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PREFACE

One of the remarkable properties of string theory is the extra dimensions it predicts.
In contrast to this, this thesis will primarily deal with string theory inspired models
that live in less than four dimensions. Two such theories will be discussed, one
is a supersymmetric three-dimensional gauge theory, the other a one-dimensional
bosonic gauge theory coupled to gravity. Each theory will be treated in a separate
part.

Part one deals with the supersymmetric gauge theories. These three-dimensional
gauge theories have the remarkable property that certain exactly calculable quanti-
ties predict exact quantum properties of a related four-dimensional gauge theory. An
important role is played by a classical integrable system, this role will be elucidated
by relating the gauge theories to a D-brane setup.

Part two is about the interaction of D0-branes with gravity. The action for multiple
D0-branes, a one-dimensional gauge theory, is difficult to determine due to ordering
ambiguities. The application of a new symmetry principle is used to partially solve
this problem. Also, evidence is found for interesting collective behavior of D0-branes
in a curved background: a gravitational Myers effect.
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Part I

Non-perturbative results in
supersymmetric gauge theories
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CHAPTER 1

INTRODUCTION AND MOTIVATION

The first part of this thesis deals with gauge theories, supersymmetric gauge theo-
ries in particular. The goal of this chapter is to explain why these supersymmetric
gauge theories are worth studying. One reason is one of the big open questions
in high-energy physics: Finding an analytic description of the vacuum structure of
QCD. Allthough the string theory inspired supersymmetric gauge theories, that will
be presented in this thesis, are far from giving satisfactory explanations, they do
provide a valuable laboratory where much can be learned about gauge theories in
general. This chapter will start by briefly reviewing the main issues in QCD, gradu-
ally building up to recent advances in supersymmetric gauge theories.

QUANTUM CHROMO DYNAMICS

The gauge theory of the strong interaction, Quantum Chromo Dynamics or simply
QCD, has the special property of asymptotic freedom: at very high energies the
theory resembles a free field theory, at low energies the theory is strongly coupled.
Precisely the strongly coupled nature of QCD in the infrared (IR) makes it difficult to
give a satisfactory theoretical description of the low energy quantum dynamics. Af-
terall perturbation theory, the favorite tool of most high-energy physicists, becomes
cumbersome at strong coupling.

At this point in time it is not even possible to derive the properties of the vacuum of
QCD from first principles. However, from experimental data and general arguments,
one knows some of the properties it should have. The first property that comes to
mind is confinement: although the elementary fields in QCD are the quarks and
gluons, physical states are always colorless (i.e. baryons, mesons or glueballs).
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Chapter 1 - Introduction and motivation

A different property, although not completely unrelated, is the existence of a mass
gap, which basically means that there are no states in the spectrum at zero energy.
In particular this means that the strong force is a short-distance force (in reverse, in
the absence of a mass gap, massless gluons would mediate a long-range force which
does not speak in favor of confinement). A general consequence of a mass gap is the
introduction of a mass scale in the theory. Note that classically, Yang-Mills theory in
four-dimensions is scale invariant (and therefore cannot have an intrinsic mass scale
classically), the introduction of a mass-scale is therefore a pure quantum effect.

The third property of the vacuum that is worth mentioning is that of chiral sym-
metry breaking. Take for example QCD for just two quarks (u and d), this has a
global SU(2) symmetry that interchanges the two flavors. However, in the limit of
massless quarks, this symmetry is enhanced to SU(2) × SU(2), since the left- and
right-handed parts of the massless spinors can be rotated independently. This chiral
symmetry is spontaneously broken in QCD, the Goldstone bosons being the pions.
At high energy the chiral symmetry should be restored. Since the breaking of the
chiral symmetry is intimately connected with the existence of a mass gap (and there-
fore also confinement), it will be interesting to understand the mechanism of chiral
symmetry breaking and restoration more thoroughly.

The above three properties of the vacuum of QCD are still ill understood from the
theoretical point of view. It will be a great challenge to solve these issues.

SUPERSYMMETRIC GAUGE THEORIES

This thesis will not be focused on QCD, but rather on supersymmetric gauge theo-
ries. Supersymmetric gauge theories are interesting for many reasons. Many Grand
Unifying Theories (GUTs), for example, need supersymmetry to achieve gauge cou-
pling unification. Extensions to the Standard Model often involve supersymmetry,
not unimportant in this respect is the fact that supersymmetry can, via loop cancella-
tions, control radiative corrections to particle masses and can therefore be a solution
to the hierarchy problem.

One can also view supersymmetric gauge theories as a laboratory to study QCD,
viewing QCD as a perturbation from a supersymmetric gauge theory. Knowledge of
supersymmetric gauge theories can then possibly be used to learn something about
QCD. String theory in the form of D-brane setups, provides many excellent laborato-
ries. The D-brane setups, for example, provide alternative perspectives one can use
to describe gauge theories.

Besides being physically interesting, supersymmetric gauge theories are also easier
to deal with. Powerful symmetry arguments sometimes lead to exact non-perturbative
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Chapter 1 - Introduction and motivation

results. Take for example the superpotential for a theory involving only a chiral su-
perfield; using supergraph techniques one can show that the superpotential is not
modified perturbatively. This result can also be derived, following Seiberg, using
the fact that the superpotential is holomorphic in the fields and coupling constants
[1]. Sometimes holomorphy in combination with global symmetries of the super-
potential allows one to derive the exact quantum superpotential (as is the case for
the Wess-Zumino model). Note that the holomorphy argument by Seiberg only ap-
plies when the theory can be regularized in such a way that global symmetries are
preserved.

Supersymmetry thus constrains the quantum corrections to the superpotential. The
kinetic terms however are not protected by holomorphy and can receive many per-
turbative and non-perturbative corrections. Thus the power of holomorphy is the
most useful in situations where the kinetic terms are not important, such as in the
study of the vacua of supersymmetric gauge theories.

More symmetry usually means more analytic control, this is the case with super-
symmetric gauge theories as well. The gauge theory with extended supersymmetry
(N = 2) can be shown to have an electric-magnetic duality symmetry. This sym-
metry interchanges the electric and magnetic charges in the theory and at the same
time switches between strong and weak coupling. To understand electric confine-
ment (such as the confinement of quarks and gluons, which are the “electric” degrees
of freedom) it is necessary to understand the low energy, strongly coupled regime of
the theory. Using the electric-magnetic duality one can turn this into a problem in
the weakly coupled dual theory, where one can use perturbation theory to address
the problem of confinement [2].

Lagrangians for gauge theories with N = 2 supersymmetry are determined by the
prepotential, a holomorphic function from which the Kähler potential, gauge cou-
plings and scalar potential can be determined. Seiberg and Witten [2] showed that
the problem of finding the non-perturbative prepotential can be turned into the
problem of computing certain quantities on an elliptic curve. So out of this quan-
tum gauge theory an effective geometry emerges that captures the strong coupling
phenomena. For the gauge group SU(2) the elliptic curve is a torus, with modulus
τ . This modulus can be identified with the gauge coupling, both are controlled by
the vacuum expectation value of the scalar field of the N = 2 chiral multiplet.

RECENT PROGRESS

Phenomenologically N = 2 theories are not that interesting because N = 2 mul-
tiplets can not contain chiral fermions. N = 1 theories do allow chiral fermions,
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Chapter 1 - Introduction and motivation

however since they have less supersymmetry it is also harder to deal with those the-
ories. Still, having N = 1 supersymmetry does constrain the possible corrections to
the superpotential significantly. Using the holomorphy argument of Seiberg [1] one
can show that the superpotential has a one-loop perturbative contribution and that
all other contributions are non-perturbative. Determining those non-perturbative
contributions can be quite difficult.

Surprisingly recent progress, by Dijkgraaf and Vafa [3], shows that it is possible to
determine the effective superpotential, in terms of the glueball superfield, by doing
a perturbative computation in a zero-dimensional theory (a so-called Matrix Model).
The end-result is an exact expression in the sense that the expectation values for the
glueball fields are written as a non-perturbative summation over instanton contribu-
tions. Whether or not this effective action is a genuine Wilsonian effective action is
not clear.

Roughly the argument, leading to this result, is as follows. If one is interested in cal-
culating the exact superpotential in a background of gauge fields, the path-integral
can be reduced to such a form that only planar diagrams in the zero-momentum
limit contribute: the path-integral reduces to a matrix integral in the ’t Hooft limit
(the large N limit is not performed on the rank of the original gauge symmetry,
therefore the results are valid for the gauge symmetry one started with). The super-
potential can then be expressed, term by term, in the gauge field background. The
end-result is a series of perturbative corrections to the superpotential. Note that this
is not in conflict with the non-renormalization theorem of Seiberg, since the N = 1
theory has an anomalous U(1)R symmetry. After minimizing this superpotential
with respect to the gauge field background the superpotential can be expressed as a
power series in the characteristic energy scale (the scale reminiscent of dimensional
transmutation):

W ∼ Λ3 + . . . ∼ Λ3
0e
− 8π2

g2 + . . . , (1.1)

showing the non-perturbative nature of the calculations. Allthough the original cal-
culation was done using a chain of dualities in string theory, the argument can be
completely given in field theory terms [4].

Actually, it turns out this is only a special example of a more general scheme: d− 4-
dimensional theories can be used to calculate superpotentials of d-dimensional the-
ories [5]. A three-dimensional gauge theory would correspond to a −1-dimensional
theory (or algebraic theory, no integrals). Three-dimensional theories, however, are
not as interesting as four-dimensional theories. Fortunately, some three-dimensional
theories do predict the correct results for holomorphic quantities in related four-
dimensional theories. The main focus of the first part of this thesis will be a spe-
cific example of such a three-dimensional theory: a four-dimensional N = 1 theory
compactified on a circle. As will be shown, the algebraic theory that underlies the

8



Chapter 1 - Introduction and motivation

three-dimensional theory (and hence aspects of the four-dimensional theory) is a
classical mechanical integrable system.

The following series of chapters will start off by giving some necessary background
material about (supersymmetric) gauge theories and integrable systems. All is nec-
essary to understand the main result of this part of the thesis: Calculating four-
dimensional superpotentials using an underlying integrable system. Chapter 2 will
be used to review some relevant aspects of gauge theories, nothing new, but hope-
fully helpful to starters in the field. Things will become a bit more technical in the
following chapters 3 and 4 dealing with necessary background material about super-
symmetric gauge theories and integrable systems. These two chapters are necessary
to understand the new material presented in chapter 5, which is about calculating
quantum effective superpotentials using integrable systems.
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CHAPTER 2

GAUGE THEORY

In this chapter a few well-known results, obtained in the theory of gauge fields, will
be reviewed. The material presented in this chapter is not new, but it is relevant
background material for the following chapters.

(2.1) LIMITATIONS OF PERTURBATION THEORY

The reason why it is difficult to determine the vacuum properties of quantum gauge
theories, QCD in particular, is that at low energy the theory is strongly coupled. This
means that perturbation theory breaks down and non-perturbative effects become
essential. A good example is the instanton solution, a single instanton contributes a
factor

e
− 8π2

g2 (2.1)

to the path-integral. This expression does not have a Taylor expansion around g = 0,
hence the instanton effect can never be seen in perturbation theory: perturbation
theory is incomplete and exact quantities can never be obtained using this method.

One might hope that, at least, the summation over all Feynman diagrams yields
results that capture all the non-perturbative physics. Even this is not the case since
a perturbation series like

∞∑
n=0

angn (2.2)

will only converge asymptotically since the number of Feynman diagrams at n-th
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Chapter 2 - Gauge theory

order grows like n!, therefore
an ∼ n!. (2.3)

The fact that the number of diagrams at n-th order behaves like this can of course
be checked using combinatorics. One can also make use of the fact that the path-
integral is a generating functional for all Feynman diagrams. Since only the number
of Feynman diagrams is relevant, it is sufficient to simply evaluate the path-integral
in the zero-momentum limit, reducing it to an ordinary integral. Take for example
Φ4 theory, the path-integral in this case reduces to (see [6])

Z(g) =
1√
2π

∫ ∞

−∞
e−

1
2x2− 1

4 gx4
dx =

∑
Zkgk. (2.4)

The numbers Zk are an indication of the number of diagrams at k-th order. Remem-
ber that for this theory, the number of loops l is given by l = k − 1. The integral in
equation 2.4 can be estimated for large k. Write

Zk =
1√
2πk!

∫ ∞

−∞
e−

1
2 x2

(
−x4

4

)k

dx (2.5)

and note that this is an integral representation of the Γ function. In the limit of large
k this can be written as

Zk ∼ (−1)k

π
√

2
4k(k − 1)!, (2.6)

confirming the large order behavior.

It was realized by ’t Hooft [7] that the perturbation series improve for SU(N) at
large N , if one uses the coupling λ = g2N . Then only planar diagrams contribute
and the number of diagrams grows as a power law

an ∼ cn. (2.7)

Perturbation series in λ can be analytic and can have a finite radius of convergence,
if there is no essential singularity at g = 0 (that is, any singularity must behave like
a pole). One can use this technique to learn about QCD or other quantum gauge
theories. To show that the number of diagrams indeed grows as a power law, the
same strategy as above is used. Take the path-integral for Φ4 theory, with Φ an
N × N matrix. In the large N limit the path-integral is a generating functional for
planar diagrams only [8]

e−N2F (g) =
∫

dΦe−
1
2Tr Φ2− g

N Tr Φ4
, (2.8)

where F is the generating function for connected planar diagrams. Note that this
integral can be evaluated and that at large order it results in

F (g)k ∼ (48)k (2.9)

reflecting that the number of connected planar diagrams grows as a power law.
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Chapter 2 - Gauge theory

(2.2) CONFINEMENT

CONFINEMENT OR MAXIMAL SCREENING?

One of the most prominent features of QCD is confinement; the effective degrees
of freedom are color singlets, whereas the fundamental degrees of freedom carry
color charge. Though ill understood from a purely theoretical point of view, this
phenomenon is often attributed to the existence of flux tubes and a mass gap. How-
ever, the issue of confinement (as observed in experiments) is a bit more subtle. The
subtlety lies in the fact that confinement can also occur through the mechanism of
“maximal screening”. Usually, however, by confinement is meant the confinement
of flux into flux tubes. This mechanism is still not understood completely. The two
mechanisms will now be described briefly, one by one.

Maximal screening is a completely straightforward and well-understood mechanism
(see for example [9] for a review). Consider two quarks and start to pull them apart
slowly. At some point the distance between the quarks reaches the QCD scale, i.e.
the scale at which the coupling becomes strong. The energy density of the gluon
field between the quarks can then be estimated as follows

E ∼ g2/r4 ∼ g2Λ4
QCD ∼ Λ4

QCD. (2.10)

It turns out that this energy density is enough to create a quark–anti-quark pair,
since

m4
q ∼ Λ4

QCD. (2.11)

This effect is called maximal screening, the original quark pair is screened com-
pletely because pulling apart the quarks creates a gluon field energetic enough to
pair produce quarks. This game can even be played with QED, provided the cou-
pling is high enough (which it isn’t in reality).

The question arises what is meant exactly with the confinement due to flux tubes.
When flux tubes form, the potential between the quarks becomes linear. This can be
easily seen using a Gaussian surface around the flux tube (see figure 2.1):

Qenc =
∮

S

~E · d ~A ⇒ E ∝ q/A ⇒ V ∝ d. (2.12)

Here A is the surface of the Gaussion box. The linear potential due to the flux tube
between the quarks means that it requires a constant force to keep them apart. As
the coupling constant increases with increasing distance (asymptotic freedom), it
is impossible to separate the quarks completely. Now it is possible to state what
is usually meant by “proving confinement”. Confinement is proven if the existence
of flux tubes can be shown. So this is really confinement of flux and not solely
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Chapter 2 - Gauge theory

Figure 2.1: A flux tube between two color charges.

the confinement of charges (which can also occur through the maximal screening
mechanism discussed above).

