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ABSTRACT

The formation of planetesimals requires the growth of dust particles through collisions. Micron-sized particles must grow by many
orders of magnitude in mass. To understand and model the processes during this growth, both the mechanical properties and the
interaction cross sections of aggregates with surrounding gas must be well understood. Recent advances in experimental (laboratory)
studies now provide the background for pushing numerical aggregate models to a new level. We present the calibration of a previously
tested model of aggregate dynamics. We use plastic deformation of surface asperities as the physical model to match the velocities
needed for sticking with experimental results. The modified code is then used to compute both the compression strength and the
velocity of sound in the aggregate at different densities. We compare these predictions with experimental results and conclude that the
new code is capable of studying the properties of small aggregates.

Key words. methods: numerical – planets and satellites: formation

1. Introduction

It is commonly accepted that planets form in protoplanetary
disks. Giant planets are believed to be produced via one of two
competing scenarios. The first one is a gravitational instability
(Boss 2007). Clumps of gas (intermixed with dust) may become
gravitationally bound and contract forming giant planets. This
model is still being hotly debated (i.e. Pickett et al. 2000; Boley
et al. 2006, 2007; Mayer et al. 2002, 2004, 2007). The second,
more commonly accepted scenario is known as the core accre-
tion model (Pollack et al. 1996). In this mechanism the solid
core of a planet forms first and gas is accreted onto that core
later. The core itself is believed to form by collisional accumu-
lation of planetesimals. Because of their similarity to the giant
planets’ cores, terrestial planets must form out of planetesimals
with the help of gravitational interactions.

The formation of planetesimals is also a subject of debate.
The scenario initially proposed by Goldreich & Ward (1973) as-
sumed a laminar structure of the disk. When the dust sublayer
reaches a critical thickness, a gravitational instability may form
planetesimals from the dense and gravitationally bound concen-
trations of dust. However, this mechanism requires an extremely
laminar nebula. The shearing motion of the dust layer causes a
Kelvin-Helmholtz instability and therefore limits the thickness
of the sublayer. The gravitational instability of the dust layer
is then prevented. This was proved by Weidenschilling (1984),
Cuzzi et al. (1993), and Johansen et al. (2006a).

The core accretion model requires micron-sized dust grains
to grow into km-sized planetesimals. These are over 27 orders of
magnitude in mass. Radial drift alone may move dust particles
inwards onto the central star before they reach a bigger size. The
drift can move meter-sized particles all the way in within only
100 orbits (Weidenschilling 1977). Relative velocities of large
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bodies set another barrier against the accumulation of large par-
ticles (Weidenschilling & Cuzzi 1993; Wurm et al. 2005a; Ormel
& Cuzzi 2007). A recent study by Johansen et al. (2006b) shows,
however, that planetesimals might be produced by a gravitational
collapse in the presence of turbulence. Meter-sized boulders con-
centrated in high-pressure turbulent eddies in the disk may form
gravitationally bound clumps. Even if this process can really be
made to work, dust particles must first grow over 18 orders of
magnitude in mass to be able to form such dense accumulations.
This growth must happen through the collisional sticking of dust
particles.

The initially small, micron-sized, dust grains (also referred
to later as monomers) collide and stick to each other thanks to
attractive surface forces (Johnson et al. 1971). The fine dust is
very well-coupled to the gas, meaning that the particles move
collectively. The relative velocities are very small because of
the Brownian motion (Brown 1828). These conditions lead to
a quasi-monodisperse growth that tends to collide particles of
similar sizes. The aggregates (further referred to as agglomerates
or particles) formed in this case are fractal (Kempf et al. 1999;
Blum et al. 2000; Krause & Blum 2004; Paszun & Dominik
2006).

The Brownian growth produces aggregates with a very open
structure and the fractal dimension Df = 1.5 (Blum et al. 2000;
Krause & Blum 2004; Paszun & Dominik 2006). However, the
gas density influences the growth. When the collisions are no
longer ballistic due to high gas density and thus short stopping
length, the fractal dimension decreases and, in the case of a very
high gas density, it may even approach unity (Paszun & Dominik
2006). This process may play a role in the innermost regions of
protoplanetary disks.

The subsequent growth of the dust aggregates eventually
leads to decoupling of the dust component from the gas. The par-
ticles start to be affected by turbulence, sedimentation, and radial
drift (Weidenschilling 1977, 1980, 1984). The relative velocities
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thus increase, and collisions tend to occur between agglomerates
of different sizes (Weidenschilling & Cuzzi 1993). When the col-
lision energy becomes higher than some threshold-restructuring
energy, aggregates are compacted and their fractal dimension
approaches Df = 3 (Dominik & Tielens 1997; Blum & Wurm
2000). Further growth and compaction causes the particles to
decouple from the gas more effectively and the relative veloci-
ties increase even more. Dominik & Tielens (1997) and Blum &
Wurm (2000) have shown that the outcome of collisions can be
categorized in terms of collision energy. Perfect sticking with-
out restructuring occurs when the collision energy is lower than
the threshold rolling energy, which is the energy needed to roll
a single particle over an angle of π/2. When the collision en-
ergy reaches this limit, the aggregates start to compress upon
impact. The maximum compaction occurs when the collision en-
ergy equals the rolling energy times the number of contacts in
the aggregates. The particles start to lose monomers, when the
impact energy reaches the number of contacts in the aggregate
times the energy needed to break one contact. Catastrophic dis-
ruption occurs when the energy reaches several times the num-
ber of contacts times the breaking energy. Therefore, as particles
grow and decouple from the gas, eventually relative velocities
are reached that will lead to shattering of the colliding aggre-
gates (Ormel & Cuzzi 2007).

This general picture has several missing elements. Although
numerous experiments have been performed in different size and
velocity regimes (Krause & Blum 2004; Blum & Wurm 2000;
Wurm et al. 2005a,b; for a review see Blum & Wurm, ARA&A,
2008, in press), our understanding of the processes involved in
the growth of aggregates is still incomplete. The restructuring
mechanism for instance is understood only qualitatively. The de-
gree of the collisional compaction still remains a mystery. This,
however, is crucial for the growth of the meter sized aggregates.
The sticking efficiency as a function of the particle density along
with the density evolution must be determined in order to under-
stand quantitatively the growth of meter sized boulders.

