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ABSTRACT

One of the key challenges in the analysis of gene
expression data is how to relate the expression
level of individual genes to the underlying transcrip-
tional programs and cellular state. Here we describe
T-profiler, a tool that uses the t-test to score changes
in the average activity of predefined groups of genes.
The gene groups are defined based on Gene Ontology
categorization, ChIP-chip experiments, upstream
matches to a consensus transcription factor binding
motif or location on the same chromosome. If desired,
an iterative procedure can be used to select a single,
optimal representative from sets of overlapping
gene groups. T-profiler makes it possible to interpret
microarray data in a way that is both intuitive and
statistically rigorous, without the need to combine
experiments or choose parameters. Currently, gene
expression data from Saccharomyces cerevisiae and
Candida albicans are supported. Users can upload
their microarray data for analysis on the web at
http://www.t-profiler.org.

INTRODUCTION

An important technique in the post-genomic era is the simul-
taneous measurement of the transcript levels of all genes
from a genome by microarray experiments (1,2). In recent
years, the amount of data from such experiments has rapidly
increased (3,4). Furthermore, the combination of chromatin-
immunoprecipitation and microarray technology (‘ChIP-
chip’) has made it possible to globally measure the binding
of transcription factors to gene promoters (5,6).

There has also been an explosion in the number of com-
putational methods for analyzing microarray data. Among the
most popular are algorithms such as hierarchical clustering (7),

K-means clustering (8) and self-organizing maps (9). A lim-
itation of these clustering methods is the need to have gene
expression profiles across multiple hybridizations. Alternative
methods have been developed that can take a single genome-
wide expression pattern as input, such as motif-based correla-
tion or regression (10–12).

To obtain easily interpretable information on changes in
the cellular state in terms of functional annotation, methods
such as Funspec (13), GO term finder (14), GOAL (15) and
GeneXpress (http://genexpress.stanford.edu) score the signi-
ficance of overlap between predefined gene groups [from Gene
Ontology (GO) (16) or the MIPS database (17)] and the subset
of induced or repressed genes. These methods are based on
the cumulative hypergeometric distribution (also referred to
as Fisher’s exact test). A disadvantage of these methods is
that they require individual genes to be significantly up- or
down-regulated in order to contribute to the score.

We previously developed a method that can score GO
categories without the need to apply cut-offs to the expression
level of individual genes (18). This algorithm, now named
T-profiler, uses the t-test to score the difference between
the mean expression level of predefined groups of genes
and that of all other genes on the microarray (see Methods).
A similar approach was independently pioneered by Pavlidis
et al. (19). T-profiler is currently suitable for the analysis of
Saccharomyces cerevisiae and Candida albicans gene expres-
sion profiles, and in the near future will be extended to other
organisms.

METHODS

For a given gene group G, the t-value is given by the following
formula:

tG ¼ mG �mG0

s
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Here mG is the mean expression log-ratio of the NG genes in
gene group G, mG0 is the mean expression log-ratio of the
remaining NG0 genes and s is the pooled standard deviation,
as obtained from the estimated variances for groups G and G0.
The associated two-tailed P-value can be calculated from t
using the t-distribution with NG � 2 degrees of freedom and is
corrected for multiple testing by multiplying it by the number
of gene groups that are being tested in parallel (Bonferroni
correction). All groups with a corrected E-value of <0.05 are
considered to be significantly regulated. To reduce the influ-
ence of outliers, which may result in false positives or false
negatives, we discard the highest and lowest expression value
in each gene group. This method is similar to the jack-knife
procedure (20).

