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Book review
Andreas Deutsch, Sabine Dormann, Cellular Automaton Modeling of Biological Pattern Formation,
Characterization, Applications and Analysis, Birkhäuser, 2005, ISBN 0-8176-4281-1, 331pp.

The above book is one of the latest additions to the ‘Modeling and Simulation in Science, Engi-
neering and Technology’ series, edited by Nicola Bellomo. The book focuses on application of
so-called lattice-gas cellular automaton models to the field of biological pattern formation. Cellu-
lar automaton models are a spatial modeling formalism. They consist of a regular spatial grid in
which each grid point (or site) can have a finite, and typically small number of discrete states (for a
basic introduction see [1]). In the simplest models there are just two possible states; 0 for a site
being empty, and 1 for a site containing a single individual. The next-state of a site depends on
the states in the neighboring sites and a next-state function, which can be deterministic or stochas-
tic. In traditional cellular automaton models implementing movement of individuals is not
straightforward, as one site in the lattice can typically only contain one individual, and conse-
quently movement of individuals can cause collisions when two individuals want to move into
the same empty site (see Fig. 1(A)). In a lattice-gas model this problem is avoided by having sep-
arate channels for each direction of movement (see Fig. 1(B)). The movement steps are alternated
with interaction steps, in which processes affecting, e.g., birth and death can be implemented. The
lattice-gas method allows for a clear separation of effects of movement and interaction, especially
if interactions are only allowed to occur within the site between the separate channels. In the
examples given in the book, in most cases the interactions also depend on neighboring sites,
and therefore the distinction between interaction and movement effects is less clear.

Lattice-gas methods are mostly known from physics, where they have been successful in, e.g.,
describing macroscopic gas and fluid dynamics, by implementing simple or even simplistic local
interactions. Notwithstanding the caricatural nature of the local rules, for instance in the restric-
tion of possible movement directions, often the overall macroscopic behavior of the system can
very well be approximated if averages over larger spatial scales are considered [1].

In the book, the authors describe an interesting number of applications of the method in the
field of biological pattern formation. The examples include tumor development, population
growth, swarming behavior, and cell sorting. In some cases the models are aimed at specifying
local rules that can generate a desired macroscopic behavior, and sometimes the models are more
strategic in the sense that they explore possible behaviors for a certain type of microscopic inter-
actions. My personal opinion is that the latter application of the method might proof most valu-
able. A problem with the first approach is that often many local rules can generate the same or
very similar macroscopic behavior. We have recently shown that for instance Turing-like patterns
doi:10.1016/j.mbs.2005.12.023
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Fig. 1. Movement in (A) a simple one-dimensional cellular automaton model, and (B) in a corresponding lattice-gas
implementation. Filled circles indicate occupied sites or channels, while empty circles denote empty sites or channels. In
the cellular automaton two individuals, from position 2 and 4, want to move to position 3, causing a ‘collision’, as a
single site can only contain one individual. As a result, also the intended movement of the individual in position 1 can be
affected. In the lattice-gas simulation each movement direction has a separate channel, and thus collisions are avoided.
The result of the movement step (t + 1) will be that both channels in position 3 will be occupied.
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can be generated without the necessity of an underlying Turing instability in the local interactions
[2]. The field of (biological) pattern formation actually urgently needs tools to distinguish between
different potential underlying mechanisms that might be responsible for a macroscopic behavior.
However, the lattice-gas method does not seem particularly appropriate for this kind of research,
as the local dynamics are very much a caricature, and consequently the method does not seem
suitable to pinpoint and verify the exact local mechanisms that cause a certain pattern. For
instance, when modeling cell–cell interactions the lattice-gas method cannot incorporate any
detail below the level of the complete cells. Interestingly, there is a cellular automaton-like ap-
proach that does incorporate this detail. In this approach a biological cell is encoded by an ensem-
ble of cellular automaton sites, and the microscopic rules are describing expansion or retraction of
the cell [3]. The total cell volume is monitored, and cellular expansion and retraction depend on
deviations from a target volume. A nice example of the success of the method is a simulation of
morphogenesis in the slime mold Dictyostelium discoideum [4].

