
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

High performance direct gravitational N-body simulations on graphics
processing units II: An implementation in CUDA

Belleman, R.G.; Bédorf, J.; Portegies Zwart, S.F.
DOI
10.1016/j.newast.2007.07.004
Publication date
2008

Published in
New Astronomy

Link to publication

Citation for published version (APA):
Belleman, R. G., Bédorf, J., & Portegies Zwart, S. F. (2008). High performance direct
gravitational N-body simulations on graphics processing units II: An implementation in CUDA.
New Astronomy, 13(2), 103-112. https://doi.org/10.1016/j.newast.2007.07.004

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:31 Aug 2023

https://doi.org/10.1016/j.newast.2007.07.004
https://dare.uva.nl/personal/pure/en/publications/high-performance-direct-gravitational-nbody-simulations-on-graphics-processing-units-ii-an-implementation-in-cuda(29802abd-b50f-473c-a0c3-e5f446b3c30b).html
https://doi.org/10.1016/j.newast.2007.07.004

ar
X

iv
:0

70
7.

04
38

v2
 [

as
tr

o-
ph

]
 1

6
Ju

l 2
00

7

High Performance Direct Gravitational

N-body Simulations on Graphics Processing

Units

II: An implementation in CUDA

Robert G. Belleman a Jeroen Bédorf a

Simon F. Portegies Zwart a,b

aSection Computational Science, University of Amsterdam, Amsterdam, The

Netherlands

bAstronomical Institute ”Anton Pannekoek” , University of Amsterdam,

Amsterdam, The Netherlands

Abstract

We present the results of gravitational direct N -body simulations using the Graph-
ics Processing Unit (GPU) on a commercial NVIDIA GeForce 8800GTX designed
for gaming computers. The force evaluation of the N -body problem is implemented
in “Compute Unified Device Architecture” (CUDA) using the GPU to speed-up the
calculations. We tested the implementation on three different N -body codes: two
direct N -body integration codes, using the 4th order predictor-corrector Hermite
integrator with block time-steps, and one Barnes-Hut treecode, which uses a 2nd
order leapfrog integration scheme. The integration of the equations of motions for
all codes is performed on the host CPU.

We find that for N > 512 particles the GPU outperforms the GRAPE-6Af, if
some softening in the force calculation is accepted. Without softening and for very
small integration time steps the GRAPE still outperforms the GPU. We conclude
that modern GPUs offer an attractive alternative to GRAPE-6Af special purpose
hardware. Using the same time-step criterion, the total energy of the N -body sys-
tem was conserved better than to one in 106 on the GPU, only about an order
of magnitude worse than obtained with GRAPE-6Af. For N >

∼ 105 the 8800GTX
outperforms the host CPU by a factor of about 100 and runs at about the same
speed as the GRAPE-6Af.

Key words: gravitation – stellar dynamics – methods: N-body simulation –
methods: numerical

Preprint submitted to Elsevier Preprint 1 February 2008

http://arXiv.org/abs/0707.0438v2

1 Introduction

The introduction of multiple processing cores in one chip allows microprocessor
manufacturers to improve the performance of CPUs while the clock rate stays
the same. This multi-core principle is not new. Over the last decade, a similar
approach has been taken by manufacturers of graphics processing units (GPU)
under the influence of the gaming industry to deliver increasingly detailed and
responsive computer games. As a result of this, the GPU underwent a dramatic
increase in performance; a doubling in performance over a period of 9 months,
instead of 18 months for CPUs (NVIDIA 2007; Moore 1965).

In terms of raw performance, today’s GPUs outperform conventional CPUs.
For example, the NVIDIA GeForce 8800GTX has a performance of about
350GFLOP/s (see § 4). However, harvesting this computing power is not triv-
ial as GPUs are designed and optimized for graphics operations. Over the
last 7 years GPUs have evolved from fixed function hardware for the support
of primitive graphical operations to programmable processors that outper-
form conventional CPUs, in particular for vectorizable parallel operations.
Today’s GPUs contain many multiple smaller processors called stream pro-
cessors (Owens 2005), that are specialized in processing large amounts of data
in a streaming and parallel fashion. It is because of these developments that
more and more people use the GPU for wider purposes than just for graphics
(Fernando 2004; Pharr & Fernando 2005; Buck et al. 2004).

Initially, the programming of GPUs was done in assembly language and re-
quired a very specific knowledge of the hardware. Newer generations of GPUs
offered more possibilities for the programmer and with this came the need for
high-level programming languages. With the introduction of shading languages
like Cg (Mark et al. 2003) and GLSL (Kessenich et al. 2007), the programmer
could focus on the problem at hand.

Around this time, the performance of the GPU attracted the attention of
researchers with an interest in the use of the GPU as a high-performance
coprocessor. First implementations mapped their problems into a graphics
problem where data is represented as coloured pixels stored in textures. Shad-
ing programs were then used to perform computations on the data. Although
not every problem is easily represented as a graphics problem, the use of the
GPU was demonstrated in many scientific areas, including but not limiting to
PDE solvers, ray tracing, image segmentation and gravitational simulations
(Owens et al. 2007).

One downside of the GPU is that the current generation only supports single
precision (32-bit) floating point arithmetic. This limits their use to applica-
tions for which single precision is sufficient. In the release notes of Compute

2

Unified Device Architecture (CUDA) version 0.8, NVIDIA announced that
GPUs supporting 64-bit double precision floating point arithmetic will be-
come available in late 2007 (NVIDIA 2007).

