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Simulating without Negation
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Abstract
Although negation-free languages are widely used in logic and computer science, relatively little is known about their
expressive power. To address this issue we consider kinds of non-symmetric bisimulations called directed simula-
tions, and use these to analyse the expressive power and model theory of negation-free modal and temporal languages.
We first use them to obtain preservation, safety and definability results for a simple negation-fret modal language.
We then obtain analogous results for stronger negation-free languages. Finally, we extend our methods to deal with
languages with non-Boolean negation.

Keywords: Expressive power, modal logic, negation-free languages.

1 Introduction

In many areas of computer science one finds logical formalisms that lack some or all of the
standard Boolean connectives 'and', 'or' and 'not.' In particular, negation-free logics are
widely used in areas as diverse as semantics of programming and knowledge representation.
In some applications Boolean negation is unnatural [22]. Excluding Boolean negation may
improve the complexity of the satisfiability problem [7], and it may restore monotonicity of
the semantic interpretation function [20].

Despite their wide applicability negation-free languages haven't been studied as extensively
as languages with full Boolean expressivity. We want to fill this gap by studying the expres-
sive power of negation-free modal languages. Recently, these have attracted considerable at-
tention, both at an applied and at a theoretical level; cf. [8,11, 14]. For modal languages with
a full Boolean repertoire, bisimulations have proved to be an important tool in understand-
ing their expressive power (cf. [9, 4, 1, 18, 15]). In this paper we develop analogous tools
for negation-free modal languages. We introduce a kind of non-symmetric simulations called
directed simulations between transition systems that allow us to study the expressive power
and develop the model theory of negation-free languages. As far as we know, this is the first
paper to do so in a systematic way.

Our point of the departure is a simple negation-free modal language with Boolean conjunc-
tion and disjunction, and O and D; for this language we introduce directed simulations, and
use these to arrive at results on expressiveness and definability. We then extend our ideas and
techniques so as to cope with other negation-free description languages, including termino-
logical logics, negation-free fragments of Since, Until logic, and feature logics. After that we
adapt our methods to cope with languages containing non-Boolean negation. We conclude
with a summary and suggestions for further work.
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2 Definitions

Negation-free O, ^-formulas are built up from prepositional variables p, q, ..., and the con-
stants T and J_, using Boolean conjunction A and disjunction V, and the unary modal operators
O (diamond) and • (box). We use £O,D to denote this language, and ££ D to denote £o,a
with Boolean negation.

A transition system (or model) for £<>,o is a triple M — (W, R, V), where W is a non-
empty set of states, R is a binary relation on W, and V is a valuation on M, that is: a function
assigning a subset of W to every proposition letter. We sometimes write \M\ to denote the
domain of M.

The satisfaction relation is defined in the familiar way for the atomic case and for the
Boolean connectives A and V; observe that we can always interpret Boolean negation on our
models, even when it is not present in our language. For the modal connectives we put M, w ^
O<?!> iff there exists w' such that Rww' and M, w' |= <j>; and M, w |= O<f> iff for all w' such
that Rww', M, w' |= <f>.

The (negation-free) modal theory of a state w is the set nf-tp(w) = {<f> € £ o , o | w f= <f>}.
If we want to emphasize the transition system M in which w lives, we write nf-tpM(w).

Modal logic is just one of many possible description languages for specifying and constrain-
ing transition systems. We will encounter several languages in this paper, and we relate them
all to first-order logic. To be precise, let £1 be the first-order language with unary predicate
symbols corresponding to the proposition letters in Co,a, and with one binary relation sym-
bol R. C\ is called the correspondence language for £o,o. £\{x) denotes the set of all C\-
formulas having one free variable x.

To view transition systems as £i-structures in the usual first-order sense, we use V(p) to
interpret the unary predicate symbol P that corresponds to p. The standard translation takes
modal formulas <j> to equivalent formulas STx{<t>) of C\. It maps proposition letters p onto
unary predicate symbols Px, it commutes with the Booleans, and the modal cases are

STX(O4>) = By (Rxy A STy{<t>)) and STx(a$) = Vy (Rxy - STv(</>)).

For all transition systems M and states w we have M, w \= <f>iffM \= STx(4>)[w], where the
latter denotes first-order satisfaction of STX (<f>) under the assignment of w to the free variable
x of STX(4>). A modal formula 4> is said to correspond to a first-order formula a(x) if \=
STx{<j>) «- a(x).

3 Simulations for £<>,a

In this section we adapt the notion of bisimulation to the setting of negation-free modal formu-
las. The resulting notion of directed simulations is then used to analyse the expressive power
of negation-free formulas in three different ways: in terms of preservation, safety, and defin-
ability.

DEFINITION 3.1 (Directed modal simulations)
Let Z be a non-empty binary relation between two transition systems M and N, that is, Z C
\M\ x \N\. Then Z is called a directed (modal) simulation between M and N if it satisfies
the following clauses:

1. If wZv and p is a proposition letter such that M, w ^ p, then N, v ^ p.

2. If wZv and Rvv', then there exists w' in M such that Rww' and w'Zv' (back).
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3. If wZv and Rww', then there exists v' in N such that Rvv' and w'Zv1 (forth).

We write Z : M =! N (Z : M,w=tN,v)to indicate that Z is a directed simulation between
M and N (that links w to v).

A (strong) bisimulationis a directed simulation for which clause 1 above is an equivalence:
iftuZvthenM, w ^piffN,v (= p. WewriteZ : M t* Nto indicate that Z is a bisimulation
between M and N.

The back-and-forth conditions in clauses 2 and 3 of the definition of directed simulation
allow us to transfer true box and diamond formulas from one transition system to another.
Unlike the atomic clause in ordinary bisimulations, our atomic clause 1 does not display this
back-and-forth behaviour. As Theorem 3.5 below shows, this is exactly what is needed to
characterize negation-free modal formulas.

Hennessy and Milner [9, Section 2.2] introduce a notion of simulation where even more
of the back-and-forth conditions from ordinary bisimulations are missing: it lacks clause 3
of Definition 3.1. In the conclusion of the paper we point how our results carry over to that
setting. As far as we know, Definition 3.1 is new.

3.1 Preservation

Our first perspective on the expressive power of negation-free modal formulas is in terms of
preservation.

PROPOSITION 3.2

For all negation-free modal formulas 4>, and all transition systems M and N, and all states
w £ | M | and v £ |iV|, if there exists a directed simulation Z : M,wzlN,v, then M, w \= <f>
implies N, v \= 4>.

PROOF. Use inductionon formulas in £<>,a. The back and forth clauses in Definition 3.1 were
introduced especially to deal with the two modal cases.

