

UvA-DARE (Digital Academic Repository)

T-profiler: scoring the activity of predefined groups of genes using gene expression data.

Boorsma, A.; Foat, B.C.; Vis, D.J.; Klis, F.M.; Bussemaker, H.J. DOI

10.1093/nar/gki484

Publication date 2005

Published in Nucleic Acids Research

Link to publication

Citation for published version (APA): Boorsma, A., Foat, B. C., Vis, D. J., Klis, F. M., & Bussemaker, H. J. (2005). T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Research, 33, W592-W595. https://doi.org/10.1093/nar/gki484

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

T-profiler: scoring the activity of predefined groups of genes using gene expression data

André Boorsma, Barrett C. Foat¹, Daniel Vis, Frans Klis and Harmen J. Bussemaker^{1,2,*}

Swammerdam Institute for Life Sciences–Microbiology, University of Amsterdam, Biocentrum Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands, ¹Department of Biological Sciences, Columbia University, New York, NY 10027, USA and ²Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA

Received February 9, 2005; Revised and Accepted April 18, 2005

ABSTRACT

One of the key challenges in the analysis of gene expression data is how to relate the expression level of individual genes to the underlying transcriptional programs and cellular state. Here we describe T-profiler, a tool that uses the t-test to score changes in the average activity of predefined groups of genes. The gene groups are defined based on Gene Ontology categorization. ChIP-chip experiments. upstream matches to a consensus transcription factor binding motif or location on the same chromosome. If desired. an iterative procedure can be used to select a single, optimal representative from sets of overlapping gene groups. T-profiler makes it possible to interpret microarray data in a way that is both intuitive and statistically rigorous, without the need to combine experiments or choose parameters. Currently, gene expression data from Saccharomyces cerevisiae and Candida albicans are supported. Users can upload their microarray data for analysis on the web at http://www.t-profiler.org.

INTRODUCTION

An important technique in the post-genomic era is the simultaneous measurement of the transcript levels of all genes from a genome by microarray experiments (1,2). In recent years, the amount of data from such experiments has rapidly increased (3,4). Furthermore, the combination of chromatinimmunoprecipitation and microarray technology ('ChIPchip') has made it possible to globally measure the binding of transcription factors to gene promoters (5,6).

There has also been an explosion in the number of computational methods for analyzing microarray data. Among the most popular are algorithms such as hierarchical clustering (7), K-means clustering (8) and self-organizing maps (9). A limitation of these clustering methods is the need to have gene expression profiles across multiple hybridizations. Alternative methods have been developed that can take a single genomewide expression pattern as input, such as motif-based correlation or regression (10-12).

To obtain easily interpretable information on changes in the cellular state in terms of functional annotation, methods such as Funspec (13), GO term finder (14), GOAL (15) and GeneXpress (http://genexpress.stanford.edu) score the significance of overlap between predefined gene groups [from Gene Ontology (GO) (16) or the MIPS database (17)] and the subset of induced or repressed genes. These methods are based on the cumulative hypergeometric distribution (also referred to as Fisher's exact test). A disadvantage of these methods is that they require individual genes to be significantly up- or down-regulated in order to contribute to the score.

We previously developed a method that can score GO categories without the need to apply cut-offs to the expression level of individual genes (18). This algorithm, now named T-profiler, uses the *t*-test to score the difference between the mean expression level of predefined groups of genes and that of all other genes on the microarray (see Methods). A similar approach was independently pioneered by Pavlidis *et al.* (19). T-profiler is currently suitable for the analysis of *Saccharomyces cerevisiae* and *Candida albicans* gene expression profiles, and in the near future will be extended to other organisms.

METHODS

For a given gene group G, the *t*-value is given by the following formula:

$$t_{\rm G} = rac{\mu_{\rm G} - \mu_{\rm G'}}{s\sqrt{rac{1}{N_{\rm G}} + rac{1}{N_{\rm G'}}}},$$

^{*}To whom correspondence should be addressed. Tel: +1 212 854 9932; Fax: +1 212 865 8246; Email: Harmen.Bussemaker@columbia.edu

[©] The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org

where

$$s = \sqrt{\frac{(N_{\rm G}-1) \times s_{\rm G}^2 + (N_{\rm G'}-1) \times s_{\rm G'}^2}{N_{\rm G} + N_{\rm G'} - 2}}.$$

Here μ_G is the mean expression log-ratio of the N_G genes in gene group G, $\mu_{G'}$ is the mean expression log-ratio of the remaining $N_{G'}$ genes and *s* is the pooled standard deviation, as obtained from the estimated variances for groups G and G'. The associated two-tailed *P*-value can be calculated from *t* using the *t*-distribution with $N_G - 2$ degrees of freedom and is corrected for multiple testing by multiplying it by the number of gene groups that are being tested in parallel (Bonferroni correction). All groups with a corrected *E*-value of ≤ 0.05 are considered to be significantly regulated. To reduce the influence of outliers, which may result in false positives or false negatives, we discard the highest and lowest expression value in each gene group. This method is similar to the jack-knife procedure (20).

