Eλ(Y1) =E�(Y1,Y2) ,

where V is the symbol for the variance. Note that λ(y) is the conditional expectation of � given one argument equals 
y.

In the next proposition we recall the central limit theorem for non-degenerate U -statistics (Theorem 5.5.1A in 
Serfling [34]).

Proposition 2. Assume that � is symmetric and ζ1 �= 0. Then

√
n (Vn − β)

d−→N (0,4 ζ1) .

Now we are in conditions to prove Theorem 1.

Proof of Theorem 1: Since

Dn + En = 1

n(n + 1)

n∑
i,k=1

d∑
j=1

(
1
{
Xkj ≤ Xij

}− Fj

(
Xij

))
1
{
Fj

(
Xij

)
< Fl (Xil) ∀l �= j

}
− 1

n(n + 1)

n∑
i,k=1

d∑
j=1

(
1
{
Xkj ≤ Xij

}− Fj

(
Xij

))
1
{
Fj

(
Xij

)
> Fl (Xil) ∀l �= j

}
= 1

n2

n∑
i,k=1

d∑
j=1

(
1
{
Xkj ≤ Xij

}− Fj

(
Xij

))
· (1{Fj

(
Xij

)
< Fl (Xil) ∀l �= j

}− 1
{
Fj

(
Xij

)
> Fl (Xil) ∀l �= j

})+ R̆n,

where∣∣∣R̆n

∣∣∣≤ n2d

(
1

n2 − 1

n(n + 1)

)
= d

n + 1
,

as a consequence of (39) and Lemma 2, we obtain
27
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Q̂′
nd(M,C) − Q′

d(M,C) = A∗
n + B∗

n + Dn + En + oP

(
n−1/2

)
= A∗

n + B∗
n

+ 1

n2

n∑
i,k=1

d∑
j=1

(
1
{
Xkj ≤ Xij

}− Fj (Xij )
)

1
{
Fj (Xij ) < Fl(Xil) ∀l �= j

}

− 1

n2

n∑
i,k=1

d∑
j=1

(
1
{
Xkj ≤ Xij

}− Fj (Xij )
)

1
{
Fj (Xij ) > Fl(Xil) ∀l �= j

}
+ OP

(
n−1/2

)
= 1

n2

n∑
i=1

n∑
k=1

�(Xi ,Xk) − Q′
d(M,C) + oP

(
n−1/2

)
,

where

�(x,y) = M(F1(x1), . . . ,Fd(xd)) + M(F1(x1), . . . ,Fd(xd))

+
d∑

j=1

(
1
{
yj ≤ xj

}− Fj (xj )
) (

1
{
Fj (xj ) < Fl(xl) ∀l �= j

}− 1
{
Fj (xj ) > Fl(xl) ∀l �= j

})
for x, y ∈ Rd . Since

1

n2

n∑
i=1

�(Xi ,Xi ) = oP

(
n−1
)

,

we can conclude

Q̂′
nd(M,C) − Q′

d(M,C) = Vn − Q′
d(M,C) + oP

(
n−1/2

)
,

where

Vn = 1

n2

n∑
i=1

n∑
k=i+1

(�(Xi ,Xk) + �(Xk,Xi )) .

Vn is a U -statistic with symmetric kernel (x, y) �−→ �(x, y) + �(y, x). Note that

h(x) := E (�(Xi ,x) + �(x,Xi ))

=
d∑

j=1

∫
Rd

(
1
{
xj ≤ zj

}− Fj (zj )
) (

1
{
Fj (zj ) < Fl(zl) ∀l �= j

}− 1
{
Fj (zj ) > Fl(zl) ∀l �= j

})
dH(z)

+ M(F1(x1), . . . ,Fd(xd)) + M(F1(x1), . . . ,Fd(xd)) + Q′
d(M,C).

