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Abstract: Extremal cosmological black holes are analysed in the framework of the most general
second order scalar-tensor theory, the so-called Horndeski gravity. Such extremal black holes are
a particular case of Schwarzschild-De Sitter black holes that arises when the black hole horizon
and the cosmological one coincide. Such metric is induced by a particular value of the effective
cosmological constant and is known as Nariai spacetime. The existence of this type of solutions is
studied when considering the Horndeski Lagrangian and its stability is analysed, where the so-called
anti-evaporation regime is studied. Contrary to other frameworks, the radius of the horizon remains
stable for some cases of the Horndeski Lagrangian when considering perturbations at linear order.
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1. Introduction

General Relativity (GR) has shown its power of prediction over more than one hundred years,
and despite some important issues, it is still considered as the best description of gravity. Nevertheless,
there are some fundamental questions to be answered in the future in the context of theoretical
physics. From a UV completion of gravity to cosmological late-time acceleration, among other also
relevant problems, the scientific community is making a great effort to afford them. In particular,
black hole solutions have been widely studied in the literature, as are natural solutions of GR and
have led to an important development of gravitational physics, including the famous theorems about
singularities that offer a way to understand these objects and their main features better. Particularly
Schwarzschild-(Anti) De Sitter spacetime arises in GR as a solution when considering a (negative)
cosmological constant. The black holes described by this spacetime have been of great interest as
they show a thermodynamical equilibrium when analysing Hawking radiation [1–3]. In the case of a
positive cosmological constant, the Schwarzschild-de Sitter spacetime shows in general two horizons,
one corresponding to the black hole event horizon and the other one to a cosmological horizon.
The extreme case arises when both horizons coincide at the same hypersurface, the so-called Nariai
spacetime [4], leading to an interesting structure for the spacetime and the trajectories of geodesics [5]
as well as for its spectrum [6]. In addition, the stability of such extreme spacetime has been studied
in [7], but when some corrections are included, an interesting phenomenon occurs, as the radius
of the horizon becomes unstable and grows, what has been called black hole anti-evaporation [8].
Despite that the anti-evaporation regime was initially studied and attributed to semiclassical corrections
that affect the evaporation of black holes in de Sitter spacetime when analysing the one-loop effective
action [8,9], other frameworks that lead to classical instabilities that affect the radius of the horizon

Universe 2020, 6, 210; doi:10.3390/universe6110210 www.mdpi.com/journal/universe

http://www.mdpi.com/journal/universe
http://www.mdpi.com
https://orcid.org/0000-0002-0714-2680
http://dx.doi.org/10.3390/universe6110210
http://www.mdpi.com/journal/universe
https://www.mdpi.com/2218-1997/6/11/210?type=check_update&version=3


Universe 2020, 6, 210 2 of 18

have been also named antievaporation, as the case of F(R) gravity [10], Gauss–Bonnet gravities [11],
bigravity theories [12,13] and mimetic gravity [14].

In the context of cosmology, the main issue lies on the unknown dark energy (also on dark
matter), which has been widely contrasted by observational data and many theoretical models have
been proposed to explain its main consequence, the late-time acceleration of the universe expansion
(for a review see [15–19]). Some of such dark energy models are focused on modifications of GR,
which may provide a natural solution to the problem, which might be connected to the corrections
expected from some UV completions of GR, such as string theory [20]. In this sense, the simplest
way of modifying GR is by introducing a scalar field, which incorporates an additional scalar mode
while keeping the well known predictions by GR unbroken through screening mechanism that can be
implemented by an appropriate potential—the chameleon mechanism—and by the kinetic term—the
Vainshtein mechanism. In addition, scalar-tensor theories are well known and well understood,
from the Brans–Dicke theory to Horndeski gravity, there is a wide range of scalar field models that have
been widely analysed and used not only to provide a natural explanation for dark energy but also to get
a better understanding of GR itself [21]. Generalisations of standard scalar-tensor theories have been
widely studied lately, mainly in the context of cosmology, as the so-called K-essence, which presents a
non-canonical kinetic term and provides a natural explanation for dark energy [22,23], or the so-called
Galileons, that incorporates a Galilean-like symmetry and which can also reproduce in a simple way the
late-time acceleration [24]. These types of models have in common that they may avoid the so-called
Ostrogradsky instability that arises in higher order theories, which is absent in second order theories,
such as the ones cited above. This class of scalar-tensor models are encompassed in the so-called
Horndeski gravity [25], which represents the most general theory with second order field equations
(for a review see [26,27]). Horndeski gravity is shown to be a generalisation of Galileon in its covariant
form [28], which is also connected to k-essence fields [29]. Nevertheless, there have been some healthy
extensions of Horndeski gravity also implying second order derivatives for the field equations [30–32].
In general, Horndeski gravity is well understood in many contexts, inflationary models have been
widely analysed as well as the growth of cosmological perturbations [33–37], also consequently dark
energy models can be easily implemented in Horndeski gravity [38,39], the predictions and restrictions
of which are analysed [40–43]. Also in light of the era of gravitational waves [44,45], Horndeski gravity
is shown to carry just an additional scalarmode [46], but the theory is well constrained by the speed of
propagation of the graviton [47–49], which implies several restrictions on the full Lagrangian [50].