Gene groups sharing a common motif in their upstream region

Motif groups are defined as genes with a match to a particular consensus motif within 600 base pairs upstream of the open reading frame (ORF) (21), allowing no overlap with neighboring ORFs. The consensus motifs used in T-profiler are derived from three different sources. First, motifs were extracted from the SCPD database (http://cgsigma.cshl.org/jian/). Next, motifs were found by comparing the genome sequences of highly related yeast species (22,23). Finally, motifs discovered from various microarray experiments using the REDUCE algorithm (11,24) were added. Most of these motifs are similar or identical to motifs described in the literature. In total, 153 motif groups are included in the T-profiler calculation. Far less information is available about regulatory sequences of *C.albicans*. It was recently reported that about one-third of S.cerevisiae regulatory elements are conserved in C.albicans (25). T-profiler therefore uses the list of *S.cerevisiae* motifs, supplemented with newly discovered *C.albicans* regulatory motifs, to score C.albicans expression data.

Gene groups bound by a common transcription factor based on ChIP-chip data

The binding of transcription factors to their global DNA targets can be measured by ChIP-chip experiments. In *S.cerevisiae* this technique has been explored on a large scale by Lee *et al.* (5) and Harbison *et al.* (6). We used the transcription factor binding (TFB) data for 203 transcription factors from Harbison *et al.* (6) as input into T-profiler; the binding of 84 of these regulators was measured under various environmental conditions. A gene was considered to be part of a TFB group if the *P*-value reported by the authors was <<0.001. In addition, TFB groups were required to have at least seven gene members. This resulted in 252 TFB groups that were used for T-profiler analysis.

GO categories

The third type of gene group is based on membership of a specific GO category (16). In GO, each gene is classified according to biological process, molecular function and cellular component. The GO gene group contains the genes associated with a specific GO category as well as all of its child categories. Only GO groups with more than six members were used for calculation. This resulted in 1389 GO-derived gene groups that were used for T-profiler analysis. Significant scores of GO groups give direct information about which functions or cellular processes are expected to have changed as a result of the altered gene expression. It should be kept in mind, however, that, unlike in the case of motif and ChIP-chip based gene groups, the *t*-values for GO categories are not directly related to a molecular mechanism.

Iterative removal of redundant gene groups

Several of the predefined gene groups scored by T-profiler show strong mutual overlap: the GO categories used by T-profiler are hierarchically organized; consensus motifs can match similar sequences; and ChIP-chip experiments can reveal that similar sets of genes are bound by different transcription factors and/or under different conditions. The t-values for overlapping gene groups are strongly correlated and therefore mutually redundant. Following the idea of forward selection of non-redundant motifs in REDUCE (11), we implemented an iterative procedure to select a nonredundant set of gene groups among those that have t-values significantly different from zero. At each step, we subtract the mean expression level of the genes in the gene group with the highest absolute *t*-value from all genes in that gene group. The *t*-values are then recalculated for all other gene groups, and the procedure is repeated until even the most significantly regulated gene group has a P-value > 0.05. In the case of nested GO categories at different levels in the hierarchy, this procedure will naturally select the most appropriate level for a given branch of annotation.

Aneuploidy test

Hughes *et al.* (26) described the discovery of chromosomal aberrations in yeast deletion mutants based on gene expression profiles. These are often duplications or deletions of an entire chromosome. By applying T-profiler at the level of whole chromosomes, where gene groups are defined as the set of all genes on a specific chromosome, it is possible to detect such aneuploidy. A statistically significant chromosomal *t*-value does not necessarily point, however, to aneuploidy, as it may also be caused by normal differential regulation by a transcription factor whose targets are preferentially located on the same chromosome. In the aneuploid dataset from Hughes *et al.* (26) we observed an absolute *t*-value > 10 for almost all deleted or duplicated chromosomes; such extreme *t*-values are therefore a good indicator of aneuploidy.

AN EXAMPLE

Gene expression datasets can be uploaded as a tab-delimited text file with the systematic ORF name in the first column and the log-transformed expression data in the second column. The upload of an expression profile comparing cells 80 min after a heat shift from 30 to 37°C from the Environmental Stress Response data set of Gasch *et al.* (23) will serve as an example. After uploading, the user is presented with some basic information about the dataset, including the number of genes, the