FLUX TUBES

Flux tubes can be characterized by their end-points (i.e. the representation R and
R̄ of the quarks at both end-points, see figure 2.1). To characterize the flux tube it
is not sufficient to give the representation R. This is because the representation is
not a conserved quantity in the following sense. Gluon number is not a conserved
quantity, therefore one can always take a gluon from the flux tube and combine it
with the charge R to make it look like a different representation. This new config-
uration possibly has a lower tension (flux tube energy density), causing the system
to decay to this energetically more favorable flux tube. One quantity is conserved
however: the charge(s) under the center of the gauge group. Those charge(s) can
be used to classify the flux tubes. As an example consider SU(N), the center consists
of elements

U = e2πik/N I, k = 0, . . . , N − 1, (2.13)

which together form the Abelian group ZN . For SU(N) any representation can be
built out of direct products of the fundamental N and anti-fundamental N̄ repre-
sentations. Because the anti-fundamental representation is the complex conjugate
of the fundamental representation, it has opposite charge. The adjoint representa-
tion is built out of N⊗N̄ , therefore it has charge zero. Combining any representation
R with the adjoint representation in a direct product will not affect the total charge
under the center. It will remain equal to the charge that corresponds to R.

To each R one can associate a flux tube and to each flux tube one associates a
tension TR. As explained above, labeling the flux tube using the representation
R is awkward since one representation can turn into another simply by combining
with one of the gluons in the flux tube. If this combination R ⊗ adj contains a
representation belonging to a flux tube with lower tension, then it is energetically
favorable for the system to decay to this less energetic flux tube. In the case the

14



Chapter 2 - Gauge theory

direct product contains a singlet, the flux tube disappears alltogether. A special case
is the adjoint representation, since adj ⊗ adj always contains a singlet, there cannot
be any stable fluxtubes between adjoint matter. Groups that have a trivial center
cannot have stable flux tubes at all.

THE MEISSNER EFFECT

Popular explanations of the existence of flux tubes in QCD use the so-called dual
Meissner effect. The Meissner effect is a phenomenon of superconducting materials.
In the superconducting phase pairs of electrons (Cooper pairs), described by a com-
plex scalar field φ, condense. This superconducting condensate has some special
properties: If an external magnetic field is applied a current is induced, creating an
opposite magnetic field. The external magnetic field is expelled, although flux tubes
form through which the magnetic field can penetrate the material. Within the flux
tube the material is in the non-superconducting phase, allowing a magnetic field to
be present. One can say that magnetic flux is confined in this system.

The flux tubes in this condensed matter system, Abrikosov vortices, can be described
using a spontaneously broken U(1) scalar field theory. In the context of relativistic
field theories a 2+1-dimensional Abelian Higgs model should be used. The existence
of vortices in this theory was shown by Nielsen and Olesen [10]. The Lagrangian of
the Abelian Higgs model reads

L = − 1
4g2 F 2 + (Dφ)2 − V (φ†φ). (2.14)

The potential is such that for field configurations satisfying

φ†φ = v2 ⇒ φ = veiθn (2.15)

the minimum is reached. From this equation one deduces that n is an integer. In
this minimum there are no massless degrees of freedom anymore. This means a
Yukawa type potential for the electromagnetic interaction, hence electric fields are
screened. There is a problem with this vacuum configuration: it is not a finite energy
configuration, as the kinetic energy of the scalar field is not finite

E ≈
∫

dV (∂θφ)2 ∼ πn2v2

∫
dr

r
→∞. (2.16)

A finite energy configuration can be created by modifying the value of the vector
potential appropriately, such that the covariant derivative vanishes at infinity

Dθφ = 1
r ∂θφ + iAθφ = 0 ⇒ 1

r ∂θφ = −iAθφ. (2.17)
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Combining this with equation 2.15 one gets

Aθ = −n/r ⇒ flux: Φ =
∫

rdθAθ = −2πn, (2.18)

showing that the magnetic flux is quantized.

The spontaneous breaking from U(1) → I, allows the appearance of vortex solutions.
A more fancy way of stating this result is that this configuration is described by a
map from the boundary ∂S, a circle, to a U(1) phase. The tubes are topologically
stable, with the topological charge being

π1[U(1)] = Z. (2.19)

In this case the topological charge is just the integer number n. The general mech-
anism is as follows. When the symmetry group G is spontaneously broken to a
subgroup H

G → H, (2.20)

then the topological charge is given by

π1[G/H]. (2.21)

So, flux tubes exist if π1[G/H] is non-trivial. If G is simply connected this is equal to
π0[H].

If the Higgs mechanism is applied to an adjoint scalar field the symmetry is broken
to the center of the gauge group. For example if SU(N) is broken to its center ZN ,
the topological charge is

π1[SU(N)/ZN ] = ZN , (2.22)

which corresponds to the charge classifying flux tubes, discussed before.

The central idea is now to copy this mechanism over to gauge theories with the elec-
tric and magnetic charges interchanged: a dual Meissner effect. The fundamental
magnetic degrees of freedom will be magnetic monopoles, which will therefore be
discussed before the mechanism of confinement in gauge theories is discussed.

MONOPOLES

For a theory to have monopoles á là ’t Hooft-Polyakov, a breaking pattern like SU(2)
to U(1) should occur. The appropriate model is still the Abelian Higgs model, see
equation 2.14, but now in 3+1 dimensions. For stable point-like topological charges
to exist the second fundamental group of the vacuum manifold M should be non-
trivial

π2(M). (2.23)
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At infinity fields should be pure gauge, so the field configuration there is character-
ized by a map from the sphere at infinity to the moduli space (vacuum manifold).
If the gauge symmetry is broken from G to H then the vacuum manifold is given by
M = G/H.

The ’t Hooft-Polyakov monopole solution with charge one is given by the following
“hedgehog” configuration

φ(~r) = η
~r · ~σ

r
f(r), f(0) = 0, f(∞) = 1 (2.24)

~A(~r) =
~r × ~σ

r2
a(r), a(0) = 0, a(∞) = 1. (2.25)

The solutions for the smooth functions f and a are only known in certain limiting
cases (such as the Prasad-Sommerfeld monopole, obtained by saturating the Bogo-
molnyi bound).

The hedgehog configuration can be gauge rotated to the form φ ∝ σ3 if one uses the
gauge transformation

U(θ, ϕ) = exp(−iσ2θ/2) exp(−iσ3ϕ/2). (2.26)

Note that the gauge transformation becomes singular at the point where the gauge
symmetry is restored (~r = ~0), this means that at ~r = ~0 one cannot rotate φ to σ3. In
fact, it is undefined there. Applying this transformation to the gauge field yields

U ~AU† − i
g U†~∇U. (2.27)

One can then project onto the gauge field that corresponds to this direction in iso-
space (there is only a contribution from the pure gauge term):

~A3 ∝ Re
(
− i

g TrφU†~∇U
)
∝ cos θ

gr sin θ
ϕ̂. (2.28)

In terms of this U(1) field, the monopole indeed carries one unit of magnetic charge

~∇× ~A3 =
~r

gr3
. (2.29)

THE DUAL MEISSNER EFFECT: ABELIAN PROJECTION

The Meissner effect explains the confinement of magnetic flux due to the conden-
sation of electric charges. In QCD one expects confinement of electric flux to take
place. Perhaps a dual Meissner effect, in which electric and magnetic charges are
interchanged, is responsible for confinement in QCD? Such a mechanism is indeed
proposed by ’t Hooft (see [11] and references therein). The mechanism roughly
works as follows (for SU(N))

17
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• The non-Abelian gauge symmetry is fixed, leaving the Cartan subgroup U(1)N−1

unfixed.

• Point-like singularities in the gauge fixing condition show the existence of field
configurations with magnetic charge. After the electric charges are integrated
out, an Abelian theory with magnetic charges only is left.

• A electric-magnetic duality transformation is performed, describing the system
in terms of electric charges.

• If one can show that the Meissner effect occurs in this theory, one has proven
confinement of electric charge in the original gauge theory.

This mechanism will be now discussed in a bit more detail for SU(2). To fix the
non-Abelian gauge symmetry completely one uses an adjoint scalar field. This scalar
field can be a fundamental field of the theory, but it can also be a composite field
(as has to be the case for pure Yang-Mills). This adjoint scalar field, called X, is
subjected to the gauge fixing condition

X = diag(λ,−λ), (2.30)

which obviously fixes the gauge symmetry to U(1). Then the following question
arises: How can one spot a monopole? Suppose there is a point x0 in space where
λ = 0, resulting in an enhancement of the gauge symmetry to SU(2) at that point.
For a generic adjoint operator X = ~x · ~σ, this means that there are three constraints.
The solution space to these three constraints is, generically, a co-dimension three
object. Therefore in three spatial dimensions these constraints describe isolated
point-like objects. In other words, the enhanced gauge symmetry is expected only
at points in space (or time-like curves in four-dimensional space-time). In a small
neighborhood around the singularity (after gauge fixing) the configuration looks
like

X = diag(ε,−ε) = σ3ε. (2.31)

After performing the inverse transformation of the one used for the monopole (equa-
tion 2.26) this configuration is turned into a hedgehog configuration. At x0 the full
gauge symmetry is restored, just as in the monopole case. This is enough informa-
tion to identify the appearance of monopoles in this partially fixed gauge. Around
the singularity the field configuration is that of a monopole. The theory is now
effectively described by

• one massless photon

• two massive charged vector fields

• one scalar field λ

18
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• topological point-like objects with magnetic charge: monopoles

For SU(N) the argument is completely analogous. Here one has to focus on a SU(2)
subgroup of SU(N). The solution space will, again, be a co-dimension three object.

As mentioned before, if one can show that the monopoles condense, one can ar-
gue that an electricmagnetic version of the Meissner effect (the dual Meissner ef-
fect) is responsible for the confinement of electric flux. Condensation of magnetic
monopoles can be shown in N = 2 supersymmetric gauge theories [2], providing
strong evidence for confinement of electric flux in that theory.
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CHAPTER 3

SUPERSYMMETRY

This chapter will give a brief review of, and introduction to, N = 2 and N = 1
supersymmetric gauge theories. Since the theories central in this thesis are N = 2
theories deformed to N = 1, N = 2 supersymmetry will be discussed first. After
discussing the work of Seiberg and Witten on N = 2 theories, the more recent
progress of Dijkgraaf and Vafa on N = 1 theories is presented. For a more complete
and thorough treatment of supersymmetry and supersymmetric gauge theories the
reader is referred to the following references: [12, 13].

(3.1) GAUGE THEORIES WITH N = 2 SUPERSYMMETRY

UNCONSTRAINED SUPERSPACE

Unconstrained N = 2 superspace has four commuting and eight anti-commuting
coordinates, grouped in a single superspace variable zM

zM = {xµ, θαi, θ̄
α̇i, i = 1, 2}. (3.1)

The N = 2 supersymmetry algebra has an SU(2)R inner-automorphism that acts in
the fundamental representation on the index i of the anti-commuting coordinates
θi. The N = 2 chiral superfield is obtained by imposing the following conditions on
a generic N = 2 superfield:

D̄α̇iΨ(z) = 0
DαiDj

αΨ = D̄i
α̇D̄α̇jΨ i, j = 1, 2

(3.2)
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leading to the following expansion in N = 1 superfields

Ψ(x+, θ) = Φ(x+, θ1) +
√

2θα2Wα(x+, θ1) + θ2θ2G(x+, θ1). (3.3)

The coordinate xµ
+ is defined as xµ

+ = xµ + iθiσ
µθ̄i, Φ is an N = 1 chiral superfield

and Wα the N = 1 gauge superfield (containing the N = 1 vector superfield V ).
The auxiliary superfield G can be expressed in terms of Φ and W as follows

G(x+, θ1) = −1
2

∫
d2θ̄1Φ(x+ − iθ1σθ̄1)†e−2V (x+−iθ1σθ̄1). (3.4)

The N = 2 gauge superfield is defined by replacing the superderivatives D in equa-
tion 3.2 with their covariantized forms

Dαi = Dαi + iAαi, D̄αi = D̄αi + iĀαi. (3.5)

The A and Ā fields are supergauge fields that take values in the Lie algebra of the
gauge group. The gauge superfield is similar in structure to the chiral superfield,
therefore the gauge superfield is often referred to as the chiral superfield.

In terms of components, the N = 2 chiral supermultiplet has a gauge field, two
Weyl spinors and a complex scalar field, all in the adjoint representation of the
gauge group:

Aµ

λ+ λ−
φ

(3.6)

The Weyl spinors λ± form a Dirac spinor and transform under the fundamental of
the SU(2)R R-charge, therefore theories withN = 2 chiral multiplets are necessarily
non-chiral. The gauge field and scalar transform trivially under the SU(2)R. There
is also an Abelian R-symmetry, acting only on the N = 1 chiral multiplet part of the
full multiplet:

λ− → eiαλ−, φ → φ. (3.7)

This chiral U(1)R symmetry is anomalous at the 1-loop level.

THE PREPOTENTIAL

The actions, invariant under N = 2 supersymmetry, that will appear in this thesis
use a prepotential F , a holomorphic function of a chiral superfield. The action is
then obtained by integration the prepotential over N = 2 superspace

S =
∫

d4xd4θ TrF(Ψ) + c.c. (3.8)
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This can be written inN = 1 language by integrating over half of the anti-commuting
variables, θα2. The result is the general expression

L = − 1
2

∫
d2θ

∂F
∂Φa

Ga −
∫

d2θ
∂2F

∂Φa∂Φb
W aαW b

α. (3.9)

After plugging in the definition (equation 3.4) for the auxiliary superfield one ob-
tains

L = − 1
2

∫
d2θd2θ̄

∂F
∂Φa

e−2V Φa† −
∫

d2θ
∂2F

∂Φa∂Φb
W aαW b

α. (3.10)

So that the Kähler potential generated by the prepotential F reads

K(Φ, e−2V Φ†) =
∂F
∂Φa

(e−2V Φ†)a (3.11)

and the coupling constant matrix is given by

τab(Φ) =
∂2F

∂Φa∂Φb
. (3.12)

For renormalizable N = 2 theories the classical prepotential is necessarily restricted
to

Fclass = 1
2τclassΨ2. (3.13)

In that case the scalar potential V (φ), obtained by integrating out the auxiliary field
from the chiral superfield Φ, is equal to

V (φ) = 1
2g2 Tr [φ, φ†]2. (3.14)

Because of this relatively simple form, the structure of the exact pre-potential can
be determined exactly. The coupling constant g comes from τ = 4πi

g2 + θ
2π . Quantum

corrections to the prepotential are built up out of the 1-loop contribution and non-
perturbative instanton terms [14]

F =
i

2π
Ψ2 ln

(
Ψ2

Λ2

)
+

∞∑
n=1

Fn

(
Λ
Ψ

)4k

Ψ2. (3.15)

The instanton contributions determine the constants Fn. The energy scale Λ is set
by the coupling constant via dimensional transmutation:

Λ3Ne2πiτ = Λ3N
0 e2πiτ0 . (3.16)
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(3.1.1) THE SEIBERG-WITTEN SOLUTION

The classical supersymmetric vacua are obtained by solving [2]

Fµν = 0, Dµφ = 0, λ± = 0, V (φ) = 0. (3.17)

From this it is clear that φ is gauge equivalent to a constant. Furthermore, it has to
obey

[φ, φ†] = 0. (3.18)