Also, static spherically symmetric solutions, such as black holes, have been widely studied in the
literature within theories beyond GR [51–58], as they may provide a way to regularise such types of
solutions [59–62], a better understanding of Birkhoff’s theorem [63–65], or new direct ways for testing
General Relativity [66–68]. In Horndeski gravity, there have been plenty of works where such types of
solutions are studied, mainly when dealing with compact objects such as black holes [69–72], but also
when assuming the constraints imposed on the full Horndeski Lagrangian by the speed of propagation
of gravitational waves [73], and the stability of such types of spacetimes [71,72,74–77]. The no-hair
theorem is also extended in these theories [78]. Moreover, the Cauchy problem has been analysed in
Horndeski gravity by studying the hyperbolicity of the system of equations, which seems to admit
a well posed initial value problem [79]. Also the stability in non perturbative cosmology has been
studied in [80] as well as the gauge problem in such Lagrangians [81].

The aim of the present paper is to analyse Nariai spacetime in Horndeski gravity and the
emergence of the anti-evaporation regime by studying the corresponding perturbations on the metric.
Perturbations in Schwarzschild black holes and the Cauchy problem have been widely analysed
in the literature within several gravitational theories [58,82–84]. Here we intend to describe how
perturbations of a scalar field around a constant background value can affect the radius of the horizon
of the black hole. To do so, we study the existence of Schwarzschild-de Sitter solutions in its extremal
version for the Lagrangians that compose Horndeski gravity, which also show some implications on
an extended version of Birkhoff’s theorem for scalar-tensor theories. Finally, we analyse the stability of
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such solution for a shorter version of the full Horndeski Lagrangian, motivated by keeping as few free
functions as possible and which coincides with the viable terms restricted by the speed of GW’s.

The paper is organised as follows: In Section 2, a brief introduction to Horndeski gravity and the
Nariai metric is provided. Section 3 is devoted to the analysis of the viable Lagrangians that contain
the Nariai metric as a solution. In Section 4, the anti-evaporation regime is analysed. Finally, Section 5
gathers the conclusions.

2. Nariai Spacetime in Horndeski Gravity

Let us start by writing the general action that we are dealing with throughout this manuscript.
This is the Hilbert–Einstein action plus the so-called Horndeski Lagrangian:

SG =
∫

dx4√−g
[

R
16πG

+ LHr + Lm

]
, (1)

where Lm is the matter Lagrangian, which encompasses all the matter species of the system under
study while the Horndeski Lagrangian LHr is given by:

LHr = G2(φ, X)− G3(φ, X)�φ + G4(φ, X)R + G4X(φ, X)
[
(�φ)2 − φ;µνφ;µν

]
+ G5(φ, X)φ;µνGµν

−G5X(φ,X)
6

[
(�φ)3 − 3�φφ;µνφ;µν + 2φ;µνφ;νλφ

;µ
λ

]
.

(2)

Here, φ is a scalar field, Gµν is the Einstein tensor, ;µ = ∇µ is the covariant derivative, X =

− 1
2 ∂µφ∂µφ is the kinetic term, Gi(φ, X) are arbitrary functions of φ and X, and X is the derivative

with respect to X. As it is well known, the Lagrangian (2) represents the most general scalar-tensor
Lagrangian that leads to second order field equations despite that it depends on second derivatives
of the field φ at the level of the action as well as on non-minimally coupling terms to the Ricci
scalar. As shown in Reference [29], this is just the generalisation of the so-called covariant Galileon
field, the covariant version of which loses the Galilean shift symmetry that provides its name [28].
Hence, by varying the action (1) with respect to the metric gµν and with respect to the scalar field φ,
the corresponding field equations can be obtained and we can analyse how some particular spacetimes
behave within this class of theories.

Throughout this paper, we are interested in studying the Nariai spacetime, which is the extremal
case of the Schwarzschild-de Sitter black hole, as is shown below. The general Schwarzschild-de Sitter
metric can be expressed in spherical coordinates as follows:

ds2 = −A(r)dt′2 + A(r)−1dr2 + r2dΩ2
2 , (3)

where dΩ2
2 is the metric of a 2D sphere, and

A(r) = 1− 2M
r
− Λ

3
r2 . (4)

Here, Λ > 0 and M > 0. If 0 < M2 < 1
9Λ , the function A(r) has two positive roots rBH and

rc, which correspond to the black hole event horizon and to the cosmological horizon, respectively.
The global structure of this spacetime has been widely analysed in the literature [1–3]. The crucial
point here is that whenever M → 1

3
√

Λ
, the size of the black hole event horizon rBH increases and

approaches the cosmological horizon rc at r = 3M, such that Function (4) tends to:

A(r) = − (r− 3M)2(r + 6M)

27M2r
. (5)

This is the extremal case of the Schwarzschild-de Sitter black hole, which is known as the Nariai
spacetime [4]. As shown in (5), it leads to a degenerate horizon that corresponds to the black hole
one and to the cosmological one simultaneously. The causal structure of this particular case is well
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understood and the geodesics in such spacetime are well described in Reference [5]. Note that A(r) ≤ 0,
such that the radial coordinate becomes timelike and the time coordinate spacelike everywhere.
Our aim here is to analyse the metric (3) for the extremal case in the framework of the Horndeski
Lagrangian, and analyse the stability of such solution. For that purpose, let us express the metric (3)
with some more appropriate coordinates, but firstly we express the extremal case as a limit in terms of
a parameter 0 < ε << 1, [7]:

9M2Λ = 1− 3ε2 . (6)

As ε→ 0, both horizons approach each other. Then, we can choose the following coordinates [8]:

t′ =
1

ε
√

Λ
ψ , r =

1√
Λ

(
1− ε cos χ− 1

6
ε2
)

. (7)

In these new coordinates, and expanding at first order in ε, the metric (3) becomes:

ds2 = − 1
Λ

(
1 +

2
3

ε cos χ

)
sin2 χdψ2 +

1
Λ

(
1− 2

3
ε cos χ

)
dχ2 +

1
Λ

(1− 2ε cos χ) dΩ2
2 . (8)

Here the black hole horizon is given by χ = 0 whereas the cosmological one corresponds to χ = π.
The spatial topology is clearly S1 × S2. By setting ε→ 0, the extremal case is obtained and the metric
yields (8):

ds2 =
1
Λ

(
− sin2 χdψ2 + dχ2

)
+

1
Λ

dΩ2
2 . (9)

Finally, we can implement another change of coordinates that simplifies the expression (9),
which is described by the following coordinates:

x = Log
(

tan
χ

2

)
, t =

ψ

4
. (10)

The metric (9) for the Nariai spacetime becomes:

ds2 =
1

Λ cosh2 x

(
−dt2 + dx2

)
+

1
Λ

dΩ2
2 . (11)

The new coordinates are defined in the domain (−∞, ∞), as can be easily shown by (10).

3. Reconstructing the Gravitational Action in Horndeski Gravity

In this section, we analyse the particular Lagrangians within Horndeski gravity that reproduces
the Nariai solution. To do so, we use the metric as expressed in the coordinates given in (11). As shown,
Nariai spacetime can be a solution for each of the Horndeski Lagrangians as far as some constraints
are assumed on the Li functions.

3.1. Case with L2

As a first approximation to Horndeski gravity in Nariai spacetime, we will start studying the
simplest case in which only L2 for LHr is considered,

L2 = G2(φ, X) , (12)

which essentially is the usual term for K-essence theory. The first step will be to solve, at the background
level, the equations of motion given by the Einstein tensor plus an effective energy-tensor coming from
metric variations of the matter Lagrangian plus the Lagrangian defined in (12):

Gµν = Rµν −
1
2

gµνR = 8πG
[

gµνG2(φ, X) +
∂G2(φ, X)

∂X
∂µφ∂νφ + T(m)

µν

]
, (13)



Universe 2020, 6, 210 5 of 18

where T(m)
µν is the energy-momentum tensor of the matter Lagrangian, and which, for the case of our

interest, we are going to consider zero to focus on the vacuum, i.e., T(m)
µν = 0. Therefore, this tensor

equation leads to the following system of equations:

tt− 1
8πG

1
cosh2 x

= − G2(φ, X)

Λ cosh2 x
+

∂G2(φ, X)

∂X
φ̇2 , (14)

xt− 0 = −∂G2(φ, X)

∂X
∂tφ∂xφ , (15)

xx− 1
8πG

−1
cosh2 x

=
G2(φ, X)

Λ cosh2 x
+

∂G2(φ, X)

∂X
φ′2 , (16)

θθ− −1
8πG

=
G2(φ, X)

Λ
+

∂G2(φ, X)

∂X
∂θφ∂θφ , (17)

ΦΦ− − sin2 θ

8πG
= sin2 θ

G2(φ, X)

Λ
+

∂G2(φ, X)

∂X
∂Φφ∂Φφ , (18)

where dot means time derivatives and ′ derivatives with respect to x. The two main issues that we
intend to solve are the form of G2(φ, X) and φ(t, x, θ, Φ). By combining (17) with (18), it yields:

∂Φφ∂Φφ = sin2 θ∂θφ∂θφ → ∂Φφ = ± sin θ∂θφ , (19)

the solution of which is:

φ = g(t, x)
[

Φ± ln
(

cot
θ

2

)]
+ f (t, x) . (20)

However, from (14) and (16) it is possible to deduce that g(t, x) should vanish in order to keep the
same dependence parameters on the left and right hand side of the equations, and therefore φ = φ(t, x),
which implies that X = Λ cosh2(x)(φ̇2 − φ′2)/2. This is the formal way for showing that the scalar
field has to be spherically symmetric as the metric is. In addition, for solving G2(φ, X), we can use the
trace equation of (13) where the scalar curvature for the Nariai metric is R = 4Λ and therefore:

− Λ
4πG

= 2G2(φ, X)− ∂G2(φ, X)

∂X
X , (21)

the solution of which is:

G2(φ, X) = − Λ
8πG

+ f (φ)X2 . (22)

However, by Equation (15), the following condition is obtained:

2X f (φ)φ̇φ′ = 0 . (23)

It is straightforward to show that by combining (23) with xx− and tt− equations, φ′ = φ̇ = 0,
such that φ = constant. Hence, the solution of the background leads to the following constraint on
the action:

G2(φ0, 0) = − Λ
8πG

. (24)

This solution mimics the one from General Relativity with a cosmological constant, but in this
case induced by a constant scalar field φ. There is a special case when the coefficients for this system of
equations become null and the background equation is satisfied also for non-constant and non-static
scalar field solutions, which will be studied in the Appendix A. Note that despite that Birkhoff’s
theorem is satisfied in Brans–Dicke-like theories [63–65], where a static metric implies a static scalar
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field, this may not be the case for other scalar-tensor theories such as Galileons or general Horndeski
scenarios [71,72].

