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T
erminal deletions of the long arm of chromosome 2
(2q37) have been recorded in the literature for more than
a decade and an associated syndrome first became

apparent when nine patients were reported with an
Albright hereditary osteodystrophy (AHO)-like metacarpal/
metatarsal shortening (brachymetaphalangism).1 2 This is
also known as brachydactyly-mental retardation syndrome
(BDMR, MIM 600430). To date, some 60 or so cases of 2q37
deletion or monosomy resulting from unbalanced transloca-
tions have been reported. Significant variability in clinical
presentation is apparent, but almost all patients have some
degree of mental retardation and facial dysmorphism.
Brachymetaphalangism has been reported in approximately
50% of cases.1–15 Congenital heart anomalies are present in
around 20% of patients with 2q37 monosomy,16–22 compared
to 1% of the general population. These are predominantly
atrial or ventricular septal defects, but more complex
problems have been reported.17 22 Additionally, there are
two reports of tetralogy of Fallot with monosomy 2q37
resulting from unbalanced translocations,23 24 but both
cases were also trisomic for 17q25 and it is not clear
which imbalance was causative. Other phenotypes repeat-
edly associated with 2q37 deletions include Wilms tumor
and urogenital anomalies,6 17 19 epilepsy,1 2 7–9 14 16 20 25–27

eczema,2 5–7 16 28 29 and autism or repetitive, hyperkinetic
behaviour.1 2 5 7 10 11 15 16 19 25 26 28–32 Situs abnormalities have
been reported in two cases9 and holoprosencephaly in one
infant.33

Most 2q37 rearrangements reported to date have been only
minimally characterised by conventional cytogenetics or
subtelomeric fluorescent in situ hybridisation (FISH). A
small number have been subjected to more detailed analysis
using multiple FISH clones or microsatellite markers,2 10 15 26

but the ability to assign breakpoints and make genotype–
phenotype correlations has been limited. We therefore sought
to conduct detailed molecular analyses of a panel of 2q37
deletion patients, focusing on the critical interval distal to
D2S3382 and including assessment of individual gene dosage
by multiplex amplifiable probe hybridisation (MAPH).34 We
define minimal deletion intervals for all of the major
phenotypes associated with 2q37 monosomy.

METHODS
This study has been approved by the Leicestershire ethics
committee. Seven patients have been described pre-
viously.2 4 7 16 26 Thirteen additional patients with known
2q37 rearrangements were ascertained through clinical
genetics departments in the UK and clinical details are
provided as supplementary online information at http://
jmg.bmjjournals.com/supplemental/. Informed consent was
obtained from parents or guardians. The patient panel
comprised 16 deletions, two inverted duplication/deletions,
one ring chromosome and one unbalanced translocation. The
ring chromosome (patient 53) has virtually no loss of 2p

material, being heterozygous for microsatellite D2S2584,
,160 kb from the telomere, and retaining the 2p subtelo-
meric FISH probe 2052f6. The phenotype is therefore
presumed to be due solely to the 2q37 deletion.
DNA was extracted from peripheral blood leukocytes or

buccal cells using standard methods. MAPH was conducted
essentially as described,34 35 except that probes were cloned
into pCR2.1-TOPO using the TOPO-TA cloning kit
(Invitrogen, Paisley, UK) and the sequence of the blocking
primers was modified accordingly. Probes were designed to
the following 2q37 genes: RDC1, RAMP1, ILKAP, MIP-T3,
ASB1, TWIST2, HDAC4, NDUFA10, HDLBP, ATSV, GP3ST, PASK,
PPP1R7, FARP2, STK25, NEDD5, DTYMK, and to unique
sequence adjacent to the polymorphic markers D2S125,
D2S140, D2S2585 (2qTEL44), D2S2985 (2qTEL37) and
D2S2986 (2qTEL47). Details of probe sequences are available
on request. Probes were organised into two multiplex sets for
patient analysis and were first tested on DNA from a patient
with a large deletion and normal controls to verify their
quantitative performance. Results for selected genes were
also verified by realtime quantitative PCR (data not shown).
In some cases it was not possible to perform MAPH, as only

small quantities of DNA were available from buccal swab
samples. We therefore designed 11 new microsatellite
markers, spanning the region from immediately proximal to
HDAC4 (BAC AC114788) to the telomere, by in silico

Abbreviations: AHO, Albright hereditary osteodystrophy; BDMR,
brachydactyly-mental retardation syndrome; FISH, fluorescent in situ
hybridisation; MAPH, multiplex amplifiable probe hybridisation; OR,
olfactory receptor

Key points

N We have conducted detailed dosimetric analysis in 20
patients with monosomy 2q37.

N No common breakpoints were found, indicating that
2q37 rearrangements are likely not mediated by
duplicated low copy repeats.