Evporiment Nome							D						
Experiment Name	ORFs Me	an	Stddev	Consensus (ene ChIP-chip	Aneuploidy	ChIP-chip Data (Harbison et al.)		⊙ E-value < 0.05 ○ all gene group		groups Refresh	Remove redu	undant groups
Heat_shock_80_min	4151 -0.	02	0.58	Motifs On	tology Data	Check	TF	Condition	t-value		E-value	Mean	ORFs
Upload Successful	Genes used Genes n	otused Ne	w Experiment				HSF1	H2O2Lo	11.16		< 1.0e-15	0.722	74
D							HSF1	H2O2Hi	7.95		6.0e-13	0.461	90
D							SFP1	SM	-5.20		6.4e-5	-0.543	34
Consensus Motifs	⊙ E-v	alue < 0.05	O all gene gr	OUDS Refresh	Remove redund	ant groups	RAP1	YPD	-5.94		9.1e-7	-0.321	124
Motif	Name		t-value	E-value	Mean	ORFs	FHL1	SM	-7.56		1.3e-11	-0.355	160
GAANNTTCNNGAA	HSF1		8.42	< 1.0e-15	0.816	35	FHL1	RAPA	-8.46		< 1.0e-15	-0.405	152
AGGGG	MSN2-4		7.73	1.6e-12	0.138	677	FHL1	YPD	-8.69		< 1.0e-15	-0.415	152
TTCTRGAA	HSF1		6.83	1.2e-9	0.334	122	_						
TCTAGAA	HSF1		4.97	9.8e-5	0.220	141	E						
TATAWAW	TBP		4.71	3.6e-4	0.023	2154		Chrono	some t-values for	pdf2_14			
ССССТ	MSN2-4		4.25	3.1e-3	0.066	713	15 F						
ΓΑΤΑΤΑΑ	TBP		3.85	1.7e-2	0.048	892	. F						
CCRTACA	RAP1		-4.20	3.9e-3	-0.183	205	10 5						
CGATGAG	PAC		-6.96	5.0e-10	-0.295	198							
AAAATTT	rRPE		-9.31	< 1.0e-15	-0.162	1027	e E						
С		0.5	his 10.05 0		Demonstration		-5 -5	2 3 4 5 6	7 9 9	10 11 12	13 14 15 Chronos	tone	
sene Untology		0 E-va	iue < 0.05 O	all categories Refresh	Remove redundar	it categories							
Category		Aspect	t-value	E-value	Mean	ORFs	-10						
heat shock protein act	tivity	F	11.64	< 1.0e-15	1.883	14	-15						
protein folding		P	7.49	1.0e-11	0.640	44	-13						
esponse to stress		P	6.52	1.0e-8	0.205	266							
obsolete molecular function		F	6.11	1.5e-7	0.424	64	_						
arbohydrate metabolism		P	5.36	1.2e-5	0.243	137	F						
arbohydrate metabol			E 0 4	10 5	0.445	107							
carbohydrate metabol mitochondrion		С	5.31	1.6e-5	0.115	467	Gene On	tology (Non-redundant)				Show redunda	nt categories
carbohydrate metabol nitochondrion response to stimulus	d and a loc Prove	C P	5.31 5.22	1.6e-5 2.6e-5	0.115 0.133	467 361	Gene On Category	tology (Non-redundant)	Aspect	t-value	E-value	Show redunda Mean	nt categories ORFs
carbohydrate metabol nitochondrion 'esponse to stimulus)ne-carbon compound JM-BBD_pathwayID:(d metabolism, C1cyc	C P P	5.31 5.22 5.09	1.6e-5 2.6e-5 5.2e-5	0.115 0.133 1.173	467 361 8	Gene On Category heat shoc	tology (Non-redundant) / k protein activity	Aspect	t-value 11.64	E-value < 1.0e-15	Show redunda Mean 1.883	nt categories ORFs 14
arbohydrate metabol mitochondrion response to stimulus one-carbon compound JM-BBD_pathwayID:(piological_process un	d metabolism, C1cyc iknown	P P P	5.31 5.22 5.09 4.36	1.6e-5 2.6e-5 5.2e-5 1.9e-3	0.115 0.133 1.173 0.049	467 361 8 1063	Gene On Category heat shoc one-carbo	tology (Non-redundant) / k protein activity on compound metabolism, pottward (D:01 are	Aspect F P	t-value 11.64 5.17	E-value < 1.0e-15 3.3e-4	Show redunda Mean 1.883 1.173	nt categories ORFs 14 8
arbohydrate metabol nitochondrion response to stimulus one-carbon compound JM-BBD_pathwayID:0 piological_process un energy pathways	d metabolism, C1cyc iknown	P P P P P	5.31 5.22 5.09 4.36 4.36	1.6e-5 2.6e-5 5.2e-5 1.9e-3 1.9e-3	0.115 0.133 1.173 0.049 0.198	467 361 8 1063 132	Gene On Category heat shoc one-carbo UM-BBD	tology (Non-redundant) / k protein activity on compound metabolism, _pathwayID:C1cyc cito metabolism	Aspect F P	t-value 11.64 5.17	E-value < 1.0e-15 3.3e-4	Show redunda Mean 1.883 1.173	nt categories ORFs 14 8 127
carbohydrate metabol mitochondrion response to stimulus one-carbon compound JM-BBD_pathwayl0: piological_process un energy pathways pxidoreductase activit	d metabolism, C1cyc Iknown	P P P P F	5.31 5.22 5.09 4.36 4.36 4.28	1.6e-5 2.6e-5 5.2e-5 1.9e-3 1.9e-3 2.7e-3	0.115 0.133 1.173 0.049 0.198 0.163	467 361 8 1063 132 180	Gene On Category heat shoc one-carbo UM-BBD carbohyd	tology (Non-redundant) / k protein activity on compound metabolism, _pathwayID:C1cyc rate metabolism operthesis	Aspect F P P	t-value 11.64 5.17 5.07	E-value < 1.0e-15 3.3e-4 5.5e-4	Show redunda Mean 1.883 1.173 0.258 0.226	nt categories ORFs 14 8 137 175
carbohydrate metabol mitochondrion response to stimulus one-carbon compound UM-BBD_pathwayID: biological_process un energy pathways oxidoreductase activit energy reserve metab	d metabolism, C1cyc Iknown Ny	P P P P F F	5.31 5.22 5.09 4.36 4.36 4.28 3.73	1.6e-5 2.6e-5 5.2e-5 1.9e-3 1.9e-3 2.7e-3 2.8e-2	0.115 0.133 1.173 0.049 0.198 0.163 0.461	467 361 8 1063 132 180 22	Gene On Category heat shoc one-carbo UM-BBD carbohydi protein bi	tology (Non-redundant) k protein activity on compound metabolism, apatitwayID-C fayc rate metabolism osynthesis umbrano	Aspect F P P	t-value 11.64 5.17 5.07 -5.80 5.81	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e 6	Show redunda Mean 1.883 1.173 0.258 -0.226 0.224	nt categories ORFs 14 8 137 175 164
carbohydrate metabol mitochondrion response to stimulus one-carbon compound UM-BBD_pathwayID (biological_process un energy pathways oxidoreductase activit energy reserve metab rRNA metabolism	d metabolism, C1cyc iknown ty olism	P P P P F P P	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17	1.6e-5 2.6e-5 5.2e-5 1.9e-3 2.7e-3 2.7e-3 2.8e-2 4.9e-14	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432	467 361 8 1063 132 180 22 125	Gene On Category heat shoc one-carbo UM-BBD carbohydd protein bi plasma m ribosomo	tology (Non-redundant) / k protein activity n compound metabolism, _pathwayID:C1cyc rate metabolism osynthesis termbrane bionanesis	Aspect F P P C C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.444	nt categories ORFs 14 8 137 175 164 149
carbonydrate metabol mitochondrion response to stimulus one-carbon compounn UM-BBD_pathwaylD(+ olological_process un energy pathways oxidoreductase activit energy reserve metabo RNA metabolism eukaryotic 43S preinit	d metabolism, C toyc iknown ty oolism tiation complex	P P P P F P P P C	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17 -8.18	1 6e-5 2 2 6e-5 5 2 2 e-5 1 9e-3 1 9e-3 2 7 e-3 2 8e-2 4 9e-14 4 9e-14	0.115 0.133 1.173 0.049 0.198 0.183 0.461 -0.432 -0.622	467 361 8 1063 132 180 22 125 61	Gene On Category heat shoc one-carbo UM-BBD carbohydi protein bi plasma m ribosome	tology (Non-redundant) / k protein activity n compound metabolism, _pathwayID:C1cyc rate metabolism osynthesis embrane biogenesis biogenesis	Aspect F P P C C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 11.66	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.444 0.596	nt categories ORFs 14 8 137 175 164 149 126
