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We show that a Bose-condensed gas, under extreme rotation in a 2D anisotropic trap, forms a novel
elongated quantum fluid which has a roton-maxon excitation spectrum. For a sufficiently large interaction
strength, the roton energy reaches zero and the system undergoes a second order quantum transition to the
state with a periodic structure—rows of vortices. The number of rows increases with the interaction, and
the vortices eventually form a triangular Abrikosov lattice.

DOI: 10.1103/PhysRevLett.94.150401 PACS numbers: 03.75.Hh, 05.30.Jp, 67.40.Db
Rotating Bose-Einstein condensates (BECs) of trapped
atoms constitute a novel many-body system where
nucleated quantized vortices form a triangular lattice [1],
and a fast rotation is expected to change dramatically the
properties of the gas. In a harmonically trapped BEC
rotating at a frequency � close to the trap frequency in
the rotation plane !?, the vortex lattice can melt when the
number of vortices approaches the number of particles
[2,3]. In this respect, there is an analogy with type-II
superconductors, which undergo a transition to the normal
phase above a critical value of the magnetic field [4].
Possible signatures of the melting of the vortex lattice in
rapidly rotating BECs were observed in experiments at
JILA and at ENS [5]. The proposals that are put forward
to describe the state of the rapidly rotating Bose gas
include yrast states [6], correlated quantum Hall states of
bosons [3,7], and a giant vortex state [8].

In this Letter we show that an anisotropy in the trapping
potential can drastically change the picture. As found at
ENS [9], a Bose gas under critical rotation (��!?) can
become very elongated in one direction in the rotating
frame. We focus on this case and assume that � is close
to the smallest of the trap frequencies in the rotation plane.
Then the condensate becomes free along the direction of
the weaker confinement and forms a novel quantum fluid in
a narrow channel. The excitation spectrum of this fluid has
a ‘‘roton-maxon’’ character and becomes unstable at a
critical interaction strength. This instability leads to the
formation of a periodic structure which represents vortex
rows. An increase in the interaction (decrease in the an-
isotropy) increases the number of rows and reduces the
correlation length, and the gas ultimately enters the
strongly correlated regime.

We consider a two-dimensional (2D) Bose-condensed
gas at zero temperature, rotating with frequency � and
harmonically trapped with frequencies !x;y � !?

������������
1� �

p

along the x, y axes in the rotating frame. The Hamiltonian
of the system in this frame reads (see [10])
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where ~�y and ~� are bosonic field operators, m is the
particle mass, g is the coupling constant for the mean-field
interaction, and the effective trapping potential is Veff� ~r� �
�m=2�
�!2

x ��2�x2 
 �!2
y ��2�y2�. The Hamiltonian

(1) is analogous to that of charged particles in the magnetic
field, and in this respect the quantity m~r� ~� is the gauge
field. We consider the limit of extreme rotation, where
� � !x � !?

������������
1� �

p
and the gas becomes free along

the x direction. Then, assuming that in this direction the
atoms are confined in a large rectangular box of size L, the
gas becomes a long cigar. After the gauge transformation
~� � �eim�xy= �h, the Hamiltonian in the Landau gauge can
be written as
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where!� � !?

������
2�

p
� �, assuming a small ellipticity �.

Omitting the interaction term, the single particle eigen-
states are the Landau levels [11] separated from each other
by an energy gap �2 �h�. In the dilute limit, where the
mean-field interaction gn2D � �h� (n2D is the 2D density),
we may restrict our discussion within the lowest Landau
level. Then the field operator can be written in the form
� �

P
k�kak, where ak is the creation operator of a par-

ticle with momentum k along the x direction and �k is the
corresponding eigenfunction:

�k�x; y� �
exp�ikx�

��l20L
2�1=4

exp
�
�

1

2

�
y
l0



�kl0
~�

�
2
	
; (3)

where ~� �
�������������������������
�2 
!2

�=4
p

, and l0 � � �h=2m ~��1=2. Then,
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FIG. 1. Excitation energy (in units of m �h ~�=m�) versus kl0.