N The minimum deleted region in patients with char-
acteristic facial dysmorphism and Albright hereditary
osteodystrophy (AHO)-like brachymetaphalangism has
been narrowed to approximately 3 Mb.

N For the first time, preliminary assignments of critical
intervals for other features of the syndrome have now
been made. All such intervals share a 1.5 Mb overlap.

N However, considerable clinical variability was appar-
ent and no clear genotype–phenotype correlations
could be drawn that would help predict clinical
prognosis in a newly-diagnosed young proband.
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screening of publicly-available BAC sequence using the
Tandem Repeats Finder program.36 Primer sequences and
annealing temperatures are shown in table 1. All new
markers proved to be polymorphic. Existing microsatellite
markers from the Genethon and Marshfield genetic maps
were analysed using primers available from the public
genome databases. Singleplex reactions were conducted for
40 cycles using HotStar PCR mastermix (Qiagen, Crawley,
UK) supplemented with 16 Q-solution. Multiplex reactions
utilised the Multiplex PCR Mastermix (Qiagen, Crawley, UK)
supplemented with 0.56 Q-solution, also for 40 cycles
following the manufacturer’s recommended thermocycle
profile. All microsatellites were labelled with 6-FAM, HEX,
or TET fluorophores and analysed on an ABI377 12 cm
genotyping gel.

RESULTS
Clinical characteristics
Clinical features for all cases are summarised in table 2.
Consistent with the literature, all except the very youngest
patient had mild or moderate developmental delay and some
degree of facial dysmorphism. Consent for publication of
facial photographs was given in four cases (fig 1) and a
further five were published previously (patients 75, 76,
10780, 419 and 622).2 4 7 16 Common features include round
face with flattened nasal bridge, frontal bossing, deep-set
eyes, up-slanting palpebral fissures, anteverted nares, and
thin upper lip. In contrast, the facial dysmorphism in patient
63 was markedly different (see online supplementary
information), consistent with her duplication for much of
2q37 and only a very small telomeric deletion (see molecular
results below). AHO-like brachymetaphalangism was
observed in 11 (55%) of our patients, autism or repetitive,
hyperkinetic behaviours in seven (35%), non-febrile seizures
also in seven (35%), eczema in five (25%), and heart
abnormalities in four (20%). These frequencies are in keeping
with those in the wider literature, with the exception of
epilepsy, which has been reported in about one-quarter of
patients overall. Frequencies for brachymetaphalangism and
autism may be underestimates, since some patients, both in
this series and the wider literature, are too young to manifest
these phenotypes, while eczema might be overlooked unless
severe. There was a marked excess of females in our series,
but this is much less apparent in the literature as a whole.

Molecular characteristics
Molecular results are summarised in fig 2. Parental samples
were available in 16 of the 19 non-familial cases. All 16 were
shown to be de novo rearrangements, none showed co-
existence with the known 2q subtelomeric polymorphism37 38

and approximately equal proportions of paternally and
maternally-derived rearrangements were observed. A similar
lack of bias in parental origin is seen in Williams-Beuren,
DiGeorge, and 18p- syndromes,39–41 whereas Sotos, Wolf-
Hirschhorn, Cri-du-chat, and 18q- syndromes are predomi-
nantly paternal in origin42–45 and 1p36 deletions show a slight
maternal bias.46

As suggested by the original cytogenetic analyses, all
patients were found to have terminal deletions with the
exception of patient 75 (AW, Fisher et al16), who showed an
interstitial deletion with the distal breakpoint localised
between D2S140 (deleted) and AC005237CA (retained).
Microsatellite analysis in patient 63 showed that the inverted
duplication detected cytogenetically was accompanied by a
previously undetected small terminal deletion. The dupli-
cated and deleted regions were apparently separated by a
small region of normal gene dosage, as judged by relative

Figure 1 Photographs of four patients with 2q37 deletion illustrate the
typical facial appearance in this syndrome.