carboftydrate metabol mitochondrion response to stimulus one-carbon compound UM-BBD_pathwayD(- biological_process un energy pathways oxidoreductase activit energy reserve metab rRNA metabolism uukaryotic 43S preinit rRNA processing	d metabolism, C1cyc Iknown V oolism tiation complex	C P P P F P C C	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17 -8.18 -8.34	1 6e-5 2 6e-5 5 2e-5 1 .9e-3 1 .9e-3 2 .7e-3 2 .8e-2 4 .9e-14 4 .9e-14 1 .6e-14	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432 -0.622 -0.448	467 361 8 1063 132 180 22 125 61 121	Gene On Category heat shoc one-carbo UM-BBD carbohydr protein bi plasma m ribosome cytosolic i	tology (Non-redundant) / k protein activity on compound metabolism, _patiwayID-C1cyc rate metabolism osynthesis embrane biogenesis ibosome (sensu Eukarya)	Aspect F P P C C P C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value < 1.0e-15 3.3e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.444 -0.596	nt categories ORFs 14 8 137 175 164 149 126
carbonydrate metabol mitochondrion response to stimulus one-carbon compount UM-BBD_pathway[D: biological_process un energy pathways suidoreductaes activit anergy reserve metab RNA metabolism aukaryotic 42S preinit RNA processing ytosolic large ribosor Eukarya)	d metabolism, C1cyc Iknown by Jolism tiation complex mal subunit (sensu	C P P P F P C P C C	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17 -8.18 -8.34 -8.43	1 6e-5 2 6e-5 5 2e-5 1 .9e-3 1 .9e-3 2 .7e-3 2 .8e-2 4 .9e-14 1 .6e-14 1 .6e-14 < 1.0e-15	0.115 0.133 1.173 0.049 0.188 0.461 -0.482 -0.622 -0.448 -0.620	467 361 8 1063 132 180 22 125 61 121 65	Gene On Category heat shoc one-carbo UM-BBD carbohydi protein bi plasma m ribosome cytosolic i	tology (Non-redundant) / k protein activity on compound metabolism, _pathwayID-C1cyc rate metabolism osymthesis embrane biogenesis fbogenesis fbogome (sensu Eukarya)	Aspect F P P C C P C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.444 -0.596	nt categories ORFs 14 8 137 175 164 149 126
arbonydrate metabol response to stimulus one-carbon compound M-BBD_pathwaylD1 oiological_process un anergy pathways oxidoreductase activit energy reserve metab RNA metabolism aukanyotic 43.5 preinit RNA processing ytosolic large ribosor Eukanya) macromolecule biosyn	d metabolism, C1cyc Ny Ny iation complex mal subunit (sensu nthesis	C P P F P C P C C P	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17 -8.18 -8.34 -8.34 -8.43 -8.50	1 6e-5 2 6e-5 5 2e-5 1 9e-3 1 9e-3 2 7e-3 2 7e-3 2 7e-3 2 8e-2 4 9e-14 4 9e-14 1 6e-14 < 1 0e-15 < 1 0e-15	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432 -0.622 -0.448 -0.620 -0.620 -0.224	467 361 8 1063 132 180 22 125 61 121 65 490	Gene On Category heat shoc one-carbo UM-BBD carbohydi protein bi plasma m ribosome cytosolic r	tology (Non-redundant) k protein activity on compound metabolism, eathway(D- Cicyc rate metabolism osynthesis embrane biogenesis tibosome (sensu Eukarya)	Aspect F P P C C C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.444 -0.596	nt categories ORFs 14 8 137 175 164 149 126
arbotyrdrafe metabol mitochondrion esponse to stimulus one-carbon compound M-BBD_pathway[0- iological_process un anergy pathways oxidoreductase activit nergy reserve metabo undergotical processing sukaryotic 43S preinit RNA processing vyosofic large ribosor Eukarya) nacromolecule biosy structural constituent o	d metabolism, Crcyc Iknown W wolism tiation complex mal subunit (sensu nthesis	C P P P P C P C C P C C F	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17 -8.18 -8.34 -8.43 -8.43 -8.50 -8.54	1 6e-5 2 6e-5 5 2e-5 1 9e-3 1 9e-3 2 7e-3 2 8e-2 4 9e-14 4 9e-14 1 6e-14 4 9e-14 1 6e-15 < 1 0e-15 < 1 0e-15	0.115 0.133 1.173 0.049 0.198 0.198 0.461 -0.432 -0.622 -0.448 -0.620 -0.224 -0.235	467 361 8 1063 132 180 22 125 61 121 65 65 490 171	Gene On Category heat shoc one-carbo UM-BBD carbohydi protein bi plasma m ribosome cytosolic r	tology (Non-redundant) k protein activity on compound metabolism, pathwayDC freyc vare metabolism osynthesis embrane biogenesis biogenesis biosome (sensu Eukarya)	Aspect F P P C C C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.224 -0.444 -0.596	nt categories ORFs 14 8 137 175 164 149 126
carbotyrdrak metabol mitochondrion response to stimulus one-carbon compound UM-BBD_pathwayD- voldogical_process un energy nearways voldoreductase activit RNA metabolism eukaryotic 435 preinti RNA metabolism eukaryotic 435 preinti RNA processing rytosolic large ribosor Eukaryot macromolecule biosy structural constituent o rucleolus	d metabolism, C toyc V solitation by S solitation complex mail subunit (sensu mathesis f ribosome	C P P P P C P C P C P C C P C C C	5.31 5.22 5.09 4.36 4.28 3.73 -8.17 -8.18 -8.34 -8.43 -8.43 -8.50 -8.54 -8.54 -8.54	1 68-5 2 88-5 5 28-5 1 98-3 1 98-3 2 78-3 2 78-3 2 78-3 2 88-2 4 98-14 4 98-14 4 98-14 4 98-14 4 1 88-14 1 88-14 5 < 1 08-15 < 1 08-15 < 1 08-15	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432 -0.461 -0.422 -0.448 -0.622 -0.448 -0.620 -0.224 -0.385 -0.408	467 361 8 1063 132 180 22 125 61 121 65 490 171 157	Gene On Category heat shoc one-carbo UM-BBC carbohydi protein bi plasma m ribosome cytosolic i	tology (Non-redundant) / k protein activity on compound metabolism, _patiwayID-C1cyc rate metabolism osynthesis embrane biogenesis ibosome (sensu Eukarya)	Aspect F P P C C C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.244 -0.596	nt categories ORFs 14 8 137 175 164 149 126