Here's a proof for the D case (the O case is similar). Assume u; |= O<f>, Z : M,w=*N,v,
and Rvv'. By clause 2 of Definition 3.1 there exists w' such that Rwv/ and Z : M,w' n?
N, v'. As Rww', we get w' ^ <$>, and as Z : w' zi v', we get v' ^ 4>. Since v' was arbitrary,
it follows that v \= a<j>, as required. •

Thus, the existence of a directed simulation between M, w and N, v guarantees that
"/-'pAf (w) C nf-'PN(v)- Clearly, if in addition, there is a directed simulation going in the
opposite direction, from N, t; to M, w, then nf-tpM(w) = nf-tpN(v). The obvious question,
then, is: does M,wz2 N,v and N,v ^M,w imply that M,w t± N, vl The answer is nega-
tive, and the following example shows that directed similarity in two directions is, in general,
weaker than strong bisimilarity.

EXAMPLE 3.3

Consider the models M\ and M2 as in Figure 1. That is, Mi = ({a,ao,a1,a2},iZi, Vi),
M2 = ({&,61,fc2},fl2,K2),wherefliis{(a,a1) | 0 < i < n) and R2 = {(b,b1),(b,b2)};
the valuations Vi and V2 are defined by V\(p) = {00,01,02}, Vi(g) = {ao.a^.and V\(r) =
{a i}; Vi(p) = {bub2}. V2(q) = V,(r) = {6J.
Define Zo C |Mi| x \M2\ and Zx C \M2\ x |Mj| by

Zo - {(a, b), (00,60,(01,61), (o2,62)}

Zx = {(6,o),(6i)ai),(62,a2))(62,a0)}.
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Then ZQ is a directed simulation between Mx and M2 that links a to b, and Z\ is a directed
simulation that links 6 to a. However, there is no ordinary bisimulation linking a to 6 — there
is no state in M2 to which a0 can be linked in a bisimulation.

To formulate a converse to Proposition 3.2 we define a transition system M to be image-
finite if for every state w G \M\ the set of its successors {v £ \M\ \ Rwv} is finite.

PROPOSITION 3.4

Let M and N be image-finite models with w G |Af|, v £ \N |. Then the following are equiv-
alent:

^- nf-tpM{w) C nf-tpN{v)
2. M, w ^ N,v.

A first-order formula a(x) in C\ is preserved under directed simulations if for all transition
systems M, N, all states w € \M\ and v € |JV| and all directed simulations Z : M,w =? N,v
we have that M (= a[w] implies iV (= o[«].

THEOREM 3.5 (Preservation Theorem)
Let o(z) bean £i(x)-formula. Then a is equivalent to the standard translation of a (negation-
free) modal formula iff it is preserved under directed simulations.

PROOF. The proof uses some basic first-order model theory; we refer the reader to Hodges
[10] for background material. The right-to-left implication is immediate from Proposition 3.2.
For the other direction, assume that a(x) is preserved under directed simulations. Consider
the set of negation-free consequences of a imply a:

NF-Mod-Cons(a) := {STx(<f>) | a |= STx(<f>) and <f> G (3.1)

By a compactness argument it suffices to show that NF-Mod-Cons(a) itself implies a; for
then a finite subset of NF-Mod-Cons(a) will already imply a, and a will be equivalent to the
conjunction of the formulas in this finite subset.

To prove that NF-Mod-Cons{a) implies a, assume that M |= NF-Mod-Cons(a)[w]; we
have to show that M f= a[w]. Consider the following set of C£ D-formulas:

->tp(w) := {-i<̂  | 4> G £ 0 , 0 and M, w \fc <f>}.

That is: -^tp(w) consists of negations of negation-free modal formulas that are refuted at x.

FIG. 1. Two directed simulations
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C L A I M 1.

The set {a} U {STx(-«f>) | -w£ G ->tp(w)} is satisfiable.

P R O O F . Assume that it is not. Then there exist formulas - > ^ i , . . . . -><t>n G ->tp{w) such that

or
a\=STI(4>1)V...VSTx(<j>n).

By definition, <^i , . . . , <j>n are negation-free, so M,w f= <f>i V . . .V<£n, and hence M, w |= <
for some»with 0 < » < n. But then -x^ £ - > i p ( w ) — a contradiction. This proves Claim 1.

Let TV, t; be such that N ^= a[v] and N, v {= ->4> for every formula -<4> G -i<p(w).

C L A I M 2.

PROOF. Suppose 4> € nf-tpN(v), but M, u; ^ $. Then ->4> G -•<?(«;), and hence TV, t; |= -x£,
by the definition of N, v — a contradiction. This proves Claim 2. I

Now, to 'lift' a from N, v to M, w we make a detour via two other transition systems as
follows. Take w-saturated elementary extensions M*, w and N*, v of M, w and N, v, respec-
tively. And define a relation Z C |JV* | x \M"| by putting

uZt iff nf-tpN. («) C nf-tpM. (t).

Note first that Z is non-empty: by Claim 2 we have nf-tpN(v) C nf-tpM{w), and so
nf-tPN' (v) Q nf-{PM' (w)' BS M', w and N*, v are elementary extensions of M, u> and TV, v,
respectively.

Next, clause 1 of Definition 3.1 is trivially fulfilled. To see that clause 2 is satisfied, suppose
that uZt and Rit'\ we need to find a u' such that Ruu' and u'Z<'. Put

We will show that any finite subset of —nf-tp{t') is refutable in an /E-successor of u. Let <j>\,
• • •. 4>n G -nf-tp(t'). Then TV, < ^ °(<^i V. . . V^n), so, as uZf, M',u]fc n ( ^ V . . . v ^ n ) .
This implies that for some u' G | M ' | both Ruu' and u' \fc <j>i V ... V 4>n hold. Now, by w-
saturation of M*, all of -nf-tp{t') can be refuted at an ^-successor u' of u. For this u' we
have Ruu' and nf-tp{u') C nf-tp{t'), that is: u 'Zt ' , as required.

For clause 3 we argue as follows. Suppose that uZ< and iiuu'. We need to find a t' such that
.fttt' and u'Zt'; we achieve this by showing that every finite subset of nf-tp{u') is satisfiable
in a successor of <. Let 4>i, • • •, <f>n G nf-tp{u'). Then u =̂ O(^i A . . . A 4>n), and hence
f |= O(<£i A...A<An). So there exists a <' in TV* with TV*, t' (= ^j A . . . A 4>n and Rtt'. By
w-saturation a// of nf-tp(u') can be satisfied in a successor t' of t. For this t' wehaveifti' and
nf-tp{u') C nf-tp{t), that is: u'Z/ ' , as required.

Putting things together, we find that N =̂ a[v] implies TV* ^ a[v] by elementary extension.
As Z : N*, v z± M*, w it follows that M* ^ a[w], and hence M \= a[w) by elementary
submodel, we're done. •
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EXAMPLE 3.6

Let a(x) be a first-order formula that is preserved under strong bisimulations. Then a(x)
is equivalent to a modal formula 4> in £$ D that may include Boolean negation. By testing
whether a ( i ) is preserved under directed simulations we can find out whether 4> is in fact
equivalent to a negation-free modal formula.