3.2. Case L3

For the case L3, the general gravitational action is given by

SG =
∫

dx4√−g
[

R
16πG

− G3(φ, X)�φ

]
. (25)

By varying the action (25) with respect to the metric gµν, the corresponding field equations
are obtained:

Rµν − 1
2 gµνR = 8πG

[
G3φ

(
gµν∇αφ∇αφ− 2∇µφ∇νφ

)
+G3X

(
−∇µφ∇νφ�φ− gµν∇αφ∇βφ∇αφ∇βφ + 2∇αφ∇(µφ∇ν)∇αφ

)]
.

(26)

Here the subscript () refers to a commutator among the indexes, while φ and X are derivatives
with respect to the scalar field φ and its kinetic term X respectively. The equation for the scalar field is
obtained by varying the action (25) with respect to the scalar field:

2G3φ�φ + G3φφ(∇φ)2 + G3Xφ

[
(∇φ)2�φ + 2∇µφ∇µX

]
+ G3X

[
(�φ)2 −∇µ∇νφ∇µ∇νφ− Rµν∇µ∇νφ

]
+G3XX

[
∇µφ∇µX + (∇X)2] = 0 ,

(27)

where recall that X is the kinetic term of the scalar field. As in the previous Lagrangian, a non-constant
static scalar field, φ = φ(x) is assumed. In order to show that the Nariai metric, expressed in the
coordinates as in (11), may be a solution for the gravitational action (25), we use the tt− and xx−
equations, which can be easily obtained from the field Equations (26) and yields:

tt− 1
cosh2 x

= 8πGφ′2
[
−G3φ + G3XΛ2

(
sinh x cosh xφ′ + cosh2 xφ′′

)]
,

xx− − 1
cosh2 x

= 8πGφ′2
[
−G3φ + G3XΛ2 cosh x sinh xφ′

]
.

(28)

The θθ− and ϕϕ− equations are just redundant, since the tt− equation is reproduced up to
proportional terms. In general, for an arbitrary G3(φ, X), the system of Equation (28) has no solution
φ(x), and consequently Nariai spacetime is not a solution for the gravitational Lagrangian (25).
Nevertheless, Equation (28) can be used for reconstructing the appropriate L3 Lagrangian that
reproduces the Nariai spacetime (11) when assuming a particular solution φ(x). As the corresponding
partial derivatives G3φ and G3X are at the end functions of the coordinate x, we can express both of
them in terms of the scalar field and its derivatives through Equation (28), which leads to:

G3φ(x) = 1
8πG

2 tanh x φ′+φ′′

φ′2φ′′ cosh2 x
,

G3X(x) = 1
4πGΛ

1
φ′2φ′′ cosh4 x

.
(29)

Hence, the corresponding Lagrangian (25) can be reconstructed as far as the expressions (29) are
well defined for φ(x), such that the integrability condition holds G3φX = G3Xφ. Nevertheless, it is
not straightforward to obtain an analytical and exact expression for the L3 Lagrangian, but we can
consider a couple of ways that lead to an analytical reconstruction of the action.

Firstly, we may specify the form of the function G3(φ, X), and reconstruct the corresponding
action by using the system of Equation (28) and the integrability condition on G3(φ, X). Let us consider
the following G3(φ, X):

G3(φ, X) = f1(φ) + f2(X) . (30)
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The general kinetic term X is given by:

X = −1
2

Λ cosh2 xφ′2 . (31)

Then, by the partial derivative with respect to X in (29), we obtain:

G3X = f2X =
Λ

4πG
1

X2
φ′2

φ′′
. (32)

This equation together with the assumption (30) basically imposes that φ′2

φ′′ = g(X) must be
expressed as a function of the kinetic term (31). As g(X) is in principle arbitrary as far as providing a
solution for the scalar field φ, we may assume g(X) = X such that the scalar field becomes:

φ(x) = −2 log (cosh x)
Λ

. (33)

After integrating (32), the function f2(X) turns out:

f2(X) = − Λ
4πG

1
X2 . (34)

While the partial derivative with respect to φ on G3 leads to:

G3φ = f1φ =
Λ2

32πG
1 + 2 log(cosh x)

cosh2 x
=

1
8πG

eΛφ(1−Λφ)

φ2 , (35)

which after integrating, provides the corresponding dependence on the scalar field φ:

f1(φ) = −
1

8πG
eΛφ

φ
. (36)

The full gravitational action G3(φ, X) as given in (30) is reconstructed. Nevertheless, we may
try to keep the form of G3 arbitrary and consider a particular solution for the scalar field in order to
reconstruct the action. For illustrative purposes, we consider the following solution:

φ(x) = φ0eµx . (37)

Then, by following the Equation (29), the following particular solutions are found in terms of the
coordinate x:

G3φ(x) = 1
8πG

sech2x(µ+2 tanh x)e−2µx

µ3φ2
0

,

G3X(x) = 1
4πG

sech4xe−3µx

µ4φ3
0Λ

.
(38)