The low strength of the aggregates due to the fractal struc-
ture leads to fragmentation in the case of fast impacts. The dis-
tribution of fragment sizes must be also determined as a func-
tion of the collision energy. This makes it possible to keep
track of the realistic size distribution in the disk. Small par-
ticles, if not replenished in the disk, are very quickly swept
up by larger grains (Dullemond & Dominik 2005). Thus the
small particles should be supplied to the disk by some processes.
Dominik & Dullemond (2008) show that the infall of grains from
the parent cloud is rather unrealistic and requires fine tuning
of parameters to reproduce observational data. Thus collisional
fragmentation is the most likely mechanism that can explain
the population of small grains in protoplanetary disks. However,
long before fractal aggregates approach velocities high enough
to cause fragmentation, they undergo collisional compression
(Blum & Wurm 2000; Weidenschilling & Cuzzi 1993). Thus
the only scenario leading to fragmentation of fractals is collision
with much larger non-fractal particle.

The current understanding of processes like sticking, bounc-
ing and fragmentation of aggregates is poor. The understanding
of this processes on micro scales may fill these gaps and allow
extrapolations to the larger sizes. This may be resolved by two
approaches. Experiments may be performed in a laboratory to
provide useful data. However, this way is available only for ag-
gregates below centimeter in size. Larger particles are currently
inaccessible for experiments. The second, theoretical approach,
provides understanding of the material properties of porous mat-
ter and reach aggregates of meter size and beyond. Thus it would

be ideal to provide theoretical predictions for centimeter sized
and larger aggregates.

Sirono (2004) has developed a model capable of simulat-
ing meter-sized and larger aggregates, using smoothed particles
hydrodynamics (SPH). In this case one particle in the model is
an aggregate characterized by material properties, such as com-
pressive strength, tensile strength, density, and sound speed. To
obtain some of these properties, he fitted power-law functions
to experimental data of compression and tensile strength. This
method was then also used by Schäfer et al. (2007). Further
studies require, however, a more precise determination of the
material properties of porous bodies. These may be obtained in
laboratory experiments or in computer simulations as presented
in this work.

More realistic Solar nebula dust analogs were used in ex-
periments by Blum et al. (2006). They investigated aggregates
made of micron-sized dust particles. Moreover, different aggre-
gates used in these experiments consisted of spherical or irreg-
ularly shaped monomers. The compression and tensile strength
curves for these dust cakes were determined.

Although experiments quantitatively describe processes in
cm-sized aggregates, it is difficult to access for small aggre-
gates of a few microns. Aggregate dynamics models (Dominik
& Tielens 1997; Dominik & Nübold 2002) are ideal for sim-
ulations of these small-scale structures. This method spatially
resolves single monomers, which is certainly needed to under-
stand physics of the large meter-sized bodies. Until now the main
drawback of this aggregate dynamics model has been missing
quantitative agreement with experiments, even though the qual-
itative agreement has already been established (Blum & Wurm
2000). Thus a calibration of this model is required.

Another aggregate dynamics model has recently been pre-
sented by Wada et al. (2007). They made use of potential ener-
gies to derive forces acting between grains at different degrees
of freedom. In this case they only present a 2D case, but their
results agree with findings of N-body model presented earlier
by Dominik & Tielens (1997). Wada et al. (ApJ, 2007, submit-
ted) show the first results of compression and disruption of 3D
aggregates in head – on collisions. Although the model quali-
tatively agrees with experiments, as is studied by Dominik &
Tielens (1997), the quantitative mismatch is still present. Wada
et al. (2007) do not show any solution to the quantitative dis-
agreement between theory and laboratory experiments. This pa-
per addresses this issue and provides mechanisms that fit our
model to the empirical data.

In this paper we present the calibration of the aggregates
dynamics model developed by Dominik & Tielens (1997) and
Dominik & Nübold (2002). We fit the code using experimental
data and test it further. Modifications that are implemented in the
code are presented, together with a few possible application of
the model.

2. The model

To study the agglomeration mechanisms involved in the growth
of planetesimals, we used the SAND code (soft aggregate nu-
merical dynamics) developed by Dominik & Nübold (2002). It
is an N-body model of a system of spherical particles interacting
via surface forces.

Two monomers only feel the attractive force when they are
in contact. The surfaces of the particles are deformed and form a
contact area. When the particles are pulled outwards, increas-
ing the relative distance, the contact area decreases and the
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monomers are pulled back to the equilibrium position by the sur-
face forces. The compression of the system, on the other hand,
leads to increasing the contact area and repulsive force pushing
the particles apart. A detailed description of the surface forces
was provided by Johnson et al. (1971) (referred to as JKR). The
influence of adhesion forces on the contact between particles
was also studied by Derjaguin et al. (1975). The model is able
to treat long-range magnetic forces (Dominik & Nübold 2002);
however, these are not the subject of our current study.

There are two main processes that govern the events during a
collision. The first one breaks a contact between two monomers.
This dissipates part of the energy and weakens or destroys ag-
gregates participating in the collision. The second process is a
rolling motion of a monomer over another grain. This also dissi-
pates energy and causes a restructuring of an aggregate. This
restructuring may be attributed to either compression, which
results in strengthening the aggregate, or decompression, i.e.
weakening the aggregate’s structure.

The JKR theory predicts a critical force that is needed to
separate two particles. This prediction was tested for the case of
micron-size Silica spheres by Heim et al. (1999). Two monomers
were pulled off each other using an Atomic Force Microscope.
The measured pull-off force agreed with the force predicted by
the JKR theory. The pull-off force is

Fc = 3πγR, (1)

where γ is a surface energy and R =
(

1
R1
+ 1

R2

)−1
is a reduced ra-

dius of the spheres in contact. Thus the results of the experiments
confirm the theoretical predictions.