An easy example is the first-order formula a(x) = 3y (Rxy A -<Py). This formula is the
first-order translation of O-<p, and it is certainly preserved under strong bisimulation — but
here's an example showing that it is not preserved under directed simulations: take M\ =
({ai,a2},{(a1 ,a2)},V ri), and M2 = ({61,62}, {(6i,62)}, V2), where Vx and V2 are such
that all a\, b\, 62 verify all proposition letters, and such that all proposition letter but p are
true in a2. Clearly, there exists a directed simulation linking a\ and 61, but M\ f= a[a{\,
whereas Mj ^ a[6i].

By Theorem 3.5 directed simulations uniquely identify a certain fragment of first-order logic,
namely the 'negation-free modal fragment.' By identifying and comparing fragments of first-
order logic that correspond to modal languages in this manner, we have a method for compar-
ing the expressive power of (negation-free) modal languages.

We proceed with three corollaries to Theorem 3.5 and its proof. The first of these concerns a
'dual' to preservation under directed simulations: a first-order formula Q(X) is said to be anti-
prcserved under directed simulations ifTor all transition systems M, N, all states w € \M\,
v € I TV I and all directed simulations Z : M,w z± N,v, we have that TV (= a[v] implies
M \= a[w]. Next, call a modal formula in £ J Q negation-rich if it is built up from constants
and negated atoms -<p, using only V, A, O and • .

COROLLARY 3.7

Let o(x) be an £i(z)-formula. Then a is equivalent to the standard translation of a negation-
rich modal formula iff it is anti-preserved under directed simulations.

PROOF. Use Theorem 3.5 and the fact that the negation of a negation-free formula is equiva-
lent to a negation-rich formula. I

The following corollary characterizes the relation 'nf-tp(v) C nf-tp(w)' between states w,
v in terms of directed simulations. We refer the reader to Hodges [10] for the notion of an
ultrapower.

COROLLARY 3.8

Let M and N be two transition systems, and let w € \M\ and t; € \N\. Then nf-tpN(v) C
nf-tpM(w) iff for some ultrapowers M', w of M, w, and TV*, v of A\ v, we have that N*,vzi
M',w.

PROOF. The right-to-left implication is easy. For the converse, consider the proof of Theo-
rem 3.5 again. For the w-saturated elementary extensions M*, w and N*,vofM,w and N, v,
respectively, we showed that N* ,vzz! M*, w, starting from the assumption that nf-tpN(v) C
nf-tpM(w). By a result in first-order model theory, these w-saturated extensions may be ob-
tained as suitable ultrapowers of the original models M, w and N, v; see Chang and Keisler
[6, Theorem 6.1.1 ] for details. I

COROLLARY 3.9

A modal formula in £ J D is equivalent to a negation-free modal formula iff it is preserved
under directed simulations.
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PROOF. The left-to-right implication is Proposition 3.2. For the right-to-left implication, use
Theorem 3.5 plus the fact that modal formulas are equivalent to their first-order translations
under STX. I

EXAMPLE 3.10

The formula O->p whose first-order translation was considered in Example 3.6 provides an ex-
ample of a formula that is not preserved under directed simulations, and hence not equivalent
to a negation-free modal formula. The formula O(T V ->p), on the other hand, is preserved
under directed simulations — and hence equivalent to a negation-free modal formula, namely
OT.

To conclude this subsection we present an alternative semantic characterization of the
(modal) formulas preserved under directed simulations in terms of their monotonicity
behaviour. We call a modal formula <$> upward monotone in a proposition letter p if for all
models M and states w we have that if M, w ^ <f> and M' is obtained from M be extend-
ing the interpretation of p (and leaving the rest unchanged), then M',w (= <f>\ the notion of
downward monotonicity is defined dually.

By [18] a modal formula is <f> is upward monotone in p iff p occurs only positively in 4>,
meaning that all occurrences of p should be in the scope of an even number of negation signs.
More generally, a modal formula is called positive iff it can be built up from T and propo-
sition letters, using only V, A and O (see [18, Section 7] for the general picture). Although
every positive formula is (equivalent to) a negation-free one, not every negation-free formula
is (equivalent to) a positive one: OL is an example. Therefore, the semantic characterization
of positive modal formulas in terms of preservation under surjective homomorphisms given
in [18, Theorem 7.15] doesn't apply to negation-free modal formulas. What we do have is the
following extension of Corollary 3.9.

THEOREM 3.11

Let <j> be a modal formula. The following are equivalent:

1. <f> is equivalent to a formula in which all proposition letters occur only positively.
2. <j> is equivalent to a negation-free formula.

3. <f> is preserved under directed simulations.
4. (j> is upward monotone in all its proposition letters.

PROOF. The implication 1 => 2 is easy; the implication 2 => 3 is Proposition 3.2, and the
implication 3 ^> 4 is immediate from the fact that if M' is a transition system obtained from
a transition system M by extending the interpretation of a proposition letter (and leaving the
rest unaltered), then the identity relation is a directed simulation from M to M'. Finally, the
implication 4 => 1 is [18, Theorem 7.15]. I

3.2 Safety

In this subsection we take a different perspective on the expressive power of negation-free
modal languages by considering the notion of safety recently introduced by van Benthem [3].

Let a(x, y) denote a first-order formula with at most two free variables. Then a(x, y) is
called safe for bisimulation if whenever Z : M if N with wZv and M |= a[u>u>/], then there
exists a v' such that w'Zv' and N |= a [W] . The formula a(x, y) is best thought of as an op-
eration on the binary relations living inside the transition systems M and A ,̂ and the question
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for safety can be understood as asking whether the back-and-forth conditions of Definition 3.1
hold for a whenever they hold for the relation symbols in a. The definition of safety depends
in an essential way on the symmetric character of bisimulations: if the operation expressed by
a is performed in M, then it can be matched by an a step in N, and vice versa.

What is the appropriate notion of safety for directed simulations? Their non-symmetric
character causes a split in the notion of safety, depending on whether the operation a is per-
formed on the left-hand side or on the right-hand side of a pair of directedly similar transition
systems M and N. To be precise, a first-order formula a ( i , y) is left safe for directed simu-
lations if whenever Z : M ^ N with wZv and M \= a[tuu/] then there exists a t/ such that
w'Zv' and N (= a [W] . A first-order formula a(x, y) is right safe for directed simulations if
whenever Z : M =r N with wZv and N (= a[vv'] then there exists a w' such that w'Zv' and
M |= a[u>u/].

For example, atomic tests PI, whose semantics are given by (x = y) A Px, are left safe,
but not right safe. On the other hand, tests on negated atoms ->p are right safe, but not left
safe. More generally, all negation-rich formulas are right safe.

Even though left and right safety have been defined independently, one may be character-
ized in terms of the other. To this end we need the following definition. The dynamic negation
~R of a relation R is the relation ~ f i = {(x, y) \ x = y A -i3z Rxz}.

CLAIM 3.12

Let a(x, y) be a first-order formula in C\ (x, y). Then a(x, y) is right safe for directed simu-
lations iff ~o(x, y) is left safe for directed simulations.