Since φ takes values in the Lie algebra of the gauge group, this equation is satisfied
if φ is a sum over the elements of the Lie algebra that commute with each other:
the Cartan subalgebra. For SU(N), the classical vacua are then given by r = N − 1
complex parameters ai:

φ =
r∑

i=1

aiHi. (3.19)

The parameters ai ∈ C label different vacua. However not all different combinations
of the ai give inequivalent vacua. There are gauge transformations (that necessarily
connect equivalent vacua) that only permute the elements of the Cartan subalgebra
Hi, and therefore effectively permute that ai’s. Those transformations are called
Weyl transformations. Weyl transformations form the symmetry group of the root
system that corresponds to the Lie algebra for this group. Thus two vacua ai and a′i
are equivalent if the a′i are a permutation of the ai. The space of inequivalent vacua
can then be written as

M = Cr/Weyl. (3.20)

This moduli space is then parameterized by the Weyl invariant parameters ui, im-
plicitly defined by

det(x− φ) = xN + u1x
N−1 + · · ·+ ur. (3.21)

The kinetic terms of the action are determined by the metric on the moduli space,
which in turn is derived from the prepotential. For N = 2 theories it can be written
as

ds2 = Im
∂2F

∂ai∂aj
daidāj . (3.22)

It is convenient to rewrite this using the dual parameters aD,i = ∂F/∂ai:

ds2 = Im daidāD,i. (3.23)

The variables a and aD can be seen as a section of a bundle X of complex dimen-
sion 2r. The Kähler moduli space M is the base of this bundle. As the variable a
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determines the mass of the gauge bosons in the spontaneously broken vacuum, the
dual variable aD determines the mass of the monopoles

m ∼ |aD| . (3.24)

In this language the coupling constants are expressed as

τij =
∂2F

∂ai∂aj
=

∂aD,i

∂aj
. (3.25)

Such an N = 2 theory has an interesting exact Sp(2r,Z) duality. Classically the
theory is invariant under Sp(2r,R) rotations. To see this, consider the kinetic term,
which is

Lkin ∼ ∂µ

(
φ φD

)†(
0 i
−i 0

)
∂µ

(
φ

φD

)
. (3.26)

This kinetic term is manifestly invariant under symplectic transformations. For the
case r = 1 one then has

(
a

aD

)
→ M

(
a

aD

)
, M ∈ Sp(2r,R) (3.27)

generated by

S =
(

0 −1
1 0

)
:

τ → −1
τ

a → −aD

aD → a

Tβ =
(

1 β

0 1

)
:

τ → τ + β

a → a

aD → aD + βa.

(3.28)

The shift in the θ-angle is only insignificant if they are shifted by amounts of 2π,
therefore β must be an integer. This restricts the duality group to be

Sp(2r,Z) ⊂ Sp(2r,R). (3.29)

A GEOMETRIC APPROACH

Since the ai parameters do not label the inequivalent vacua properly, it is better to
express the metric on the moduli space and the gauge coupling constants in terms
of the good parameters on the moduli space ui. This amounts to expressing the
variables a and aD in u. The goal is then eventually to express all physical quantities,
such as the coupling constant and metric on the moduli space, in terms of the good
variables u of the moduli space. One can then learn from these expressions how
these physical quantities depend on the choice of vacuum.
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The pair a, aD has a monodromy in the u-plane, i.e. after going through a loop in the
u-plane the a and aD get shifted by an Sp(2r,Z) transformation. The monodromies
for the theory with gauge group SU(2) are derived in great detail in [2], their re-
sults will be described here briefly. One of the main results of this paper of Seiberg
and Witten is that there are three characteristic monodromies in the u-plane. One
monodromy at infinity (looping through an infinitely large circle in the u-plane) and
two monodromies associated with the points in the moduli space where monopoles
become massless, i.e. when (see equation 3.24)

aD = 0 ⇒ u = ±2Λ2. (3.30)

As an example, consider the monodromy at infinity. From the general formula 3.15
one can then see that for large values of u (and of a) the expression for the prepo-
tential reduces to that of the one-loop contribution, therefore

aD =
∂F
∂a

=
2ia
π

ln
a

Λ
+

ia
π

. (3.31)

After traversing a full circle at infinity in the u-plane, ln u picks up an additional 2πi,
which means for a(u) ∼ √

2u

ln a → ln a + πi. (3.32)

Completing a full circle in the u-plane corresponds to half a circle in the a-plane:
a → −a. This leads to the following monodromy

aD → −aD + 2a

a → −a,
(3.33)

which is indeed an Sp(2,Z) transformation. Together with the other two mon-
odromies these transformations form a subgroup of Sp(2,Z), known as Γ(2).

It turns out that the knowledge of the monodromies is enough to determine the
complete solution to the problem. That is, it is possible to find a(u) and aD(u) by
using the monodromies and the fact that the metric on the moduli space has to be
positive definite

Im τ(u) > 0. (3.34)

The solution can be written in terms of a family of hyperelliptic curves, implicitly
defined by

y2 = (x2 + u)2 − 4Λ4. (3.35)

This surface can be constructed by glueing together two complex planes (sheets)
along two ”cuts”(see figure 3.1). One cut is running from u − 2Λ2 to u + 2Λ2, the
other from −u − 2Λ2 to −u + 2Λ2. Then the planes are compactified in the same
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Figure 3.1: A sheet (left) with two cuts and the corresponding two sheeted cover (middle) with
the cuts blown up. The Riemann surface (a torus) is formed by compactifying the two sheets
separately (right).

way one compactifies a plane to a sphere by adding a point at infinity (one-point
compactification). This curve becomes singular when u = ±2Λ2, the points at which
monopoles become massless. If the dynamically generated scale Λ goes to zero, one
arrives at the classical limit where all cuts shrink to a point.

The modular parameter of this genus one Riemann surface (i.e. a torus) depends on
u. Remarkably this modular parameter is exactly equal to the coupling constant of
the N = 2 gauge theory

τ(u) = τtorus(u). (3.36)

The modular parameter can be expressed in terms of the periods of this Riemann
surface. A crucial element is the Seiberg-Witten differential defined on this curve.
This differential dω is a meromorphic one-form, such that ∂udω is a holomorphic
one-form. The dependence of a and aD on u can then be calculated as follows

a(u) =
1

2πi

∮

A

dω =
√

2
π

∫ 1

−1

dx

√
x− u√

x2 − 4Λ4
(3.37)

aD(u) =
1

2πi

∮

B

dω =
√

2
π

∫ u

1

dx

√
x− u√

x2 − 4Λ4
. (3.38)

Here A and B form the canonical basis of one-cycles on the torus. From this the
coupling constant can be derived

τ(u) =
∂uaD

∂ua
. (3.39)

If a different basis of one-cycles is chosen the a and aD are transformed by an
Sp(2,Z) element.

The power of the approach put forward by Seiberg and Witten is that the difficult
questions in gauge theory (how do the coupling constants and metric on moduli
space depend on the choice of vacuum) can be completely and exactly answered by
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studying the well-known Riemann surfaces. For the general case (SU(r + 1)), the
solution can be conveniently described in terms of a Riemann surface E of genus
g = r. This Riemann surface can be represented as a hyperelliptic curve, or two
complex planes joined along r cuts.

y2 = PN (x)2 − 4Λ2N , (3.40)

with
PN (x) = det(x− φ) = xN + u1x

N−1 + · · ·+ uN−1. (3.41)

The formula used to obtain the coupling constants are easily generalized from equa-
tions 3.37 to 3.39:

ai = 1
2πi

∮
Ai

dω

aDi = 1
2πi

∮
Bi

dω

τij = ∂uk
aDi(∂uj ak)−1.

(3.42)

(3.1.2) CONFINEMENT

In the introductory chapters the issue of confinement was put forward as one of the
main reasons to study supersymmetric gauge theories. In [2], Seiberg and Witten
used the results of the geometric approach to argue that the dual Meissner effect
occurs in the deformed N = 2 theory. For completeness an extremely short version
of their derivation will be shown here. Interested readers are referred to [2, section
5.6].

First, the N = 2 supersymmetry is broken to N = 1 by adding a superpotential

W = mTrφ2 = m u(A). (3.43)

Then it is argued that, around the point in moduli space where monopoles become
massless, the quantum effective superpotential should be modified to include the
effect of the light monopoles. To describe the monopoles as fundamental particles,
an electric-magnetic duality transformation is performed. All in all the exact quan-
tum effective superpotential, from which the quantum vacua can be derived, can be
written as

W =
√

2ADMM̃ + mu(AD). (3.44)

With M the chiral superfield representing the light monopoles and AD the dual
photon (magnetic charge). From this it is easy to derive the condition for a super-
symmetric vacuum:

dW = 0 ⇒ M = M̃ =
√
− 1

2

√
2mu′(0). (3.45)
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This shows that monopoles condense and that the magnetic Higgs mechanism is
in effect. This is an explicit realization of the dual Meissner effect proposed by ’t
Hooft. It is strong evidence that confinement in this supersymmetric gauge theory
can occur through the dual Meissner effect.

(3.2) ADDING A SUPERPOTENTIAL

(3.2.1) FACTORIZATION OF SEIBERG-WITTEN CURVES

The N = 2 is broken to N = 1 if a superpotential for the N = 1 chiral multiplet Φ is
added to the Lagrangian

L → L+
∫

d2θTrW (Φ). (3.46)

In order to have a vacuum configuration, the scalar potential needs to be zero, there-
fore, in addition to equation 3.17 one should demand that the superpotential

W (Φ) =
n+1∑

k=1

gk

k
Φk (3.47)

is extremized

W ′(φ) = gn+1

n∏

k=1

(φ− wkI) = 0. (3.48)

Since the N = 2 vacuum conditions require φ to be diagonal, this basically means
that the ai can not be chosen arbitrarily anymore. Instead, they have to be picked
from the set of wk ’s. Depending on the degeneracy of this choice, the gauge symme-
try is broken to one or more subgroups, i.e.

U(N) → U(N1)× · · · × U(Nn), with N1 + · · ·Nn = N. (3.49)

The numbers Ni are called filling numbers and correspond to the number of a’s that
are put equal to wi.

Classically all expectation values involving the fermions only are zero. However, a
one-loop effect in an instanton background gives a vacuum expectation value

〈
λ2N
−

〉 ∼ e−Sinstanton = Λ3N
0 e2πiτ = Λ3N , (3.50)

breaking the U(1)R symmetry to Z2N . Special properties of the N = 1 supersymme-
try algebra [15, 16] can be used to show that expectation values of chiral operators
always factorize into 1-point functions of chiral operators:

〈
λ2N
−

〉
=

〈
λ2
−

〉N ⇒ 〈
λ2
−

〉 ∼ e2πik/NΛ3, k = 0, . . . , N − 1, (3.51)
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Figure 3.2: A fourth order potential with eigenvalues distributed over the critical points. Note
that the superpotential W (Φ) appears as W ′(φ)2 in the scalar potential, so the eigenvalues are
really localized at the minima of the scalar potential.

with Λ3 = Λ3
0 exp(2πiτ0/N). This means that the symmetry is broken to Z2 due to

the vacuum expectation value of the fermion bilinear. Also the N different values
this expectation value can take, means that there are N distinct quantum vacua.
This result appears to be coming from a contribution from an instanton with charge
1/N , since

e
2πiτ

N = e−
8π2

gN +i
θ
N . (3.52)

Therefore the breaking of U(1)R to Z2 is often referred to as a fractional instanton
effect. The fact that this glueball field

S = λ2
− = 1

2εαβλα
−λβ

− (3.53)

acquires a vacuum expectation value was used by Veneziano and Yankielowicz [17]
to construct a superpotential for this chiral superfield S, known as the Veneziano-
Yankielowicz term

WV Y (S) = NS

[
1− log

S

Λ3

]
. (3.54)

It is easy to check that extremizing this superpotential with respect to S gives the
correct vacuum expectation value for S. The Veneziano-Yankielowicz superpotential
is constructed such that the variation of WV Y , with respect to a U(1)R rotation,
reproduces the full U(1)R anomaly. This anomaly can be computed exactly by a
one-loop calculation (or by using the Fujikawa path-integral method). Although the
Veneziano-Yankielowicz superpotential reproduces an exact result, one cannot claim
that it is an honest Wilsonian effective action. For this to be true one would have to
confirm that the glueball superfield S is in fact the lightest superfield. Caution is in
order since lattice results, though not conclusive (see [18]), do indicate that there
are other fields with competing mass around.

Of the U(Ni) factors in the gauge group, only the SU(Ni) parts confine, therefore
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at the quantum level one expects to find a symmetry

U(N) → U(N1)× · · · × U(Nn) → U(1)k, (3.55)

with k the number of Ni that are non-zero.

Adding a superpotential breaks the N = 2 supersymmetry to N = 1, therefore the
approach of Seiberg and Witten can not be followed directly. That said, the N = 1
solution is contained in the N = 2 solution. Just like the classical vacua for the
N = 1 theory are special cases of the N = 2 solution (the moduli are localized
by minimizing the scalar potential), it turns out that this remains to be true in the
quantum case. The procedure [19] will be demonstrated here. First one looks for the
submanifold in moduli space where N − k monopoles (or dyons) become massless.
As explained before the curve degenerates (one-cycles becomes singular) when a
monopole becomes massless

y2 = PN (x)2 − 4Λ4N = H2
N−kT2k(x). (3.56)

HN−k is a polynomial of degree N − k, T2k a polynomial of degree 2k. The second
step is to extremize the superpotential, by varying the gauge invariant parameters
ui, on this submanifold. These extrema are the quantum vacua. To illustrate this
procedure a simple example U(2) with W (Φ) = g2

2 Φ2 will be treated. In this case
the Seiberg-Witten curve reads

y2 = P2(x)2 − 4Λ4 = det(x− φ)2 − 4Λ4, (3.57)

with

φ =
(

a1 0
0 a2

)
⇒ P2(x) = x2 − u1x + u2 = x2 − (a1 + a2)x + a1a2. (3.58)

Since the superpotential is quadratic it has only one extremum, therefore classically
the eigenvalues a1 and a2 all have to be put at the same extremum: U(2) is unbro-
ken, so in the quantum case one is left with a single U(1). This means that the curve
should have one double zero. The condition for a double zero can be written as

P ′N (x) = 0, PN (x)2 = 4Λ4. (3.59)

From the first condition one can read off: x = u1/2, together with the second
condition this finally gives

u2 =
u2

1

4
+ 2ηΛ2, η = ±1. (3.60)

This relation defines the one-dimensional submanifold in the moduli space where
a monopole is massless. Therefore hyperelliptic curves satisfying equation 3.60 all
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have one massless monopole. After plugging this relation into the superpotential
one gets

Tr W (φ) =
g2

4
u2

1 + 2g2Λ2. (3.61)

Extremizing this with respect to u1 one sees immediately that

u1 = 0, u2 = 2ηΛ2, (3.62)

which are the exact quantum vacua for this gauge theory. As one can see there are
two vacua, as expected on general grounds. In both vacua the superpotential takes
the following value

Wvac = 2g2Λ2. (3.63)

As a check, substitute these expressions for the ui in the curve

y2 = (x2 + 2ηΛ2)2 − 4Λ4 = x2(x2 + 4εΛ2), (3.64)

which indeed factorizes correctly. The regular part of the curve T2(x) = x2 + 4εΛ2

can be written as
T2(x) = 1

g2
2
W ′(x)2 + f0(x), (3.65)

with f0(x) = 4εΛ2. This is a special case of the general result

Gn−k(x)2T 2
2k(x) = 1

g2
n+1

W ′(x)2 + fn−1(x). (3.66)

Gn−k and fn−1 are polynomials of degree n− k and n− 1 respectively.

As one can see, determining the exact quantum vacua in this case is a matter of
simple algebra. In chapter 5 an even easier method for obtaining the quantum
vacua will be described.