A similar experiment was performed to determine the hor-
izontal forces acting on the particles in contact (first studied
theoretically by Dominik & Tielens 1997). The horizontal dis-
placement of the contact zone causes a torque acting against the
displacement. The resulting rolling friction was measured in lab-
oratory experiments, again using an AFM (Heim et al. 1999).

2.1. Rolling friction

Rolling friction is one of the most important energy dissipation
channels in the restructuring of aggregates (Dominik & Tielens
1997). It is thus very importance to treat it in a correct way. The
theoretical derivation by Dominik & Tielens (1997) shows that
the energy associated with initiating rolling is expressed as

eroll = 6πγξ2crit, (2)

where ξcrit is a critical displacement at which the inelastic behav-
ior occurs and energy is dissipated. Initially, ξcrit was assumed to
be close to inter – atomic distances (Dominik & Tielens 1997).
The rolling motion causes a shift of the contact area, implying
that the contact at one end has to be broken to form it at the
other side of the contact area. The experimentally determined
friction showed that the critical displacement must be larger. The
determined value was ξcrit = 3.2 nm, meaning that the displace-
ment is close to ten inter atomic distances. Dominik & Nübold
(2002) has already taken that into account and used the value of
ξcrit = 10 Å in their model. This was applied, however, to dif-
ferent material than the one investigated in the lab. We followed
Heim et al. (1999) and applied a higher value for ξcrit = 20 Å,
which is approximately 10 inter atomic distances.

2.2. The pull-off force and the critical velocity for sticking

The dominating mechanism that dissipates energy at low veloci-
ties is rolling. At higher impact speeds, however, other channels
become more important. Chokshi et al. (1993) and Dominik &
Tielens (1997) calculated how much of the initial energy is dissi-
pated in the collision between two particles. This gives the max-
imum energy at which the particles can stick in a head–on colli-
sion. The critical velocity is given by

vcrit = 1.07
γ5/6

E∗1/3R5/6ρ1/2
, (3)

where γ, R and ρ are surface energy, reduced radius and mass

density, respectively. The equation E∗−1 =
1−ν21
E1
+

1−ν22
E2

is a re-
duced elasticity modulus with νi and Ei being Poisson’s ratio and
Young’s modulus, respectively, of grain i. When Eq. (3) is ap-
plied to a R1 = 0.6 μm silica grain, impacting flat silica surface, it
gives the critical velocity vcrit = 0.18 ms−1. This was tested again
in experiments. Poppe et al. (2000) show that such a particle can
stick to the surface at significantly higher velocities on the or-
der of 1 ms−1. The measured velocities were 1.2 ± 0.1 ms−1 for
0.6 μm grains and 1.9 ± 0.4 ms−1 for 0.25 μm grains. They used
a slightly different definition of the critical velocity. The critical
velocity was defined as the velocity at which the probabilities
of sticking and bouncing are equal to 50%. They measured the
sticking velocity for different materials, shapes and sizes of par-
ticles. The resulting critical velocity was shown to depend on
the size of the monomer as a power law with an index of about
0.53. Although the theoretically derived slope R−5/6 of the power
law is different from the empirical data, they are still consistent
within error bars. Moreover the power law was fitted to only two
data points.

We assume that the theoretical dependence on the radius is
correct and consistent with the experiment. The discrepancy be-
tween the absolute values of the critical velocity, however, has
to be revised, and doing so is absolutely essential for meaning-
ful results.

To better understand the mechanisms involved in the sticking
of the monomers, we refer to experiments by Dahneke (1975)
and Poppe et al. (2000). They investigated the bouncing of
micron-sized spheres off a flat silica surface. In the earlier ex-
periment, the impacting particle was made of soft polystyrene,
while the later one used silica grains.

Dahneke (1975) experimentally determined the critical ve-
locity to be about 1 m s−1. The ratio of the rebound velocity to
the incident speed (coefficient of restitution) decreases in this
case with decreasing impact velocity. At very high velocities of
about 20 m s−1, Dahneke (1975) noticed a decrease in the restitu-
tion coefficient with increasing impact speed. He related that be-
havior to plastic deformation. In the experiment by Poppe et al.
(2000) the first positive value of the coefficient of restitution in-
dicates a critical velocity on the order of ∼1 m s−1.

To scale the model to the experimental data, we introduce a
mechanism that dissipates part of the initial energy at the mo-
ment of first contact. The plastic deformation of small asperities
on the surface of the grain is an easy way to dissipate the energy
and increase the critical velocity. Below we estimate the central
pressure in order to compare it to the yield strength of 104 MPa
(Callister 2000) for silica1. Chokshi et al. (1993), on the other
hand, argue that the yield strength for very small bodies is nearly

1 Since the yield strength of brittle material like silica is not defined,
flexular strength is given.
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0.2 times the Young’s modulus of the material. This corresponds
to 11 GPa for silica.

The maximum pressure in the contact area occurs in the cen-
ter of the contact. The radial distribution of pressure in the con-
tact zone is (Dominik & Tielens 1996)

p(r, a) = 6
Fc

πa2
0

a
a0

(
1 −

( r
a

)2
)1/2

−2
Fc

πa2
0

(
a
a0

)−1/2(
1 −

( r
a

)2
)−1/2

, (4)

where a0 in this equation is the equilibrium contact radius
given as

a0 =

(
9πγR2

E∗

)1/3

. (5)

Now we need to estimate the maximum contact radius that is
reached during the collision. The radius of the contact area in-
creases with increasing normal load. The force applied to the
sphere during the collision is F = d(mv)/dt, where d(mv) is the
momentum of the impacting particle and dt ≈ 10−9 s is the col-
lision time. With this force applied, the contact radius is

a =

(
3R
4E∗

(F + 6πγR +
√

(6πγR)2 + 12πγRF)

)1/3

, (6)

as derived by Johnson et al. (1971). Thus in the case of the ve-
locity v = 1 m/s, the central pressure is close to 1 GPa. This
pressure is, however, exactly in between the two values of the
yield strength specified above, making plastic deformation pos-
sible. The lower limit of the yield strength (104 MPa) is reached
at radii r/a < 0.914, which exposes 83% of the contact area to
potential plastic deformation.