The corresponding kinetic term X = − 1
2 ∂µφ∂µφ is given for this case by:

X = −1
2

φ2
0µ2Λ cosh2 xe2µx . (39)

Hence, the partial derivative G3X(φ, X) automatically leads to:

G3X(φ, X) =
Λ

16πG
φ

X2 , (40)

After integrating, it leads to:

G3(φ, X) = − Λ
16πG

φ

X
+ f (φ) , (41)
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where f (φ) has to be computed by integrating the partial derivative G3φ, which is obtained by deriving
expression (41) and equating to the expression in (38):

fφ =
1

4πGφ2
0µ3

tanh x
cosh2 xe2µx

=
1

4πGφ2
0µ3

tanh
[

log
(

φ
φ0

)1/µ
]

φ2 cosh2
[

log
(

φ
φ0

)1/µ
] , (42)

which after integrating, yields:

f (φ) = 1
8πGµ2(µ−2)φ

{
F
[

1, 1− µ/2, 2− µ/2;−
(

φ
φ0

)2/µ
]
− (µ− 2)µF

[
1,−µ/2, 1− µ/2;−

(
φ
φ0

)2/µ
]

+ sech2
[

log
(

φ
φ0

)1/µ
]
+ µ tanh

[
log
(

φ
φ0

)1/µ
]}

.
(43)

Here, F(a, b, c; x) are hypergeometric functions, which can be computed analytically for some
values of µ. For instance, µ = 1 gives:

f (φ) = − 1
4πG

 φ3 + 3φφ2
0

(φ2 + φ2
0)

2
+

arctan
(

φ
φ0

)
φ0

 . (44)

Hence, the full reconstruction of the gravitational action (25) is explicitly shown for these two
cases. The main conclusions can be obtained by analysing these two examples. As shown in the field
equations, and by the expressions of G3φ(x) and G3X(x), a constant scalar field φ(x) = φ0 is not a
solution for the Equation (28), at least whenever the Lagrangian (25) is considered as the sole action
for gravity. In addition, the freedom of the function G3(φ, X) implies that different Lagrangians can
reproduce the Nariai metric, but leading to different solutions for the scalar field, as far as its partial
derivatives (29) are well defined, as has been shown by these two examples.

3.3. Case L4

Let us now analyse the solutions when the Lagrangian L4 in (2) is considered as the sole
gravitational action:

SG =
∫

dx4√−g
[

R
16πG

+ G4(φ, X)R + G4X

(
(�φ)2 −∇µ∇νφ∇µ∇νφ

)]
. (45)

As usual, by varying the action (25) with respect to the metric gµν, the corresponding field
equations are obtained:(

1
16πG + G4

) (
Rµν − 1

2 gµνR
)
−∇µ∇νG4 + gµν�G4 − 1

2 gµνG4X
(
(�φ)2 −∇µ∇νφ∇µ∇νφ

)
+... (second order terms) = 0 .

(46)

We can proceed as in the previous Lagrangian. However, the degree of freedom on the function
G4(φ, X) will lead to a set of infinite solutions for the scalar field, as shown above for L3, which does
not provide any new insights on Nariai spacetime in Horndeski gravity, but just some similar features
as in the previous case, i.e., for a given solution φ(x), one can in general reconstruct the appropriate
action through G4(φ, X), while the other way around, that is, given an arbitrary G4(φ, X) function,
the field Equation (46) does not have any solution for the scalar field in general, except for some special
cases of the G4(φ, X) function, as also shown for G3(φ, X) above. In addition, note for the general
Horndeski Lagrangian, the speed of gravitational waves is given by [47]:

cGW =
G4 − X(φ̈G5X + G5φ)

G4 − 2XG4X − X(Hφ̇G5X − G5φ)
, (47)



Universe 2020, 6, 210 9 of 18

where H is the Hubble parameter. Hence, by assuming G4(φ, X) = G4(φ) and G5 = 0, analogously
to [48], the speed of propagation for GW’s is kept as the speed of light cGW = 1, satisfying the
constraints obtained from the GW170817 detection [44,45]. Hence, we explore here the case where
G4(φ, X) = G4(φ), such that the field Equation (46) read:

tt−
(

1
16πG + G4

)
sech2 x− φ′2G4φφ − (tanh xφ′ + φ′′)G4φ = 0 ,

xx− −
(

1
16πG + G4

)
sech2 x− tanh xφ′G4φ = 0 ,

θθ− −
(

1
16πG + G4

)
sech2 x− φ′2G4φφ + φ′′G4φ = 0 .