In this second paper on high performance N -body simulations using GPUs,
we present an implantation using CUDA, and apply the implementation to
solve gravitational N -body systems using direct integration as well as using a
Barnes-Hut tree code (Barnes & Hut 1986). In our previous paper (Portegies Zwart et al.
2007) (which we from now on will call “paper I”) we presented an implemen-
tation in Cg, and showed that for N >

∼ 104 the GPU outperforms the CPU by
about a order of magnitude.

The implementation described in this paper was born while we were drinking
beer (whereas Hamada & Iitaka (2007) drank tea), so we have named our
implementation kirin after a Japanese brand of beer. In § 2 we cover the
background of the N -body problem and previous implementations. Section
§ 3 describes our implementation. The last two sections, § 4 and § 5 cover the
results and the discussion.

2 Background

The N -body gravitational algorithm is based on the force equation as discov-
ered by Newton. The equation calculates the force between two particles in
space:

Fi ≡ miai = miG
N∑

j=1,j 6=i

mj

ri − rj

|ri − rj |3
. (1)

Here G is the Newton constant, mi is the mass of star i and ri is the position
of star i. The total force Fi (or the acceleration ai) that is exercised on particle
i is the summation over the forces between i and all N particles.

In order to determine the total force on each particle within an N -body system,
the force exerted by all N particles has to be calculated. Calculating the force
of all particles in the N -body system requires 1

2
N(N − 1) force calculations.

This O(N2) part of the algorithm is the computationally most expensive
part. The calculation of the force exerted on each particle is independent of
the calculations performed for other particles. This makes the calculation of
the forces for all particles parallelizable.

A breakthrough in direct-summation N -body simulations came in the late
1990s with the development of the GRAPE series of special-purpose computers

3

(Makino & Taiji 1998), which achieves spectacular speedups by implementing
the entire force calculation in hardware and placing many force pipelines on a
single chip. The latest special purpose computer for gravitational N -body sim-
ulations, GRAPE6, performs at a peak speed of about 64TFLOP/s (Makino
2001). The GRAPE opened the way for the simulation of large star clusters.
In simulation software such as starlab (Portegies Zwart et al. 2001), for ex-
ample, the GRAPE is used as a coprocessor for the force calculations. In
this paper we compare our results with the GRAPE-6Af, which is a smaller
commercial version of the GRAPE6. The GRAPE-6Af contains four GRAPE6
chips that are mounted on a PCI-card. The performance of the GRAPE-6Af is
123 GFLOP/s and the memory has a maximum capacity of 131072 particles.

Graphics Processing Units (GPU) can be used as an alternative coprocessor
to the GRAPE in N -body calculations. GPUs contain many processing units
that each perform the same series of operations on different streams of in-
put data, a technique which is better known as Single Instruction Multiple
Data (SIMD). The first gravitational N -body simulations on GPUs were pre-
sented by Nyland L. (2004) and later their implementation was improved by
Mark Harris (Harris 2005). Their implementation only performs force calcu-
lations using a simplified shared time-step algorithm. A Cg implementation
that performs force, jerk and potential calculations on a GPU through a block
time-step algorithm is described in paper I. There we concluded that for large
N the GPU offers an attractive alternative for the GRAPE-6Af because of its
wide availability, low price and high reliability.

Recently the use of GPUs has attracted a lot of attention for performing
direct N -body force calculations (Hamada & Iitaka 2007; Elsen et al. 2007).
Elsen et al. (2007) uses AMD/ATI hardware, whereas Hamada & Iitaka (2007)
uses NVIDIA GPU cards. The latter also use CUDA to implement the force
calculations, achieving an even higher performance than presented in paper
I. Hamada & Iitaka (2007) tested the code only on an implementation using
shared time-steps and with softening. We present a library, implemented in
CUDA, that uses similar principles as the implementation by (Hamada & Iitaka
2007). Our library (called kirin) can be used for direct N -body simulations
as well as for treecodes, it can be run with shared-time steps or with block
time-steps and allows non-softened potentials.

The CUDA framework exposes the GPU as a parallel data streaming processor
that consists of many processing units. Compared with previous programming
interfaces such as Cg, CUDA provides more flexibility to efficiently map a com-
puting problem onto the hardware architecture. CUDA applications consist of
two parts. The first executes on the GPU and is called a “kernel”. Kernels are
implemented in the CUDA programming language, which is basically the “C”
programming language extended with a number of keywords. The other part
executes on the host CPU and provides control over data transfers between

4

CPU and GPU and the execution of kernels.

A kernel program is run by multiple threads that run on the GPU. We call a
group of threads a bundle. Threads contained in the same bundle communicate
with each other using shared memory and cannot communicate with threads
in another bundle. Calculations on the GPU are started by specifying the
number of bundles to execute and the number of threads that each bundle
contains. The total number of threads is the product of the two.

The NVIDIA GeForce 8800GTX hardware architecture defines a hierarchical
memory structure where each level has a different size, access restrictions and
access speed. In general, accessing the largest type of memory is flexible but
slow, while accessing the smallest type of memory is restrictive but fast. This
memory structure is directly exposed by the CUDA programming framework.
The challenge in mapping a computing problem efficiently on a GPU through
CUDA is to store frequently used data items in the fastest memory, while
keeping as much of the data on the device as possible.

Current GPUs support 32-bit IEEE floating point numbers, which is below
the average general purpose processor, but for many applications it turns out
that the higher (double) precision can be emulated at some cost or is not
crucial. The relatively low accuracy of the GPU hinders high precision direct
N -body integrations, but is very suitable for methods which intrinsically have
a lower precision, such as the Barnes-Hut treecode. We therefore tested our
library for GPU-enabled N -body simulations on a direct integration method
(§ 4.1 and § 4.2) as well as using a treecode (§ 4.3).