Gene groups sharing a common motif in
their upstream region

Motif groups are defined as genes with a match to a particular
consensus motif within 600 base pairs upstream of the open
reading frame (ORF) (21), allowing no overlap with neigh-
boring ORFs. The consensus motifs used in T-profiler are
derived from three different sources. First, motifs were extrac-
ted from the SCPD database (http://cgsigma.cshl.org/jian/).
Next, motifs were found by comparing the genome sequences
of highly related yeast species (22,23). Finally, motifs discov-
ered from various microarray experiments using the REDUCE
algorithm (11,24) were added. Most of these motifs are similar
or identical to motifs described in the literature. In total,
153 motif groups are included in the T-profiler calculation.
Far less information is available about regulatory sequences
of C.albicans. It was recently reported that about one-third of
S.cerevisiae regulatory elements are conserved in C.albicans
(25). T-profiler therefore uses the list of S.cerevisiae motifs,
supplemented with newly discovered C.albicans regulatory
motifs, to score C.albicans expression data.

Gene groups bound by a common transcription factor
based on ChIP-chip data

The binding of transcription factors to their global DNA
targets can be measured by ChIP-chip experiments. In
S.cerevisiae this technique has been explored on a large
scale by Lee et al. (5) and Harbison et al. (6). We used the
transcription factor binding (TFB) data for 203 transcription
factors from Harbison et al. (6) as input into T-profiler; the
binding of 84 of these regulators was measured under various
environmental conditions. A gene was considered to be part
of a TFB group if the P-value reported by the authors was
,0.001. In addition, TFB groups were required to have at least
seven gene members. This resulted in 252 TFB groups that
were used for T-profiler analysis.

GO categories

The third type of gene group is based on membership of
a specific GO category (16). In GO, each gene is classified
according to biological process, molecular function and

cellular component. The GO gene group contains the genes
associated with a specific GO category as well as all of its child
categories. Only GO groups with more than six members
were used for calculation. This resulted in 1389 GO-derived
gene groups that were used for T-profiler analysis. Significant
scores of GO groups give direct information about which
functions or cellular processes are expected to have changed
as a result of the altered gene expression. It should be kept in
mind, however, that, unlike in the case of motif and ChIP-chip
based gene groups, the t-values for GO categories are not
directly related to a molecular mechanism.

Iterative removal of redundant gene groups

Several of the predefined gene groups scored by T-profiler
show strong mutual overlap: the GO categories used by
T-profiler are hierarchically organized; consensus motifs
can match similar sequences; and ChIP-chip experiments
can reveal that similar sets of genes are bound by different
transcription factors and/or under different conditions. The
t-values for overlapping gene groups are strongly correlated
and therefore mutually redundant. Following the idea of
forward selection of non-redundant motifs in REDUCE (11),
we implemented an iterative procedure to select a non-
redundant set of gene groups among those that have t-values
significantly different from zero. At each step, we subtract the
mean expression level of the genes in the gene group with
the highest absolute t-value from all genes in that gene group.
The t-values are then recalculated for all other gene groups,
and the procedure is repeated until even the most significantly
regulated gene group has a P-value. 0.05. In the case of
nested GO categories at different levels in the hierarchy, this
procedure will naturally select the most appropriate level for a
given branch of annotation.

Aneuploidy test

Hughes et al. (26) described the discovery of chromosomal
aberrations in yeast deletion mutants based on gene expression
profiles. These are often duplications or deletions of an entire
chromosome. By applying T-profiler at the level of whole
chromosomes, where gene groups are defined as the set of all
genes on a specific chromosome, it is possible to detect such
aneuploidy. A statistically significant chromosomal t-value
does not necessarily point, however, to aneuploidy, as it may
also be caused by normal differential regulation by a transcrip-
tion factor whose targets are preferentially located on the same
chromosome. In the aneuploid dataset from Hughes et al. (26)
we observed an absolute t-value. 10 for almost all deleted or
duplicated chromosomes; such extreme t-values are therefore
a good indicator of aneuploidy.

AN EXAMPLE

Gene expression datasets can be uploaded as a tab-delimited
text file with the systematic ORF name in the first column and
the log-transformed expression data in the second column. The
upload of an expression profile comparing cells 80 min after a
heat shift from 30 to 37�C from the Environmental Stress
Response data set of Gasch et al. (23) will serve as an example.
After uploading, the user is presented with some basic infor-
mation about the dataset, including the number of genes, the
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average and the standard deviation (Figure 1A). Importantly,
no cut-offs are applied; all values are used for calculation.