This idea was investigated before by Tsai et al. (1990). The
energy consumption in such a deformation can be expressed as

Easp = YVasp, (7)

where Y is the yield strength of the deforming material and Vasp
the volume of the asperities that are flattened during the colli-
sion. To calculate the dissipated energy we need to get the vol-
ume of asperities. We follow Tsai et al. (1990) again and calcu-
late the maximum contact area given by

amax =

⎛⎜⎜⎜⎜⎜⎝
(

3R
4E∗

) [
Feq + 6πγR +

√
(6πγR)2 + 12πγRFeq

]⎞⎟⎟⎟⎟⎟⎠
1/3

(8)

(Chokshi et al. 1993) and the equivalent impact force given by
Tsai et al. (1990) as

Feq = 2.53/5E3/5
kin R1/5E∗ 2/5. (9)

Now we can get the volume of the deformed material by mul-
tiplying the contact area by the volume of a single asperity and
the number of asperities per surface area

Vasp =
2
3
πr3

aspNasp ∗ πa2
max, (10)

where rasp is the radius of a single asperity. Here we assume
the bumps to be hemispheres distributed homogeneously over
the surface of a particle or a target. In our case we use a pa-
rameter that describes the total volume plastically deformed per
unit of the surface area. This way we have only one parameter
that defines how efficiently the energy is dissipated. In reality
the pressure in the contact area is compressive in the center and
tensile on the edge. Thus our parameter may be slightly higher

Fig. 1. Critical velocity as a function of a grain size. Squares indicate
the model without additional dissipation process, diamonds show the
present model with the energy dissipation by plastic deformation of sur-
face roughness and triangles show experimentally determined values by
Poppe et al. (2000) with error bars.

than what we present. Figure 1 shows the critical velocities de-
termined experimentally (Poppe et al. 2000) for two different
grain sizes. The critical velocity obtained using our model is also
plotted showing that we have successfully fitted our model and
that we can reproduce the experimental results.

The volume of the asperities deformed upon collision is very
small in our model. When we assume surface roughness to be
hemispheres with radii rasp = 1 nm, the fraction of the area oc-
cupied by the asperities is only about 2%. We can thus still say
that the molecular size asperities may be responsible for increas-
ing the critical velocity. Moreover, we see in Fig. 1 that the de-
pendence of the sticking velocity on the grain size is not affected,
and the only difference is that the energy regime has been shifted
to the level measured in experiments.

To avoid confusion, we must again stress that we do not
claim that the plastic dissipation takes place during the colli-
sions of silica spheres. We simply implement additional scaling
parameter in order to fit our model to the experimental data. The
discrepancy between the empirical data and theory should be fur-
ther investigated. We also think that plastic deformation might
need some more attention, because of the very high pressure that
is present in the center of the contact area and the relatively low
strength of the material considered in this work.

2.3. Excitation and cooling

In parallel to the energy dissipation due to contact breaking, en-
ergy can be dissipated via other channels in the vertical degree of
freedom (along the line connecting centers of two grains in con-
tact). Two grains held together by the surface force vibrate rela-
tive to each other (Dominik & Tielens 1995). Ideally the oscilla-
tion is frictionless so no dissipation occurs. In reality, however,
the vibration causes an oscillation in the size of the contact area.
When decreasing the contact size, part of the energy is dissipated
by breaking the connections at the edges of the contact area. This
ultimately leads to a cooling of the aggregate and damps the vi-
brations. If this mechanism is not taken into account, successive
slow collisions may heat up the aggregate and ultimately lead to
“evaporation” of monomers from the aggregate surface.

In fact we observed this phenomenon in our simulations of
linear chains. Successive collisions of grains with an aggregate
caused an increase in the amplitude of the oscillation and eventu-
ally led to several contacts being broken. All individual collision

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079262&pdf_id=1
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velocities were far below the sticking velocity, proving that this
mechanism may produce artificial results.

To resolve this problem, we introduced a weak damping
force, which was intended to slowly dissipate the vibrational en-
ergy. The force acts in the vertical direction with respect to the
contact area. The damping force is expressed as

Fdamp = const. vz, (11)

where vz is the vertical component of the relative velocity, and
const is arbitrarily chosen to damp exponentially 95 percent of
the vibration energy within ∼100 oscillation periods. By tuning
the constant to this value, we made certain that the influence of
the damping force is not significant within short timescales of a
few first vibration periods, where the sticking or bouncing event
is determined. The dissipation takes place in the first period and,
if the particle does not lose enough energy, it will bounce. If the
damping force is too strong, it may remove enough energy to
allow sticking. We made sure that the main energy dissipation
process that sets the critical velocity is the plastic deformation
mechanism so that the sticking velocity is not affected by the
presence of the damping force.

To show the energy leakage due to the damping force, we
calculated the total energy in a vibrating pair of monomers. The
particles were displaced from the equilibrium position and the
kinetic and potential energies calculated. In the case of a fric-
tionless oscillation, the potential energy is

Ep =

∫ δ

0
F(δ′)dδ′, (12)

where δ is a displacement such that the distance between centers
of the two grains is r1 + r2 − δ. The vertical force

F(a) = 4Fc

((
a
a0

)3

−
(

a
a0

)3/2)
(13)

depends on the contact size a and equilibrium contact radius a0.
The integral (12) may then be changed into

Ep =

∫ a

0
F(a′)da′. (14)

To get the energy, we solve Eq. (14) by changing the variable
from δ to a using the relation

δ =
1
2

a2
0

R

(
2

(
a
a0

)2

− 4
3

(
a
a0

)1/2)
· (15)

The potential energy is then given as

Ep = 4Fc
a2

0

R

[
2
5

(
a
a0

)5

− 2
3

(
a
a0

)7/2

+
1
6

(
a
a0

)2]
· (16)

The kinetic energy is simpler. We just add kinetic energies of all
monomers together,

Ek =
∑

i

miv
2
i

2
, (17)

where mi and vi are the mass and absolute velocity of the ith
grain.