The lattice-gas method does seem potentially valuable for a bottom–up approach, in particular
to study new dynamical possibilities if individuals are allowed to move in a spatial domain with
local interactions. However, I strongly feel that the methodology should include a thorough study
of the effect of the spatial patterns, which in my opinion is largely lacking from the book. I will
first give a verbal argument of how such a methodology should work, and than I will demonstrate
it with an example. In the book, much emphasis is put on how to derive a so-called mean field
approximation for a cellular automaton model. In a mean field approximation, by definition,
all spatial correlations are removed from the system. A straightforward way to simulate mean
field is to randomize the automaton after each time step, although this method is not exact as
it does not destroy spatial correlations within a time step. But the critical question is: what insight
can you gain from the mean field approach? The authors state that often the mean field approach
yields a picture of the CA dynamics that is qualitatively correct. I think they are missing a crucial
point here, which is that studying the mean field dynamics of a model gives a possibility to pin-
point the effects of spatial pattern formation. In fact, it is cases where the mean field approxima-
tion deviates from the spatial dynamics that should be of most interest for people studying spatial
models. Then, the next step in the methodology should be to describe and/or quantify the spatial
pattern, and to understand how and why the dynamics of the system are changed.
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Fig. 2. Specification of a two-dimensional lattice-gas cellular automaton describing population growth. (A) Each site
contains five channels consisting of four movement directions and one channel for stationary individuals. Each channel
can contain one individual (filled circles) or be empty. (B) In the interaction step each empty channel randomly chooses
one of the other channels within the site, and if this channel contains an individual with probability r the empty channel
will become occupied as well. The growth process is drawn for the stationary channel in the middle of the site, which has
randomly chosen the channel to the right (indicated by the dashed box).
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Let me move to my example, which is akin to the population growth models that are discussed
in Chapter 6 of the book. The model has five channels, consisting of four movement directions
and one channel for stationary individuals (Fig. 2(A)). In the interaction step all empty channels
randomly choose one of the other channels within the site, and if this channel contains an indi-
vidual the empty channel will be occupied with probability r (Fig. 2(B)).

Before each movement step all channels within a site are randomized, so that movement is
essentially random. Movement and interaction (growth) steps are alternated, and the growth
probability parameter r and the number of movement steps between interaction steps can be var-
ied. Let us first consider the mean field behavior of the model. For this we introduce the variable
Xt, which is the total number of individuals at time t, and the constant K, which is the maximum
number of individuals (i.e. K = number of sites · number of channels per site). Now the expected
change in the number of individuals within an interaction step is given by the product of the prob-
ability factor r, the total number of empty channels, which is (K � Xt), and the chance that a
randomly chosen channel is occupied, which is simply given by the frequency of occupied chan-
nels Xt/K. Therefore, the mean field equation for the expected number of individuals in the next
time step is specified in Eq. (1):
X tþ1 ¼ X t þ rðK � X tÞ
X t

K
. ð1Þ
Simple rewriting gives Eq. (2), which is the logistic growth equation, which forms one of the
cornerstones of theoretical biology.
X tþ1 � X t ¼ rX t 1� X t

K

� �
. ð2Þ
This result is very nice, as it allows us to link the spatial model to existing ecological theory. My
‘trick’, to avoid higher order terms in the mean field equation, is to only use information from one
of the neighboring channels (or alternatively use the local density), instead of e.g. requiring for
growth a threshold in the number of occupied neighboring channels, as is often done in the book.
In a similar way spatial versions of, e.g., Lotka–Volterra competition and predation can be con-
structed. As typically the lessons that can be learned from the spatial pattern formation do not
depend on microscopic modeling details, I strongly advocate using interaction rules that give sim-
ple mean field models.
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Now consider the spatial behavior of the model. In Fig. 3(A) a snapshots of the pattern is de-
picted, which was initialized from a single individual in the middle of the field. In Fig. 3(B) the
macroscopic behavior of the per capita growth rate c as a function of the population density d
is plotted. The per capita growth rate is the average growth rate per individual, specified by
(Xt+1 � Xt)/Xt. In the mean field equation (2), that is the logistic growth model, the individual
Fig. 3. Population growth in a lattice-gas model. The lattice has 150 · 150 sites, and local densities are indicated in gray
shades (white being empty). The simulation is started from a single individual in the middle of the field. (A) Pattern after
t = 125 interaction steps, growth rate r = 0.5, and one movement step after each interaction step. (B) Per capita growth
rate c as a function of density d. In the mean field model (dashed line) individual growth rate is a linearly decreasing
function of population density. In the spatial model, individual growth rate decreases sharply for increasing density,
already at very low densities. (C) same as B, but now in a log–log plot. The fitted circular growth function
c = 0.073d�0.5 (solid line) accurately fits the observed values for the spatial model, except for very low and high
densities, where, respectively, the circular growth pattern is not fully developed or it hits the boundary of the field. The
circular growth pattern hits the boundary at approximately d = pR2/(2R)2 = p/4 (dashed line).
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growth rate is decreasing linearly with increasing density, starting at maximal growth rate r and
ending at growth rate 0, for Xt = K (see Eq. (3)).
c ¼ X tþ1 � X t