The proof of the above claim is immediate from the definitions. As a consequence to the above
claim it suffices to characterize just one of left and right safety; below we characterize the
former.

THEOREM 3.13 (Safety)

Let a(x,y) be a first-order formula in Ci(x,y). Then a(x,y) is left safe for directed simula-
tions iff it can be defined from the atomic relation R and tests on negation-free modal formulas
using only ; and U.

Our proof of the above result is tailored after similar results in [3]; it requires a careful analysis
of so-called continuous negation-free formulas, which we have included in an appendix. Here
are the relevant definition and lemma

DEFINITION 3.14

A modal formula <f>{p) is continuous in p if the following holds for every transition system
(W,R,V):

for each family of subsets {X,} ie/ such that V(p) = \Jt X(: (W, R, V),w\=4> iff,
for some i, (W, R, K), w \= <f>, where K(p) = Xt and Vt(q) = V(q) for q # p.

EXAMPLE 3.15

The formula Op is not continuous in p, but Op is. And in fact the latter format typical for
safety, as is shown by the following lemma.

LEMMA 3.16

A negation-free formula is continuous in p iff it is equivalent to a disjunction of formulas of
the form <j>0 A O(<£i A •• • A <>(<£„ A p) • • •), where each of the formulas </>,• is negation-free
and p-frec in the sense that they don't contain occurrences of p.
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A proof of the above lemma may be found in Appendix A.

PROOF, [of Theorem 3.13] We first prove part 1 ofTheorem3.13. To see that the constructions
mentioned are indeed left safe, argue as follows. It is clear that the atomic relation and tests
on negation-free formulas are left safe. To see that composition is left safe, assume that Z :
M,wz±N, v, and that wSi; 52 w', where the back-and-forth conditions of Definition 3.1 hold
for Si and 52 in M. Then, there exists w" with wSiw"S2. As Z is assumed to be a directed
simulation for S\, there exists a v" in TV with vS\ v" and w"Zv", and, likewise, there exists a
v' € |TV| with v"S2v' and w'Zv'. The latter is the required Si ; 52-successor in TV. Showing
that choice (U) is left safe is left to the reader.

Now, to prove the more complex left-to-right half of part 1 of Theorem 3.13, let a ( i , y) be
a first-order operation that is left safe, and choose a new proposition letter p. Our first observa-
tion is that 3y(a(x,y)ASTy(p)) is preserved under directed simulations—this is immediate
from the fact that a(x, y) is left safe. As a corollary we have that, by our Preservation Theo-
rem 3.5,3y (a(x, y) A STv(p)) is equivalent to a negation-free modal formula <f>. In addition,
because of the special syntactic form of 3y(a(x,y) ASTv(p)), this formula <j> is continuous
in p. Therefore, by Lemma 3.16 we may assume that it is a disjunction of formulas of the form

where each of the formulas <f>i is negation-free and p-free. To complete the proof we need one
more observation, namely that a(x,y) is definable as a union of relations of the form

(t fo?) ; f l ; (* i?) ; - - - ; r t ;(*„?), (3.2)

where, again, each of the formulas <f>i is negation-free. But this is exactly the syntactic form
specified in the theorem, and, hence, this provesthe theorem. I

There is a natural follow-up to Theorem 3.13: what are the first-order operations a(x, y)
that are doubly safe for directed simulations, i.e. formulas that are both left and right safe.
The following result combines our characterizations of left and right safety to characterize
the doubly safe operations.

THEOREM 3.17

Let a(x, y) be a formula in £ i ( i , y). Then a(x, y) is doubly safe for directed simulations iff
it can be defined from the atomic relation R and tests on negation-free modal formulas without
occurrences of proposition letters using only ; and U.

PROOF. The right-to-left implication is easily verified. For the converse, assume that a ( i , y)
is doubly safe. By Theorem 3.13 a(x, y) is equivalent to a formula

where each 0,-* is negation-free. In addition, a(x, y) is equivalent to a formula

where each ipjt is negation-free. Observe that every proposition letter occurs only negatively
in 7.
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Let us write [T/p]6 to denote the result of substituting T for all occurrences of all propo-
sition letters in x- We will show that \= a «-+ [T/p]f3, and we will use the fact that formulas
in which all (translations of) proposition letters occur only positively (negatively) are upward
(downward) monotone. If M is any transition system, then we write M+ to denote the tran-
sition system that is just like M except that it assigns \M\ to every proposition letter.

Observing that all proposition letters in (3 occur only positively in /?, and that all proposition
letters in 7 occur only negatively in 7, we have, for any transition system M,

M (= a[wv] =$> M \= 0[wv]

=> M+ \= 0[wv]

and

M fi a[wv) => M £ j[wv]

=• M+ Y= y[wv]

=>• M + £ 0[wv]

This proves |= a <-• [T/p ]/?, and the latter is of the required form. I

3.3 Definability

In this subsection we offer a third and final perspective on the expressive power of negation-
free modal languages by analysing which properties of transition systems are definable by a
negation-free modal formula. Our analysis is in terms of definable classes of transition sys-
tems, and to smooth the results and the presentation we will work with so-called pointed tran-
sition systems; these are structures of the form (M, w), where M is a transition system as de-
fined in Section 2 and w € \M\ is the distinguished state of (M, w). (M, w) \= <f> will mean
the same thing as M, w ^ <j>. Bisimulations between pointed transition systems are required
to link the distinguished states.

A class of pointed transition systems K is negation-free definable by a set of formulas if
there exists a set of negation-free formulas A such that K = {(M, x) | (M, x) (= <f> for all
4> G A). K is called negation-free definable by a single formula if it is negation-free definable
by means of a singleton set.

If K is a class of pointed transition systems, we write K to denote the class of pointed tran-
sition systems that are not in K. We say that K is closed under ultraproducts (ultrapowers) if
any ultraproduct (ultrapower) of transitions systems in K is itself in K. Likewise, K is closed
under directed simulations if (M, w) € K and Z : (M, w) z+ (N, v) implies (N, i i ) e K .

THEOREM 3.18 (Definability)

Let K be a class of pointed transition systems. Then

1. K is negation-free definable by a set of formulas iff K is closed under directed simulations
and ultraproducts, while K is closed under ultrapowers.

2. K is negation-free definable by a single formula iff K is closed under directed simulations
and ultraproducts, while K is closed under ultraproducts.
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PROOF. The left-to-right implications are left to the reader. For the right-to-left implication
of item 1, argue as follows. If K and K satisfy the stated closure conditions, then both K and R
are also closed under bisimulations, and hence, by [18, Theorem 6.3] they are definable by a
set of modal formulas A. Now, as K is closed under directed simulations, each formula in A
must be preserved under directed simulations, and hence equivalent to a negation-free modal
formula by Corollary 3.9. This shows that K is negation-free definable.