The total energy Etot in the case of a frictionless oscillation is
plotted in Fig. 2a. To better see variations in the kinetic energy,
we shifted it to the level of the potential energy. The shift is
equal to the potential energy of the system in the equilibrium

Ep =
∫ δ0

0
F(δ′)dδ′. The total energy in this case is conserved and

the amplitude constant. When we enable the damping force, the
energy starts to leak. The potential and kinetic energies may be
calculated using the same formulas. The energy dissipation is
presented in Fig. 2b.

The energy loss due to the damping force is very weak and
removes about 95% of the total energy within approximately
100 vibration periods. Thus other processes, such as rolling and
breaking, dominate the energy dissipation. In particular the crit-
ical velocity for sticking is not influenced at all by this damping
force, because the assumed plastic deformation of asperities dis-
sipates nearly the entire collision energy within the first vibration
period.

3. Applications

The presented model is a very good tool that can be used to
study the aggregation of dust particles. However, the modifi-
cations that we introduced in the previous section need further
verification. Although the critical velocity is well-fitted to the
experiments, it is very useful to test the model more against lab-
oratory experiments. When the model has been successfully ver-
ified, it can be applied confidently to the study of aggregates
dynamics. Compaction and fragmentation of dust aggregates
are processes that require detailed investigation (Dullemond &
Dominik 2005). Our model is perfectly suited to this task. We
can provide in depth understanding of micro-physics that gov-
erns compaction and fragmentation on this scale. Phenomena
involving aggregates of mm and larger sizes require an entirely
different approach. They must be treated with different methods
i.e. smoothed particles hydrodynamics (SPH). However, to do
this, material properties, such as compressive strength and sound
speed, are needed. Below we present simulations that can be di-
rectly compared to experiments and provide good tests of our
model. We simulate compression of a dust cake and determine
its compressive strength. We also determine the sound speed in
these porous aggregates.

3.1. Compression

Blum & Schräpler (2004) measured the compressive strength of
dust cakes in the laboratory. The sample was prepared by random
ballistic deposition (RBD). Single monomers were shot from
one direction at low velocity (hit-and-stick) and then grew the
dust agglomerate. The resulting “cake” was about 2 cm in di-
ameter and similar in height. The finished cake was later placed
between two flat surfaces. The load was applied to the upper
surface causing it to move towards the lower surface compress-
ing the dust sample. To simulate compression of a dust cake, we
need to prepare the proper setup.

3.1.1. Setup

In the experiment by Blum & Schräpler (2004), the applied pres-
sure resulted in compression of the dust cake. Measurement of
the cake volume resulted in determination of a filling factor φ.

Our setup was organized in a similar manner to the experi-
mental one. Our code, however, can only handle spherical par-
ticles. Thus instead of two planes, we used two very big “wall”
grains, each with a diameter of 2 × 10−2 cm. The sample was
shaped as a cylinder, and the distance between two compressing
“wall” grains was adjusted to fit the micro dust cake exactly.
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Fig. 2. The total energy is redistributed between the kinetic energy (dashed line) and the potential energy (dotted line). At the maximum and
minimum separations the potential energy is maximum, while the kinetic energy is at its highest in the equilibrium position. The kinetic energy
was shifted down for a better overview (see text). No damping case – a), and the energy leak form the system due to the damping force – b).

Our dust cake was grown via the particle cluster aggregation
method (PCA). The target aggregate (initially a monomer) was
randomly oriented before each collision with a grain approach-
ing at a random impact parameter. Any successful hit resulted
in perfect sticking without any restructuring. The new target was
then randomly oriented, and a new grain was shot at it again. The
resulting aggregate was then shaped into a cylinder by removing
all grains outside of the desired contour.

The size of the cake was 13.2 μm in diameter and it was
13.2 μm high. When filled by 291 monomers with a radius of
0.6 μm, the filling factor of the cake was φ = 0.146. For com-
parison the dust cake used in the real experiment had the filling
factor φ = 0.15±0.01. The monomer size in that experiment was
similar, r0 = 0.75 μm.

The compression was done by moving one of the large grain
surfaces at constant velocity. While it was approaching, the sec-
ond grain was fixed in its position and was unable to move even
with extreme pressures. The sample was thus compressed by one
surface against the other one. The initial setup is presented in
Fig. 3a. Two large grains on both sides of the aggregate are the
back wall, fixed plane on the right and the approaching, com-
pressing plane on the left. The aggregate is placed in between
and the particles can escape sideways, this way increasing the
diameter of the cake.

To simulate quasi static compression, we fixed the velocity
of the compressing “wall” grain to 0.05 m/s. This is over an or-
der of magnitude lower than a critical velocity and much lower
than the sound speed in this medium (see Sect. 3.2). Thus the
assumption that we are in a quasi static regime is reasonable.
The dominant acceleration of a single monomer, in this case, is
caused by surface forces.

For the purpose of this compression simulation, we disabled
the net force acting onto the compressing “wall” particle, but
we saved the record of this force for each time step. Thus the
approaching surface cannot be stopped and moves with constant
speed. For each time step the net force was stored and later used
to determine a pressure.

At each successive step, the dust cake becomes slightly more
compressed. The degree of compression can be related to the
force that was needed to get the cake into this state.

3.1.2. Results

The small size of the dust cake used in this numerical experiment
causes a low number of contacts of the compressed aggregate
with the approaching surface. Consequently, the net force ap-
plied to the compressing surface is strongly variable. Each new
contact formed between the dust cake and the incoming surface
results in a sudden decrease in the force. The new connection is
initially stretched and thus the surface is attracted. Similarly, os-
cillations of monomers at the surface cause additional variation.
This makes it more difficult to uniquely determine the compres-
sion force. To overcome this problem, for ten each successive
time steps we choose the one with the highest force, because
ultimately this is the force required to compress the cake. The
pressure is calculated as P = F

S , where F is the normal load and
S the cross-section area.