3 Implementation

The N -body scheme used in our implementation is described by Makino & Aarseth
(1992). The integration scheme consists of three parts: a predictor step that
predicts a particle’s position and velocity; a Hermite integrator to advance the
position and velocity to the new time-step and a corrector step that corrects
the predicted position and velocity using the results of the integrator. The
acceleration, its time derivative (jerk) and potential are computed by direct
summation.

3.1 Decomposition over CPU and GPU

In our implementation, the calculation of force, potential and jerk is performed
on the GPU. The predictor and corrector steps are performed on the CPU. Our

5

algorithm uses a block time-step scheme that only integrates subsets (blocks)
of particles that need to be updated (McMillan & Aarseth 1993).

The decomposition of this scheme over a CPU and GPU was done for two rea-
sons. First; the prediction and correction steps are more sensitive to round-
off errors and are therefore best performed using the CPU’s 64-bit floating
point representation. Second; production quality software such as starlab

(Portegies Zwart et al. 2001) uses a similar decomposition, but then in com-
bination with the GRAPE coprocessor. We opted for a similar decomposition
as used for the GRAPE to allow astronomical production software to link in
our GPU implementation as a library.

Our implementation requires that particle data is communicated between the
CPU and the GPU at each block time-step. This is accomplished through a
number of memory copies where the CPU sends particle position, velocity and
mass to the GPU. The results computed by the GPU (acceleration, jerk and
potential) are retrieved by the CPU. For the GPU library the prediction is
performed on the CPU after which all particles are copied to the GPU. The
GRAPE only has to send the updated particles and performs the prediction
on the GRAPE hardware itself. This results in an overall lower performance
for the GPU than for the GRAPE, because the overhead of the memory copies
increases much more for the GPU than for the GRAPE.

The input and output variables exchanged with the GPU program are the
following:

• Input: mass (N), position (3N) and velocity (3N),
• Output: acceleration (3N), jerk (3N) and potential (N)

All values are represented by single precision (32-bit) floating point values,
which is the most precise representation offered by current generation GPUs.
This adds up to 14 floats or 56 bytes per particle which results in a total ca-
pacity of approximately 14 million particles for the 768MB on-board memory
available on the GeForce 8800GTX. This is a substantial increase in capacity
compared to the GRAPE-6Af’s maximum capacity of 131072 particles. This
is also an improvement over the 9 million particles that could be stored with
the earlier Cg implementation in paper I. A restriction imposed by Cg that
does not allow memory areas to be readable and writable at the same time
forced this implementation to use a double-buffering scheme. This restriction
does not exist in the CUDA implementation described here.

The fundamental structure of our CUDA implementation aims at exploiting
the available computing resources as much as possible. The challenge in map-
ping our N -body problem on a GPU through CUDA is to annihilate wait
states due to slow memory accesses while keeping the threads executing on
the GPU occupied.

6

Global memory access is slow (400 to 600 clock cycles) while shared memory
access is fast (4 clock cycles) but has a limited capacity. We therefore pre-
cache particles into shared memory up to its maximum capacity before the
calculation of forces. The input data is split in smaller parts that are each
pre-cached and processed in consecutive bursts.

The integration of one block time-step is initialised by assigning a thread to
each of the particles in a block. Each thread then goes through the following
steps:

(1) Each thread in the bundle caches one particle from global memory into
the shared memory. The total number of read particles is therefor equal
to the number of threads contained in a bundle.

(2) The force, potential and jerk for the thread are calculated using the parti-
cles that are cached in shared memory. The thread then sums the partial
results into temporary variables which are stored in a register.

(3) Steps (1) and (2) are repeated until all N particles have been read.
(4) When all parts are processed, the self interaction of the potential value

is removed, the results are saved in global memory and the thread exits.

Note that the total number of calculations performed by the GPU with this
scheme is N2. Although it is possible to determine the force using 1

2
N(N − 1)

calculations, this would require internal communication and synchronization.
This added communication is costly in a GPU and would result in lower
performance even though less work is done.

The method of giving each thread its own specific data and allowing data
that is needed by multiple threads to be stored in shared memory is generally
accepted as the best method to reduce memory latency when using CUDA
capable GPUs. Shared memory significantly reduces the wait time that occurs
while using global memory. This speeds-up the algorithm by reducing the
number of global memory accesses.

In our implementation the number of bundles that is started depends on the
number of particles in the current time-step block. Each bundle in our imple-
mentation contains 128 threads. Therefore the force, jerk and potential of 128
particles is calculated in parallel. In comparison; the GRAPE-6Af does the
same but for 48 particles. The number of bundles that are started is equal to
the number of particles in the time-step block divided by 128. This reduces
the number of global memory accesses by a factor 128. Our implementation
uses the thread scheduler to swap in threads that have already loaded their
data while threads that are waiting on memory loads are swapped out. Once
all threads have loaded the particle data from global memory into the shared
memory space of the bundle, all threads in the same bundle can operate on
that data. Through this strategy, the latency incurred by global memory ac-

7

Global Memory

Shared Memory

Thread

Registers

Results Particles j Particle i

Partial results

Fig. 1. The memory access strategy used in our implementation to compute the force
for particle i. Data for particle i is taken directly from global memory. Each kernel
copies data for particle j from (slow) global memory into (fast) shared memory in
parts and performs the calculations on particle j. This is repeated for all particles.
Intermediate results are stored in registers.

cesses is hidden, which speeds up the algorithm considerably. In Fig. 1 we
illustrate the memory configuration used in our implementation.