(3.2.2) DIJKGRAAF-VAFA: A STRING THEORY INSPIRED APPROACH

Although the Seiberg-Witten theory is very powerful and useful, it does not give
any information about the glueball expectation values. In [3] Dijkgraaf and Vafa
explain how to use a chain of string dualities to calculate the exact effective super-
potential for the chiral glueball fields S. The chain of dualities involves D-branes
wrapping Calabi-Yau manifolds, open and closed topological strings and a matrix
model. Fascinating as these dualities are, strictly one does not need them (although
without a string theory model of N = 1 gauge theories it would have been much
harder to find their results). The main result of their paper can be derived using
field theory techniques only. It can be summarized as follows: To calculate the ef-
fective superpotential in terms of the glueball superfield, it is sufficient to sum over
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l l

l l l l

l ll l

Figure 3.3: A Feynman diagram with k loops that contributes to the Sk term of the effective
superpotential. Every loop has one S insertion (made up out of two λ insertions).

planar diagrams generated by W treated as a classical Lagrangian, involving only
zero-momentum scalar fields running around in the loops, with gauge fields as ex-
ternal legs. The remarkable thing is that the summation over Feynman diagrams,
i.e. a perturbative calculation, yields non-perturbative results for the glueball expec-
tation values. These diagrams are conveniently described by a Matrix Model, that is
a zero-dimensional field theory involving an adjoint scalar field. The appearance of
this Matrix Model can be seen using the chain of dualities, however a purely field
theoretic proof can also be given [4].

In formula the main result is stated as

Weff (S1, . . . , Sk) =
∑

i

(
2πiτ0Si + Ni

∂F0

∂Si

)
. (3.67)

Here the Si are the glueball chiral superfields, one for every U(1) factor that is left
from each U(Ni) factor. The perturbative sum is over n colored planar Feynman
diagrams given by the classical action Wtree and can be written as

F0(S) =
∑

i

− 1
2S2

i log
(

Si

Λ3
0

)
+

∑

k

akSk. (3.68)

The coefficients ak can be determined by summing all planar Feynman diagrams
with k-loops evaluated at zero momentum. Every loop has two λ insertions, each
contributing a factor of S to the final result. If the k holes are colored i1, . . . , ik ∈
{0, 1, . . . , n− 1} then the graph gets multiplied by

Sk = Si1 · · ·Sik
. (3.69)

The Feynman rules are derived from the superpotential Tr W (Φ), now considered
as the bosonic action of a zero-dimensional field theory, a matrix theory. Since
only planar diagrams are included, the coefficients ak ∼ ck and that makes the
(perturbative part) of F0 analytic in the Si.
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Note that extremizing Weff enables one to express the superpotential completely in
terms of the dynamically generated scale Λ and the coupling constants gi. Also the
values of the Si in the minimum of the superpotential give the quantum corrected
correlators of the fermion bilinears Si ∼

〈
Tr iλ

2
〉
. The correlators take the form of

fractional instanton expansions

dWeff = 0 =⇒ Si =
∑

bkΛ3k. (3.70)

Hence non-perturbative results are obtained from perturbative calculations. For k =
1 the familiar fractional instanton result for the pure N = 1 supersymmetric gauge
theory is reproduced: Si ∼ Λ3. Furthermore, if one calculates F up to k loops in
graphs,the effects of up to k fractional instantons are taken into account.

Since the quantum theory has an Abelian U(1)k symmetry, there is also an effective
gauge coupling matrix τij given by

τij =
∂2F0

∂Si∂Sj
. (3.71)

The whole procedure is best explained by working out an example. Consider the
(renormalizable) superpotential

W (φ) =
m

2
φ2 +

g

3
φ3. (3.72)

This superpotential has two critical points, φ = 0 or φ = −g/m. In the vacuum
where φ = 0 the SU(N) part of the gauge group U(N) confines

U(N)→S→U(1). (3.73)

The Feynman rules are easily obtained (remember that for a zero-dimensional field
theory, all momentum dependence can be dropped):

propagator:
1
m

(3.74)

cubic vertex:
g

3
. (3.75)

Since φ is an adjoint field, the Feynman diagrams are so-called fat or ribbon di-
agrams. For such diagrams it is often convenient to use the ’t Hooft double line
notation. Also, to the Feynman rules one should add the rule that every boundary
loop gives a factor of S. The result up to two-loops is

F0 = − 1
2S2 log(S/Λ3) [VY]

+ 1
2S2 log(m/Λ) [one-loop]

+ 2
3

g2

m3
S3 [two-loop]

+O(S4).

(3.76)
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Figure 3.4: The two planar two-loop diagrams, with combinatorial weight 1
6

and 1
2
, that con-

tribute to the order S3 term in the free energy F0(S).

The first term in F gives rise to the VY term, in the matrix model it comes from
the volume factor in the path-integral. The second term comes from the one-loop
diagrams, of which there is only one. The symmetry factor of the diagram is 1

2 , the
log comes from the usual momentum integration of a one-loop diagram (with cut-
off Λ), but now in the zero-momentum limit. The third term is more interesting,
it corresponds to the two-loop diagrams. For the case at hand, there are only two
two-loop diagrams (see figure 3.4). The first diagram diagram can be created in
three different ways (remember that the lines in the fat diagrams have an orienta-
tion) and the symmetry factor is 1

2 , further the diagram has two vertices and three
propagators, so this diagram contributes to F

(
g

3
)2

1
m3

1
23S3 =

g2

6m3
S3, (3.77)

the second diagram can be created in nine different ways, the symmetry factor is 1
2

again, giving

(
g

3
)2

1
m3

1
29S3 =

g2

2m3
S3. (3.78)

These two contributions indeed add up to the third term. As mentioned before, the
free energy F can be effectively obtained using an auxiliary matrix model. In this
matrix model one takes φ to be an Ñ × Ñ matrix, think of it as an element of the
Lie algebra of U(Ñ). Note that Ñ is not to be confused with N , in fact Ñ is related
to gaugino condensate S ∼ Ñ . The generating functional that will compute the
quantum effective superpotential is a matrix integral

Z =
∫

dφ e
1

gs
Tr W (φ) = e

P
g=0 g2g−2

s Fg(S). (3.79)

Here gs is just an auxiliary parameter needed for picking out the planar diagrams
(i.e. the genus zero diagrams, which are the diagrams contributing to F0). It is
not to be confused with the gauge coupling (in fact it has dimension −3). The
eigenvalues of φ can again be distributed over the critical points of W ′, giving a
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partition
Ñ = Ñ1 + . . . + Ñn. (3.80)

Now define the ’t Hooft couplings for the matrix model as follows

Si = gsÑi. (3.81)

Since one takes the large Ñ limit, function F0 will be analytic in the Si. Thus it
is possible to complexify the expression for F0. So, if one can compute the matrix
integral in the large Ñ limit, effectively one computed the function F0 which, in
turn, directly determines the exact quantum effective superpotential for the Si. The
appearance of this matrix model might seem a bit ad hoc. But remember the follow-
ing. From the chain of dualities one learns that the superpotential is computed by
zero-momentum planar diagram with λ-insertions. The matrix model can be seen
as an effective tool to compute the amplitudes of those diagrams. To enforce that
only planar diagrams contribute to the path-integral one can take the large Ñ -limit
in the matrix model. To avoid any confusion: Ñ is not N , that is, one gets finite
rank results for the gauge theory using a large Ñ matrix model.

(3.2.3) CONFINEMENT

In the famous article by Veneziano and Yankielowicz [17] the effective superpoten-
tial, in terms of the glueball field S, for pure N = 1 Yang-Mills theory was con-
structed. Using the fact that the quantum effective superpotential should reproduce
the U(1)R anomaly, or rather a supermultiplet of anomalies, they arrived at

WV Y = hS

[
1− log

S

Λ3

]
. (3.82)

Here h is the dual Coxeter number (for SU(N), h = N). The effective superpotential
correctly reproduces the exact quantum vacua where the U(1)R is broken

S = e2πik/hΛ3, h ∈ Zh. (3.83)

Now if one would expand the superpotential around this action, one would learn
that the glueball field S picks up a quadratic term: the field S becomes massive. If
the Veneziano-Yanckielowicz result would be a genuine quantum Wilsonian action,
which can only be true if S is the lightest field around, then one can argue that there
is a mass-gap. A necessary condition and strong argument for confinement.

However it is not all obvious whether or not the glueball field is the lightest field
around. This is something that the Dijkgraaf-Vafa approach does not really address.
What it does address is what happens to the expectation value and mass of the
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glueball field if a classical superpotential is added to the problem. In that case
one can use this approach to calculate the exact superpotential, a superpotential
that reproduces the exact expectation values for the glueball field. In this sense
the Dijkgraaf-Vafa approach extends the range of applicability of the argument of
Veneziano-Yankielowicz.
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CHAPTER 4

INTEGRABLE SYSTEMS

Some key concepts of the theory of integrable system will be introduced. The in-
tegrable systems that appear in later chapters of this thesis are introduced one by
one.

(4.1) SYMPLECTIC GEOMETRY

A symplectic manifold M is a manifold that can be endowed with a non-degenerate
closed two-form ω (a symplectic form). The non-degeneracy of the symplectic form
means that ωn defines a good volume form. From this it is clear that the dimension
of M is always even, dimM = 2n.

Tangent bundles are special cases of symplectic manifolds. The phase space of a
classical mechanical system is a tangent bundle, therefore the phase space of a clas-
sical mechanical system is a symplectic manifold. In a classical mechanical system
a Hamiltonian induces flow (i.e. the classical motion of the system) in the phase
space. In the more general setting of symplectic geometry this corresponds to the
notion of Hamiltonian vector fields. A scalar function h, the Hamiltonian, defined
on the manifold defines a vector field, Vh, on the manifold:

ıVh
ω = dh. (4.1)

Since the symplectic form ω is non-degenerate this relation can be inverted: given a
Hamiltonian the corresponding flow can be calculated. The Hamiltonian dynamics
of classical mechanical systems is often described using Poisson brackets. Since the
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symplectic form governs the flow in phase space, it comes as no surprise that the
symplectic form determines the Poisson brackets too

{f, g} = ω(Vf , Vg), (4.2)

where f and g are two function on the manifold, Vf and Vg are their associated
Hamiltonian vector fields.

Sometimes a classical mechanical system possesses a symmetry that effectively re-
duces the dimensionality of the problem. For example, a test particle moving in a
spherically symmetric three-dimensional gravitational field is effectively described
by a one-dimensional equation. This equation involves the radial coordinate only.
In more technical terms such a reduction is called a symplectic quotient or Hamil-
tonian reduction. In the language of symplectic geometry it is described as fol-
lows. Suppose there is a flow ξ on the manifold that preserves the symplectic form
Lξω = dıξω = 0. This means that ξ is a Hamiltonian vector field: ıξω = dµ for
some function µ, the moment map, invariant under the flow of ξ. The phase space
of the reduced system is then given by the following quotient µ−1(0)/Sξ. Here Sξ

represents the action of the symmetry on µ. This quotient is again a symplectic
manifold. To illustrate this procedure, consider a two-dimensional symplectic space
R2 with symplectic form ω = dq ∧ dp. This is invariant under the circular flow of
ξ = q∂p − p∂q. This flow just rotates the coordinates p and q by an SO(2) rotation.
The moment map is given by

ıξω = qdq + pdp = 1
2d(p2 + q2 −R2) ⇒ µ(p, q) = 1

2 (p2 + q2 −R2) (4.3)

for some constant R. The space µ−1(0) is then given by p2 + q2 = R2, simply a circle
in phase space. Identifying this circle under the SO(2) action gives the symplectic
quotient. In this case: a point.

(4.2) INTEGRABILITY

An n-dimensional classical mechanical system (the phase space being 2n-dimensional)
is called integrable if one can find n independent conserved quantities

Ii(q, p) i = 1, . . . , n. (4.4)

If the Hamiltonian for this system is called H then this condition can be written as

İi = {Ii, H} = 0. (4.5)

If all the conserved quantities mutually commute

{Ii, Ij} = 0, (4.6)
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the system is called completely integrable.

For integrable systems it is possible to describe the motion of the system in terms
of action-angle variables. The action variables are the conserved quantities Ii, the
motion of the angle variables θi is then completely linear

θ̈i = 0 ⇒ θi(t) = θi(0) + τiIit. (4.7)

The τi and θi(0) are integration constants. The action-angle variables are related to
the canonically conjugate variables (p, q) via a canonical transformation.

There is a class of systems that allows one to efficiently write down the equations of
motion using just two n× n matrices L(p, q) and M(p, q)

L̇ = [L,M ]. (4.8)

The matrices L and M are called a Lax pair, after their creator [20]. Although it is
generically hard to find a Lax pair, once it is found it is trivial to find the n conserved
quantities. In fact they are given by

Ik = TrLk, k = 1, . . . , n. (4.9)

It is easy to see that traces of powers of the Lax matrix L are conserved

İk =
d
dt

TrLk = kTr (L̇Lk−1)

= kTr ([L,M ]Lk−1) = kTr (LMLk−1 −MLk) = 0,
(4.10)

here the cyclic property of the trace and the equations of motion were used.

Constructing a Lax pair for a system is therefore a sufficient condition for proving
the integrability of the system. Note that not all integrable systems admit a Lax pair
formulation.

(4.3) THE PERIODIC TODA CHAIN

A very relevant integrable system for the description of the quantum vacua of four-
dimensionalN = 1 gauge theories is the periodic Toda chain. This integrable system
is a classical mechanical system of n points on a circle. The dynamics of the Toda
chain is described by the following Hamiltonian

H = 1
2

n∑

i=1

p2
i + Λ2

n∑

i=1

eqi+1−qi , qn+1 = q1. (4.11)
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Figure 4.1: The periodic Toda system describes beads connected by springs, providing the expo-
nential interaction. The Dynkin diagram of the affine Lie algebra (Â(1)

7 ) associated to this system
is drawn on the right.

The qi are the coordinates (angles) of the points along the chain, pi the conjugate
momenta. The equations of motion are given by

ρ̈i = −Λ2(2eρi − eρi+1 − eρi−1), with ρi = qi+1 − qi. (4.12)

After taking a closer look at these equations it becomes clear that they can be written
more elegantly in terms of the Cartan matrix, Aij , of the affine Lie algebra Â

(1)
n+1

ρ̈i = −Λ2Aijeρj . (4.13)

Readers unfamiliar with affine Lie algebras are referred to appendix A for a crash
course. The special properties of the Cartan matrix are responsible for the integra-
bility of the Toda chain. Also it is no coincidence that the Dynkin diagram of Â

(1)
n+1

looks exactly like the Toda chain (see figure 4.1). This system is now easy to gener-
alize, just replace the Cartan matrix with that of an other affine Lie algebra. It turns
out that you actually get away with that, the resulting system is always integrable.