X t
¼ r � r

K
X t. ð3Þ
In the spatial model (see Fig. 3(B)) this relation is dramatically different. The growth rate still
starts near maximum r = 0.5, but steeply decreases already for very low densities. Now we should
try to qualitatively or, even better, quantitatively understand these spatial dynamics from effects
of the spatial pattern formation. The key observation here is that essentially the growing pattern
in Fig. 3(A) expands as a circle. This is also the case for all the growing patterns that are described
in Chapter 6 of the book. In a circle, growth effectively only takes place at or near the boundary,
as the inside of the circle is already in steady state and the outside is still empty. The number of
individuals in the circle is proportional to its surface, i.e., Xt � pR2, whereas the boundary of the
circle is proportional to its circumference, i.e., (Xt+1 � Xt) � 2pR (note the use of capital R for the
circle radius to distinguish from the growth rate r). Using these relations, Eq. (4) gives the scaling
relation between the population growth and the population size.
ðX tþ1 � X tÞ �
ffiffiffiffiffi
X t

p
. ð4Þ
Consequently, the per capita growth rate scales with the density as Eq. (5):
X tþ1 � X t

X t
� 1ffiffiffiffiffi

X t
p . ð5Þ
Indeed, we can very accurately fit the points in Fig. 3(B) and (C) (log–log plot) with a function
ðX tþ1 � X tÞ=X t ¼ aX�0:5

t , where a is a fitting parameter. The fit is less accurate at very low and very
high densities, as here, respectively, the circle pattern is not yet fully developed or it interacts with
the boundaries of the field. It would be interesting to derive the exact growth curve for the spatial
pattern formation, and for instance its dependence on the movement of individuals, but this is
beyond the scope of this review.

Here, I wanted to demonstrate the importance of qualifying the type of spatial pattern that oc-
curs in the local population growth models, and to study its impact on the population dynamics.
A similar methodology of describing and quantifying dynamics of spatial patterns has for instance
been used in describing emergent host patch dynamics in a spatial parasite–host system [5], and
explaining competition for outbreak frequency in a spatial epidemiology model [6].

As stated before, I think the major strength of the lattice-gas method lies in unraveling the po-
tential effects of movement of individuals. These effects can be very complex, as, e.g., has been
demonstrated in a model on evolution of ‘clever’ parasitoid movement towards patches with high
host density [7]. In this model various spatial patterns can emerge, including spiral waves and tur-
bulence. The direction of selection of parasitoid aggregation behavior depends on the spatial pat-
tern, and even on the location within the pattern. The complexity here arises from a feedback loop
between the patterns and the movement, that is, the spatial patterns affect which movement strat-
egies will be selected, but also the movement strategies of individuals affects the spatial patterns.
In principle, this feedback loop can for instance lead to evolutionary cycling or bistability, where
the evolutionary attractor depends on the initial spatial pattern. The topic of effects of spatial pat-
tern formation on evolutionary dynamics is still largely unexplored [8].
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The book is a good starting point for scientist and students that would like to move into the
field of studying effects of spatial pattern formation in biology. The introductory chapters are
fun reading, although they are a bit of a ‘taschenatlas’ (the famous Wiley pocket guide series),
with half a paragraph devoted to every great thinker or concept. The introduction to the lat-
tice-gas method is thorough and sound, and the array of applications of the method to systems
of biological pattern formation is impressive and inspiring. The book also describes some of
the pitfalls of spurious modeling results, such as effects of the underlying grid topology, which
might lead to anisotropy in the spatial patterns. I particularly like the format of suggesting poten-
tial further projects at the end of each chapter, which shows that the field is only starting and
many research questions still have to be explored. To my taste, there should be more emphasis
on studying the spatial patterns that develop and their potential impact on dynamics. The re-
search question should shift from ‘can we make the pattern’, to ‘can we understand the pattern,
its origin, and its consequences?’ The lattice-gas method is a valuable tool in this research area,
and the book gives a good starting point to learn the method and its potential applications.
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