3.2 Optimizing GPU utilization

The implementation described in § 3.1 has the disadvantage that it does not
utilize all processors in the GPU when the number of particles in a block
time-step is smaller than 4096. This number is derived as follows: To make
full use of all 16 multiprocessors in the GPU it is necessary to start at least 16
bundles. Moreover, threads in a bundle that are waiting for data from global
memory will be swapped out in favour of bundles for which the data is ready
and can be processed, which brings the total number of bundles to 32. With
our implementation, where we start 128 threads for each bundle, we must have
at least 32 × 128 = 4096 particles in the block time-step to fully utilize all 16
multiprocessors.

To fully utilize the GPU for any number of particles in the block time-step we
have altered the implementation in such a way that it splits the calculations
in several parts and then combines the partial results on the host. This is done
when there are less then 4096 particles in the block time-step.

The implementation divides the total number of particles in several parts
that are processed sequentially. Each part contains 128 particles, equal to the

8

number of threads per bundle. One by one the threads in each bundle load
a particle i from global memory and then process the particles j that have
been loaded in shared memory. When we have less than 4096 particles in the
block time-step, the parts that have to be processed are evenly distributed, as
much as possible, over multiple bundles. Each bundle calculates a partial force
between its particle i and the particles j in the part(s) that have been loaded
from global memory. The partial results are then saved in global memory.
This strategy assures that all multiprocessors in the GPU are fully utilized. As
threads in different blocks cannot communicate it is not possible to aggregate
partial results from finished blocks. Therefore the partial results are saved
in global memory and subsequently combined on the host CPU. The host
CPU loads the partial results from the GPU and then adds the partial results
together.

3.3 Mimicking the GRAPE6 library

We have designed a library around our GPU based N -body code that mim-
icks the standard GRAPE6 library. This allows existing applications that are
linked to the GRAPE6 library to be used with kirin with minimal changes.
Additional requirements are that the CUDA run-time libraries are installed
on the system and that a graphics card capable of running CUDA applications
is installed in the system. Appendix A shows a list of functions that have a
GPU equivalent. GRAPE6 functions that do not require a GPU equivalent
are implemented as dummy functions.

3.3.1 Kernel changes

In addition to force, jerk and potential the GRAPE hardware also calculates
the nearest neighbour of every particle that is being updated, and the GRAPE
has the ability to perform calculations without softening. The softening pa-
rameter ǫ, introduced by Aarseth (1963), prevents very small integration steps
when particles reside very close to each other. The GPU code has to be ad-
justed to calculate the nearest neighbour and to handle simulations without
softening.

Nearest neighbours are determined by comparing the distance between each
particle and all other particles in the data set. This is done as part of the force
calculation; a comparison is added with each force calculation to maintain the
particle with the minimum distance. When the force calculation is complete,
the index to the nearest neighbour is saved in global memory, together with
the force, jerk and potential results.

The distance rij between two particles i and j can be zero either when i =

9

j or when the distance between two particles cannot be represented within
the limited precision of a single precision floating point number. This results
in a division by zero in the force equation. The softening is added to the
distance and has the effect that the distance between two particles can never
be zero. For zero softening the resulting division by zero is circumvented by
an additional check in the inner loop of the GPU program.

Adding each of these two comparisons results in lower performance: one extra
comparison results in a performance drop of roughly 10%. This is mainly
caused by the underlying SIMD architecture that enforces that when two
threads take different branches, one has to wait until the branching thread
reaches the same point in the program as the other. In Appendix A we present
a list of the implemented kirin library functions.

4 Results

The simulations for the direct integration are run over 0.5 N -body time units
(Heggie & Mathieu 1986) 1 , but the measurements are from t = 0.25 to t = 0.5
to minimize the effect of initialization on the measurements. The simulations
for the treecode are run over 1 N -body time unit, with the time measurements
for t = 0 to t = 1. The host hardware we used are Hewlett-Packard xw8200
workstations with two Intel Xeon CPUs running at 3.4 GHz. These machines
either had an NVIDIA GeForce 8800GTX graphics card in the PCI Express
(16×) bus or a GRAPE-6Af. The GRAPE and Cg machines ran a Linux SMP
kernel version 2.6.16, Cg version 1.4 and graphics card driver 1.0-9746. The
kirin measurements were performed with Linux SMP kernel version 2.6.18,
CUDA Toolkit version 0.8 and graphics card driver 1.0-9751.

We compare the energy of the simulated system at the start and end of the
simulation. The total energy E within an isolated system must remain con-
stant. We determine the relative error △E/E using the following equation:

△E/E =
Estart − Eend

Estart

. (2)

4.1 Direct N-body integration in a test environment

In Table 1 we compare the performance of our CUDA implementation with
the GRAPE-6Af hardware and the Cg implementation described in paper I.

1 See also http://en.wikipedia.org/wiki/Natural units#N-body units.

10

http://en.wikipedia.org/wiki/Natural_units#N-body_units

Table 1
Performance of kirin compared to other implementations. The first column (N)
gives the number of equal mass particles of a Plummer sphere. Columns 2 to 5
show the performance of the different implementations. The GRAPE-6Af column
shows the result on GRAPE hardware. kirin and the Cg implementation ran on
the NVIDIA GeForce 8800GTX. The last column shows the performance of an
implementation that ran completely on the host, an Intel Xeon at 3.4 GHz. The
simulations were run over 0.5 N -body time unit (timing measurements were done
from t = 0.25 to t = 0.5). The softening parameter used is 1/256. Some measure-
ments are performed for limited N for practical reasons. The results on the GRAPE
are limited to up to 65536 because of a defective memory chip.