The use of the affine Lie algebra Â
(1)
n+1 goes further than the appearance of the

Cartan matrix. In fact the Toda chain admits a Lax formulation, and the Lax matrix
L is given by the Chevalley generators of Â

(1)
n+1. In full generality (i.e. for arbitrary

affine Lie algebra) the Lax matrix reads

L =
r∑

i=1

piHi +
∑

α∈∆s

(yiE
+
i + E−

i ) +
y0

z
E−

0 + zE+
0 , (4.14)

with z a complex parameter, r the rank of the algebra and ∆s the system of simple
roots αi. The yi are defined as

yi = Λ2eαi·q. (4.15)

The inner product should be read as follows. The simple roots for any affine Lie
algebra can be embedded in a r or r + 1-dimensional vector space. For Â

(1)
r one can
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write

αi = ei − ei+1, i = 1, . . . , r

α0 = −(α1 + α2 + · · ·+ αr) = −e1 + er+1.
(4.16)

With the ei a basis of Rr. Then the inner product becomes

αi · q = qi − qi+1. (4.17)

Note that the variables y are not all independent, in fact they obey the constraint

Λ2h =
r∏

i=0

yai
i , (4.18)

here h is the dual Coxeter number of the affine Lie algebra and the ai are is the
mark of the ith root in the Dynkin diagram. This constraint basically follows from
the definition of the affine root

α0 = −
r∑

i=1

aiαi. (4.19)

For Â
(1)
r one has h = r + 1 and ai = 1. Using appendix A it is now possible to write

down an explicit form of the Lax matrix for Â
(1)
r

L =




p1 y1 0 . . . z

1 p2 y2
. . . 0

0 1 p3
. . . 0

...
. . .

. . .
. . . yr

y0
z . . . 0 1 pr+1




. (4.20)

(4.3.1) RELATION TO SEIBERG-WITTEN THEORY

The Lax matrix defined in equation 4.14 contains the complex parameter z, this
parameter is usually called a spectral parameter. Lax matrices with a spectral pa-
rameter have an associated hyperelliptic curve, defined as follows (in the case the
Lax matrix is an N ×N matrix)

0 = det(x− L) = PN (x)2 + (−1)N

(
z +

Λ2N

z

)
. (4.21)

With PN (x) a polynomial of degree N in x. After defining y = 2z +(−1)NPN (x) this
can be cast into the standard form for hyperelliptic curves

y2 = PN (x)2 − 4Λ2N . (4.22)
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gauge group SU(r + 1) SO(2r) SO(2r + 1) Sp(2r) G2

affine dual algebra Â
(1)
r D̂

(1)
r Â

(2)
2l−1 D̂

(2)
r+1 D̂

(3)
4

Table 4.1: The mapping between gauge group and affine algebra.

This curve is of precisely the same form as the Seiberg-Witten curve in equation 3.40.
In [21] Martinec and Warner indeed argued that the Seiberg-Witten curve for gauge
group G is given by the Toda system based on the dual affine Lie algebra of this
gauge group. For G = SU(r + 1) this is simply Â

(1)
r , however for the other groups

this is not so simple. In table 4.1 the affine algebras that reproduce the Seiberg-
Witten curves are listed. The reason why one has to take the dual affine Lie algebra
instead of the normal affine Lie algebra is rather easy to explain. Suppose one
would take the affine extension of the Lie group belonging to the gauge symmetry.
The spectral curve obtained that way would have a term Λ2h, with h the Coxeter
number. However the correct Seiberg-Witten curves have a term Λ2h∨ instead. The
dual Coxeter and Coxeter numbers are interchanged when dualizing the affine Lie
algebra (see appendix A). Therefore one is forced to take the dual affine Lie algebra.
The fact that the spectral curve of the Toda system is equivalent to the Seiberg-
Witten curve, already shows the relevance of the Toda system for Seiberg-Witten
theory. However the question why the Toda system appears is a different story (see
section 5.3).

(4.4) HITCHIN SYSTEMS

There is a systematic way to associate an integrable system in combination with a
gauge group to a Riemann surface. This construction, due to Hitchin, is based on
the moduli space of principal bundles over a Riemann surface.

Take a Riemann surface Σ of genus g and consider the space A of Lie(G)-valued
(0, 1) forms A = Az̄(z, z̄)dz̄. There is also a (1, 0) form Φ defined as Φ = Φz(z, z̄)dz.
The Hitchin construction starts with the co-tangent bundle T ∗A. Being a co-tangent
bundle this space is naturally a symplectic manifold. The integrable system arises
after constructing a symplectic quotient (or Hamiltonian construction). For this a
Hamiltonian vector field is needed, i.e. a vector field that leaves the symplectic form
invariant Lξω = 0. The moment map (see section 4.1) is the Hamiltonian function
µ that corresponds to this vector field

dµ = ıξω. (4.23)
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To be more specific, the moment map is given by:

µ = D̄AΦ = ∂̄Φ + A ∧ Φ + Φ ∧A. (4.24)

The symplectic quotient is then constructed by identifying the zero locus of µ (i.e.
µ−1(0)) under the stability group of the equation µ = 0. In the case of a Hitchin
system the stability group is the complete gauge group

P =
µ−1(0)
G . (4.25)

The quotient P is again a symplectic space. In fact it is T ∗N , with N = A/G the
orbit space of A. For genus 0 and 1 systems the Hitchin construction by itself does
not produce interesting dynamical systems. However if the construction is based on
a marked Riemann surface (at the point z) one should solve for

µ = D̄AΦ = 2πi δ2(z)u. (4.26)

Hamiltonians on the cotangent bundle P can be constructed using elements ei ∈
H1(Σ, T (1,0)Σ) (see [22])

hk,i =
∫

Σ

ei ∧ TrΦk
z . (4.27)

This integrable system describes the moduli space of N = 2 supersymmetric Yang-
Mills with a massive adjoint hypermultiplet [22]. The field Φ corresponds to the
complex adjoint scalar from the hypermultiplet. In fact this integrable system is
equivalent to a spin-Calogero-Moser system, from which one may derive the Toda
system in an appropriate limit to describe the pure N = 2 theory.

(4.4.1) ELLIPTIC SPIN CALOGERO-MOSER FROM HITCHIN

As a simple, but relevant, example of a Hitchin system, a torus Tτ (modulus τ) with
one marked point is considered (the following derivation is an expanded version of
[23, §7.12]):

z ∼ z + 1, z ∼ z + τ z ∈ C. (4.28)

At the marked point, z = 0, an arbitrary element u from the Lie algebra of G is
chosen. The integrable system is then given by solutions of the equation

D̄AΦ = 2πi δ2(z)u. (4.29)

To solve this equation one needs to find the space N , the orbit space of A, the
space of gauge fields A. This comes down to finding all principal G-bundles over
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the torus. Such a bundle is defined by the transition functions between the various
patches. The torus can be covered with two such patches:

U0 = Dε(0), U∞ = Tτ − {0}, (4.30)

U0 is a small disk around the marked point z = 0 and U∞ is the whole torus except
the marked point. For simplicity the field strength is taken to be zero, i.e. in every
patch the following relation holds

A = h−1∂̄h, (4.31)

for some Lie(G)-valued function h. To solve equation 4.29 in each patch separately
one can use the fact that D̄A is a covariant derivative. Since A is pure gauge, one
can write

D̄AΦ = h−1
(
∂̄A=0Φ̂

)
h. (4.32)

With Φ̂ obeying

U0 : ∂z̄Φ̂0 = 2πiδ2(z)û, with û = h0uh−1
0

U∞ : ∂z̄Φ̂∞ = 0.
(4.33)

Using a contour integral around z = 0 in the U0 patch, it becomes clear that Φ̂0 has
a simple pole at z = 0 with residue û. The solutions in the two patches are related
by the transition function

g0∞ = h∞h−1
0 . (4.34)

This transition function is only defined in the overlap between the two patches, that
is the annulus U0 − {z = 0}. For a torus the transition function takes the special
form g0∞ = exp(q/z), with q an element in the Cartan subalgebra

q =
∑

i

qiHi. (4.35)

So in the U∞ patch the solution reads

Φ̂∞ = eq/z

(
û

z
+O(1)

)
e−q/z. (4.36)

It is convenient to decompose Φ̂∞ and û:

û =
∑

i ûi +
∑

α ûαEα

Φ̂∞=
∑

i Φ̂iHi +
∑

α Φ̂αEαdz.
(4.37)

Comparing this to equation 4.36 one sees that

Φ̂i ∼ ûi

z
, Φ̂α ∼ exp(α(q)/z)ûα/z. (4.38)
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Here α(q) should be read as the N -dimensional root vector α acting on the collection
of position of the nodes on the chain qi. For example, for SU(N)

αi = ei − ei+1 ⇒ α(q) = qi − qi+1, (4.39)

where the ei form an orthonormal basis of RN . From the first condition, Φ̂i ∼ ûi

z ,
one infers that

ûi = 0 and Φ̂i = pi = constant, (4.40)

since an elliptic function with a single pole of order one is a constant function. The
second constraint in equation 4.38 has a unique solution for Φ̂, given in terms of the
Lamé function1:

Φ̂α(q; z) = −ûα
σ(z − α(q))
σ(z)σ(α(q))

eα(q)ζ(z). (4.41)

Here σ and ζ are the Weierstrass sigma and zeta functions, related to the Weierstrass
p-function ℘ as follows:

℘(x;ω1, ω2) = 1
x2 +

∑
(m,n)6=(0,0)

(
1

(x+2mω1+2nω2)2
− 1

(2mω1+2nω2)2

)

℘(x) = ζ ′(x)

ζ(x) = σ′(x)
σ(x)

(
d2

dz2 − ℘(x)
)

Φ(x; z) = 2℘(z)Φ(x; z).

(4.42)

All in all the expectation value of the adjoint scalar from the hypermultiplet is found
to be

Φ̂ =

(∑

i

piHi +
∑
α

Φ̂α

)
dz, (4.43)

which is exactly the Lax matrix of the elliptic spin Calogero-Moser system with
Hamiltonian:

H =
∑

i

p2
i −

∑
α

℘(α(q))(ûαû−α). (4.44)

This is just like the ordinary elliptic Calogero-Moser system except here there is a
different coupling strength (ûαû−α) for each node of the periodic chain.

(4.4.2) PERIODIC TODA FROM ELLIPTIC SPIN CALOGERO-MOSER

It is well known that the Toda system can be obtained as a special limit of the elliptic
Calogero-Moser system. The Hamiltonian of the ordinary elliptic Calogero-Moser

1Lamé functions are the elliptic equivalents of the spherical harmonics.
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system reads:
H = 1

2p2 − 1
2m2

∑
α

℘(α(x); ω1, ω2). (4.45)

The periods ω1 and ω2 of the torus are now explicitly written. The periodic Toda
system is recovered by sending the real part of ω2 to infinity while keeping ω1 fixed:

ω1 = −iπ, Re (ω2) →∞. (4.46)

The coordinates qi and the coupling parameter m are changed

qj = Qj + 2ω2j/N, m = Meω2/N , (4.47)

while Qj and M are kept fixed. After taking the limit one is left with the Hamiltonian
for the Toda system. For the gauge group SU(N) this is

H = 1
2p2 − 1

2M2
∑

i

eαi·Q = 1
2p2 − 1

2M2

(
N−1∑

i=1

eQi+1−Qi

)
− 1

2M2eQN−Q1 . (4.48)

Note that for the Toda system one only sums over the simple roots of the Lie algebra,
for the Calogero-Moser system one needed to sum over all positive roots.

Taking the limit of the elliptic spin Calogero-Moser system is essentially the same,
however, in that case there are multiple coupling parameters

mα = ûαû−α. (4.49)

The û’s have to be chosen such that the mα’s are non-zero if α is a simple root (since
those are the only terms that give a contribution to the Toda Hamiltonian). In the
limit all mα go to Mαexp(ω2/N), leading to a Toda system with different couplings
for each interaction between two nodes. The difference in the couplings can be
canceled by shifting the coordinates Q appropriately.
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CHAPTER 5

THREE-DIMENSIONAL

SUPERSYMMETRIC GAUGE

THEORIES

After having introduced supersymmetric gauge theories, Seiberg-Witten theory, the
Dijkgraaf-Vafa approach and integrable systems, it is time to put everything to-
gether. Starting from section 5.2 till the end of the chapter, original work pub-
lished in [24, 25, 26] will be presented. The work entails the calculation of the
non-perturbative quantum superpotential using a classical mechanical system. This
calculation involves a conjecture that will be tested in several ways.

(5.1) COMPACTIFYING ON A CIRCLE

Before embarking upon the study of three-dimensional gauge theories, it is in order
to explain why one should be interested in three-dimensional theories in the first
place. The upshot is that certain quantities calculated in three-dimensional gauge
theories can be used to determine four-dimensional quantities. The central argu-
ment is due to Seiberg and Witten [27, section 3].

The starting point is the familiar four-dimensional N = 2 theory compactified on
R1+2 × S1. For convenience the discussion in this section will be limited to SU(2).
If the radius R of the circle is much greater than the distance scale set by Λ, the
theory is effectively four-dimensional and the results obtained in chapter 3 apply. In
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that case the effective theory has a U(1) symmetry; the moduli space is described
by a complex scalar u. The effective action is then given by the familiar kinetic and
topological terms one can write down for a U(1) gauge field

Seff =
∫

d4x
1

4g(u)2
FµνFµν +

iθ(u)
64π2

εµνρκFµνF ρκ. (5.1)

The coupling constant and theta-angle can be easily read-off once τ(u) is deter-
mined, using the Seiberg-Witten method introduced in chapter 3.

This action still contains the full four-dimensional fields. In order to write down
the effective three-dimensional action one rewrites the gauge field in terms of two
scalars b and σ. First, the fourth component of the gauge field is evidently a scalar
from a three-dimensional perspective

A4 =
b

πR
. (5.2)

It so happens that the remaining three-dimensional gauge field is dual to a scalar

∂ασ = εαβγF βγ , α, β, γ = 0, 1, 2. (5.3)

The effective action in three-dimensions can then be written as [27]

Leff,3d =
∫

d3x
1

πRg2
|∂b|2 +

g2

64π3R

∣∣∂σ − θ
π ∂b

∣∣2 . (5.4)

From this effective Lagrangian one can read-off that this three-dimensional gauge
theory has two additional real moduli: b and σ. Since the two extra moduli are
periodic, the complete moduli space can be seen as a torus fibered over the u-plane.
For a more general gauge group the moduli space is a hyper-Kähler manifold of
dimension 4k, with k the number of left-over U(1) factors. The general structure of
this moduli space is that of a k-torus fibered over the ui-plane. Although the moduli
space, being hyper-Kähler, has three different complex structures, the one inherited
from the complex ui-plane plays a special role. In [27] it is argued that this complex
structure is independent of the radius R.

(5.2) THE CONJECTURE

It turns out that this R independent complex structure, inherited from the u-plane,
is exactly the complex structure that appears in the breaking of N = 2 to N = 1
by adding a superpotential. This means that in order to calculate the quantum
vacuum structure in four-dimensions one can also calculate the three-dimensional
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quantum vacuum structure. The question now is: how does one calculate the quan-
tum effective superpotential in three dimensions. First of all, there are no fractional
instanton contributions, only regular ones (coming from the monopoles in the four-
dimensional theory). Further in four-dimensions one has the difficulty of monopoles
becoming massless, making it necessary to alter the quantum effective superpoten-
tial to include their effects. In three dimensions there are no monopoles to become
massless, hence the classical superpotential is not corrected. The only thing left to do
is to identify the variables in which to express the superpotential, such that when ex-
tremizing the superpotential with respect to these variables, one obtains the correct
quantum vacua. The conjecture, put forward in [24], says that the “right”variables
are given by the Lax matrix of the Toda system one can associate to this gauge sym-
metry (see table 4.1). The conjecture is now easily stated

Weff = Wtree(L). (5.5)

That is, substitute the Lax matrix for the adjoint scalar in the superpotential. Since
the Lax matrix contains a spectral parameter z, the final result could contain terms
depending on z. These terms are simply dropped. Then after minimizing with
respect to the variables, pi and yi, of the Toda system one finds the exact quantum
vacua.

The idea of using an integrable system to calculate quantities in a supersymmetric
gauge theory is not new in itself, see for example: [28, 29, 30, 31].