(48)

By combining the xx− and θθ− equations, it yields:

tanh x G4φφ′ = 0 → φ = constant . (49)

Hence, the only solution leads to a constant scalar field, similarly to G2(φ, X), unless G4φ = 0,
which together with other conditions is analysed in Appendix A. For this specific case, the only choice
of G4 that satisfies the equations of motion is:

G4(φ) = −
1

16πG
, (50)

Nevertheless, for this choice the gravitational effective coupling constant in (45) becomes null and
consequently the theory is ill defined in general. Then, for the particular case (45) with G4 = G4(φ),
Nariai spacetime and consequently Schwarzschild-(A)dS is not reproduced by such Lagrangian. This is
a natural consequence as Schwarzschild-(A)dS spacetime requires the presence of a cosmological
constant, which cannot emerge from another term. However, such issue can be easily sorted out by
adding a scalar potential in the action,

SG =
∫

dx4√−g
[

R
16πG

+ G4(φ)R−V(φ)

]
. (51)

The equations do not differ much from the ones above, but just up to a potential term,

tt−
(

1
16πG + G4

)
sech2 x− φ′2G4φφ − (tanh xφ′ + φ′′)G4φ − sech2 x

2Λ V(φ) = 0 ,

xx− −
(

1
16πG + G4

)
sech2 x− tanh xφ′G4φ + sech2 x

2Λ V(φ) = 0 ,

θθ− −
(

1
16πG + G4

)
sech2 x− φ′2G4φφ + φ′′G4φ + sech2 x

2Λ V(φ) = 0 .

(52)

As in the previous case, by combining the xx− and θθ− equations, the constraint Equation (49) is
obtained, what leads to a constant scalar field φ(x) = φ0, and by replacing in Equation (52), it leads to:

− G4(φ0) +
V(φ0)

2Λ
=

1
16πG

. (53)

Hence, Nariai spacetime is a solution for the gravitational action (51) as long as the algebraic
Equation (53) has at least a real solution.

Therefore, it is clear that Schwarzschild-(A)dS spacetime, and specifically Nariai spacetime is
a solution for each of the Horndeski Lagrangians whereas some constraints are imposed on the
Lagrangians Li. It is straightforward to show that the Nariai metric is also a solution of the full
Horndeski Lagrangian as the degrees of freedom added by each Li provides a way of reconstructing
the corresponding gravitational action, what will imply an infinite number of choices on the Gi
functions and a degenerate solution for the scalar field, as has been shown for some of the Lagrangians
above, and which will also affect the full gravitational action due to the freedom of choosing the
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corresponding Lagrangians. In the next section, we analyse the stability of these extremal blackholes
for those cases that the Nariai metric imposes real constraints on the Lagrangians.

4. Anti-Evaporation Regime in Horndeski Gravity

In this section, we analyse the stability of Nariai spacetime when perturbations around
the background solution are introduced. To do so, we focus on the first four terms of the
Horndeski Lagrangian:

SG =
∫

dx4√−g
[

R
16πG

+ G2(φ, X)− G3(φ, X)�φ + G4(φ)R
]

. (54)

Note that (54) is the most general Horndeski Lagrangian that keeps the speed of gravitational
waves (47) as the speed of light. As shown in the previous section, for a given solution φ(x) and
the Nariai metric (11), one can reconstruct the corresponding Horndeski Lagrangian that reproduces
such solution. Nevertheless, here we are assuming for simplicity while analysing the perturbations,
a constant scalar field for the background φ(x, t) = φ0, such that following the results from the
above section, Nariai spacetime is a solution for the gravitational action (54) as long as the following
constraint is satisfied:

G20

2Λ
+ G40 = − 1

16πG
. (55)

A useful way to define perturbations around the Nariai metric is:

ds2 = e2ρ(x,t)
(
−dt2 + dx2

)
+ e−2ϕ(x,t)dΩ2

2, (56)

in which ρ(x, t) and ϕ(x, t) at the background level are: ρ = − ln
√

Λ cosh x and ϕ = ln
√

Λ.
The perturbations on the metric and the scalar field (with spherical symmetry) can be expressed
as follows:

φ → φ0 + δφ(t, x)
ρ → − ln

[√
Λ cosh x

]
+ δρ

ϕ → ln
√

Λ + δϕ

(57)

Let us show how the perturbations are transformed under a gauge transformation in order to
construct gauge invariants that allow us to isolate the physical perturbations from gauge artifices.
We can consider an infinitesimal transformation of coordinates, given by

x′µ = xµ + δxµ , (58)

On any generic quantity F, this implies a transformation on its perturbation:

δF′ = δF + £δxF0 . (59)

Here the prime denotes the quantity transformed in the new coordinates, F0 is the background
value and £δx is the Lie derivate along the vector δxµ. The corresponding perturbations on the metric
are transformed as follows:

δρ′ = δρ + £δxρ0 ,
δϕ′ = δϕ + £δx ϕ0 = δϕ .

(60)

We are interested in the perturbation δϕ, as the one that defines the perturbation on the radius
of the horizon (see below). This is a gauge invariant quantity, such that we can work in an arbitrary
gauge to solve the equations. Hence, introducing the perturbations (57) in the field equations, up to
linear order leads to:(

1
16πG

+ G4

)
δGµν + GµνG4φδφ− G4φ∇µ∇νδφ + gµνG4φ�δφ− 1

2
(
G2φgµνδφ + G2δgµν

)
= 0 . (61)
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Note that the functions Gi and their derivatives are evaluated at φ = φ0 and expanded up to first
order in perturbations as follows:

G2(φ, X) → G2(φ0, 0) + ∂G2(φ,0)
∂φ

∣∣∣
φ0

δφ

G4(φ) → G4(φ0) +
∂G4(φ)

∂φ

∣∣∣
φ0

δφ
(62)

Our next step will be the introduction of these perturbations into the field equations to study its
evolution. The (tt), (xx) and (tx) perturbation equations are respectively:

−2G20sech2xδϕ + (G2φ + 2ΛG4φ)sech2xδφ− 2G20(tanh xδϕ′ + δϕ′′)− 2G4φΛ(tanh xδφ′ + δφ′′) = 0 ,

−2G20sech2xδϕ + (G2φ + 2ΛG4φ)sech2xδφ + 2G20 (tanh xδϕ′ + δϕ̈) + 2G4φΛ (tanh xδφ′ + δφ̈) = 0 ,

G20 (tanh xδϕ̇ + δϕ̇′) + G4φΛ (tanh xδφ̇ + δφ̇′) = 0,

(63)

The (tx)− equation can be rewritten as follows:

∂
∂t
[
G20 (tanh xδϕ + δϕ′) + G4φΛ (tanh xδφ + δφ′)

]
= 0 ,

→ g(x, t) tanh x + g′(x, t) = h(x) ,
(64)

where h(x) is an integration function to be determined, while g(x, t) = G20δϕ + G40Λδφ, in which
integrating the Equation (64) yields:

g(x, t) = G20δϕ + G40Λδφ = f (t) sechx + sechx
∫

cosh x h(x)dx . (65)

Then, by combining the tt− and xx− equations, the functions f (t) and h(x) are determined,

f (t) = C1et + C2e−t , h(x) = C3 tanh x + C4 ,
→ g(x, t) =

(
C1et + C2e−t) sechx + C3 + C4 tanh x .

(66)

Here, Ci’s are integration constants. Then, the expression for the metric perturbation δϕ can be
easily obtained:

δϕ =
C1et + C2e−t

G20
sechx + C3

G2φ + 2ΛG4φ

G20(G2φ + 4ΛG4φ)
+ C4 tanh x. (67)

We can now calculate how the horizon changes when considering the above perturbations on the
metric. The horizon is a null hypersurface that can be defined as follows:

gµν∇µ ϕ∇ν ϕ = 0 , (68)

By introducing (57) and (67) in (68), the following relation is obtained:

C2
1e4t + C2

2 −
(

C2
4 + 2C1C2 cosh 2x

)
e2t + 2C1C4e3t sinh x + 2C2C4et sinh x = 0 , (69)

which relates the x−coordinate and the t−coordinate at the horizon:

x = log

C4 +
√

4C1C2 + C2
4

2C1
e−t

 . (70)

Hence, the perturbation (67) on the metric at the horizon leads to:

δϕh =
1

G20

[
C3

G2φ + 2ΛG4φ

G2φ + 4ΛG4φ
+
√

4C1C2 + C2
4

]
(71)
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Therefore, the perturbation at the horizon remains constant. By the Nariai metric (56), one can
identify the radius of the horizon when it is perturbed as:

rh =
e−δϕh
√

Λ
=

e
− 1

G20

[
C3

G2φ+2ΛG4φ
G2φ+4ΛG4φ

+
√

4C1C2+C2
4

]
√

Λ
. (72)

Note that this expression is time independent, such that no anti-evaporation effect arises when
considering the restricted Horndeski Lagrangian (54) in Nariai spacetime. The only effect is a shift of the
horizon, which may increase or decrease depending on the values of the integration constants (initial
conditions) and on the functions Gi and their derivatives evaluated at φ0 (Horndeski Lagrangian).
In addition, if we set the integration constants to zero Ci = 0, the radius turns out rh = 1/

√
Λ,

i.e., the radius for the horizon in the Nariai spacetime. Moreover, by calculating the perturbation on
the scalar field δφ through (65), it yields:

δφ(x, t) =
2C3

G2φ + 4ΛG4φ
. (73)

Hence, the scalar field perturbation does not propagate but just introduces a perturbation on the
effective cosmological constant, which explains the absence of the anti-evaporation regime and the
shift of the horizon radius when considering perturbations on Nariai spacetime in the framework of
Horndeski gravity.

5. Conclusions

In the present paper we have analysed several aspects of Schwarzschild-de Sitter black holes,
and particularly its extremal case when both horizons, the cosmological and the black hole ones
coincide at the same hypersurface of the spacetime, the so-called Nariai metric. Focusing on the
framework of Horndeski gravity, we have shown that the existence of such type solutions when
Horndeski Lagrangians are considered can be easily achieved by the induction of an effective
cosmological constant, which naturally arises when considering a constant scalar field for some
of the Horndeski terms. In addition, we have found that not only a constant scalar field owns Nariai
spacetime as a solution of the gravitational field equations but also non-constant scalar field can
reproduce Schwarzschild-de Sitter extremal black holes when considering the appropriate functions on
the gravitational Lagrangian. However, this result may not satisfy the generalised Birkhoff’s theorem
as for Brans–Dicke-like theories [63–65], since despite that Nariai spacetime is a static metric, the scalar
field may become non-static, as explained in Appendix A.