N GRAPE-6Af kirin Cg Xeon

[s] [s] [s] [s]

256 0.07098 0.130 2.708 0.1325

512 0.1410 0.359 8.777 0.5941

1024 0.3327 0.297 17.46 2.584

2048 0.7652 0.588 45.27 10.59

4096 1.991 1.646 128.3 50.40

8192 5.552 4.631 342.7 224.7

16384 16.32 14.28 924.4 994.0

32768 51.68 41.16 1907 4328

65536 178.2 129.8 3973 19290

131072 - 417.6 8844 -

262144 - 1522 22330 -

524288 - 5627 63960 -

1048576 - 19975 - -

Softening is set to ǫ = 1/256 to enable comparison with other implementations
(Nitadori et al. (2006b) and paper I). Later in § 4.2 we relax this assumption.
In Fig. 2 we have plotted the performance of the different implementations.
In Table 2 we present the measurements of the error △E/E.

We also measured the peak performance of our implementation by disregard-
ing the communication between host and GPU; only the actual calculations
are timed. The results shown in Table 3 give the performance measurements
when calculating only the force. The results in Table 4 give the performance
measurements when calculating force, potential and jerk. The performance
(P) in floating point operations per second (FLOP/s) is calculated using:

11

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07

t[s
]

N

GRAPE-6Af
kirin
Cg

Xeon

Fig. 2. Performance comparison of the N -body implementations from Table 1. kirin
is represented by the solid line (open circles). The GRAPE is represented as the
dotted line (bullets). The Cg implementation is represented as the dashed line (open
triangles). The dashed-dotted line (closed triangles) represent the results on the host
computer.

P = kN2/t. (3)

Here k is the number of floating point operations used in the calculations.
We use k = 38 for the force calculation. This number was introduced by
Warren et al. (Warren et al. 1997) and is used as reference number in other
papers (Nitadori et al. 2006b; Hamada & Iitaka 2007). For calculating force,
potential and jerk we use k = 60, as used by Makino et al. in Nitadori et al.
(2006b,a).

The numbers in Table 3 indicate a peak performance of 340 GFLOP/s. The
theoretical peak performance of the 8800GTX is 346 GFLOP/s. 2 This means
we have practically reached the theoretical peak speed of the GPU.

2 The 8800GTX has 128 processing units at 1350 MHz. Each can execute 2 instruc-
tions at the same time (multiply and add). This results in 1350 × 128 × 2 = 345.6
GFLOP/s.

12

Table 2
The relative energy error △E/E of the various implementations. The first column
(N) gives the number of equal mass particles of a Plummer sphere. Columns 2 to
4 show △E/E of the different implementations. The relative error was obtained by
running the simulation over 0.5 N -body time unit with ǫ = 1/256 using the same
input parameters as used in the measurements for Table 1.

N GRAPE kirin Cg

[×10−7] [×10−7] [×10−7]

256 2.271 3.554 3.554

512 2.388 1.209 2.419

1024 0.866 2.375 -8.909

2048 1.261 2.366 -35.500

4096 -1.881 -1.204 -4.815

8192 2.560 3.609 25.261

16384 -0.818 -1.189 61.840

32768 -1.363 -1.898 24.986

65536 -6.150 -4.767 2.383

131072 - 22.634 195.790

262144 - 26.147 -118.850

524288 - 80.482 -164.450

1048576 - -116.552 -

4.2 Direct N-body integration in a production environment

We have linked our library with the integrator that is used in the starlab

software package (kira). The kira integrator has built-in support for the
GRAPE6 hardware and therefore no code changes besides renaming the G6

functions were needed.

The starlab simulation results are found in Table 5. We compare the perfor-
mance of the GPU with the GRAPE6-Af. We have performed simulations for
a range of data sets starting with N = 256 up to N = 1048576 (The GRAPE
results are limited to N = 65536). The simulations are run over 0.25 N -body
time-unit. We have used two different softening values, namely ǫ = 1/256 as
we have used in the test environment Section (§ 4.1) and ǫ = 0. The used
accuracy parameter is 0.3 (The “a” parameter in starlab which controls the
time step). In Fig. 3 we have plotted the performance of the GPU and of the
GRAPE. The relative errors of the simulations can be found in Table 6.

13

Table 3
Peak performance measurements when calculating only the force. The first column
indicates the number of particles. The second column shows the execution time
for kirin. The third column shows the performance in GFLOP/s calculated using
equation 3 with k = 38. The fourth and fifth columns give the same results for the
Chamomile scheme described in Hamada & Iitaka (2007).

N kirin Speed Chamomile Speed

[s] GFLOP/s [s] GFLOP/s

256 0.000090 27.46 - -

512 0.000091 109.0 - -

1024 0.000180 221.2 - -

2048 0.000537 296.6 0.000921 173

4096 0.001976 322.6 0.00299 213

8192 0.007739 329.5 0.01082 235

16384 0.030205 337.7 0.0414 246

32768 0.122863 332.1 0.162 251

65536 0.479895 340.1 1.642 254

131072 1.9182 340.3 2.548 256

4.3 N-body integration using the treecode

We have applied our kirin library to run with the treecode (Barnes & Hut
1986) as implemented by Makino (2004). This implementation has been de-
signed to run on a GRAPE. Therefore we have linked the source code with our
library to let the algorithm run on the GPU. The results of these calculations,
run on GRAPE, GPU and CPU, are presented in Table 7. In Fig. 4 we have
plotted the performance of the different implementations.