arbotyrdrate metadol mitochondrion response to stimulus MHSED_pathway(D: VMHSED_pathway(D: MHSED_pathway(D: MHSED_pathway(D) and processing response metadol response to the stimulation response to t	d metabolism, cloyc krown V v olism tiation complex mail subunit (sensu mail subunit (sensu thesis of nibosome	C P P P P C P C P C P C C P C C P	5.31 5.22 5.09 4.36 4.28 3.73 -8.17 -8.18 -8.34 -8.43 -8.43 -8.50 -8.54 -8.68 -9.51	1.8e-5 2.8e-5 5.2e-5 1.9e-3 2.7e-3 2.8e-2 4.9e-14 4.9e-14 1.8e-14 5.40-15 < 1.0e-15 < 1.0e-15 < 1.0e-15	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432 -0.622 -0.448 -0.620 -0.224 -0.224 -0.385 -0.408 -0.467	467 361 8 1063 132 180 22 125 61 121 65 490 171 157 149	Gene On Category heat shoc one-carbo UM-BBD carbohydi protein bi plasma m ribosome cytosolic i	tology (Non-redundant) (k protein activity on compound metabolism, _pathwayID.C1cyc ate metabolism osynthesis embrane biogenesis ibosome (sensu Eukarya)	Aspect F P P C C C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 0.0226 0.0224 0.0444 -0.596	nt categories ORFs 14 8 137 175 164 149 126
carbohyrate metadol mitochondrion mesponse to stimulus one-carbon compound UN-BBC, pathway(D: biological_process un energy reserve metab rRNA metabolism aiukanyota r435 preint RNA processing rytosolic large ribosor zivkanya) macromolecule biosyn structural constituent o udeolus biosome biogenesis biosome	d metabolism, Cfoyc Kikown Jy Jolism Itation complex mal subunit (sensu nthesis d ribosome	C P P P P P C P C P C C P C C P C C	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17 -8.18 -8.34 -8.43 -8.54 -8.54 -8.54 -9.55	1.68-5 2.68-5 5.28-5 1.98-3 2.78-3 2.88-2 4.98-14 4.98-14 4.98-14 1.68-14 < 1.08-15 < 1.08-15 < 1.08-15 < 1.08-15 < 1.08-15	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432 -0.622 -0.448 -0.622 -0.244 -0.385 -0.204 -0.235 -0.408 -0.457 -0.392	467 361 8 1063 132 180 22 125 61 121 65 490 171 171 157 149 207	Gene On Category heat shoc one-carbo UM-BED carbohydd protein bi plasma m nbosome cytosolic n	tology (Non-redundant) / / k protein activity on compound metabolism, _pathwayID-C tcyc atte metabolism osynthesis embrane biogenesis biogenesis biogenesis biogenesis	Aspect F P P C C P C	t-value 11.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value < 10e-15 33e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.224 -0.596	nt categories ORFs 14 8 137 175 164 149 126
arbotyrdrak metabol mitochondrion response to stimulus one-carbon compound M-BED_pathwayDor obiological_process un energy pathways oxidoreductase activit energy pathways oxidoreductase activit energy pathways oxidoreductase activit energy pathways prosolic large ribosor Eukaryo) response to the pathways prosolic large ribosor Eukaryo) response to the pathways fibosome biogenesis ibosome biogenesis	d metabolism, C toyc Iknown Ny Isoloism tiation complex mal subunit (sensu mthesis dr nbosome	C P P P P C P P C P C F C C P C C P C C P	5.31 5.22 5.09 4.36 4.36 4.28 3.73 8.17 -8.18 -8.34 -8.43 -8.43 -8.54 -8.68 -9.51 -9.65 -9.81	1.68-5 2.88-5 5.28-5 1.98-3 2.78-3 2.78-3 2.28-2 4.98-14 1.88-14 1.88-14 1.88-14 1.88-14 1.88-14 1.88-14 1.88-15 < 1.08-15 < 1.08-15 < 1.08-15 < 1.08-15 < 1.08-15	0.115 0.133 1.173 0.049 0.198 0.63 0.461 -0.432 -0.622 -0.448 -0.620 -0.224 -0.224 -0.385 -0.408 -0.408 -0.457 -0.392 -0.295	467 361 8 1063 132 180 22 125 61 121 65 490 171 157 149 207 372	Gene Om Category heat shoc one-catby UM-BBD, carbohyd protein bi plasma m ribosome cytosolic i	tology (Non-redundant) k protein activity on compound metabolism, 	Aspect F P P C C C	t-value 111.64 5.17 5.07 -5.80 -5.81 -9.87 -11.66	E-value <1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 <1.0e-15 <1.0e-15	Show redunda Mean 1.883 1.173 0.258 0.0226 0.0224 0.0244 -0.596	nt categories ORFs 14 8 137 175 164 149 126
carbonyrate metabol mitochondrion response to stimulus one-carbon compound UM-BBC, pathway0- biological_process um energy reserve metaba rRNA metabolism aukaryotic 43S preinit RNA processing sytosolic large ribosor Eukarya) macromolecule biosy thosome biogenesis ibosome biosome biogenesis ibosome	d metabolism, C Cloyc Ikroovn V V Itation complex mal subunit (sensu nthesis of nbosome	C P P P F P C P C C P C C P C C C C C C	5.31 5.22 5.09 4.36 4.36 4.28 3.73 -8.17 -8.18 -8.34 -8.43 -8.43 -8.43 -8.50 -8.54 -8.68 -9.51 -9.65 -9.851 -10.06	1 68-5 2 88-5 5 28-5 1 98-3 2 78-3 2 88-2 4 98-14 4 98-14 1 88-14 4 98-14 1 88-14 4 98-14 1 88-14 5 (108-15 5 (108-15 5 (108-15 5 (108-15) 5 (1	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432 -0.622 -0.448 -0.620 -0.224 -0.244 -0.385 -0.408 -0.457 -0.392 -0.295 -0.332	467 361 8 1063 132 22 22 22 25 61 121 65 490 171 157 149 207 372 309	Gene On Category heat shoc one-carby UM-BBD carbohyd protein bi plasma m ribosome cytosolic i	tology (Non-redundant) k protein activity on compound metabolism, pathwayD.C fryc- rate metabolism osynthesis embrane biogenesis biogenesis biosome (sensu Eukarya)	Aspect F P P C C C	t-value 11.64 5.17 5.07 5.80 -5.81 -9.87 -11.66	E-value <10e-15 33e-4 5.5e-4 9.2e-6 8.7e-6 <10e-15 <10e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.424 -0.596	nt categories ORFs 14 8 137 175 164 149 126
carbonyorate metaboli mitochondrion response to stimulus one-carbon compound UM-BBD_pathwayDo UM-BBD_pathwayDo UM-BBD_pathwayDo workdowneyDe RNA metabolism eukaryotic 435 preinti RNA metabolism eukaryotic 435 preinti RNA processing cytosolic large riboson Eukarya) mucholus tibosome biogenesis ribosome biogenesis ribosome biogenesis ribosome protein biogenesis ribosome protein biogenesis	d metabolism, C1cyc C1cyc Mikorown by Olism Mitation complex mal subunit (sensu mithesis of ribosome plex and assembly	C P P P P C P C P C P C P C C P C C P C C P	5.31 5.22 5.09 4.36 4.36 4.28 3.73 3.73 8.17 -8.18 -8.34 -8.43 -8.54 -8.68 -9.51 -9.65 -9.81 -10.08	1 68-5 2 68-5 5 28-5 1 99-3 1 99-3 2 70-3 2 70-3 2 80-2 4 99-14 4 90-14 4 90-14 4 90-14 4 90-14 1 00-15 < 1	0.115 0.133 1.173 0.049 0.198 0.163 0.461 -0.432 -0.622 -0.448 -0.622 -0.448 -0.620 -0.224 -0.385 -0.408 -0.385 -0.408 -0.408 -0.332 -0.295 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332	467 361 8 1063 132 180 22 125 61 121 65 490 171 157 149 207 372 309 179	Gene On Category heat shoc one-cathy UM-BED carbohyd protein bi plasma m nbosome cytosolic r	tology (Non-redundant) / k protein activity on compound metabolism, pathwayID-C1cyc ate metabolism osymthesis embrane biogenesis tbosome (sensu Eukarya)	Aspect F P P C C C	Evalue 111.64 5.17 5.07 -5.80 -5.80 -9.87 -11.66	E-value < 1.0e-15 3.3e-4 5.5e-4 9.2e-6 8.7e-6 < 1.0e-15 < 1.0e-15	Show redunda Mean 1.883 1.173 0.258 -0.226 -0.224 -0.244 -0.596	nt categories ORFs 14 8 137 175 164 164 128