(5.3) TOWARDS A PROOF OF THE CONJECTURE

The way the Lax matrix of the Toda system pops-up out of the blue in this conjecture,
is quite unsatisfactory. In this section a D-brane configuration, describing some
supersymmetric gauge theory, will be used to show how the Toda system comes
into play. The line of reasoning is based on a paper by Kapustin [32]. In this paper a
D-brane setup of NS5-branes and stacks of D4-branes is used to show that the vacua
of this system can be described by a Hitchin system, an integrable system. This is
where the paper of Kapustin stops, however one can push his results a bit further.
The D-brane system describes a gauge theory with adjoint hyper multiplets. To get
rid off those one can take a limit in which these hypermultiplets become infinitely
massive. It is the goal of this section to show that in this limit the Hitchin system
turns into the Toda system and that the vacuum expectation value of the adjoint
scalar Φ is equal to the Lax matrix of the Toda system, thereby giving an explanation
for the appearance of the Lax matrix. Note that no superpotential is added here.
The consequences of adding a superpotential will be commented on at the end of
this section.
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(5.3.1) THE D-BRANE SETUP

Take k NS5 branes extended in the 0, 1, 2, 3, 4, 5 directions with stacks of D4-branes,
suspended between those NS5-branes, extending in the 0, 1, 2, 3, 6 directions (see
figure 5.1). One can create such a configuration by taking N D4-branes and adding
k NS5-branes. At the intersection points between the D4-branes and an NS5-brane,
the D4-branes can split and move over the NS5-brane in the 4, 5 directions. The
gauge symmetry of this system is SU(N)× · · · × SU(N). The number of D4-branes
suspended between the i-th and i + 1-th NS5-brane is the same everywhere. Since
the stacks of D4-branes can move freely on the NS5-branes along the 4, 5 directions
it is convenient to define v = x4 +ix5. The coordinate x6 is taken to be periodic with
period 2πL. The bosonic fields living on the D4-branes are a gauge field and five

0 1 2 3 4 5 6 7 8 9
NS5 – – – – – – · · · ·
D4 – – – – · · – · · ·

Figure 5.1: Stacks of D4-branes suspended between NS5-branes.

real adjoint scalars, corresponding to the fluctuations of the brane in the x4,5,7,8,9 di-
rections. Since the D4-branes are of finite size in the x6 direction, the world-volume
theory is basically 1 + 3-dimensional. The five-dimensional theory then effectively
becomes the four-dimensional N = 4 super Yang-Mills theory.

The geometry of the brane-setup breaks supersymmetry to N = 2. The N = 4
vector multiplet decomposes into an N = 2 vector multiplet and an N = 2 hyper
multiplet. However, since the D4-branes end on the NS5-branes, the boundaries of
the D4-branes are not free to fluctuate in all directions. In this case the Dirichlet
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boundary conditions, disallowing fluctuations in the x6,7,8,9 directions at the inter-
section between the D4 and NS5-branes, set the hyper multiplet to zero. The vector
multiplet remains untouched [33].

In the case there are two stacks of D4-branes on one single NS5-brane, extending
in opposite directions, there can be strings stretching between those stacks. Those
strings would, in a way, restore the degrees of freedom in the hypermultiplet. Each
end-point of the strings would transform in the fundamental representation belong-
ing to the stack it ends on. The mass of the hypermultiplet is proportional to the
distance between the stacks along the NS-brane. The massive hypermultiplet, like
massive quarks, has a vacuum expectation value of zero. This basically means that
the stacks are fixed in the x6,7,8,9 direction. This is easily understood from the string
theory perspective: a semi-infinite brane has to end on another brane (here the
semi-infinite D4-branes end on the NS5-brane). The hypermultiplet can cause fluc-
tuations in the x6,7,8,9 directions. In the limit where the mass of the hypermultiplet
goes to zero, the two semi-infinite D4-branes join up and a full D4-brane can move
off the NS5-brane. This is in agreement with the fact that massless quarks can have
a vacuum expectation value.

To summarize, the D-brane system describes a d = 4,N = 2 gauge theory with
gauge symmetry SU(N) × . . . × SU(N). The strings stretching between two adja-
cent D4 stacks give k bi-fundamental hypermultiplets Qα. The Qα hypermultiplet
transforms in the (N, N̄) representation. The complex adjoint scalar in the N = 2
vector multiplet corresponds to the movement of the D4-branes on the NS5-branes
(i.e. the x4,5 directions). The two complex adjoint scalars in the hypermultiplet cor-
respond to movement in the x6,7,8,9 directions. For D4-branes suspended between
NS5-branes, only the vector multiplet survives as the D4-branes cannot move off the
NS5-branes in the x7,8,9 directions. The bi-fundamental hyper multiplet arises be-
cause strings stretching between stacks of D4-branes ending on a single NS5-branes
cause fluctuations in the x6,7,8,9 directions at the intersection of the D4 and NS5-
brane.

The next step is to compactify the x3 direction. This allows the use of a kind of
mirror symmetry that relates the Coulomb branch of this three-dimensional theory

0 1 2 3 6 4 5 7 8 9
D4’ – – – · · – – · · ·
D4 – – – – – · · · · ·

Table 5.1: The D4’-D4 brane setup (note the unusual order of the labels).

(the “electric” theory) to the Higgs branch of another theory (the “magnetic” theory)
[34]. The Higgs branch doesn’t receive any quantum corrections, so calculations
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will be much easier there. The Higgs branch and Coulomb branch are interchanged
under an S-duality. In this case the winning combination of dualities is a TST

duality:

a) First apply a T-duality on x3, the NS5-branes become IIB NS5-branes, the D4-
branes become D3-branes.

b) Then apply the S-duality, turning the NS5-branes into D5-branes and leaving
the D3-branes invariant.

c) Finally apply a T-duality on x3 again. The D5-branes end up as D4’-branes
extending in the x0,1,2,4,5 directions. The D3-branes eventually are turned
into the original D4-branes again (i.e. they are left invariant by the duality
sequence).

So one is left with D4-branes wrapped around a torus T 2 (x3, x6), the world-volume
theory of these D4-branes is essentially three-dimensional. The D4’-branes mani-
fest themselves as impurities in this three-dimensional theory, localized at points on
the torus. As said, this three-dimensional theory in the Higgs branch does not re-
ceive quantum corrections, hence it can be treated completely classically. One might
wonder how this classical theory is able to encode the non-trivial coupling constant
dependence of the original theory in the Coulomb branch. The answer is that results
in the magnetic theory will depend non-trivially on the modulus of the torus, which
in turn is related to the coupling constant of the electric theory due to the several
duality transformations that are performed:

τ =
L

λ
, (5.6)

where L is the period of the x6 directions and λ is the coupling constant in the
electric theory.

According to [32] the supersymmetric vacua are given by the following equations
on the torus

Fzz̄ − [Φz, Φ†z] = 0

D̄AΦz = − π
RL

∑k
α=1 δ2(z − zα) diag(mα,−µ, . . . ,−µ).

(5.7)

This precisely defines a Hitchin system on a marked torus (see figure 5.2). The field
A is a gauge field on the torus (more precisely it is a U(N) connection). This gauge
field comes from the D4-branes wrapping the torus. The adjoint scalar field Φ pa-
rameterizes the location of the D4-branes along the D4’-branes in the x4,5 directions.
These moduli correspond to the moduli of the adjoint scalar field in the vector mul-
tiplet of the original “electric” theory. Hence the scalar field appearing in 5.7 can be
identified with the adjoint scalar from the vector multiplet. Since there are multiple
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stacks of D4-branes one would expect multiple adjoint scalar fields Φ, one for every
stack. This is not the case since equation 5.7 should be interpreted as an impurity
theory in which there is one stack of N D4-branes where the D4’-branes are treated
as impurities (represented by the delta-functions). The parameters mα correspond

Figure 5.2: The punctured torus of the Hitchin system, the black dots represent the location of
the D4’-branes.

to the masses of the hypermultiplets located at the impurities (i.e. the D4’-branes).
The parameter µ corresponds to a deformation of the system. On the electric side
it is caused by a non-trivial background geometry [33], whereas on the magnetic
side it corresponds to a Fayet-Iliopoulos parameter. This deformation is necessary
to allow for a massive hypermultiplet in the case of a single NS5-brane. To see this
suppose for a minute that µ = 0. Since the x6 direction is compact, the D4-branes
(intersecting and breaking at the NS5-branes) should eventually come back to itself,
suggesting that the following should hold

∑
α

mα = 0. (5.8)

This means that in the case of just one NS5-brane, the hypermultiplet is massless.
However after turning on the parameter µ the background geometry is twisted in
such a way that the D4-brane does not have to come back on itself, it fails a distance
µ. This in effect allows for a non-zero hypermultiplet mass, even in the case of just
one NS5-brane, since the condition now reads

∑
α

mα = (N − 1)µ. (5.9)

The brane setup required to reproduce the pure N = 2 theory is then seen to con-
sist of one NS5-brane with one stack of D4-branes, with a non-zero parameter µ.
Ultimately this is described by a Hitchin system satisfying

D̄AΦz = − π

RL
δ2(z) m diag(1,− 1

N−1 , . . . ,− 1
N−1 ). (5.10)
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In the limit of m →∞ the hypermultiplets decouple and the Hitchin system should,
if the conjecture is correct, approach a Toda system.

(5.3.2) HOW THE BRANE SETUP LEADS TO THE TODA SYSTEM

To show that the Toda system in fact describes the pure N = 2 theory, two things
need to be proven:

1. One needs to show that the Hitchin system derived from the brane setup cor-
responds to the Hitchin system from which the spin Calogero-Moser system is
derived (see section 4.4).

2. The limit in which the N = 2 theory with bi-fundamental hyper-multiplets
becomes a pure N = 2 theory should be the limit in which the spin Calogero-
Moser system becomes the Toda system.

The Hitchin system that will lead to the desired spin Calogero-Moser system is dis-
cussed in section 4.4.1. The Hitchin system that describes the D-brane system is
characterized by a zero fieldstrength corresponding to the gauge field A and certain
restrictions on the “spin” variables u. In order to be able to derive the Toda system
from the Hitchin system one needs to make sure none of the couplings in the spin
Calogero-Moser system, that connects the two systems, become zero. Specifically
this means that:

ûi = 0 and ûαû−α 6= 0 ∀α∈∆s , (5.11)

where ∆s are the simple roots. The Hitchin system under consideration with just
one marked variable (see equation 5.7) becomes

D̄AΦz = − π

RL
δ2(z) diag

(
m,− m

N−1 , . . . ,− m
N−1

)
= 2πiuδ2(z). (5.12)

The right-hand side corresponds to the variable u, which after some (yet undeter-
mined) gauge transformation can be brought into the form

û = huh−1 =
∑

i

ûi +
∑
α

ûαEα. (5.13)

If û still satisfies equation 5.11 then the Hitchin system derived from the D-brane
setup is of the correct form. To show that it is always possible to find such a gauge
transformation h, one can make use of the fact that there is a convenient matrix
representation of the Eα. For SU(4) for example the matrix Eα for simple roots is
given by

∑

α∈∆s

uαEα + u−αE−α =




0 uα1 0 0
u−α1 0 uα2 0

0 u−α2 0 uα3

0 0 u−α3 0


 . (5.14)
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The other non-diagonal elements of the matrix u correspond to the higher roots.
Given this it is sufficient to prove that there exists a matrix û, with zeroes on the
diagonal and non-zero elements on the upper and lower diagonal, that has the fol-
lowing eigenvalues

N − 1, −1 (N-1 times). (5.15)

This would mean that û can be diagonalized to u. This is equivalent to proving that
there exist a gauge transformation that takes u into û. As an educated guess one can
try the following matrix

û =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 . (5.16)

By calculating the characteristic equation of this matrix one can show that the eigen-
values are indeed of the correct form. To illustrate this explicitly, the calculation will
be performed for the 4 × 4 matrix, generalization to arbitrary N is straightforward.
The characteristic equation is determined by

c4(x) =

∣∣∣∣∣∣∣∣

−x 1 1 1
1 −x 1 1
1 1 −x 1
1 1 1 −x

∣∣∣∣∣∣∣∣
. (5.17)

Using the fact that the determinant does not change if one row is added to another,
one can write this as

c4(x) =

∣∣∣∣∣∣∣∣

−x− 1 0 0 x + 1
0 −x− 1 0 x + 1
0 0 −x− 1 x + 1
1 1 1 −x

∣∣∣∣∣∣∣∣
= (x + 1)3

∣∣∣∣∣∣∣∣

−1 0 0 1
0 −1 0 1
0 0 −1 1
1 1 1 −x

∣∣∣∣∣∣∣∣
(5.18)

by subtracting the last row from all the other rows. The matrix can be brought to a
triangular form by adding the first three rows to the fourth row

c4(x) = (x + 1)3

∣∣∣∣∣∣∣∣

−1 0 0 1
0 −1 0 1
0 0 −1 1
0 0 0 −x + 3

∣∣∣∣∣∣∣∣
, (5.19)

showing the the characteristic equation is given by

c4(x) = (x + 1)3(x− 3). (5.20)

From this it is clear that the eigenvalues are indeed 3 and −1 (multiplicity 3). As
said, the calculation is easily extended to arbitrary N , confirming that it is possible
to gauge rotate u in such a way that û has the properties listed in equation 5.13.
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Equation 5.12 is solved as explained in section 4.4. The solution will be a Lamé
function, expressed in the parameters u, q and z (see equation 4.41). Here the
role of u is replaced by a single parameter m, which controls the mass of the bi-
fundamental hypermultiplets as well as the strength of the deformation.

To get rid off the effect of the bi-fundamental hypermultiplets, their masses are
tuned to infinity, which in this case also means tuning the deformation parameter
m to infinity. How exactly those masses are tuned to infinity shouldn’t really matter,
therefore one can perform the limit as is necessary to recover the Toda system. Using
this freedom, the q’s are shifted according to equation 4.47. In this limit the Toda
system will be recovered, thereby proving that the solution of the “electric” gauge
theory is obtained from the Lax matrix of the Toda system:

vector multiplet: Φquantum = Lax matrix of corresponding Toda system (5.21)

Until now the way the entries of the Lax matrix are related to the moduli of the gauge
theory was not discussed at all. In principle there are 2N complex variables in the
Lax matrix: pi and Qi. These correspond to the parameters of the moduli space of
the three-dimensional gauge theory (which is indeed 4N -dimensional). So the end
result is that the moduli space of the three-dimensional theory is described by the
Lax matrix of the Toda system. Combining this result with the fact that the three-
dimensional superpotential only needs to be written down in the “correct” variables
to describe the exact four-dimensional superpotential, one has a good argument in
favor of the conjecture.

A superpotential can be added to this setup by inserting a second NS5-brane and
bending it in the w = x7 + ix8 direction according to [19]

w = W ′(v). (5.22)

To keep the configuration supersymmetric the D4-branes have to intersect the NS5-
branes. Since the D4-branes are located at w = 0, and the D4-branes cannot be
placed at an angle without breaking supersymmetry, this implies that

W ′(v) = W ′(Φ) = 0. (5.23)

The location of the D4-branes along the straight NS5-brane is not arbitrary anymore,
instead they need to be located at the extrema of W . Combining this with the
result that the vacuum value of Φ (in the case where no classical superpotential
is present) is given by the Lax matrix of the Toda system, one has reason to believe
that the condition W ′(L) = 0 gives the supersymmetric quantum vacua. To proof the
conjecture one would have to check whether or not the Hitchin system of equation
5.7 still appears after adding a superpotential.
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Figure 5.3: A schematic overview of the relation between the periodic Toda system and theN = 2

gauge theory.