PRL 94, 150401 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
22 APRIL 2005
after the spatial integration of Eq. (2), we obtain an effec-
tive one-dimensional (1D) Hamiltonian:

H�
X
k

��h2k2=2m��ayk ak


�g�=2L�
X
k;k0;q

ayk
qa
y
k0�qakak0 expf�l

2
0
�k� k0 
 q�2


q2�=2g; (4)

where g� � g=
�������
2�

p
l0 is an effective 1D coupling constant.

The Hamiltonian (4) describes particles with a large effec-
tive mass m� � m�2 ~�=!��

2 � m. The fact that m� is not
infinite and the kinetic energy term is still present origi-
nates from the asymmetry of the trapping potential. This
asymmetry leads to a small difference between the fre-
quencies � and ~�. However, once the finite kinetic energy
term is extracted one may put ~� � �, and we have done
this in the second term on the right-hand side of Eq. (4).

The momentum dependence of the interaction term in
the Hamiltonian (4) originates from the presence of the
gauge field. The wave functions of particles which have
opposite momenta in the x direction are shifted in opposite
directions along the y axis, which decreases their overlap
and reduces the interaction amplitude.

The behavior of the system is governed by the particles
with momenta k & l�1

0 , for which the extension of the
wave function in the y direction is l0. If the 1D density n �
N=L (N is the total number of particles) satisfies the
condition nl0 � 1, then we are dealing with a 1D Bose
gas. In this case, characteristic momenta that are important
are of the order of n or smaller. They satisfy the condition
kl0 � 1, and the exponential term in Eq. (4) is equal to
unity. Then the Hamiltonian (4) corresponds to the well-
described Lieb-Liniger model for the 1D Bose gas [12].

We, therefore, focus on the other extreme, where

nl0 � 1: (5)

Then the system can be viewed as a 2D gas in a narrow
channel. The 2D density is �n=l0 and the interaction
energy per particle is I � ng=l0. The characteristic kinetic
energy of a particle at the mean distance from other parti-
cles is K � �h2n=m�l0, and for K � I the wave function of
the particle at such interparticle distances is not influenced
by the interactions. The gas is then in the weakly interact-
ing mean-field regime. The criterion of weak interactions
takes the form (see, for example, [13])

m�g= �h2 � 1: (6)

Thus, under the conditions (5) and (6) we have a weakly
interacting 2D Bose gas in a narrow channel.

As well as in the 1D Bose gas, the ground state can be a
quasicondensate in which the density fluctuations are sup-
pressed, but the phase fluctuates in the x direction on a
distance scale smaller than the size L [13]. However,
locally the quasicondensate is indistinguishable from a
true BEC. The analysis in the density-phase representation
15040
[13] gives the same excitation spectrum as the one obtained
in the Bogoliubov approach assuming that most particles
are in the condensate. Employing this approach, we first
reduce the Hamiltonian (4) to a bilinear form:

Hb �
X
k


 �h2k2=2m� 
 2ng� expf�k2l20=2g�a
y
k ak


 �ng�=2�
X
k

expf�k2l20g�a
y
k a

y
�k 
 aka�k�: (7)

Diagonalizing Hb we obtain the excitation spectrum:

�2�k� � 
 �h2k2=2m� 
 g�nf2 exp��k2l20=2� � 1g�2

� g�2n2 expf�2k2l20g: (8)

The key feature of the excitation energy (8) is the
momentum dependence of the interaction terms propor-
tional to g�. The structure of the spectrum depends on the
ratio of the mean-field interaction to the kinetic energy at
momentum k � 1=l0. This ratio can take both small and
large values and is given by

� �
ng�

�h2=2m�l20
�

����
2

�

s �
m�g

�h2

�
nl0: (9)

In units of m �h ~�=m�, the excitation energy is a universal
function of � and kl0. For small �, the interaction terms
proportional to g� in Eq. (8) are important only at k�
1=l0, where they become momentum independent. Then
Eq. (8) gives the ordinary Bogoliubov spectrum, with a
small sound velocity cs �

�����������������
ng�=m�

p
.