By applying Proposition 2, for λ(.) = h(.)/2, β = Q′
d(M, C) and ζ1 = σ 2, and taking into account

σ 2 = V (h(Xi ))

=
∫
Rd

⎛⎜⎝ d∑
j=1

∫
Rd

(
1
{
xj ≤ zj

}− Fj (zj )
)

(
1
{
Fj (zj ) < Fl(zl) ∀l �= j

}− 1
{
Fj (zj ) > Fl(zl) ∀l �= j

})
dH(z)

+M(F1(x1), . . . ,Fd(xd)) + M̄(F1(x1), . . . ,Fd(xd)) − Q′
d(M,C)

)2
dH(x)
28
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=
∫

[0,1]d

⎛⎜⎝ d∑
j=1

∫
[0,1]d

(
1
{
vj ≤ uj

}− uj

) (
1
{
uj < ul ∀l �= j

}− 1
{
uj > ul ∀l �= j

})
dC(u)

+M(v) + M̄(v) − Q′
d(M,C)

)2
dC(v)

=
∫

[0,1]d

⎛⎜⎝ d∑
j=1

∫
[0,1]d

1
{
uj < ul ∀l �= j

} (
1
{
vj ≤ uj

}− uj

)
dC(u)

−
d∑

j=1

∫
[0,1]d

1
{
uj > ul ∀l �= j

} (
1
{
vj ≤ uj

}− uj

)
dC(u)

+M(v) + M̄(v) − Q′
d(M,C)

)2
dC(v), (50)

we complete the proof. �
Appendix C. Estimation of σ 2

The variance σ 2 in Theorem 1 can be estimated by replacing in the expression of h(x) above, the functions H and 
Fj by their empirical counter-parts Hn and Fnj : Since

ĥ(x) =
d∑

j=1

∫
Rd

(
1
{
xj ≤ zj

}− Fj (zj )
)

· (1{Fj (zj ) < Fl(zl) ∀l �= j
}− 1

{
Fj (zj ) > Fl(zl) ∀l �= j

})
dHn(z)

+M(F1(x1), . . . ,Fd(xd)) + M̄(F1(x1), . . . ,Fd(xd)) + Q̂′
nd(M,C)

= 1

n

d∑
j=1

n∑
i=1

(
1
{
xj ≤ Xij

}− Fnj (Xij )
)

· (1{Fnj (Xij ) < Fnl(Xil) ∀l �= j
}− 1

{
Fnj (Xij ) > Fnl(Xil) ∀l �= j

})
+M(F1(x1), . . . ,Fd(xd)) + M̄(F1(x1), . . . ,Fd(xd)) + Q̂′

nd(M,C)

we have

σ̂ 2 = 1

n − 1

n∑
k=1

(̂
h(Xk) − 2Q̂′

nd(M,C)
)2

= 1

n − 1

n∑
k=1

⎛⎝1

n

d∑
j=1

n∑
i=1

(
1
{
Xkj ≤ Xij

}− Fnj (Xij )
)

· (1{Fnj (Xij ) < Fnl(Xil) ∀l �= j
}− 1

{
Fnj (Xij ) > Fnl(Xil) ∀l �= j

})
+M(F1(Xk1), . . . ,Fd(Xkd)) + M̄(F1(Xk1), . . . ,Fd(Xkd)) − Q̂′

nd(M,C)

)2

.

Appendix D

Note that according to the calculations preceding (27), for this formula to hold we have to take

Snd =
n∑

i1=1

· · ·
n∑

id=1

(max (i1, . . . , id ) − min (i1, . . . , id )) .

We are going to prove that this is consistent with (28).
29
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Lemma 3. Let n, d ∈ N such that n ≥ 1 and d ≥ 2. Then

Snd = (n + 1)nd − 2
n∑

i=1

id = d − 1

d + 1
nd+1 − 2

d + 1

�d/2
∑
k=1

(
d + 1

2k

)
B2kn

d+1−2k (51)

where �x
 denotes the floor of x and Bm is the corresponding Bernoulli number, i.e., {B2k}∞k=1 = {1/6, −1/30, 1/42,

−1/30, 5/66, . . .}.

Proof. First, note

max (i1, . . . , id ) = n + 1 + max (i1 − n − 1, . . . , id − n − 1)

= n + 1 − min (n + 1 − i1, . . . , n + 1 − id ) ;
Since the terms n + 1 − ir , with r = 1, . . . , d , take the values {1, . . . , n}, we have

Snd = (n + 1)nd − 2Tn, (52)

where

Tn :=
n∑

i1=1

· · ·
n∑

id=1

min (i1, . . . , id ) .