(5.4) PERFORMING THE CALCULATION IN THREE DIMEN-
SIONS

There are several ways to check the conjecture. The first method is to compare the
results with results obtained from Seiberg-Witten theory. The Seiberg-Witten curve
is given by the Lax matrix (see section 4.3.1)

y2 = (det(xI− L))2 − 4Λ4N . (5.24)

Then, according to the conjecture, one has to extremize the superpotential with
respect to the variables of the Lax matrix. The solutions that are a result of this
should then be substituted into the Seiberg-Witten curve. If the curve factorizes
as in equations 3.56 and 3.66 one can be certain that one has found the correct
quantum vacua. In [25] a general proof for the correct factorization, in the case of
an U(N) gauge group, is given. Note that the yi variables in the Lax matrix are not
all independent, instead they obey the constraint (for U(N), see 4.18 for the general
result)

Λ2N =
N−1∏

i=0

y0 · · · yN . (5.25)

It is technically easier to treat the yi variables as unconstrained and use a Lagrange
multiplier ` to enforce the constraint

Weff = Wtree(L) + ` log

(
Λ2N

∏N−1
i=0 y0 · · · yN

)
. (5.26)

This superpotential is then supposed to be extremized with respect to `, pi and all of
the yi.
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The second method to check the conjecture is to try to reproduce the results of the
Dijkgraaf-Vafa method. One could compare the value of the superpotential in the
vacua (thus expressing the superpotential in terms of the energy-scale Λ and the
coupling constants only). However it is more interesting to reproduce the superpo-
tential expressed in terms of the glueball fields S. The problem here is to figure out
how the glueball field S enters the superpotential. In the maximally confining case,
i.e. when U(N) breaks to a single U(1) factor, there is only one S field. In this case
one can use the “integrating in” procedure [35]: find the value of the superpotential
in the vacuum

Wmin(gi, Λ) (5.27)

and replace it by

Wmin(gi, Ω) + S log
(

Λ2N

Ω2N

)
. (5.28)

The variable S can be integrated in by integrating out Ω.

It does not matter if the integrating in procedure is performed before or after mini-
mizing the superpotential, therefore one can also add the S log

(
Λ2N

Ω2N

)
term to equa-

tion 5.26. From equation 5.26 it is clear that Ω appears only in the log-terms. Having
realized this one can combine the two log-terms

S log
(

Λ2N

Ω2N

)
+ ` log

(
Ω2N

Πiyi

)
(5.29)

and integrate out Ω explicitly to obtain

Wtree(L) + S log
(

Λ2N

Πiyi

)
, (5.30)

after which the variables p, y and S can be integrated out.

Comparing this with equation 5.26 reveals that the Lagrange multiplier can be iden-
tified with S. This remarkable result will be used in some of the examples to repro-
duce the Dijkgraaf-Vafa results. If there is more than one glueball field, the Lagrange
multiplier can be identified with the sum of the glueball fields

` =
∑

i

Si. (5.31)

The rest of this chapter is devoted to giving some examples that support this conjec-
ture. More examples can be found in [24, 25, 26, 36].
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(5.4.1) EXAMPLE: U(N) WITH QUADRATIC SUPERPOTENTIAL

The analysis for a U(N) theory with a quadratic superpotential,

W = g1Tr (φ) +
g2

2
Tr (φ2) + ` log

(
Λ2N

y0 . . . yN−1

)
(5.32)

can be done for general N . Substituting the Lax matrix for the adjoint scalar φ into
the superpotential gives the following effective superpotential

Weff =
N−1∑

i=0

(g2yi + g1pi+1 + 1
2g2p

2
i+1) + ` log

(
Λ2N

y0 . . . yN−1

)
(5.33)

with the equations for the extrema

y0 . . . yN−1 = Λ2N (5.34)

g2 − `

yi
= 0 ⇒ yi =

`

g2
(5.35)

g2pi + g1 = 0. (5.36)

From the second equation one can learn that the y’s are all equal, making it possible
to solve for ` using the first equation

` = εg2Λ2, εN = 1. (5.37)

Substituting ` into the equation for yi yields

yi = y = Λ2ε. (5.38)

As expected there are N different solutions

ε = e2πik/N , k = 0, . . . , N − 1. (5.39)

Further, from equation 5.36 follows that all the p’s occupy the root of the tree-level
superpotential x = −g1/g2 of W ′(x)

W ′(x) = g2(x +
g1

g2
). (5.40)

The p’s should always occupy the roots of W ′(x) classically (Λ → 0), but here it is
even true in the quantum case. The superpotential in the extrema is then

Wextr = N(y − g2
1

2g2
) = N(Λ2e

2πik
N − g2

1

2g2
). (5.41)
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To compare with field theory results, the characteristic polynomial PN (x) = det(x1N−
Φ) needs to be computed. According to appendix B this is either a Chebyshev poly-
nomial of the first or second kind. By evaluating P1(x) and P2(x) one can see that
one has to pick the polynomials of the first kind

PN (x) = 2yN/2TN

(
x+

g1
g2

2
√

y

)
. (5.42)

These PN (x) are in perfect agreement with field theory results

PN (x)2 − 4Λ2N = 4Λ2N

(
T 2

N

(
x+

g1
g2

2
√

y

)
− 1

)

= 4Λ2N

((
x+

g1
g2

2
√

y

)2

− 1

)
U2

N−1

(
x+

g1
g2

2
√

y

)

= Λ2(N−1)εN−1
(

1
g2
2
(W ′)2 − 4Λ2ε

)
U2

N−1

(
x+

g1
g2

2
√

y

)
.

(5.43)

Here TN and UN are the Chebyshev polynomials of the first and second kind re-
spectively. The form of this curve is in correspondence with the general expectation
equations 3.56 and 3.66. The appearance of the Chebyshev polynomials was first
demonstrated, using completely different techniques, in [37].

(5.4.2) EXAMPLE: INTEGRATING IN THE GLUEBALL FIELDS

U(2) WITH CUBIC SUPERPOTENTIAL

In this example the conjecture will be tested by reproducing the Dijkgraaf-Vafa su-
perpotential for a cubic tree-level superpotential

W (x) =
x3

3
− a2x. (5.44)

Since the gauge group is U(2) the Lax matrix reads

L =
(

p1 y1 + z

1 + y0/z p2

)
. (5.45)

This superpotential has extrema at x = ±a. Since the integrating in procedure can
be used to integrate in a single glueball field S, the discussion is necessarily limited
to the maximally confining case in which the gauge group is broken a single U(1).
As discussed before the chiral field S has to be equal to the Lagrange multiplier ` in
that case:

` = S. (5.46)
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As explained above, the S-dependence can be recovered from the superpotential

Weff = W (p1) + W (p2) + (y0 + y1)(p1 + p2) + S log
(

Λ4

y0y1

)
(5.47)

by integrating out the p’s and the y’s degrees of freedom. This means solving for
the extrema of the superpotential by varying it with respect to the p’s and y’s. Note
that, since S should not be integrated out, the equation of motion for S, y0y1 = Λ4,
should not be used. In general the maximally confining vacua are obtained by using
the following ansatz

yj = y ∀j , pi = p ∀i. (5.48)

This ansatz is proven in [24, section 4.4], but in this case one can check it explicitly.
Using this ansatz one has to solve only two equations

∂W

∂p
= 0 and

∂W

∂y
= 0. (5.49)

Under the simplification equation 5.48 the superpotential becomes

Weff = 2W (p) + 4yp + S log
(

Λ4

y2

)
. (5.50)

The equation for p yields
p =

√
a2 − 2y. (5.51)

Plugging this into the superpotential yields

Weff = −4
3
(a2 − 2y)

3
2 + S log

(
Λ4

y2

)
. (5.52)

The next step is to integrate out the y’s

∂W

∂y
= 0 ⇒ S2 = 4y2(a2 − 2y). (5.53)

To solve equation 5.53 it is useful to rewrite it slightly in such a way that only the
combination S/2a appears. To this end one defines

ξ =
S

4a3
and y(S) = A(ξ)

S

2a
. (5.54)

Then 5.53 can be written as

A2(ξ)− 4ξA3(ξ) = 1. (5.55)

In principle there are three solutions for A(ξ), however not all solutions have the
right classical limit (Λ → 0). To identify the unphysical solutions a scaling argument
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is used to determine the low energy form of the solution (i.e. Λ close to zero but not
equal to zero). The glueball field scales as Λ3, the variable y as Λ2 and the coupling
constant a as Λ. From equation 5.53 it is then clear that at low energy one has

S2 = 4y2a2 ⇒ y = ± S

2a
(low energy). (5.56)

As expected there are two choices since on general grounds one expects two vacua
(see the discussion surrounding equation 3.51). For the rest of the discussion the
solution y = S

2a is selected. Thus:

y =
S

2a
+O(S2), hence A(0) = 1. (5.57)

The solution for A(ξ) (with A(0) = 1) is (see for example [38])

A(ξ) =
∞∑

n=0

22n

n + 1

(3n−1
2

n

)
ξn =

1
12ξ

+
1
6ξ

sin
(

1
3arcsin

(
216ξ2 − 1

))
(5.58)

yielding the following expression for y

y(S) =
S

2a

∞∑
n=0

22n

n + 1

( 3n−1
2

n

)(
S

4a3

)n

= −a2

6

(
−1 + 2 sin

(
1
3arcsin

(
1− 27S2

2a6

)))

=
S

2a
+

S2

4a4
+

5S3

16a7
+O(S4).

(5.59)

Substituting this solution into the effective superpotential yields, in principle, a
closed expression valid to all orders in S. However the form of this expression is
rather cumbersome, therefore the superpotential is expanded in S

Weff = −4a3

3
+ 2S

(
1− log

(
S

Λ2m

))
−

(
S2

2a3
+

S3

3a6
+

35S4

96a9
+ . . .

)
, (5.60)

here m = 2a is the mass of the fluctuations of φ around the classical extremum
φ = a. It is interesting to note that the Veneziano-Yankielowicz term (the log term)
appears automatically in this effective action. The reason that this term (which is
sometimes difficult to reproduce in Matrix Models) appears is because of the in-
tegrating in procedure, which effectively assumes that the Veneziano-Yankielowicz
term should be present [39]. This means that the Veneziano-Yankielowicz term is
introduced via a backdoor: the integrating in procedure.

To test the conjecture this result should be compared with the four-dimensional
answer [40, eq. 3.1]. According to the Dijkgraaf-Vafa method the superpotential has
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the following general from (for gauge group U(N))

Weff = NS

(
1− log

(
S

Λ3

))
−NS log

(
Λ
m

)
−N

∂F
∂S

. (5.61)

For a superpotential W = g
3Φ3 + m

2 Φ2 (i.e. m = 2a, g = 1) the function F is given
by

F =
2
3

g2

m3
S3 +

8
3

g3

m6
S4 +

56
3

g4

m9
S5 + . . . ⇒ 2

∂F
∂S

=
S2

2a3
+

S3

3a6
+

35S4

96a9
+ . . . (5.62)

This shows that equation (5.60) is in excellent agreement with the four-dimensional
answer.

U(4) → U(2)× U(2) WITH CUBIC SUPERPOTENTIAL

In this section the gauge group is U(4) and the superpotential as in equation (5.44).
The goal is to calculate the quantum corrections around the following (classical)
vacuum

p1,3 = a p2,4 = −a. (5.63)

Classically this vacuum breaks the U(4) to a U(2) × U(2) symmetry. So in this case
there are two chiral superfields involved: S1 and S2. However, it is not known (yet)
how to integrate in these glueball fields. Only for the sum S = S1 + S2 it is known
how to integrate it in: identify it with the Lagrange multiplier. To integrate in S the
same approach as in the previous section is used.

Using the U(4) Lax matrix

L =




p1 y1 0 z

1 p2 y2 0
0 1 p3 y3

y0/z 0 1 p4


 (5.64)

and plugging it into the tree-level superpotential gives

Weff =
4∑

i=1

W (pi) + yi−1(pi−1 + pi), with p0 = p4. (5.65)

Extremizing the superpotential with respect to the p’s gives the following four equa-
tions

p1 =
√

a2 − y0 − y1 p3 =
√

a2 − y2 − y3 (5.66)

p2 = −
√

a2 − y1 − y2 p4 = −
√

a2 − y0 − y3. (5.67)
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After substituting this into the superpotential, the superpotential is expressed in
terms of the y’s only. In principle one should proceed to integrate out the y’s, how-
ever the algebra involved is rather messy, therefore it is easier to expand the super-
potential as a power series in the y’s. Up to second order the superpotential then
reads

Weff = S log(
Λ8

4

y0y1y2y3
)− 1

m
(y0 − y2)(y1 − y3) + . . . (5.68)

Integrating out the y’s yields

y0 =
Sm

2y3
, y1 = −y3, y2 = −Sm

2y3
(5.69)

and leads to the following effective superpotential

Weff = S

(
2 + log

(
4Λ8

4

m2S2

))
. (5.70)

The scale Λ4, corresponding to the U(4), can be related to the scales of the U(2)’s
Λ2 (using the notation Λ3

2 = mΛ2)

Λ6
2 =

Λ8
4

m2
= m2Λ4 ⇒ Λ2

4 = mΛ. (5.71)

So finally one arrives at

Weff = 2S

(
1− log

(
S

2mΛ2

))
. (5.72)

In order to compare this with the four-dimensional result [40]

Weff = 2
(
−S1 log

(
S1

mΛ2

)
− S2 log

(
S2

mΛ2

)
+ S1 + S2 + . . .

)
(5.73)

this effective superpotential should be expressed in terms of S = S1 + S2. This
means the difference S1 − S2 needs to be integrated out. Since action is expanded
only to first order in the chiral superfields, the two chiral superfields don’t mix and
integrating out S1 − S2 is trivial. The result is that S1 = S2 = S/2, substituting this
in the superpotential gives back equation (5.72).

(5.5) EXTENDING THE CONJECTURE TO G2

The conjecture has been tested for U(N) [24, 25] and the other classical gauge
groups SO(N), Sp(2N) [36] pretty well. A further test for the conjecture would be
to test it for the exceptional gauge groups, of which for example G2 is the simplest.
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There are field theory results known to check the results of the conjecture against.
However in a way this conjecture can be used to generate new results. For example,
for G2 it is not known how to write the effective superpotential, expressed in the
glueball field S, using a matrix integral. Using the integrating in procedure it is,
in principle, possible to derive this without resorting to the calculation of Feynman
diagrams.