For � * 1 the situation drastically changes. The inter-
action is already important for momenta k * 1=l0, where
the interaction dependent terms in Eq. (8) decrease with
increasing k. For this reason the spectrum develops the
roton-maxon structure for �> 2:6 (see Fig. 1). This struc-
ture is well known in the physics of superfluid 4He and is
predicted for trapped dipolar condensates [14] and studied
for lattice bosons with long-range interactions [15]. The
roton minimum is located at k� 1=l0, and the correspond-
ing excitation energy decreases with increasing �. For a
critical value � � 4:9, the roton minimum reaches zero at
k � kc � 1:6=l0, and a further increase in � makes the
1-2
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FIG. 2. The number of components (Nr) in the ground state
macroscopic wave function for various values of �.
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system unstable. Thus our weakly interacting 2D Bose-
condensed gas in a narrow channel is stable for � � 4:9,
exhibiting a roton-maxon spectrum in the range 2:6<�<
4:9. For �> 4:9, where the Bose-condensed state is un-
stable, one has to find a new ground state.

At the instability point the excitations with momenta
�kc can be excited without any cost of energy. This
indicates that the ground state macroscopic wave function
can contain several momentum components. A general
form of this type of wave function reads

 �
����
N

p �
C0�0 


Xj
i�1

�Cki�ki 
 C�ki��ki�

�
: (10)

The absence of current in the x direction requires jCki j �
jC�ki j, and the normalization condition reads jC0j

2 


2
Pj
i jCki j

2 � 1. Note that Eq. (10) gives two possibilities:
a �2j
 1� component wave function with C0 � 0 and a 2j
component wave function for which C0 � 0.

To understand the instability of the single component
state, we consider a wave function with three components:

 �
����
N

p

Ck�k 
 C0e

i'�0 
 C�k��k�: (11)

Here all the C coefficients are real, and we may put Ck �
C�k. We then find the critical value of �, above which this
3-component state has lower energy than the single com-
ponent one. The wave function (11) leads to a0 � C0,
a�k � Ck in Eq. (4), and we obtain the energy

E
Ck; k�=N � A�k�jCkj4 
 B�k�jCkj2 
 g�n=2; (12)

where the coefficients A�k� and B�k� are given by

A�k� � g�n
3� 8t
 2t4 � 4t2 cos�2'��; (13)

B�k� � �h2k2=m� � g�n
2� 4t� 2t2 cos�2'��; (14)

with t � expf�k2l20=2g. For jCkj
2 < 1=2, the energy is

minimized for cos�2'� � �1, and we have A�k�> 0.
Minimizing E with respect to jCkj

2 yields jCkj
2 �

�B�k�=2A�k�. The energy of the 3-component state is

E=N � g�n=2� B2=4A;

and it is lower than the energy of the single component
state. The physically acceptable solution requires B�k�<
0. Therefore, the transition from the single to 3-component
state occurs when the minimum value of B�k� reaches zero.
Using Eq. (14) we find that this happens at k � kc and � �
�c � 4:9. So, the 3-component solution becomes the
ground state for �> 4:9. This breaks the translational
symmetry and leads to a modulation of the density along
the x axis with a period of 2�=kc, which is similar to a
scenario proposed for superfluid 4He flowing with a veloc-
ity exceeding the critical Landau velocity [16].

A 3-component wave function can be viewed as two
vortex rows along the x axis. The nodes in the x, y plane are
obtained straightforwardly, and near the transition point
they are very far from the line y � 0. The transition from
15040
the single to 3-component wave function can be treated as
a second order quantum transition. The energy and chemi-
cal potential , change continuously, whereas the quantity
@,
@n undergoes a jump at the transition point. For the 3-
component state it is smaller by an amount 0:5g�.