Figure 1. Screenshots of the various T-profiler analysis results. (A) Statistics of the uploaded gene expression dataset for cells assayed 80 min after the temperature shift from 30 to 37°C (23). The type of analysis can be selected from the panels to the right. (B) Scoring consensus motifs. Only significantly scoring motifs are shown (*E*-value < 0.05). By selecting the motifs in the left column, information about the genes containing this motif and their expression levels can be obtained. (C) Scoring GO categories. Only a subset of the 50 significantly changed categories is shown. (D) Scoring ChIP-chip based gene groups. (E) Graph showing the t-value for each chromosome, obtained from the gene expression profile of the mutant $pfd2\Delta$, in which chromosome 14 is duplicated. (F) The same result as in (C), but now with redundant gene groups removed by our iterative procedure.

average and the standard deviation (Figure 1A). Importantly, no cut-offs are applied; all values are used for calculation.

Next, the user can follow links to results for four different types of predefined gene groups: genes whose promoter region matches a specific consensus motif (Figure 1B), genes that belong to a specific GO category (Figure 1C), genes whose promoter is significantly bound by a specific transcription factor according to a ChIP-chip experiment (Figure 1D) and genes that reside on a specific chromosome (Figure 1E). The statistical parameters that are output by T-profiler for any group scored are (i) a t-value measuring the up-regulation (t > 0) or down-regulation (t < 0) in units of the standard error of the difference and (ii) an E-value that is Bonferroni corrected for the parallel testing of the large number of categories, which represents the number of groups with the same *t*-value or higher that would be observed by chance. Typically, only a small subset of the gene groups considered will score as differentially expressed (Figure 1).