Next, the user can follow links to results for four different
types of predefined gene groups: genes whose promoter region
matches a specific consensus motif (Figure 1B), genes that
belong to a specific GO category (Figure 1C), genes whose
promoter is significantly bound by a specific transcription
factor according to a ChIP-chip experiment (Figure 1D) and
genes that reside on a specific chromosome (Figure 1E). The
statistical parameters that are output by T-profiler for any
group scored are (i) a t-value measuring the up-regulation
(t . 0) or down-regulation (t , 0) in units of the standard
error of the difference and (ii) an E-value that is Bonferroni
corrected for the parallel testing of the large number of cat-
egories, which represents the number of groups with the same
t-value or higher that would be observed by chance. Typically,
only a small subset of the gene groups considered will score
as differentially expressed (Figure 1).

Figure 1B shows consensus motifs associated with differ-
ential regulation. The heat shock response motif (HSF1) and
the general stress response motif (MSN2/4) score positively,
whereas the PAC and rRPE motifs, both over-represented in
genes involved in rRNA biosynthesis (27), score negatively.

The up-regulation of genes under the control of the HSF1
motif is specific to heat-shocked cells, whereas the down-
regulation of genes involved in rRNA biosynthesis and
genes containing MSN2/4 motifs is typical of the environ-
mental stress response (23). Figure 1D shows which trans-
cription factors and corresponding ChIP-chip conditions are
associated with differential regulation. The fact that genes
bound by the transcription factor Hsf1p score positively
whereas the genes bound by the ribosome-regulating trans-
cription factors Rap1p, Sfp1p and Fhl1p score negatively is
consistent with the motif-based results. Figure 1C shows the
results of T-profiler analysis based on GO; in total, 50 cat-
egories have a significant t-value. Most of the positively scor-
ing categories are involved in heat shock and stress response,
whereas most of the negatively scoring categories are com-
prised mainly of ribosomal genes. Again, the results compare
well with the results obtained by T-profiler using motif and
ChIP-chip based gene groups. However, the large number of
similar GO categories reported makes it harder to interpret
the results. Figure 1F shows how this problem is resolved
by the iterative removal of redundant categories. Finally, in
Figure 1E, the high t-value of chromosome 14 points to a
duplication of chromosome 14 in the deletion mutant pfd2D.

Figure 1. Screenshots of the various T-profiler analysis results. (A) Statistics of the uploaded gene expression dataset for cells assayed 80 min after the temperature
shift from 30 to 37�C (23). The type of analysis can be selected from the panels to the right. (B) Scoring consensus motifs. Only significantly scoring motifs are
shown (E-value , 0.05). By selecting the motifs in the left column, information about the genes containing this motif and their expression levels can be obtained.
(C) Scoring GO categories. Only a subset of the 50 significantly changed categories is shown. (D) Scoring ChIP-chip based gene groups. (E) Graph showing the
t-value for each chromosome, obtained from the gene expression profile of the mutant pfd2D, in which chromosome 14 is duplicated. (F) The same result as in (C), but
now with redundant gene groups removed by our iterative procedure.
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CONCLUSION

T-profiler analyzes genome-wide expression patterns one
experiment at a time, without the need to tune any parameters.
Our use of the t-test to score gene groups eliminates the need to
impose a threshold on the expression level of individual genes.
A group can be scored as significantly induced or repressed
even if the expression of none of its individual member genes
changes significantly. This feature greatly increases the sens-
itivity to small-amplitude coordinate changes in the expression
of groups of genes. Representing a transcriptome by a relat-
ively small set of statistically robust and easily interpretable
t-values allows for seamless comparison between hybrid-
izations, even across different platforms and laboratories.
We plan to extend the functionality of T-profiler to multiple
experiments in the near future.
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