Near the transition point quantum fluctuations increase
due to the vanishing excitation energy at the roton mini-
mum. This energy can be expressed as

��k� �
�

�h2

2m�l20

��
2

�c
��c � �� 
 .l40�k

2 � k2c�2
�
1=2
;

where . � 0:12. For the mean square fluctuations of the
density we then obtain�

/n
n

�
2
�

Z dk
2n�

�
�h2k2

2m���k�
� 1

�
�

1

nl0
ln
�

1

�c � �

�
:

These fluctuations become large for /� � ��c � �� &

exp��nl0�. Thus, the transition from a single to 3-
component wave function occurs in the interval /�, which
is exponentially narrow due to the inequality (5). The
behavior of the system in this region requires a special
investigation and is beyond the scope of this Letter.

It is important that already for � � 5:4 the ground state
wave function changes from 3- to 2-component, and it
again becomes 3-component at � � 20. With increasing
� (either increasing g�n or decreasing !�), more momen-
tum states are macroscopically occupied. This is because
an increase of � is equivalent to increasing the effective
mass m�, which makes momentum states in the lowest
Landau level (LLL) more degenerate.

Our results for the number of momentum components in
the ground state wave function are displayed in Fig. 2.
These states describe one or several vortex rows along
the x axis. For example, a two component state represents
one vortex row [see Fig. 3(I)]. Eventually, a triangular
Abrikosov vortex lattice [17] is formed when increasing
� to very large values. It should be mentioned here that the
structure of vortex rows has been obtained in the studies of
type-II superconductors [18] and in the studies of conden-
sates in rotating anisotropic traps [19].
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In the presence of many rows of vortices, we may rely on
an average vortex description in the LLL. Using the rela-
tion h�kjy2=l20j�ki � k2l20 
 1=2, we write the energy
functional of the system in the form E
0� �R
d2r
m!2

�y20
 g02�=2. Minimizing the energy, we ob-
tain the coarse grained density 0�y� � 1

g 
,� 1
2m!

2
�y

2�,
which smooths out density modulations introduced by
vortex rows. The size of the vortex core is always �l0,
and the number of the vortex rows is ��1=3. The energy
per particle is given by

E=N � 3 �h ~��!�=2��2�3
�������
2�

p
�=4�2=3=5: (15)

The result of Eq. (15) deviates by less than 10% from the
energy obtained by the full numerical minimization.

The vortex lattice is expected to melt when the number
of vorticesNv approaches the number of particles N [3,20].
In our case the condition Nv � N transforms into
m�g= �h2 � n2l20. However, our approach of the weakly
interacting mean-field regime in a narrow channel breaks
down before the melting transition. This approach requires
inequalities (5) and (6) and, hence, is surely expected to be
invalid for m�g= �h2 * n2l20. Therefore, the description of
the melting transition requires a more elaborate treatment
of quantum fluctuations.

In conclusion, we have shown that a 2D BEC at extreme
rotation frequency in an elliptic trap forms a novel quan-
tum fluid in a narrow channel. The behavior of this fluid is
determined by the parameter � Eq. (9) which increases
with the interaction strength and effective mass m�. For
�< �c � 4:9, the excitation spectrum of the fluid has a
small sound velocity and exhibits a roton-maxon character.
At a critical interaction strength �c, the roton energy
reaches zero and the uniform (in the long direction) ground
state becomes unstable. The system then undergoes a
second order quantum transition to the state with a periodic
structure which can be viewed as rows of vortices. For �>
�c, with increasing the interaction parameter �, more
vortex rows are nucleated. Finally, the vortices form the
Abrikosov lattice which can melt due to quantum
fluctuations.

We acknowledge discussions with J. Dalibard, A. L.
Fetter, Tin-Lun Ho, J. Palacios, and J. T. M. Walraven.
15040
This work was supported by the Ministère de la
Recherche (Grant ACI Nanoscience 201), by the Centre
National de la Recherche Scientifique (CNRS), by the
Nederlandse Stichting voor Fundamenteel Onderzoek der
Materie (FOM), and in part by the National Science
Foundation (Grant No. PHY99-07949). LPTMS is a mixed
research unit of CNRS and Université Paris-Sud.
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