By considering perturbations on the background scalar field, which is assumed constant,
the induced perturbations on the metric turns out to be time dependent, which modifies the staticLK
regime of the metric, inducing an exponential expansion, a natural solution when considering an
effective cosmological constant. Nevertheless, the linear regime just induces a slight modification
on the horizon radius, keeping it constant. Contrary to other frameworks where perturbations on
the Nariai spacetime have been considered [8–11], which reproduces the so-called anti-evaporation
regime, where the radius of the horizon may grow with time, this effect seems to be absent for the type
of Horndeski Lagrangian analysed here. One obviously expects to find a non-constant scalar field
perturbation by going beyond the linear regime, which will consequently induce the anti-evaporation
regime. In addition, a non-constant scalar field for the background is also expected to produce such
phenomena, as perturbations on its propagation will naturally induce effects on the horizon radius,
making the Nariai metric unstable.
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Appendix A

In Section 3 we found solutions to the equations for the L2, L3 and L4 cases. Nevertheless, the full
set of solutions is not completely covered by the analysis above. Firstly, by analysing the equations for
the L2 Lagrangian given in (13), a skillful reader could wonder about the special case in which the—in
principle, non constant—coefficients of the equations become null. With the study of this case in mind,
let us rewrite the Einstein tensor for an Einstein manifold, like the Nariai spacetime, as: Gµν = −Λgµν.
Therefore, Equation (13) acquires the form:

0 =

[
G2(φ, X) +

Λ
8πG

]
gµν +

∂G2(φ, X)

∂X
∂µφ∂νφ. (A1)

In addition, the scalar field equation is:

0 = 2G2φX(φ, X)X− G2XX(φ, X)∇µX∇µφ− G2X(φ, X)�φ− G2φ(φ, X). (A2)

So, as long as the G2 function satisfies the following conditions:

G2(φ0, X0) = − Λ
8πG ≡ −A

G2X(φ0, X0) = G2φ(φ0, X0) = G2φX(φ0, X0) = G2XX(φ0, X0) = 0 ,
(A3)

the field equations above hold. A possible reconstruction of G2 is given by:

G2(φ, X) = ∑
n≥3

cn [g(φ, X)− C]n − A (A4)

in which the function g(φ, X) must satisfy that of g(φ0, X0) = C, which becomes the field equation
for the scalar field. Some examples of this can be found, but we think that the main issue here is the
possibility of solutions with φ0 6= constant. In principle, this fact will affect the perturbations and
change our conclusions because recall that we had considered a background scalar field as a constant
to solve the system of the perturbations above. For this case, the perturbation equations are:

δ

(
8πG

[
gµνG2(φ, X) +

∂G2(φ, X)

∂X
∂µφ∂νφ

])
= δGµν , (A5)

which under the constraints (A3) at first order yields:

δGµν = −Λδgµν , (A6)

As the perturbations on the Einstein tensor remains the same, the following system of equations
for δϕ(x, t) is obtained:

tt− δϕ′′ + tanh xδϕ′ + sech2xδϕ = 0 ,
xx− δϕ̈ + tanh xδϕ′ − sech2xδϕ = 0 ,
tx− δϕ̇′ + tanh xδϕ̇ = 0 .

(A7)
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The general solution of this system of equations is:

δϕ(x, t) =
(
C1et + C12e−t) sechx +

1
2

C3 tanh x , (A8)

where Ci are integration constants. Hence, the perturbation on the horizon radius (72) is easily obtained:

rH =
e−

1
2

√
C2

3+16C1C2
√

Λ
, (A9)

which as in the case analysed throughout the paper, leads to a constant such that no instability occurs.
A similar analysis can be applied for the Lagrangians L3 and L4. For the former, the background

equation can be expressed as:

− 1
2 Λgµν = 8πG

[
G3φ

(
gµν∇αφ∇αφ− 2∇µφ∇νφ

)
+G3X

(
−∇µφ∇νφ�φ− gµν∇αφ∇βφ∇αφ∇βφ + 2∇αφ∇(µφ∇ν)∇αφ

)]
.

(A10)

Then, we may impose to each term of the right hand side of this equation to be expressed
as follows:

G3φ

(
gµν∇αφ∇αφ− 2∇µφ∇νφ

)
= k1gµν ,

G3X

(
−∇µφ∇νφ�φ− gµν∇αφ∇βφ∇αφ∇βφ + 2∇αφ∇(µφ∇ν)∇αφ

)
= k2gµν ,

(A11)

where ki are constants. Nevertheless, the first condition leads to:

∇µφ∇νφ ∝ gµν f (x) , (A12)

with f (x) being a function of the coordinates to be determined. By inspecting the tt− and
xx− equations,

φ̇2 = −1
2

1
Λ cosh x

f (x) , φ′2 =
1
2

1
Λ cosh x

f (x) . (A13)

This does not guarantee a real solution for φ(x, t). Hence, we can not find general conditions on
the function G3 but the system of equations has to be analysed step by step, as done in Section 3.2.

The case for L4 is similar to L2. The background Equation (46) hold by imposing:

G4(φ0, X0) = − 1
16πG

G4X(φ0, X0) = G4φ(φ0, X0) = G4φX(φ0, X0) = G4XX(φ0, X0) = 0
G4XXX(φ0, X0) = G4XXφ(φ0, X0) = G4Xφφ(φ0, X0) = G4φφφ(φ0, X0) = 0 .

(A14)

As above, this can be satisfied by:

G4(φ, X) = ∑
n≥4

cn [g(φ, X)− C]n − 1
16πG

, (A15)

where g(φ0, X0) = C. Nevertheless, all the coefficients of the perturbation equation become also null
for any background solution φ0, such that we have a degenerated equation that does not pose a well
defined problem.
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