Next, for the right-to-left implication of item 2 we use a similar argument. If K and K satisfy
the stated closure conditions, then they are both closed under bisimulations and ultraproducts.
By [18, Theorem 6.3], again, this implies that K is definable by a single modal formula <j>. As
K is closed under directed simulations, 4> must be preserved under directed simulations, and
hence it must be equivalent to a negation-free modal formula by Corollary 3.9. I

The characterization of definability given in Theorem 3.18 is hard to use in practice as ul-
traproducts are rather abstract objects. The following gives a more manageable Fraisse'-type
characterization.

Let M, w and N, v be pointed transition systems. We define directed similarity up to n
between M, w and N,v (n € N) by requiring that there exists a sequence of binary relations
Zo, . . . , Z n C \M\ x \N\ such that

1. Zn C • • • C ZQ and
2. for each t < n, if uZ{t and u |= p, then t |= p;

3. for t + 1 < n the back-and-forth properties of Definition 3.1 are satisfied relative to the
indices:

(a) if uZi+it and RW in N, then there exists u' G \M\ such that Run' and u'Z.t',
(b) if uZi+it and Ruu' in N, then there exists t' G |7V| such that Rtt' and u'Zit'.

We write M, w z±n N, v to denote that there exists a a directed simulation up to n.
Recall that the degree deg(<£) of a modal formula <j> is the largest number of nested modal

operators occurring in it.

THEOREM 3.19
Assume that Co.n is finite (i.e. contains only finitely many proposition letters), and let K be a
class of pointed transition systems. Then K is negation-free definable by a single formula iff,
for some n G N, K is closed under directed simulations up to n.

PROOF. Clearly, if K is negation-free definable by a single formula of degree n, then it is
closed under directed simulations up to n. To prove the converse, let (M, w) G K, and define
<j>1f w to be the conjunction of all formulas in nf-tpM(w) of degree at most n — as we are
working in a finite language, we can assume that there are only finitely many non-equivalent
negation-free formulas of any given degree, hence we may assume ^ w to be a (finitary)
formula in £<>,••

Using the finite character of the language again, we find that there are only finitely many
non-equivalent formulas ^ „, for (M, w) € K. Let#n be their disjunction. Then 4>n defines
K. For, assume that (W, t;) \^$n; we need to show that (N, v) G K. First, from (N, v) \= <Pn

it follows that for some (M, w) £ K, (TV, v) agrees with (M, w) on all negation-free formulas
of degree at most n. Second, the latter fact implies that M, w ^n N, v. To see this, define
relations Z,- C |M|x|A^|forl < i < n by putting uZ,< iff every negation-free modal formula
of degree at most: that is true at u, is also true at t. Then Z o , . . . , Zn is a directed simulation
up to n that links M, w to N, v. As K is closed under directed simulations up to n, this implies
(N, v) G K, and we are done. I
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EXAMPLE 3.20

The class of pointed models defined by the first-order formula Px is closed under directed
simulations up to 0, and hence definable by a modal formula of degree 0. The class of pointed
models defined by the first-order formula Vy (Rxy —* 3z (Ryz)) is not closed under directed
simulations up to 0 or 1 (and hence not definable by a modal formula of degree less than 2), but
it is closed under directed simulations up to 2, and it is therefore definable by a modal formula
of degree at most 2.

4 Extensions

The main idea that underlies our work in Section 3 is a very simple one: replace the 'symmet-
ric' atomic condition in the definition of a bisimulation by a non-symmetric or directed one.
In this section we apply the same strategy to study further negation-free languages arising in
terminological logic, Since, Until logic, and feature logic. Our presentation will be somewhat
impressionistic, aimed at indicating the applicability of the main ideas rather than giving full
details.

4.1 Terminological logics

Terminological logics are description logics stemming from semantic networks and designed
for representing structured concepts. The system KL-ONE is a well-known knowledge rep-
resentation system based on terminological logics. In a terminological logic the structure of a
concept (or set) is described using some or all of the Booleans, and various forms of quantifi-
cation over the attributes of a concept (in terms of binary relations). One of the main concerns
in the area is the computational complexity of reasoning problems in terminological logics;
although this is closely related to matters of expressive power, until recently the latter has
never been studied in a systematic way (see Baader [2]). However, there is a close connection
between modal and terminological logics which can be exploited to improve on this.

Constructor name

concept name
top
bottom
conjunction
disjunction (U)
negation (C)
univ. quantification

exist quantification {£)

Syntax

A
T
J.

CnD
CuD

-.C
VRC

3R.C

Semantics

AL C W
W

e
CL r\DL

CL UD1

W\CL

{d! \vd7(dud2)eRM

- d2 6 C1}
{dj \3di(dud2)eRl

Ad2 € C 1 }

Modal

P
T
X

4> A 1p

a<j>

04,

TABLE 1. Syntax and semantics of concept-forming constructors

In their survey paper, Donini ex al. [7] study several hierarchies of terminological lan-
guages. By way of example, we consider the hierarchy of FC~-languages specified in
Table 1. Here, we use A, B to denote atomic concept names ('proposition letters'), and C,
D to denote complex concepts ('modal formulas'); and we use R to denote roles ('binary re-
lations'). Terminological expressions are interpreted using an interpretation function (-)1 on
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transition systems (W, R).
The various languages differ in the constructions they admit; TC~ denotes the language

with universal quantification, conjunction and unqualified existential quantification 3.R.T. Su-
perlanguages of TCT are identified by stringsof the form JF£[£][W][C]~. We will assume that
FC~ contains T and JL

Qearly, TC£U~ coincides with (a multi-modal version) of our negation-free modal lan-
guage £O,D, and hence Theorems 3.5, 3.13, 3.18, and 3.19 all carry over without effort to
T££U~. Likewise, the analogous results on expressivity for the standard modal language
£$ D carry over to the corresponding terminological language TCSUC~. (Further details on
the latter connection may be found in [21, 11].) Thus, two of the languages in the TC~ hi-
erarchy have been equipped with model-theoretic tools for analysing their expressive power.
The remaining terminological languages in Table 1 call for further non-standard notions of
(bi-)simulation; coming up with such notions and using them to arrive at a model-theoretic
analysis of the remaining languages in Table 1 is part of our ongoing work.

4.2 Since and Until

Our next example concerns directed simulations for a negation-free fragment of Since, Until
logic. To simplify matters we restrict ourselves to the forward looking fragment of the lan-
guage that only contains the Until operator U. Recall its truth definition on transition systems:

M, w |= U(<f>,ip) iff there exists w' with M, w' \= <f> and

for all w", if wRw"Rw' then M, w" (= rj>.

Recently, a notion of bisimulations for Since and Until has been introduced that allows for a
complete development of the model theory of the full Since, Until language (see [15]). Build-
ing on this, we define the following simulations for the negation-free forward looking frag-
ment Cu- Pi-directed U-simulation from M toN isapair (Z0,Z\), where ZQ C \M\ X |JV|
andZj C \M2\ x \N2\ such that

1. WZQV and w f= p implies v \= p;
2. ifwZov and Rww' then there exists v' such that Rvv', w'Zov' and (w, w')Zi(v, v')\
3. if (w, w')Zi(v, v') and vRv"Rv' then there exists w" with wRw"Rw' and w"Zov".