Figure 3 shows the initial setup and the results of compres-
sion with increasing pressure. The lowest pressure cannot re-
structure the aggregate. The height of the dust cake is almost un-
changed. A higher pressure of 2 kPa compresses the cake. The
monomers on the cake’s surface are pushed down into the cake.
At a pressure of 1× 104 Pa, the cake is compressed significantly,
causing a horizontal flow of the particles and thus an increase of
the cake diameter. The evolution of the dust cake cross-section
is shown in Fig. 4. The relative increase is affected by the size
of the dust cake. What may be a negligible boundary effect in
a large macroscopic aggregate, here it has a strong impact on
the entire dust cake. When the diameter of the cake increases
just by a diameter of a single monomer, the area increases by
40%. In the experiment by Blum & Schräpler (2004), a cake
of about 2 cm diameter was compressed and the final increase
in the cross-section was measured to be larger by a factor of
1.6 relative to the initial cross-section. In our simulation the area
increased almost 4 times, subject to significant uncertainties in
determining the dust cake cross-section. The initially cylindrical
shape changed upon compression into an irregular profile.

To determine the volume filling factor, we only used the
inner part of the cake. A cylindrical volume initially enclos-
ing the dust aggregate, and used to determine the filling fac-
tor, only decreased in height. In this way we reduced the uncer-
tainty that arose from the boundary effects. The initially porous

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079262&pdf_id=2


D. Paszun and C. Dominik: Properties of porous aggregates 865

Fig. 3. The setup of the experiment. The dust cake in the center is compressed with different pressure. Initial arrangement (a), results of compression
at 2 × 102 Pa (b), 2 × 103 Pa (c), 5 × 103 Pa (d), 1 × 104 Pa (e).

Fig. 4. The ratio of the cross-section of the dust cake to the initial cross-
section as a function of the applied compressive pressure. The data pre-
sented here is from a single experiment. Each point is plotted with a
40% uncertainty in determination of the crosssection (see text).

Fig. 5. The volume-filling factor vs. normal pressure. The solid line in-
dicates the results of the laboratory experiment by Blum & Schräpler
(2004). The dashed area is the error to that data. Squares show the re-
sults of our single simulation. Error bars are due to difficulty determin-
ing of the volume of the final aggregate.

aggregate is deformed and can expand. Particles are pushed
into the cake, filling voids. Thus the filling factor must in-
crease as an effect of compression. Figure 5 shows our results,
together with the data obtained in the laboratory experiments
(Blum & Schräpler 2004). Low pressures are unable to affect
the aggregate. However, the boundary effects also cause prob-
lems. Initially the “wall” particle connects to the cake by only

one monomer. This causes very strong variations in pressure.
We show the compression curve starting at the point where the
“wall” particle has made 5 contacts with the cake. At this point,
however, a few grains are already pressed into the dust cake,
causing an increase in the volume-filling factor. Thus our com-
pression curve in Fig. 5 is shifted upwards. The filling factor
is also overestimated by using big spherical grains as the com-
pressing surfaces. The height of the dust cake we used is calcu-
lated as D − 2Rcompress, where D is distance between centers of
the two big grains, and Rcompress is their radius. Thus the volume
occupied by the dust cake is actually slightly larger. This effect
is initially less important, as it contributes only about a 2% er-
ror. However, it gets more relevant at greater pressure, where the
cross-section of the dust cake is larger and the volume smaller.

Error estimation was done using the central parts of the dust
cake, where boundary effects are smaller. The filling factor was
determined by calculating the volume of monomers enclosed in
a cylindrical volume. The error was then estimated to be the dif-
ference between the filling factors determined for two different
cylinders. The first one had a radius of 6 μm, while the second
one was one monomer radius smaller.

The volume filing factor is initially constant, until the pres-
sure reaches a value of about 5 × 102 Pa. The filling factor
increases until it reaches the maximum compression of about
φ = 0.35 and remains constant. The most interesting result is
the resemblance of our findings to the laboratory experiments.
The onset of compression fits the experimental data of Blum &
Schräpler (2004). Our compression curve follows the laboratory
data tightly ending up at a similar value of the filling factor. The
small differences between two curves are most likely due to the
small size of our simulated dust cake.

3.2. Sound speed

One of the very important properties in the porous material is the
sound speed. It must be lower than the bulk sound speed because
the mass is being moved by a force acting on a very small con-
tact area. The collision of two grains with supersonic velocities
can result in complete disruption of those bodies. We first derive
an analytical formula for the sound speed. For this we apply the
JKR theory and assume that the signal transported is a very small
perturbation. The main assumption is that the two monomers in
contact behave like a perfect spring, which is the case for small
amplitudes. However, the contact forces are asymmetric with re-
spect to the equilibrium position. Thus compression of two par-
ticles results in different forces than stretching it to the same dis-
placement. We can therefore expect that large amplitudes lead to
modified sound speeds. In the following sections, we present an

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20079262&pdf_id=3
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analytical approach and later show our simulations for both the
simplified case of a linear chain of monomers and the general
case of a non fractal aggregate.

3.2.1. Analytical solution

Each two monomers that are in contact are held together by
surface forces acting in the contact area (Johnson et al. 1971).
Mutual attraction inevitably leads to a vibrational spring-like
motion, which in linear approximation can be written as

F = −k(δ0 − δ), (18)

where δ, δ0, k, and F are displacements, equilibrium displace-
ment, spring constant, and restoring force, respectively. Note
that the displacement δ is defined in a way that it increases, when
the distance between two monomers is decreasing. In our case
we want to determine the spring constant, which is needed to find
the sound speed. Johnson et al. (1971) showed that the surface
force in the contact area is related to the contact area radius a by

F = 4Fc

((
a
a0

)3

−
(

a
a0

)3/2)
· (19)

We also know the relation between the displacement and contact
radius

δ = 61/3δc(2a−2
0 a2 − 4/3a−1/2

0 a1/2), (20)

where δc = 1/2
a2

0

61/3R is a critical displacement for breaking the
contact. With these equations we can determine the spring con-
stant and later the sound speed. First we differentiate Eqs. (19)
and (20) at a = a0 to get

dF
da

∣∣∣∣∣∣∣
a=a0

=
6Fc

a0
(21)

and

dδ
da

∣∣∣∣∣∣∣
a=a0

=
5δ0

a0
, (22)

where δ0 =
a2

0
3R is an equilibrium displacement. Now we can write

dF
dδ
=

dF
da

da
dδ
=

dF
da

(dδ
da

)−1
(23)

and substituting Eqs. (21) and (22), we get

dF =
6
5

(9πγR2E�2)1/3dδ · (24)

Since the restoring force is exactly opposite, we may add the
minus sign here and see that the spring constant k is

k =
6
5

(9πγR2E�2)1/3 · (25)

With the spring constant of the oscillating system of two spheres
in contact, we can proceed to the calculation of the sound veloc-
ity. For a spring the velocity of sound is given by

cs =

√
kL
ρl
, (26)

where L is the total length of the spring (or set of the springs) and
ρl a mass of the spring per unit length. We can then determine

Table 1. Material properties used in this work for silica.