We adapted two different implementations of the library, the first is identical
to the one described in § 4.2, the second one is optimized for the treecode. The
Barnes-Hut treecode algorithm performs time integration using acceleration
only, we therefore can leave out the jerk and nearest neighbours calculations.
This results in a performance gain of a factor of two (see Fig. 4). The direct
integration method requires, besides the acceleration, also the derivative of
the acceleration (jerk). Besides the jerk the kira integrator also requires the
nearest neighbour of each particle that is integrated. Since the jerk and the
nearest neighbour are not needed for the integration using the treecode we
can disable the code that calculates the jerk and the nearest neighbour to
get extra performance. The relative errors of the simulations can be found in
Table 8.

14

Table 4
Peak performance measurements when calculating force, potential and jerk. The
first column indicates the number of particles. The second and third column show
the execution time and performance in GFLOP/s calculated using equation 3 with
k = 60.

N kirin Speed

[s] GFLOP/s

256 0.000132 29.78

512 0.000133 117.93

1024 0.000336 187.24

2048 0.001149 219.02

4096 0.004416 227.95

8192 0.017537 229.59

16384 0.070002 230.07

32768 0.279824 230.23

65536 1.118900 230.31

131072 4.468939 230.65

262144 17.87493 230.67

524288 71.51776 230.61

1048576 279.4067 236.11

5 Discussion

The use of graphics processing units offers an attractive alternative to spe-
cialised hardware, like GRAPE. While GPUs are programmable, however lim-
ited, they can be deployed for a wider range of problems, whereas GRAPE is
single purpose. Also the cost for purchase and maintenance of a GPU is much
lower than for GRAPE. However, the single precision of current GPUs remains
a problem, as we already stated in paper I. Note also that the GRAPE we used
is the smallest 1-module PCI version, and obviously we cannot outperform a
TFLOP/s GRAPE-6 board of the full 64 TFLOP/s GRAPE system with a
single GPU.

In Fig. 2 we compare the performance of GRAPE-6Af with the GPU. For
small system of particles (N <

∼ 512), GRAPE remains superior in speed by
about a factor of two when integrating the equations of motion using the block
time-step scheme.

For systems with N > 512 our implementation in CUDA performs at compa-

15

Table 5
Performance measurements comparing execution time of the standard GRAPE6
library with our GPU library. The test are performed by using the starlab software
package. Columns 2 and 3 show the GRAPE and GPU results with ǫ = 1/256.
Columns 4 and 5 show the results of the same simulation, but now with ǫ = 0.

ǫ = 1/256 ǫ = 0

N GRAPE-6Af kirin GRAPE-6Af kirin

[s] [s] [s] [s]

256 0.06 0.12 0.06 0.11

512 0.11 0.22 0.13 0.19

1024 0.27 0.29 0.27 0.39

2048 0.65 0.54 0.67 0.74

4096 1.65 1.51 1.79 3.75

8192 4.33 4.35 4.7 8.57

16384 12.02 11.17 13.18 20.2

32768 35.69 32.5 41.4 57.1

65536 116.1 101.1 146 202

131072 - 355 - 735

262144 - 1313 - 2668

524288 - 4913 - 11190

1048576 - 18681 - 46372

rable speed as the GRAPE-6Af. For such a large number of particles, most
block time-steps utilise the GPU at full capacity. The earlier implementation
in Cg (paper I) is slower by about a factor ten compared to kirin.

The performance of kirin depends on the amount of bundles and threads
that are started. Since the optimal number of threads and bundles depends
on the design of the GPU, it is hard to provide an optimal value. The maximum
number of threads that can be initialised cannot exceed the number of registers
available to store the partial accelerations, jerks and potentials. The overall
performance depends therefore on the number of registers available on the
multiprocessors. Ideally CUDA should have a routine that returns the optimal
number of threads and bundles.

In our implementation the performance of kirin increases from N = 256 to
reach almost peak performance at N ≃ 4096. For larger number of particles,
the performance hardly increases, as in these cases the GPU is fully utilised
(see Table 4). In Table 3 we compare the performance of kirin with the re-

16

Table 6
The relative energy error △E/E of the simulations performed with kira. The first
column (N) gives the number of equal mass particles of a Plummer sphere. Columns
2 and 3 show △E/E for the GRAPE and the GPU using ǫ = 1/256. Columns 4
and 5 show △E/E for the GRAPE and the GPU using ǫ = 0. The relative error
was obtained by running the simulation over 0.25 N -body time unit using the same
input parameters as used in the measurements for Table 5.

ǫ = 1/256 ǫ = 0

N GRAPE-6Af kirin GRAPE-6Af kirin

[×10−7] [×10−7] [×10−7] [×10−7]

256 1.14 0.4 -0.105 -2.0

512 0.331 -0.397 0.734 -0.0128

1024 -0.253 -0.78 -0.53 -0.908

2048 0.213 0.31 0.156 0.126

4096 -8.71 -8.92 -10.09 -11.6

8192 -51.5 -51.5 -151 -151

16384 -3.75 -3.46 -86.1 -86.2

32768 8.32 8.14 497 4.98

65536 37.0 37.3 1420 1413

131072 - 28.5 - 188

262144 - 15.9 - 2606

524288 - -40.4 - 7582

1048576 - -94.2 - 5789

cently published Chamomile scheme (Hamada & Iitaka 2007). It is interesting
to note that the latter scheme shows the same scaling behaviour as our imple-
mentation, though about 35% slower than kirin. The comparison in Table 3,
however, shows a situation in which only the forces are calculated, without
calculation of the higher derivatives that are needed for the Hermite integra-
tion scheme. Ignoring the jerk and potential calculations allows more threads
to be initialised as fewer registers will be occupied.