Figure 1B shows consensus motifs associated with differential regulation. The heat shock response motif (HSF1) and the general stress response motif (MSN2/4) score positively, whereas the PAC and rRPE motifs, both over-represented in genes involved in rRNA biosynthesis (27), score negatively. The up-regulation of genes under the control of the HSF1 motif is specific to heat-shocked cells, whereas the downregulation of genes involved in rRNA biosynthesis and genes containing MSN2/4 motifs is typical of the environmental stress response (23). Figure 1D shows which transcription factors and corresponding ChIP-chip conditions are associated with differential regulation. The fact that genes bound by the transcription factor Hsf1p score positively whereas the genes bound by the ribosome-regulating transcription factors Rap1p, Sfp1p and Fhl1p score negatively is consistent with the motif-based results. Figure 1C shows the results of T-profiler analysis based on GO; in total, 50 categories have a significant t-value. Most of the positively scoring categories are involved in heat shock and stress response, whereas most of the negatively scoring categories are comprised mainly of ribosomal genes. Again, the results compare well with the results obtained by T-profiler using motif and ChIP-chip based gene groups. However, the large number of similar GO categories reported makes it harder to interpret the results. Figure 1F shows how this problem is resolved by the iterative removal of redundant categories. Finally, in Figure 1E, the high *t*-value of chromosome 14 points to a duplication of chromosome 14 in the deletion mutant $pfd2\Delta$.

CONCLUSION

T-profiler analyzes genome-wide expression patterns one experiment at a time, without the need to tune any parameters. Our use of the *t*-test to score gene groups eliminates the need to impose a threshold on the expression level of individual genes. A group can be scored as significantly induced or repressed even if the expression of none of its individual member genes changes significantly. This feature greatly increases the sensitivity to small-amplitude coordinate changes in the expression of groups of genes. Representing a transcriptome by a relatively small set of statistically robust and easily interpretable *t*-values allows for seamless comparison between hybridizations, even across different platforms and laboratories. We plan to extend the functionality of T-profiler to multiple experiments in the near future.

ACKNOWLEDGEMENTS

We would like to thank Merijn Schuurmans and Ania Zakrzewska for helpful discussions and for testing T-profiler, Reka Letso for a critical reading of the manuscript, and Xiang-Jun Lu for assistance in setting up the webserver. This work was supported by grants from the Netherlands Foundation for Technical Research (STW) to F.K. (APB.5504) and from the National Institutes of Health to H.J.B. (R01HG003008). Funding to pay the Open Access publication charges for this article was provided by the National Institutes of Health.

Conflict of interest statement. None declared.