E∗[dyn/cm2] γ [erg/cm2] ρ0 [g/cm3]

2.78 × 1011 25.0 2.65

the velocity in a linear chain of n grains in contact, each r0 in
radius. The length of such a string of grains is

L = n(2r0 − δ0) + δ0 − 2r0. (27)

Since the spring constant for a set of springs is simply kL = k/n,
the sound velocity can be written as

cs =

√
kLL
ρl
=

√
kL2/n
nm0

=
L
n

√
k

4/3πr3
0ρ0
· (28)

Substituting Eqs. (25) and (27), we get

cs =

(
1 − 1

n

)
(2r0 − δ0)

√
(9πγR2E�2)1/36/5

4πr3
0ρ0/3

. (29)

Now we can try to see how the sound velocity in such system
depends on the size of a single monomer:

cs ∝ r0

√√
r2/3

0

r3
0

= r−1/6
0 . (30)

This means that to double the speed of sound we need to use
grains that are 64 times smaller. Therefore, the sound speed in
this case is a very weak function of monomer size.

The sound speed of an infinitely long chain of 0.6 μm silica
grains is cs = 513 m/s. If we apply our findings to a chain of
50, 0.6 micron sized, silica grains, the sound velocity turns out
to be cs = 503 m/s. We can compare it now to the previous
results obtained in research of granular medium composed of
mm sized and bigger grains. In all our simulations and analytical
calculations, we used material properties as specified in Table 1.

Hascoët et al. (1999) has developed a model of macroscopic
grains to study the propagation of sound in a granular chain.
The centimeter-sized grains they use do not interact in this case
via attractive surface forces. The signal is transported due to
the Hertzian stress that arises as an effect of overlap of grains
in contact. They also apply the spring theory but with an arbi-
trarily chosen spring constant k. For values of k in the range
between k = 106 N/m and k = 108 N/m and mass density of
1.9 × 103 kg/m3, the sound velocity they derive is in the range
300 m/s to 3000 m/s. Similar results were obtained by Mouraille
et al. (2006). A sound speed cs ≈ 200 m/s was found for closely
packed grains. In this case monomer radius was 1 mm, density
2 × 103 kg/m3, and the spring constant k = 105 N/m.

3.2.2. Numerical experiment

We performed a numerical experiment to verify our findings. We
prepared a linear chain of 50 monomers. The first one in line was
slightly displaced from its equilibrium position. When the simu-
lation started, the grain started to move to reach its equilibrium
and the second grain was disturbed. This motion propagated un-
til it finally reached the last grain. The total distance traveled
by the density wave was 99(r0 − δ0). For 50 silica monomers
with radii r0 = 0.6 μm, the travel time took t = 1.16 × 10−7 s,
which results in the sound speed of cs = 512 m/s. We can now
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Fig. 6. Sketch of a sound wave propagation in a linear aggregate (a) and
in a porous aggregate (b).

compare the value with the theoretically derived sound speed
cs = 503 m/s. The difference between the theoretical velocity
and the one that was obtained numerically is only about 3%.
Moreover in the simulation, the first grain is displaced by a finite
distance meaning that the assumption of low displacements may
not be entirely correct. The displacement of about 0.5 δ0 is rela-
tively large. We performed a series of simulations with stronger
perturbations and the data obtained shows that the sound veloc-
ity increases as the perturbation strength increases.

3.2.3. Porous aggregates

Since a linear chain of monomers is a special case, we now
discuss the more general agglomerates of irregular shape. The
sound speed in such a system is affected by several things. First,
the path length that a signal has to travel is not a straight line,
so with a given speed, longer distances result in lower effec-
tive sound speed. For a small RBD aggregate (approximately
300 monomers), the effective distance was greater by only a fac-
tor of 1.5, thus the structure of an aggregate has a limited impact
on the sound velocity by increasing the path length. The second
factor that may have an effect is the tangential force. In a linear
aggregate, the signal is passed forward by the presence of the
vertical force, and the tangential force has no effect. However,
grains interact also via rolling and sliding in irregular aggregates.
This might lower the contribution of the vertical force and in this
way change the sound speed. Figure 6 shows a sketch of how a
sound wave propagates in different aggregates. Indeed linear ag-
gregates involve only stronger, vertical forces and thus the signal
travels faster. Irregular particles also make use of the tangential,
rolling force.

To estimate the sound speed due to the rolling friction, we
again used the spring theory. Dominik & Tielens (1995) gives
the recipe for the rolling friction as

Froll = 6πγξ, (31)

where the ξ is a displacement from the equilibrium position. This
force can be then expressed as

Froll = kξ, (32)

with k = 6πγ as a spring constant. We then apply this in Eq. (28)
to get

cs =

(
1 − 1

n

)
(2r0 − δ0)

√
6πγ

4/3πr3
0ρ0
· (33)

The dependence of the sound speed on a grain size, cs ∝ r−1/2
0 , is

in this case much stronger than in the case of the vertical force
(cs ∝ r−1/6

0 ).

When we apply Eq. (33) to the 1.2 μm silica grains, we get
a sound speed of cs = 16.5 m/s. This is a factor of 30 lower
than the velocity derived for the linear chain. This suggests that
the sound velocity in a porous aggregate might be significantly
different from the speed derived for a linear chain of grains.