In Table 4 we present the performance measurements for calculating the force,
the potential and the jerk on the GPU. This performance is lower than those
presented in Table 3, but the jerk and potential is needed for a more accurate
integration of the equations of motion. The maximum performance we obtain
using a GPU is about 230GFLOP/s.

In Fig. 3 we compare the performance of the GRAPE-6Af with the GPU.

17

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07

t[s
]

N

Kirin with eps=1/256
GRAPE-6Af with eps=1/256

Kirin with eps=0
GRAPE-6Af with eps=0

Fig. 3. Performance comparison of the N -body implementations from Table 5, using
the kira integrator in starlab. The kirin library with ǫ = 1/256 is represented
by the dotted line (open circles). The same library with ǫ = 0 is represented by the
solid line (bullets). The standard GRAPE6 library with ǫ = 1/256 is represented
by the dash-dotted line (open triangles). The same library with ǫ = 0 is represented
by the dashed line (closed triangles).

For N > 512 and ǫ = 1/256, our kirin library performs with a comparable
performance as the GRAPE-6Af. Without softening the integration steps are
smaller which results in a lower performance of our kirin library than the
GRAPE-6Af. The relative error in the energy of the GRAPE and the GPU
are of the same order for both softening values as can be seen in Table 6.

Reducing the accuracy of the integrator in the calculations with GRAPE re-
sults in a linear response to the computation time. Increasing the accuracy
with a factor of two results in an increase in the computation time of a factor
of two, but a decrease in the energy error of a factor of 24. Increasing the
accuracy while running on the GPU with a factor of two results in an increase
in the computation time of about an order of magnitude, whereas the energy
error hardly decreases.

In Fig. 4 we compare the performance of our library implementation with the
GRAPE and the CPU for the treecode. The performance scaling is roughly
the same for the GPU, CPU and the GRAPE, except that the GPU imple-
mentation is an order of magnitude faster than the CPU implementation.
The treecode sends all particles to the hardware during each time-step. The

18

Table 7
Performance measurements comparing the execution time of the treecode using the
standard GRAPE6 hardware, the GPU and the CPU. For the GRAPE and GPU
we choose an “ncrit” value of either 8192, 16384 or 32768; whichever was fastest
(the “ncrit” value controls the average number of particles in a group). Other than
this, all simulations are run over 1 N -body time unit with default settings.

N GRAPE-6Af kirin (normal) kirin (optimized) CPU

[s] [s] [s] [s]

256 0.85 0.40 0.39 0.34

512 1.25 0.47 0.46 0.78

1024 0.71 0.59 0.57 1.61

2048 2.69 0.85 0.79 3.58

4096 5.07 1.58 1.28 8.27

8192 10.7 3.77 2.65 19.9

16384 23.9 10.2 5.57 45.6

32768 51.4 16.9 11.7 104

65536 109 42.3 25.4 249

131072 266 117 59.9 564

262144 682 379 169 1230

524288 1033 563 394 2752

1048576 2004 1247 733 5985

number of memory copies to the GRAPE is the same with the GPU. As
a consequence the GPU outperforms the GRAPE for all N because we are
not limited by the memory transfers. The relative error in the energy of the
treecode is comparable for the GRAPE and the GPU for all N .

Throughout our simulations, both the GPU and the GRAPE produce a rela-
tive error in the energy of the order of |∆E|/E ∼ 10−7, over a range of N = 256
to 65536 particles, which is consistent with the results in paper I. Reducing
the integration time steps will result in a smaller error for the GRAPE while
the GPU error stays more or less the same (Portegies Zwart et al. 2007). We
expect that the introduction of double precision GPUs later in 2007 will result
in a better conservation of the energy, and if this will not affect performance
too negatively, GPUs will become a real challenge to GRAPE.

At the moment it is impractical to implement the predictor and corrector
part of the integration scheme on the GPU, mainly because of the limited
precision. The future double precision hardware may resolve this problem, in
which case we can expect an even greater speedup for the GPU supported

19

Table 8
The relative energy error △E/E of the simulations performed using the treecode
algorithm. The first column (N) gives the number of equal mass particles of a
Plummer sphere. Columns 2 to 4 show △E/E for the GRAPE, GPU and CPU
respectively. The relative error was obtained by running the simulation over 1 N -
body time unit using the same input parameters as used in the measurements for
Table 7.

N GRAPE-6Af kirin CPU

[×10−6] [×10−6] [×10−6]

256 496 496 345

512 3.41 3.46 545

1024 8.03 8.02 122

2048 5.19 5.17 876

4096 6.78 6.78 592

8192 5.76 5.80 217

16384 0.126 0.08 300

32768 25.4 25.4 32.0

65536 66.7 66.8 145

131072 42.2 42.3 70.0

262144 29.9 30.2 38.8

524288 13.2 13.2 13.1

1048576 17.8 18.0 19.1

N -body simulations, in particular since it would reduce the communication
between the GPU and the host computer. An example of this can already
be partially seen in the treecode results where we outperform the GRAPE
because less memory transfers are required.