The first of the above clauses is the same as before; the second records transitions in simulating
pairs of states, and the third clause makes sure that if two pairs of states simulate each other,
then they 'agree' on intermediate states.

REMARK 4.1

In the definition of directed simulation for £<>,• we had back-and-forth clauses to be able to
transfer true formulas involving the diamond operator and its dual the box operator from one
model to another. To simplify matters, we have left out a dual for the (/-operator from our
negation-free fragment of the Since, Until language. As a consequence we can make do with
clauses 2 and 3 above; in the presence of a dual of U, we would have to add clauses 2' and 3'
going in the opposite directions.

Here's an example of a directed simulation: consider the models Mi = ({a, ao, ai , a 2 },
Ru Vi) and M2 = ({b,bi,h},R2,V2), where Rr is {(a,a)} U {(a,ai) | 0 < i < n}
and Ri = {(b, 6)} U {(b, &i), (6,62)}; the valuations Vi and V2 are defined by Vi(p) =
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FIG. 2. Directed {/-simulation

V2(r) = {6i}, and 6 verifies all proposition letters (see Figure 2). Define Zo C |Mi| x |Af2|
by

Zo = {(a J6),(aO )61),(a l j61),(a2 ,62)}.

To define Z\ C |Mi|2 x IM2I2, define a pair of states (x,y) with Rxy to be minimal if there
are no states in between x and y. Put

Z, = {((a,a),(b,b))}U

{((w, ID'), (v, w')) I Riww', R2vv' and (w, w'), (v, v') minimal}.

We leave it to the reader to check that (Zo, 2i) is a directed {/-simulation between Mj and
M2 that links a to 6. It follows that every negation-free Until-formula true in a is also true in
6 — but the converse obviously fails.

It is precisely the fact that directed [/-simulations link points to points and pairs of points
to pairs of points that allows one to prove analogues of Theorems 3.5, 3.13, 3.18 and 3.19 for
Cu by combining the techniques and results in Section 3 with those in [15].

4.3 Feature logics

We conclude our list of extensions of the basic results in Section 3 with directed simulations
for feature logics. Feature logics are description languages for a special kind of data struc-
tures called feature structures. These are related to the record structures of computer science
and the frames of artificial intelligence. In computational linguistics they are labeled graphs
carrying syntactic, semantic, morphological and phonetic information, and the purpose of a
linguistic theory is to describe admissible graphs of this kind that underlie text and speech.
Feature structures have also been used to characterize partially defined concrete data types in
programming languages.

Formally, let L be a set of feature names, and A a set of sort names. The pair (L, A) is
called a feature signature. A feature system of signature (L, A) is a tuple M = (D, {Ri}iei,
{ Da } p e A), where for each feature name /, fi is a partial function on D, and for each sort name
p, Dp is a subset of D. (Feature systems are simply labeled transition systems of a special
kind.)

Various logical systems have been proposed to constrain feature structures. Each takes a
slightly different view of its models, but often they are non-Boolean fragments of modal log-
ics. In this paper we consider a single example of a feature logic; see Rounds [20] for a survey
of feature languages.
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The logic we consider is called Kasper-Rounds logic. Assuming L and A as above, the
atomic expressions of C(KR) are the following: proposition letters p (p 6 A), and so-called
path equations it = p, for T, p € L*. Complex formulas are built up using conjunction,
disjunction and modalities (/) and [/], for / € L.1 The only novel aspect in the interpretation
of C(KR) is the interpretation of the path equations and of the indexed modal operators (/).
Path equations are meant to express that two sequences of transitions lead to the same state;
for convenience, we will assume that every finite sequence of feature names TT comes with its
own transition relation R*.

• M, w \= T = p if there exists w' with (w, w') e R* C\ Rp. (If it exists, this w' will be
unique.)

• M,w (= (/)<£ if there exists w with Riww' and M, w' |= </>. (Again, if it exists, this w'
will be unique.)

Our next aim is to state an analogue of Theorem 3.5 for C(KR). First we fix a first-order
language C^R into which we translate Kasper-Rounds formulas. C^R has binary relation
symbols Ri for / 6 L, and unary predicate symbols P for all sort names p € A. The novel
clauses for the standard translation STX are the following:

STI(n = p) = 3y(xRXl ; • • •; R*.y A xRPl ; • • •; RPmy),

where 7T = 7Ti • • • 7rn and p = p\ • • • pm, and all the 7Tj and pi are 'atomic' feature names in
L; and STx((l)<j>) = 3y (R,xy A STy{<j>)), and similarly for [l\<t>.

What kind of simulations are we to use to identify C(KR) as a fragment of the first-order
language £ f H ? Note that path equations n = pare essentially intersections of compositions
of 'atomic' transition relations Ri. Their intersecti ve character calls for a special kind of simu-
lation in which we ensure that intersecting paths are preserved. The definition below achieves
this by relating states to states and pairs of states to pairs of states; it is based on [5] and [13].

We write w -?-+ w' for the reflexive, transitive closure of U;gL ^'- ^ directed KR-sim-
ulation from M to N is a triple (Z0,Zi,Z2) where Zo C \M\ x \N\,ZX C \M2\ x |N2 |,and
Z 2 C |JV2|x |M 2 | such that

1. WZQV and w =̂ p implies v\= p.

2(a) (w, w')Zi(v, v') and Riww' implies Rivv',

(b) (v, v')Z2(w, w') and Rivv' implies Rtww'.

3(a) if WZQV and Riww' then there exists v' with (w,w')Zi(v,v'),

(b) if tvZov and Rivv' then there exists w' with (t;, v')Z2{w, w').
4. (w, w')Zi(v, v') implies WZQV and W'ZQV'; similarly for (u, v')Z2(rv, w').

5(a) if (w, w')Zi (v,v') and w - ^ w" -̂ -+ w', then there exists v" such that both
(w, w'^Z^v, v") and (w", w^Z^v", v'),

(b) if (v, t/)Z2(u>, w') and t; - ^ v" - ^ t/, then there exists w" such that both
(v, t / ' )^2(^, i«") and (t/', v')Zx(w", w').

Clause 1 is familiar. The back-and-forth conditions in clauses 2 and 3 ensure that transitions
are recorded in simulating pairs of states; together with clause 5 they allow us to simulate
intersecting paths in one transition system with intersecting paths in the other. Finally, clause

1Our syntax deviates from the one presented in [20], but the differences are inessential.
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4 is a bookkeeping clause that relates the behaviour of (Zo, Z\, Z2) on pairs of states to its
behaviour on single states.

With this notion of directed KR-simulation one can proceed to prove analogs of Theorems
3.5, 3.13, 3.18 and 3.19 for C(KR) by combining the techniques and results of Section 3 and
[13]. The details would take us to far astray from the main points of the present paper to be
included here; instead, we refer the reader to [16].