Sirono (2004) derived compressive and tensile strengths de-
pendent on density and based on experimental data. Those re-
lations were later used to develop an SPH model of large, mm-
sized, and larger aggregates collisions. The sound speed in an
aggregate made of 0.1 μm ice monomers was calculated to be
cs =

√
E/ρ. He used values for the Young’s modulus and the

density to be E = 6 × 105 Pa and ρ = 0.1 g/cm3, respectively.
The resulting sound speed is then cs = 77.5 m/s.

When we apply our formula for the sound speed to 100
aligned 0.1 μm ice grains, we get a sound speed of cs = 885 m/s.
This is almost an order of magnitude higher. We have to keep in
mind, however, that the speed in a linear chain may be consider-
ably different to the one in a real porous aggregate. In the rolling
case, the theoretical sound speed is also high with cs = 250 m/s.

Teiser (2007) performed a laboratory experiment, where he
measured the sound speed in an RBD aggregate with filling fac-
tor φ = 0.15 and 1.5 μm silica monomers. He hit the dust cake
from below and measured the response at the surface with a force
sensor. The measured velocity was cs = 30± 4 m/s, very consis-
tent with our results when the signal is assumed to be transferred
through the rolling degree of freedom.

To numerically derive the sound speed and further test our
model, we performed a simulation of an RBD dust cake. The
cake was being pushed from one side, and we determined the re-
sponse time of different particles in the aggregate. We combined
the positions of the particles with their response time, which re-
sults in an average sound speed in the dust cake. Figure 7a shows
the result of our simulations. For each monomer in the dust
cake, we plotted a corresponding sound speed. The initially wide
spread in the data shows that very linear structures are present in-
side the cake. This leads to a few particles with very fast sound
speed. At greater distances, however, the range of sound speeds
is much narrower showing that a signal is transported mainly
via a rolling degree of freedom. The average sound speed that
is determined at the far end of the dust cake is only a factor of
about 1.5 higher than the sound velocity in the rolling degree of
freedom.

We applied two different forces to the cake and later de-
termined mean sound speeds in the cake for both cases. When
a stronger force of 5 × 10−6 N was applied to the cake, the
sound speed reached cs ≈ 60 m/s, while the sound velocity was
cs ≈ 20 m/s with the lower force of 5×10−8 N. For one monomer,
the limiting sound velocity was overcome, as calculated for lin-
ear chain of monomers. This, however, happened in the case of
stronger force, and thus the low displacement approximation was
most likely violated, leading to higher sound speeds.

The simulations show that the sound propagation is domi-
nated by the rolling friction. To verify this, we ran another simu-
lation meant to determine the sound speed in the aggregate with
monomers arranged according to the cubic close packing (CCP)
because this arrangement disables any rolling motion. The inset
in Fig. 7b shows the aggregate. We applied a force on one side
of the agglomerate and determined the response time of differ-
ent particles. Data in Fig. 7b shows that indeed closely-packed
aggregates are characterized by much higher velocities than the
porous ones. The monomers in each layer received the signal
at a different time because the compressing planes were simu-
lated by big grains, and thus central particles were hit first and
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Fig. 7. Sound velocity in m/s versus distance from the plane that hits
the aggregate. Squares indicate an applied force of 5 × 10−8 N and tri-
angles 5 × 10−6 N. The left panel a) shows the results of sound speed
determination in a RBD aggregate, while the right one b) in a CCP ag-
gregate. The inset image shows the CCP aggregate placed in between
two planes. The lines indicate sound velocities determined theoretically
using vertical force in a linear chain of monomers (dashed line) and us-
ing rolling friction (solid line). The dashed area limited by dotted lines
indicates the sound-speed range determined experimentally by Teiser
(2007).

forwarded the signal. Thus particles at the edges of the aggre-
gate responded later than the ones in the center of each layer.
The velocity cs ≈ 600 m/s shows that indeed sound speed in
a porous medium depends strongly on porosity because of the
forces involved in the transport of the signal and the longer path
for the signal to travel in more porous aggregates. Using a con-
stant sound speed in SPH simulations is bound to lead to spec-
tacularly wrong results.

4. Conclusions

We have modified the original code by Dominik & Tielens
(1997) and Dominik & Nübold (2002) and shown that a numer-
ical N-particle method for studying the properties of aggregates
can be calibrated to experimental results by including the flat-
tening of small asperities on the surface of the grains and by us-
ing critical displacements for rolling grains consistent with mea-
sured values. The new code reproduces the measured critical ve-
locities for sticking very well. We would like to emphasize that
there is currently no proof of plastic deformation actually hap-
pening on the grain surfaces, but it works very well as a model.

We went on to measure the compressive strength of the ag-
gregates and compared the results with experiments. We get very
similar results with a small offset in porosity, which is most
likely caused by the relatively small aggregates used in our simu-
lations. Finally, we computed the sound velocity in an adhesion-
dominated porous material and showed that this leads to very
interesting results. Three very different velocities play a role in
such a medium, and the different velocities are separated by fac-
tors of about 10. The fastest speed is the bulk material sound
speed that only plays a role after a body has melted and re-
hardened. The second speed, a factor of ∼10 lower, is the speed
at which a signal is transported in a longitudinal wave in a lin-
ear chain. This speed applies either in a perfectly linear chain
or in an aggregate that has been compacted enough that rolling
of grains is no longer possible. Finally, the slowest speed is the
one transmitted by rolling forces in a crooked chain of grains.
A small decrease stems from the longer path the sound has to
take in a porous aggregate. By far the largest fraction stems from
the weak forces in the rolling degree of freedom. Experiments

show that this is indeed the dominant speed in porous aggre-
gates. However, our results show that the sound speed should
be a very steep function of density once a significant number of
monomers have 3 or more contacts with their neighbors. It is to
be expected that the SPH approaches to modeling the properties
of dust aggregates (Sirono 2004; Schäfer et al. 2007) will fail if
these effects are properly not taken into account.

In summary, we conclude that we do now have a work-
ing model of dust aggregates that can be applied in parameter
studies.
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