Acknowledgements

We are grateful to Mark Harris and David Luebke of NVIDIA for supplying
us with the two NVIDIA GeForce 8800GTX graphics cards on which part
of the simulations were performed. This work was supported by NWO (via
grant #635.000.303 and #643.200.503) and the Netherlands Advanced School
for Astrophysics (NOVA). The calculations for this work were done on the
Hewlett-Packard xw8200 workstation cluster and the MoDeStA computer in
Amsterdam, both are hosted by SARA Computing and Networking Services,

20

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1e+06 1e+07

t[s
]

N

GRAPE-6Af
Kirin Normal

Kirin Optimized
CPU

Fig. 4. Performance comparison of the execution time of the treecode from Table 7
over 1 N -body time unit. The GRAPE hardware is represented with the dotted line
(bullets), the normal version of the GRAPE mimicking library is represented as the
solid line (open circles). The optimized version of the library is represented as the
dashed line (open triangles). The CPU is represented as the dashed line (stars).

Amsterdam.

References

Aarseth, S. J. 1963, MNRAS , 126, 223
Barnes, J. & Hut, P. 1986, Nat , 324, 446
Buck, I., Foley, T., Horn, D., et al. 2004, in SIGGRAPH ’04: ACM SIGGRAPH

2004 Papers (New York, NY, USA: ACM Press), 777–786
Elsen, E., Vishal, V., Houston, M., et al. 2007, ArXiv Astrophysics e-prints,

arXiv:0706.3060v1
Fernando, R. 2004, GPU Gems (Programming Techniques, Tips, and Tricks

for Real-Time Graphics (Addison Wesley)
Hamada, T. & Iitaka, T. 2007, ArXiv Astrophysics e-prints, astro-ph/0703100
Harris, M. 2005, in SIGGRAPH 2005 GPGPU COURSE
Heggie, D. C. & Mathieu, R. 1986, MNRAS , in P. Hut, S. McMillan (eds.),

Lecture Not. Phys 267, Springer-Verlag, Berlin
Kessenich, J., Baldwin, D., & Rost, R. 2007, The OpenGL Shading Language,

21

on the web:
http://www.opengl.org/documentation/glsl/

Makino, J. 2001, in ASP Conf. Ser. 228: Dynamics of Star Clusters and the
Milky Way, ed. S. Deiters, B. Fuchs, A. Just, R. Spurzem, & R. Wielen,
87–99

Makino, J. 2004, Publ. Astr. Soc. Japan , 56, 521
Makino, J. & Aarseth, S. J. 1992, Publ. Astr. Soc. Japan , 44, 141
Makino, J. & Taiji, M. 1998, Scientific simulations with special-purpose

computers : The GRAPE systems (Scientific simulations with special-
purpose computers : The GRAPE systems by Junichiro Makino & Makoto
Taiji. Chichester ; Toronto : John Wiley & Sons, c1998.)

Mark, W. R., Glanville, R. S., Akeley, K., & Kilgard, M. J. 2003, ACM Trans.
Graph., 22, 896

McMillan, S. L. W. & Aarseth, S. J. 1993, ApJ , 414, 200
Moore, G. E. 1965, Electronics, 38
Nitadori, K., Makino, J., & Abe, G. 2006a, ArXiv Astrophysics e-prints, astro-

ph/0606105
Nitadori, K., Makino, J., & Hut, P. 2006b, New Astronomy, 12, 169
NVIDIA. 2007, CUDA Programming Guide Version 0.8
Nyland L., Harris M., P. J. 2004, in ACM Workshop on General-Purpose

Computing on Graphics Processors (Poster), C–37
Owens, J. 2005, in GPU Gems 2, ed. M. Pharr (Addison Wesley), 457–470
Owens, J. D., Luebke, D., Govindaraju, N., et al. 2007, Computer Graphics

Forum, 26, 80
Pharr, M. & Fernando, R. 2005, GPU Gems 2 (Programming Techniques for

High-Performance Graphics and General-Purpose Computation) (Addison
Wesley)

Portegies Zwart, S., Belleman, R., & Geldof, P. 2007, ArXiv Astrophysics
e-prints, astro-ph/0702058, accepted for publication in New Astronomy

Portegies Zwart, S. F., McMillan, S. L. W., Hut, P., & Makino, J. 2001, MN-
RAS , 321, 199

Warren, M. S., Salmon, J. K., Becker, D. J., et al. 1997, sc, 00, 61

22

APPENDIX

A kirin library functions

The kirin library is compatible with the GRAPE6 library. As a result, all
existing code that uses the GRAPE6 library only needs to be recompiled and
relinked to use the GPU equivalents of the GRAPE6 functions. All functions
in the GRAPE6 library have an equivalent GPU implementation. The most
important are listed below:

• GPU open - opens the connection with the GPU and initializes local buffers.
• GPU close - closes the connection with the GPU and releases all allocated

memory (local as well as on the GPU).
• GPU npipes - returns the number of pipelines that are on the chip (for the

GRAPE this is 48). The GPU does not have a fixed number of pipelines,
therefore the number can be configured using a configuration file. Tests show
that for some applications the code is slowed down if the number of pipes
is set too high.

• GPU set j particle - sets a particle in the memory of the GPU. The par-
ticle will first be stored in a local buffer and then sent to the GPU after the
prediction step.

• GPU set ti - sets the next time step to be used by the predictor, starts the
predictor on the host system and sends the predicted particles to the GPU.

• GPUcalc firsthalf - has the same effect on the GPU and GRAPE; The
force calculation for the particles specified in the function call will be started.

• GPUcalc lasthalf - has the same effect on the GPU and GRAPE; The
results of the previous GPUcalc firsthalf call will be retrieved.

23

	Introduction
	Background
	Implementation
	Decomposition over CPU and GPU
	Optimizing GPU utilization
	Mimicking the GRAPE6 library

	Results
	Direct N-body integration in a test environment
	Direct N-body integration in a production environment
	N-body integration using the treecode

	Discussion
	kirin library functions