REFERENCES

- Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. *Science*, 270, 467–470.
- Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H. *et al.* (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. *Nat. Biotechnol.*, 14, 1675–1680.
- Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena, N., Holloway, E., Kapushesky, M., Kemmeren, P., Lara, G.G. *et al.* (2003) ArrayExpress—a public repository for microarray gene expression data at the EBI. *Nucleic Acids Res.*, **31**, 68–71.
- Barrett, T., Suzek, T.O., Troup, D.B., Wilhite, S.E., Ngau, W.C., Ledoux, P., Rudnev, D., Lash, A.E., Fujibuchi, W. and Edgar, R. (2005) NCBI GEO: mining millions of expression profiles—database and tools. *Nucleic Acids Res.*, 33, D562–D566.
- Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I. *et al.* (2002) Transcriptional regulatory networks in *Saccharomyces cerevisiae*. *Science*, **298**, 799–804.
- Harbison, C.T., Gordon, D.B., Lee, T.I., Rinaldi, N.J., Macisaac, K.D., Danford, T.W., Hannett, N.M., Tagne, J.B., Reynolds, D.B., Yoo, J. *et al.* (2004) Transcriptional regulatory code of a eukaryotic genome. *Nature*, 431, 99–104.
- Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. *Proc. Natl Acad. Sci. USA*, 95, 14863–14868.

- Sharan, R. and Shamir, R. (2000) CLICK: a clustering algorithm with applications to gene expression analysis. *Proc. Int. Conf. Intell. Syst. Mol. Biol.*, 8, 307–316.
- Tamayo,P., Slonim,D., Mesirov,J., Zhu,Q., Kitareewan,S., Dmitrovsky,E., Lander,E.S. and Golub,T.R. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. *Proc. Natl Acad. Sci. USA*, 96, 2907–2912.
- Jensen, L.J. and Knudsen, S. (2000) Automatic discovery of regulatory patterns in promoter regions based on whole cell expression data and functional annotation. *Bioinformatics*, 16, 326–333.
- Bussemaker,H.J., Li,H. and Siggia,E.D. (2001) Regulatory element detection using correlation with expression. *Nature Genet.*, 27, 167–171.
- Conlon,E.M., Liu,X.S., Lieb,J.D. and Liu,J.S. (2003) Integrating regulatory motif discovery and genome-wide expression analysis. *Proc. Natl Acad. Sci. USA*, **100**, 3339–3344.
- Robinson, M.D., Grigull, J., Mohammad, N. and Hughes, T.R. (2002) FunSpec: a web-based cluster interpreter for yeast. *BMC Bioinformatics*, 3, 35.
- Boyle,E.I., Weng,S., Gollub,J., Jin,H., Botstein,D., Cherry,J.M. and Sherlock,G. (2004) GO:TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. *Bioinformatics*, 20, 3710–3715.
- Volinia,S., Evangelisti,R., Francioso,F., Arcelli,D., Carella,M. and Gasparini,P. (2004) GOAL: automated Gene Ontology analysis of expression profiles. *Nucleic Acids Res.*, 32, W492–W499.
- Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. *et al.* (2000) Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nature Genet.*, 25, 25–29.
- Mewes, H.W., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S. and Frishman, D. (1999) MIPS: a database for genomes and protein sequences. *Nucleic Acids Res.*, 27, 44–48.
- Lascaris, R., Bussemaker, H.J., Boorsma, A., Piper, M., van der Spek, H., Grivell, L. and Blom, J. (2003) Hap4p overexpression in glucose-grown *Saccharomyces cerevisiae* induces cells to enter a novel metabolic state. *Genome Biol.*, 4, R3.
- Pavlidis, P., Lewis, D.P. and Noble, W.S. (2002) Exploring gene expression data with class scores. *Pac. Symp. Biocomput.*, 474–485.
- Heyer,L.J., Kruglyak,S. and Yooseph,S. (1999) Exploring expression data: identification and analysis of coexpressed genes. *Genome Res.*, 9, 1106–1115.
- van Helden, J., Andre, B. and Collado-Vides, J. (2000) A web site for the computational analysis of yeast regulatory sequences. *Yeast*, 16, 177–187.
- Kellis, M., Patterson, N., Birren, B., Berger, B. and Lander, E.S. (2004) Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery. *J. Comput. Biol.*, 11, 319–355.
- Gasch,A.P., Spellman,P.T., Kao,C.M., Carmel-Harel,O., Eisen,M.B., Storz,G., Botstein,D. and Brown,P.O. (2000) Genomic expression programs in the response of yeast cells to environmental changes. *Mol. Biol. Cell*, **11**, 4241–4257.
- Roven, C. and Bussemaker, H.J. (2003) REDUCE: an online tool for inferring *cis*-regulatory elements and transcriptional module activities from microarray data. *Nucleic Acids Res.*, **31**, 3487–3490.
- Gasch,A.P., Moses,A.M., Chiang,D.Y., Fraser,H.B., Berardini,M. and Eisen,M.B. (2004) Conservation and evolution of *cis*-regulatory systems in ascomycete fungi. *PloS Biol.*, 2, e398.
- Hughes, T.R., Roberts, C.J., Dai, H., Jones, A.R., Meyer, M.R., Slade, D., Burchard, J., Dow, S., Ward, T.R., Kidd, M.J. *et al.* (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. *Nature Genet.*, 25, 333–337.
- Hughes, J.D., Estep, P.W., Tavazoie, S. and Church, G.M. (2000) Computational identification of *cis*-regulatory elements associated with groups of functionally related genes in *Saccharomyces cerevisiae*. *J. Mol. Biol.*, 296, 1205–1214.