5 Non-classical negation

Although in many application areas Boolean negation is unwanted, some form of negation is
often called for. This motivates the introduction of non-classical negations. The first example
that comes to mind is probably intuitionistic negation. In this section we show how our di-
rected simulations have to be amended for the results of Section 3 to carry over to intuitionistic
logic.

Recall that a transition system M = (W, <,V) is called an intuitionistic model if < is a
partial order, and V is a valuation that assigns <-closed subsets of W to proposition letters.

We assume that the language of intuitionistic logic has -L, A, V, and =>. Conjunction and
disjunction are interpreted in the Boolean manner, while L is false at all states, and w =̂ <j> =>
rp if for all u/, w < w' and w' |= 4> implies w' (= V- As usual, negation is introduced as an
abbreviation for 4> => ± .

Let M, N be two intuitionistic models. A directed intuitionistic bisimulation is a pair (Zo ,
Zi) with Zo C \M\ x \N\ and Zj C \N\ x \M\ such that

l(a) if WZQV and w |= p, then v |= p,
(b) if vZ\\v and v |= p, then w |= p.

2(a) if wZov and t; < v', then there exists w' such that w < w', W'ZQV' and v'Ziw',
(b) if vZ\w and w < w', then there exists v' such that v < v', v'Z\w' and W'ZQV'.

We use Z : M t±i N to denote that Z is a directed intuitionistic bisimulations between M
andJV.

The intuition behind the above definition is the following. As we have seen in Section 3, in
the absence of negation we can make do with directed simulations, and as is known from the
literature, in the presence of full Boolean negation we need bisimulations with full back-and-
forth clauses. In intuitionistic logic, we are somewhere in between. The intuitionistic impli-
cation introduces negative occurrences (formulas occurring on its left-hand side). To account
for this we need to increase the interaction between simulating. We do this by having two
relations going in opposite directions.

Observe that directed intuitionistic bisimulations are not as strong as strong bisimulations
(as this would be appropriate for Boolean negation only). However, if (Zo, Z\) is a directed
intuitionistic bisimulation between M and TV, then Zo n Z{ is a strong bisimulation between
Mand7v\

PROPOSITION 5.1

Intuitionistic formulas are preserved under directed intuitionistic bisimulations: if (Zo, Z\) :
M tii N, wZov and w\= <f>, then v \= <f> (and likewise, if vZ\w and v ^ <f>, then w }= <j>).

P R O O F . Use induction on intuitionistic formulas. The atomic case is clear, and so are the in-
ductive cases for A and V. The case for implication shows why directed intuitionistic bisimu-
lations are defined the way they are: assume that w €\M\,v € \N\, WZQV and w =̂ <j> ^ rp;
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we need to show v \= <f> => i>. Take any v' such that v < v' in N, and assume v' \= <j>. We
need to show v' |= rp. Now, by clause 2 (a) of the above definition, there exists a w' with
(i)u; < w',(n)v'Ziw' and(iu)tv'Zov'. Use (i) to conclude that (iv) if w' \= </>thenu/ (= rj>\
use (ii) and t/ ^ <j> and the induction hypothesis to conclude that w' [= <f>. Then, by (iv),
u;' \= V1 and, by (iii) and the induction hypothesis again, v' (= V" — and we're done. I

Using the notion of directed intuitionistic bisimulation, one can establish counterparts of
Theorems 3.5, 3.13, 3.18 and 3.19. To prove a preservation result along the lines of Theo-
rem 3.5, we need to define a translation of intuitionistic formulas in to first-order formulas.
The intuitionistic standard translation ISTX(-) takes intuitionistic formulas to £i-formulas
as follows: ISTx(p) = Px; ISTX commutes with A and V; and

ISTS{4> =• V) = Vy (Rxy - (ISTy(4>) - ISTy(1>)))-

THEOREM 5.2 (Preservation Theorem)
Let a(x) be an C\ (x)-formula. Then a(x) is equivalent (on intuitionistic models) to the trans-
lation of an intuitionistic formula iff it is preserved under directed intuitionistic bisimulations.

PROOF. The left-to-right implication is Proposition 5.1. The converse is proved along the
lines of Theorem 3.5. There are a few things to take into account:

• we need infinitely many axioms to express the <-closedness of the interpretation of propo-
sition letters (unary predicates);

• we need axioms to express that intuitionistic models are partial orders.

As these axioms are all first-order axioms, we can use the techniques of Theorem 3 5 as before.
Hence, we only sketch the main steps here.

By a compactness argument it suffices to show that show that a is itself a consequence of
the set of its intuitionistic consequences

Int-Cons(a(x)) := {ISTx(<f>) | a (= ISTX(4>),4> intuitionistic}.

So, consider a model M (= Int-Cons(a(x))[w]; we have to show that M \= a[w]. We achieve
this by showing that there exists a model (./V, v) for

{a} U itp(w) U ->itp{w),

where itp(w) is the set of (translations of) intuitionistic formulas satisfied by w, and -*itp(w) is
the set of Boolean negations of (translations of) intuitionistic formulas false at w. Using this,
we move to two w-saturated elementary extensions of M, w and N, v and show that there must
be a directed intuitionistic bisimulation relating w and v between those two models. The latter
allows us to conclude that M \= a[w]. I

COROLLARY 5.3

A modal formula in £ J a is equivalent to an intuitionistic formula iff it is preserved under
directed intuitionistic bisimulations.
EXAMPLE 5.4

The modal formulas DOp and OO->p are preserved under directed intuitionistic bisimulations
(between intuitionistic models), and, so, on intuitionistic models they are equivalent to intu-
itionistic formulas. We leave it to the reader to show that, more generally, every modal for-
mula which contains negation only in the scope of modal operators is preserved under directed
intuitionistic bisimulations, and therefore equivalent to an intuitionistic formula.
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Our next goal is to state a safety result for intuitionistic logic along the lines of Theorem 3.13.
As with directed simulations, we get two versions of safety for directed intuitionistic bisim-
ulations. We call a first-order formula a(x, y) in Ci(x, y) left safe for directed intuitionistic
bisimulations if whenever (ZQ,Z\) : M t±t- N with WZQV and M \= a[ww'], then there
exists a v' with W'ZQV' and M (= a[W]. Likewise, a(x, y) is right safe for directed in-
tuitionistic bisimulations if whenever {Z0,Z\) : M t±,- N with vZ\w and M ^ a[t>t/],
then there exists a w' with v'Ziw' and M =̂ a[u>u/]. We leave it to the reader to verify that
a ( i , y) is right safe iff ~a (z , y) is left safe (here, ~ i j is the dynamic negation of R as defined
in Section 4: ~R — {(x, y) \ x — y A -<3z Rxz}).

THEOREM 5.5

Let a(x, y) be a first-order formula in C\{x, y). Then a(x, y) is left safe for directed intu-
itionistic bisimulations iff it can be defined from the the atomic relation Rxy and tests on in-
tuitionistic formulas p, using only composition ;, and choice U.