Observe T1 = 1 and Tn − Tn−1 = nd , thus

Tn =
n∑

i=1

id = nd+1

d + 1
+ nd

2
+

d∑
k=2

Bk

k! · d!
(d − k + 1)! · nd−k+1.

The second equality is known as Faulhaber’s formula and also, very often, Bernoulli’s formula (see formula 0.121 
in Gradshteyn and Ryzhik [17] and Knuth [20] for more details). Now, putting the expression above back into (52), 
expression (51) comes out, which completes the proof. �
Appendix E

We next derive a closed-form expression of multivariate Spearman’s ρ−
d in (32) for the FGM d-copula in Exam-

ple 1. The result follows easily by plugging the formula of the FGM copula function in Equation (8) into the equation 
(32). Then, simple calculations yield

ρ−
d

(
CFGM

θ

)
= d + 1

2d − d − 1

⎧⎨⎩2d

⎡⎣ d∏
i=1

1∫
0

uidui + θ
d∏

i=1

1∫
0

ui(1 − ui)dui

⎤⎦− 1

⎫⎬⎭= θ(d + 1)

3d(2d − d − 1)
.

To obtain the expression of multivariate Spearman’s ρ+
d , we resort to Úbeda-Flores [38, Example 2], who provides an 

explicit formula of a multivariate version of Spearman’s rho, called ρd , which is defined as the average of ρ−
d and ρ+

d , 
namely

ρd

(
CFGM

θ

)
= ρ+

d

(
CFGM

θ

)+ ρ−
d

(
CFGM

θ

)
2

= θ(d + 1)(1 + (−1)d)

2 · 3d(2d − d − 1)
.

Hence, from the two equations above, it is immediate to get the value of ρ+
d as

ρ+
d

(
CFGM

θ

)
= θ(−1)d(d + 1)

3d(2d − d − 1)
.

Explicit formulae of Kendall’s τd for the AMH d-copula in Example 3 are not available. However, we will be 
able to work out a recursive formula to compute τ ′

d(0). To start with, let us denote K̇d(t, θ) = ∂Kd(t, θ)/∂θ , where 
Kd(t, θ) is the Kendall’s distribution function of a d-copula Cθ that depends on a single parameter θ . Barbe et al. [2]
provide the following expression to compute this function for an Archimedean d-copula with generator φθ , for d > 2,
30
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Kd(t, θ) = t +
d−1∑
i=1

(−1)i

i! (φθ (t))
ifi−1(t, θ), (53)

where f0(t, θ) = 1/φ′
θ (t), φ′

θ (t) = ∂φθ (t)/∂t , and for i ≥ 1, fi(t, θ) = f0(t, θ)f ′
i−1(t, θ), where f ′

i−1(t, θ) =
∂fi−1(t, θ)/∂t . Then, simple calculations based on (53), evaluated at d = 2, yield

K̇2(t, θ) = − 1

φ′
θ (t)

∂φθ (t)

∂θ
+ φθ (t)

(φ′
θ (t))

2

φ′
θ (t)

∂θ

and, for d > 2, we can define K̇d(t, θ) recursively through the following formula,

K̇d(t, θ) = K̇d−1(t, θ) + (−1)d−1

(d − 1)!
∂

∂θ

[
(φθ (t))

d−1fd−2(t, θ)
]
. (54)

Now, taking into account (31), one easily deduces

τ ′
d(θ) = ∂τd(θ)

∂θ
= − 2d

2d−1 − 1

1∫
0

K̇d(t, θ)dt, (55)

(see Genest et al. [16]) and putting (54) back into (55), a direct evaluation of τ ′
d(θ) at θ = 0 gives the following 

recursion for any Archimedean d-copula with generator φθ , for d > 2,

τ ′
d(0) = 2d−1 − 2

2d−1 − 1
τ ′
d−1(0) − 2d

2d−1 − 1

(−1)d−1

(d − 1)!
1∫

0

∂

∂θ

[
(φθ (t))

d−1fd−2(t, θ)
]∣∣∣∣

θ=0
dt.

In particular, for the AMH d-copula in Example 3, tedious calculations yield

τ ′
2

(
CAMH

0

)
= τ ′

3

(
CAMH

0

)
= 0.222, τ ′

4

(
CAMH

0

)
= 0.194, τ ′

5

(
CAMH

0

)
= 0.156,

and so on.
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