Table 1 Primer sequences for SNPs and microsatellites

Marker Forward primer Reverse primer Size (bp)
Annealing
temperature

rs3086056 (HES6) GTTCACTCTGGCTCACCTCAAT HEX-CCCACTGCCCCAATAGCTC 95/100 55 C̊
rs11165 (TWIST2) TTACTTTCACGCCGCTATTCT ACGTCTTTATTTTTCCTGGGTG T/A SNP 55 C̊
AC114788CA* GTTTCTTACTGGGATGCTGAGATATGGAC FAM-CAAATCCACTTGTTGTCTGGTG 260–290 62.4 C̊
AC017028CA* HEX-TCAAAGTGCGCTGAGAGTGG GTTTCTTGTGGACAGATGTGGAAGTAGC 90–120 62.4 C̊
AC062017TG GCAAAGGTTCATACAGATACCGA HEX-CTGTCAAAGGAAAAAGGGAAGC 160–180 55 C̊
AC093802CA GTTTCACCAACTCAAATGCTAATCCA HEX-CAACATCAGTGTAACCATAAAACA 170–190 52 C̊
AC093802TTAT FAM-TCACTCATCTTTGCCTGGATAG TTCATATTTACACGTAGAAGACGG 230–250� 55 C̊
AC013469CA* GTTTCTTATCCTATGGAACACCTCTCCC HEX-AATTCATCTGACCAAGCATGTG 230–250 62.4 C̊
AC124862CA GACGCATCACTCTACCTAAAAAAA HEX-CAATGCAGGTCTAAATGACCAG 100–120 55 C̊
AC005237CA* FAM-ATCAGCTACTGTCAATTCATTCG GTTTCACCCCTACTCCCAGAAGTCC 80–120 62.4 C̊
AC005104CA* GTTTCTTATACATGCACACACGACCACA TET-GAACAAAGAACTGGACCCTCAG 115–149 62.4 C̊
AC093642CA* GTTTCTTGCAGTTAATCTTGACACATCA FAM-GGGAACAAAAAGAAGGCATGTA 150–170 62.4 C̊
AC131097CA* FAM-GTTAAGGGGCTGGACGGG GTTTCTTAGTCTCCTCGCTCGTGGC 200–220 62.4 C̊

*These markers were amplified as one multiplex PCR, as described in Methods; �fragment is ,520 bp in length and was digested with HpaII prior to analysis on
ABI377.
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peak heights of the microsatellites. This has not yet been
verified by alternative methods, but would be in keeping with
the mechanism proposed by Bonaglia et al26 for the causation
of inverted duplications.

Breakpoint mapping and minimum deletion intervals
Since we wished to focus on the critical interval for AHO-like
phenotype, distal to D2S338, breakpoints in the larger
deletions were not characterised in detail. Breakpoints in
the nine smallest terminal deletions, the translocation, and
one duplication/deletion all localised within a 3.8 Mb region
bounded by D2S338 proximally and AC013469CA distally.
Two of these breakpoints, patients 10780 and 122, were
precisely localised to non-overlapping intervals of 169 and
33.8 kb, respectively, within the HDAC4 gene. Taken as a
whole, these data define the most distal breakpoints so
far characterised for both interstitial and terminal 2q37
deletions.
We then attempted to define the minimal deleted interval

for each of the major features of the syndrome (fig 2). Due to
the apparent reduced penetrance, this was done on an
inclusion-only basis, that is, the absence of a clinical
characteristic was not used as a criterion for excluding that
genomic region. The critical interval for the AHO-like
brachymetaphalangism extends from HDAC4 to the telomere,
a region of approximately 3 Mb, as defined by patients 10780
and 122. These patients also both show the characteristic

facial dysmorphism. The interstitial nature of the deletion in
patient 75, who clinically showed an atrial septal defect,
eczema, epilepsy, and autism,16 potentially excludes a number
of the most telomeric 2q genes as candidates for these
phenotypes. Thus, the minimum deleted region amongst our
patients with autistic or hyperkinetic behaviour and/or
epilepsy is ,2.1 Mb between HDAC4 and AC005237CA. An
overlapping 1.5 Mb region is deleted in patients with eczema,
while RAMP1 and AC005237CA bound a ,3.4 Mb region
common to patients with cardiac septal defects (fig 2).

DISCUSSION
Genotype–phenotype correlations have been instructive in a
number of other deletion syndromes to define discrete
clinical subgroups, leading to more accurate prognostication
and identification of candidate genes for specific pheno-
types.44 46–50 In conducting this detailed analysis of 20 patients
with 2q37 rearrangements, our aims were threefold: (a) to
refine the minimal deleted region for the AHO-like brachy-
metaphalangism; (b) to determine whether genotype–
phenotype correlations could be drawn for other features of
the syndrome; and (c) to precisely map the breakpoints as
possible clues to the rearrangement mechanism.

Brachymetaphalangism
The critical interval for the AHO-like brachymetaphalangism
is unequivocally assigned to the 3 Mb region from HDAC4 to