PROOF. The proof is similar to the proof of Theorem 3.13, but the required analysis of intu-
itionistic continuity (as in Lemma 3.16) requires the use of a binary existential operation that
is dual to intuitionistic implication =>. I

There is room for alternative approaches to intuitionistic safety: instead of characterizing
the safe first-order definable operations, one can try to characterize the safe intuitionistically
definable operations. We conjecture that, in contrast with the classical case, the set of intu-
itionistic formulas that are safe for intuitionistic directed bisimulations does not coincide with
the set of intuitionistic formulas that are safe for ordinary bisimulations.

To conclude this section we turn to definability.

THEOREM 5.6

Let K be a class of pointed intuitionistic models. Then

1. K is definable by a set of intuitionistic formulas iff K is closed under directed intuitionistic
bisimulations and ultraproducts, while K is closed under ultrapowers.

2. K is definable by a single intuitionistic formula iff K is closed under directed intuitionistic
bisimulations and ultraproducts, while K is closed under ultraproducts.

PROOF. Similar to the proof of Theorem 3.18, using Corollary 5.3. See also Rodenburg [19]
for related results. I

We leave it to the reader to introduce the notion of a directed intuitionistic bisimulation up
to n, and to formulate an intuitionistic analogue of Theorem 3.19.

6 Conclusion

In this paper we have introduced the notion of a directed simulation to analyse the expressive
power of a number of negation-free description languages for transition systems. Our results
concerned preservation, safety and definability aspects of negation-free modal logic and some
extensions, and we established similar results for intuitionistic logic. Moreover, our results
can also be applied to full modal languages with Boolean negation. For example, if a first-
order formula is preserved under strong bisimulations, but not under directed simulations, then
we know that its modal equivalent must contain negation in an essential way.

To conclude we mention some possibilities for building on the work reported here. The
paper is part of a general enterprise that aims to give model-theoretic characterizations of
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logic-based description formalisms. A lot of work remains to be done, even on arbitrary sub-
Boolean fragments of first-order logic. More concretely, as mentioned in Section 4 there are
several hierarchies of terminological languages waiting to be analyzed using the tools of this
paper, A second example concerns the study of expressiveness of feature logics touched upon
in Section 3.2; this theme is developed in a separate paper [16]. Third, one can build on recent
work on general fragments of first-order logic, including finite-variable fragments (see [1]),
and develop the theory of their negation-free fragments. And a fourth line concerns negation-
free substructure! logics; there is a close relation there between notions of directed simulation
and generative capacities of various formal languages (see [14]), and we plan to report on this
in a future paper.
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Appendix

A Characterizing continuity
This appendix is devoted to a proof of the following result from Section 32.

LEMMA3.16

A negation-free formula is continuous in p iff it is equivalent to a disjunction of formulas of the form

0 n A p ) - - ) , (A.I)

where each of the formulas 4>i is negation-free and p-free in the sense that they don't contain occurrences of p.

We need two technical lemmas.

LEMMA A.I

Every transition system M, w is bisimilar to an intransitive tree-like transition system M', w whose root is w.

PROOF. See, for example, [ 18, Proposition 4.5]. I

To state the second technical lemma we need some notation. Fix a proposition letter p. We write z* ~ to denote the
existence of a directed simulation for the language without the proposition letter p (exactly which proposition letter
is meant will be clear in the applications of the lemma).

LEMMA A.2

Assume that 2 : M, wo ;2 ~ N, vo, where M and N are intransitive tree-like transition systems with mo R • • • Rwn

(in M),VQR ••• Rvn (in N) and wi Zvt (1 < t < n). Then there are extensions (M+,w) of (M,w) and ( # + , « )
of(N,v)(i£., |M+|2 \M\and\N+\ D |7V|)iuchthat

(M,w) Z:^~ (N,v)

(M\w) Z':=*- (N',v),

where Z' is a bijective function such that w, Z'vi (1 < i'• < n).

PROOF. See [3, Chapter 5] or [18, Sections 4 and 7] for similar results.

PROOF, [of Lemma 3.16] We only prove the hard direction. Assume that <£ is continuous in p. Define

A := W{i/- | V-isoftheform(A.l)and0 (= <t>}.

We will show that <f> ^ A; then, by compactness 4> is equivalent to a finite disjunction of formulas of the form
specified in (A. 1), and this proves the lemma.

So, assume that M, u>o |= <£; we need to show M, WQ \= A. That is, it suffices to find a formula ^ of the form
specified in (A.I) such that Af.tuo \= <£ and i> =̂ <t>. Here we go. By Lemma A.I we may assume that M is an
intransitive, tree-like transition system with root tuo. As <f> is continuous in p, we may also assume that V(p) is just
a singleton ujn:
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Wn

Consider the following negation-free description of the above path leading up to u/n:

* = 4>) \4 enf-tp-(w,) and 0<i <n}

U {Rx,x,+1 | 0 < t < n - 1} U {Pxn},

where we use the superscript — in nf-tp~ to indicate that the formulas considered are p free. The remainder of the
proof is devoted to a proof that* |= STx,(<j>), and this will do to prove the lemma. For if* =̂ STZll(4>), then, for
some finite part *o C * we have *o \= STZ, (4>), by compactness. This is a disjunct in A, and, hence, in every
model <(> implies a finite part of A, and so <t> implies in A.

To show that * f= STX, (<f) we proceed as follows. Take a transition system N with N ^ *[vo vi . . . vn]\ we
need to show that TV (= ST(<t>)[v0]. Then

nf-tp (u<o) C nf-tp (vo). (A2)

We may assume that N is an intransitive tree with row v. Take w-saturated elementary extensions MT , WQ and
N',vo of M, two and N, vo, respectively. M* ,wo and N*, vo may again be assumed to be intransitive trees with
roots two and VQ, respectively.

From (A.2) we obtain a directed simulation Z such that Z : M t, w, =?~ jvt, vo (0 < t < n) as in the proof of
Theorem3.5. By Lemma A2 we can move to bisimilar extensions Aft* andivt* ofAft and N 1 , respectively, and
find & functional directed simulation Z' linking w, to t;, (for 1 < ii < n):

We will amend the transition systems M*' and N'* as follows. We shrink the interpretation of the proposition
letter p so that it only holds at u>,- and v,. This allows us to extend Z' to a full directed simulation Z" for the whole
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language:
Z : — "

Shrink V(p) Eip»nd V(p)

By the following chain of steps, we can lift 4> from M, two to N,VQ:

M,wo ^ 4> => M*,WQ \= 4>, by elementary extension

=> M^',wo\=<t>

=> AfT", too (=(/> by downward monotonicity

^ iV'**,t<o =̂ 4> by directed similarity

=> N** ,vo f= 0 by upward monotonicity

N, uo t= 0 by elementary extension.

This proves the lemma.

Received 28 June 1996