Figure 2 Results and definition of minimal deletion intervals. Positions of markers are those from Ensembl genome assembly release 17.33.1 M,
maternal; P, paternal; (P), assumed paternal origin, as patient and mother had one allele in common for every microsatellite tested but paternal sample
was not available; n/a, not applicable to familial translocation; white shading, normal dosage; black shading, duplicated; grey shading, deleted;
hatched shading, uninformative or not tested.
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the telomere. This represents a refinement of approximately
2 Mb compared to the previous minimum interval.15 It has
previously been suggested that much of this interval could be
excluded due to arachnodactyly in patient 8493.26 However,
the duplicated region in this patient extends just proximal of
the Indian hedgehog gene (IHH). Mutations of IHH are now
known to cause brachydactyly type A.51 Therefore, duplica-
tion of the gene might result in the reverse phenotype,
unusually long fingers, which would account for the
arachnodactyly phenotype in this patient and would likely
override any subtle abnormality due to the terminal 2q
deletion. Three genes previously proposed as candidates for
the brachymetaphalangism phenotype, GPC1, HDLBP, and
STK25,10 12 52 are localised within the 3 Mb minimal region
and remain candidates. Conversely, TWIST2, which we
considered a candidate gene on the basis of its proposed
role in regulating osteoblast development,53 is not deleted
in patient 10780 and can therefore be excluded.
Brachymetaphalangism is partially penetrant and is present
in approximately half of the patients deleted for this
minimum region. Some patients show additional, more
serious, skeletal abnormalities but, due to the small number
characterised to date, it is unclear whether these represent
pleiotropic effects of the same underlying gene.

Additional clinical features
Several other features of 2q37 deletions, such as congenital
heart anomalies, eczema, autism, and epilepsy, have poten-
tially greater morbidity and thus are clinically more
significant. We therefore sought to make genotype–pheno-
type correlations and investigate whether these are discrete
features of a contiguous gene deletion syndrome or pleio-
tropic effects of haplo-insufficiency for a single gene.
Minimum intervals, ranging from 1.5 to 3.4 Mb, could be
defined for each of these features. However, these phenotypes
are less specific than brachymetaphalangism and, being more
common in the general population, phenocopies will also
exist. Thus, our assignment of critical intervals for these
phenotypes, which is based on a small number of patients,
should be regarded as preliminary and requires verification in
a larger panel of patients. Some additional support for an
autism susceptibility locus at 2q37.3 is already available from
a small terminal deletion in a patient with isolated autism32

and from a weak suggestion of linkage in one genome scan.54

As presently defined, all minimum intervals share a 1.5 Mb
region of overlap. Thus it remains to be determined whether
the 2q37 deletion phenotype represents a contiguous gene
deletion syndrome and it is possible that developmental
abnormalities of several organ systems might result from
haplo-insufficiency of a single gene.

Genotype–phenotype correlations
Amongst this panel of 2q37 deletion patients, we found no
clear relationship between clinical features and the size or
position of the monosomic region. Patients with very similar
deletion breakpoints showed markedly different phenotypes,
for example 10780 and 122, or 127 and 389. The same is true
in translocation families, where individuals with identical
2q37 deletions have been reported with discordant pheno-
types.12 14 This represents a significant challenge in predicting
phenotype for this deletion, since the likely clinical outcome
in a young proband cannot be determined from the deletion
breakpoints. Variable expressivity is common in deletion
syndromes and may be due to reduced penetrance of the
haplo-insufficient genes, epigenetic factors, modifying effects
of other genes, as recently proposed for VEGF and cardio-
vascular defects in DiGeorge (del22q11) syndrome,55 or
multigenic inheritance.56 An additional factor might be
recessive phenotypes that are only uncovered in a minority
of deletion patients.

Mechanism of rearrangement
Elucidating chromosomal breakpoints can provide clues as to
the underlying mechanism of rearrangement. Several inter-
stitial deletion syndromes, including Williams-Beuren (7q),
Smith-Magenis (17p) and DiGeorge (22q), show clustered
breakpoints and are commonly mediated by low copy repeat
sequences and inversion polymorphisms.57–59 Clusters of
olfactory receptor (OR) genes have also been implicated in
recurrent rearrangements involving chromosomes 4p and
8p.60 61 OR-like genes have also been mapped to 2q37.3, but
they do not co-localise with the deletion breakpoints in our
patients. Furthermore, a recent study suggests that dupli-
cated segments are not involved in mediating the majority of
terminal deletions and translocations.62 Our data, which
show a lack of identical breakpoint locations, support this
finding.

Summary
This detailed analysis of 20 patients with 2q37.3 monosomy
has, for the first time, allowed minimal deletion intervals to
be defined for all the major phenotypes of the syndrome.
However, there is striking phenotypic variability and it is
clear that the size and extent of the deleted region cannot be
used as a predictor of the likely phenotype in the patient. As
increasing numbers of small deletions are detected by more
widespread use of subtelomeric FISH, this presents a
challenge for clinicians in trying to determine the likely
prognosis for a young proband. Ultimately, therefore, the real
challenge is to identify not only the gene(s) on 2q37
responsible for the phenotypes in these patients, but also
the modifiers, be they genetic, epigenetic, or environmental,
that contribute to the phenotypic variability between patients
with similar breakpoints. Only then can we begin to give
more precise prognostic information to the parents of a child
newly-diagnosed with a 2q37.3 deletion.
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