(5.5.1) CLASSICAL FIELD THEORY RESULTS

In this section a brief overview of the field-theory results of the quantum vacua of
G2 gauge theory will be given. More details can be found in [26]. Central in the
discussion is the characteristic polynomial of the adjoint G2 scalar field

PG2(x) =
1
x

det(xI− φ) = x6 − 2ux4 + u2x2 − v. (5.74)

The adjoint scalar field φ is represented by the seven-dimensional representation. In
a vacuum, the D-term equations allows this field to be chosen diagonally

φclass = diag(φ1 + φ2, 2φ1 − φ2, φ1 − 2φ2, 2φ2 − φ1, φ2 − 2φ1,−φ1 − φ2, 0). (5.75)

However the two variables φ1,2 are not suitable to parameterize space of classical
vacua. Instead the two quantities u = 1

4Trφ2, v = 1
6Trφ6− 1

96 (Tr φ2)3 parameterize
the two-dimensional moduli space. They can also be used to write down a tree-level
superpotential

Wtree = g2u + g6v. (5.76)

The theory with this superpotential has two classical vacua. In the first vacuum the
symmetry is not broken

φ1 = φ2 = 0 ⇒ PG2(x) = x6. (5.77)

In the second vacuum it is broken to SU(2)× U(1)

φ1 = φ2 = e =
(
− g2

4g6

)1/4

⇒ PG2 = (x2 − e2)2(x2 − 4e2). (5.78)

(5.5.2) FINDING THE QUANTUM VACUA

THE DUAL AFFINE LIE ALGEBRA OF G2

The calculation of the quantum vacua can not be done without knowing the Lax
matrix for the G2 system. In order to find the Lax matrix, a suitable explicit repre-
sentation for the affine dual of the G2 Lie algebra should be constructed. Since this
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Figure 5.4: The Dynkin diagram of the D4 algebra. The S3 permutation symmetry interchanges
the outer most nodes.

is not exactly standard material, a procedure to do this will be described here (also
see appendix A). First of all the dual affine Lie algebra of G2, (G(1)

2 )∨, is equivalent
to a twisted version of the affine SO(8) Lie algebra: D

(3)
4 . The D4 algebra has a

special property called triality. The origin of this property is the S3 symmetry of
the Dynkin diagram of D4 (figure 5.4). Twisting the algebra means identifying the
algebra under the action of the symmetry of the Dynkin diagram: permutations of
the roots α1, α3, α4. The subalgebra invariant under these permutations is an G2

algebra and will be the horizontal algebra of the affine algebra under construction.
This G2 horizontal algebra is easily constructed

h1 = H1 + H3 + H4 e+
1 = E+

1 + E+
3 + E+

4 (5.79)

h2 = H2 e+
2 = E+

2 . (5.80)

The Cartan matrix of the horizontal G2 subalgebra is

AG2 =
(

2 −3
−1 2

)
. (5.81)

and the Cartan matrix of D
(3)
4 is

A =




2 −1 0
−1 2 −1
0 −3 2


 . (5.82)

To get the explicit Chevalley generators of the full D
(3)
4 algebra, the only thing that

needs to be done is to find the Chevalley generators corresponding to the affine root.
The element of the Cartan subalgebra corresponding to the affine root is given by

h0 = −(a∨1 h1 + a∨2 h2) = −2h1 − 3h2, (5.83)

where a∨i are the co-marks derived from 5.82 (remember that for an affine Lie al-
gebra the co-marks is the eigenvector, belonging to eigenvalue zero, of the Cartan
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matrix). By demanding the canonical commutation relations for the Chevalley gen-
erators

[hi, e
±
j ] = ±Aije

±
j , [e+

i , e−j ] = δijhi, (5.84)

it is easy to find e±0 . Note that allthough the fundamental of G2 is seven-dimensional
the Lax will be an 8 × 8 matrix since the whole construction will be based on the
fundamental of D4. The explicit form of the Lax matrix that will be used reads




p1 + p2 y2 0 0 0 y1 −z 0
1 2p1 − p2 0 ay1 by1 0 0 −z

0 0 p1 − 2p2 −a b 0 0 y1

0 a −ay2 0 0 −a ay1 0
0 b by2 0 0 b by1 0
1 0 0 −ay2 by2 2p2 − p1 0 0
−y0

z 0 0 a b 0 p2 − 2p1 y2

0 −y0
z 1 0 0 0 1 −p1 − p2




,

(5.85)
with a =

√
1/2, b =

√
3/2. The constraint the y’s need to obey is

36y0y
2
1y2 = Λ8. (5.86)

The unusual normalization is kept here in order to comply with literature.

USING THE LAX MATRIX

In order to compute the quantum vacua, according to the conjecture, all that needs
to be done is to plug-in the Lax matrix into the tree-level superpotential (equation
5.76). Following [26], the classical superpotential that will be studied is

W = g2u− g6v +
4g6

27
u3. (5.87)

The Seiberg-Witten curve has a different form if compared to the U(N) case. For G2

the spectral curve is given by

Pquan(z, x) = 3
(

z − Λ8

36z

)2

−x2

(
z +

Λ8

36z

)
(6x2−2u)−x2P6(x, u, v) = 0, (5.88)

where
P6(x, u, v) = x6 − 2ux4 + u2x2 − v. (5.89)

Note that this curve is not of the hyperelliptic type. A proposal for a hyperelliptic
curve will be introduced later on.
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The quantum vacua are now obtained and checked as usual. First the Wdual is
extremized

dWeff (L) = 0, (5.90)

then the results are plugged into the spectral curve

det (xI− L) = 0 (5.91)

and the factorization of this curve is checked. This procedure is worked out in detail
in [26, section 3], complete agreement with known field theory results is found.

To be more explicit the superpotential is written out (expanding u and v):

W = g2u + g6(−v +
4
27

u3) =
1
4
g2Tr (Φ2)− 1

6
g6Tr (Φ6) +

11
864

g6Tr (Φ2)3 . (5.92)

When the Lax matrix L is substituted for the adjoint scalar Φ in this expression, some
terms that explicitly depend on z appear. It is convenient to get rid off those, there-
fore the superpotential used for calculations is corrected such that the z dependent
terms disappear

W =
1
4
g2Tr(L2)− 1

6
g6Tr (L6) +

11
864

g6Tr (L2)3 − 5
2
g6Tr (L2)(z +

y0y
2
1y2

z
)

+ ` log
(

y0y
2
1y2

Λ8/36

)
.

(5.93)

Here we have also imposed the constraint on yi using a Lagrange multiplier `. The
equations for the extrema of this superpotential are written down in appendix C.

As said before, some new results can be obtained as well. These results, discussed
below, are the superpotentials in terms of the glueball field S. Both qualitatively
different solutions, broken and unbroken gauge symmetry, will be discussed.

CASE 1: UNBROKEN GAUGE SYMMETRY

Using a, by now familiar, procedure one can obtain the equations for the extrema
of the superpotential. For G2 these equations are too difficult (see appendix C) to
solve in generality. However, solutions can be found by trial and error. It is not too
difficult to see that a solution is given by

p1 = p2 = 0, y1 =
2
3
y, y2 =

1
3
y, y0 = y, (5.94)

where y = 31/4Λ2/2. This solution corresponds to the situation in which the gauge
group is classically unbroken. In this case gauge invariant parameters read u =
31/42Λ2 and v = 4/31/4Λ6.

70



Chapter 5 - Three-dimensional supersymmetric gauge theories

In order to integrate in the glueball field S one needs to forget, for a moment, that
a solution for the yi has been found. That is, one discards the fact that y is known
and treats it as an undetermined variable. In that case, the superpotential reads

W = 4g2y − 32
27

g6y
3 + S log

(
3Λ8

16y4

)
. (5.95)

The next step is then to integrate out y

∂W

∂y
= 4g2 − 32

9
g6y

2 − 4
S

y
= 0 , (5.96)

which is an equation that can be used to solve for y in terms of S. In fact the solution
can be given in power series of S. Up to O(S8) one finds

y =
1
g2

S +
8
9

g6

g4
2

S3 +
64
27

g2
6

g7
2

S5 +
2048
243

g3
6

g10
2

S7 . (5.97)

Plugging the above expression for y into the effective superpotential one gets

W = −4S

(
log

(
2S

31/4g2Λ2

)
− 1

)
− 32

27
g6

g3
2

S3 − 128
81

g2
6

g6
2

S5 − 8192
2187

g3
6

g9
2

S7 . (5.98)

up to order eight in the glueball field S. If the conjecture is correct and valid for G2

then this would be the superpotential in terms of the glueball superfield S.

CASE 2: G2 BROKEN TO SU(2)× U(1)

The equations of motion coming from the potential (5.93) also have another solu-
tion. In fact it can also be seen that the following ansatz solves the equations given
in appendix C

p1 = p, p2 = 2p, y0 = ±4Λ4

9e2
, y1 = −3e2

4
, y2 = ± Λ4

9e2
, (5.99)

where e = (−g2/4g6)1/4 and p is given by

p2 = − 1
12

(
e2 ± 10Λ4

27e2

)
. (5.100)

Looking at the limit Λ → 0, one can see that this solution corresponds to the situation
where the gauge group is classically broken to SU(2)× U(1).

The gauge invariant parameters are found to be

u = 3e2 ∓ Λ4

2e2
, v = ∓4e2Λ4 +

Λ8

3e2
∓ Λ12

54e6
, (5.101)
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and therefore the quantum superpotential reads

W = 3g2e
2 + 4g6e

6 ± 2
√−g2g6 Λ4 , (5.102)

which is the same as the one found in the field theory [26].

Since quantum mechanically the gauge symmetry is broken to U(1), one would
expect a free parameter in the solution. Note that the situation differs from the
U(N) case, there a center of mass U(1) exists that did not manifest itself in the
solution. Because G2 is a simple Lie group it does not have this center of mass
U(1). Thus one would expect to see one free parameter in the solution. Obviously
the solution 5.99 does not have a free parameter, which means that the ansatz p2 =
2p1 = 2p somehow fixes this parameter. This leads to the conclusion that the solution
is merely a special case in a one-parameter family of solutions.

Nevertheless one can still see the existence of the free parameter by considering
flows in the integrable system. For G2 there are two independent flows, generated
by the Hamiltonians TrL2 and TrL6, or equivalently by u and v. The flows of the
dynamical variables ξ ∈ {pi, yj} are calculated by considering the Poisson brackets

Fk(ξ) =
∂

∂tk
ξ = {ξ,TrLk}. (5.103)

The tk is the time associated with the Hamiltonian Tr Lk. To calculate the Pois-
son brackets one has to identify the coordinates that correspond to the conjugate
momenta pi; these are the x’s appearing in

yi = exp(αi · x), (5.104)

with the αi the simple roots of D
(3)
4

α0 = −(2α1 + α2), α1 = (0,
√

2), α2 = (
1
2

√
6,−3

2

√
2). (5.105)

The Poisson brackets then read

{pi, yj} = (αj)iyj , (5.106)

where (αj)i is the i-th component of the j-th root in the basis (5.105). Using these
brackets it is straightforward to calculate the flows Fk(ξ). The result is that for all
ξ ∈ {pi, yj} the two flows F2 and F6 are related in the following way:

F6(ξ) = −9
4

(
3
g2

g6
+ 176Λ4 + 2112Λ8 g6

g2

)
F2(ξ). (5.107)

So, indeed, there is exactly one independent flow and therefore precisely one free
parameter in the solution. This establishes the fact that the symmetry is broken
down to a single U(1).

72



Chapter 5 - Three-dimensional supersymmetric gauge theories

(5.5.3) DERIVING THE RESOLVENT FOR G2

In this section an alternative, but very useful, way to calculate the quantum effective
action will be discussed. This method uses the so-called resolvent, a function that
encodes the vacuum expectation values of operators of the form

Trφk, k = 0, . . . ,∞. (5.108)

The resolvent R(x) is usually defined as

R(x) :=
〈

Tr
1

x− φ

〉
=

∞∑

k=0

〈
Trφk

〉

kxk+1
. (5.109)

Since the superpotential is expressed in terms of traces of powers of φ, knowing the
resolvent also means knowing the quantum effective superpotential. In the case of
U(N) the resolvent can be expressed in terms of the characteristic polynomial PN

that defines the Seiberg-Witten curve [16, 41, 42]

R(x) =
P ′N (x)√

PN (x)2 − 4Λ4N
, (5.110)

with
PN (x) = det(xI− φ) = xN + u1x

N−1 + · · ·+ uN . (5.111)

In the classical limit the resolvent can be written as

Rclass(x) =
P ′N (x)
PN (x)

= ∂x log PN (x) = ∂x log det(xI− φ). (5.112)

Inspired by this simple looking classical expression one can write the exact quantum
result in a similar way

Rquant(x) = ∂x log
(

PN (x) +
√

PN (x)2 − 4Λ2N

)
. (5.113)

This equation can be generalized to G2 and used to calculate properties of the quan-
tum vacua. The generalization is based on the integrable system solution of section
4 in [25]. By know it should be familiar to the reader that the Seiberg-Witten curve
has an underlying integrable system. The integrable system is characterized by the
existence of a complete set of action-angle variables. In terms of these variables
the evolution in the phase-space of the classical mechanical system becomes quite
simple, half of the variables are conserved and the other half (the angle variables)
evolve with constant velocity. Further, to the integrable system one can associate a
Riemann surface, which is equivalent to the Seiberg-Witten curve. The conserved
quantities then correspond to the moduli of this surface and the angle variables are
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coordinates on the Jacobian of this Riemann surface. In general, only a subset of the
moduli correspond to action variables, and the number of flows need therefore not
be equal to the dimension of the Jacobian. The equations of motion of the integrable
system correspond to linear flows on the Jacobian.

The main idea of section 4 of [25] is that the superpotential is at an extremum if
the velocities of the flows on the Jacobian are zero. The velocities of the flows are
expressed in terms of the superpotential W (x) and the one-forms ωk (see [43]):

vk(W ) = resx=∞ (W ′(x)ωk) . (5.114)

The one-forms ωk are just the Seiberg-Witten forms. For U(N) they are given explic-
itly by

ωk =
xN−kdx√

PN (x)2 − 4Λ2N
, k = 0, . . . , N − 1. (5.115)

Residues can also be used to conveniently express the superpotential in terms of the
resolvent:

Wquantum = resx=∞ (W (x)R(x)) . (5.116)

It turns out to be possible to express both the one-forms ωk and the resolvent in
terms of a single function:

Ω(x, uk) = (log det(x− L(z)))|z0 , (5.117)

by which the z-independent part of log det(x − L(z)) is meant. Further, L(z) is
the Lax matrix (with spectral parameter z) of the integrable system that underlies
the Seiberg-Witten curve and the uk are the moduli of this curve. As it stands, Ω
is not well defined, because the z-independent part of some complicated function
with branch cuts has to be extracted. One way to define Ω is as follows. Since the
characteristic polynomial det(x−L(z)) is symmetric under the interchange of z and
1/z, one can write

det(x− L(z)) = a2
0

r∏
t=1

(at − z)(at − 1/z) (5.118)

which allows the following definition

Ω ≡ 2
r∑

t=0

log at. (5.119)

Having defined Ω, the resolvent is given by

R(x) = ∂xΩ(x, uk) (5.120)
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and the one-forms by

ωk =
∂Ω
∂uk

dx. (5.121)

Actually, the definition of Ω still suffers from minus sign ambiguities, which will be
fixed by demanding that the resolvent that follows from this Ω has the expansion

R(x) =
∞∑

i=1

tr(L(z)i−1)|z0

xi
. (5.122)

In order to show that this proposal makes sense, the resolvent and one-forms for
U(N) will be calculated. From the curve for U(N)

det(x− L(z)) = PN (x) + (−1)N (z +
1
z
) (5.123)

one easily derives that a2
0 = 1/a1 and

a1 = (P +
√

P 2 − 4)/2. (5.124)

This yields for the function Ω

Ω = log((P +
√

P 2 − 4)/2), (5.125)

from which the usual resolvent follows

R(x) = ∂xΩ =
P ′(x)√

P (x)2 − 4
(5.126)

and the one-forms

ωk = ∂uk
Ωdx =

xN−k

√
P (x)2 − 4

dx. (5.127)

In order to apply this procedure to G2 the roots at for the G2 curve must be com-
puted first. The algebraic curve for G2 is given by (see equation 5.88)

3
(

z − Λ8

36z

)2

− x2

(
z +

Λ8

36z

)
(6x2 − 2u)− x2P (x) = 0 (5.128)

written in terms of y = z + Λ8

36z this reads

3y2 − x2y(6x2 − 2u)− x2P (x)− Λ8

3
= 0. (5.129)

This equation has two solutions:

y± = x2
(
x2 − u

3

)
± 1

3

√
x4(3x2 − u)2 + 3x2P (x) + Λ8, (5.130)
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yielding the four roots of the algebraic curve

z+± =
1
2
y+ ± 1

6

√
9y2

+ − Λ8, z−± =
1
2
y− ± 1

6

√
9y2− − Λ8. (5.131)

To write down Ω one has to make a choice for the roots. One should pick one root
from {z++, z+−} and one from {z−−, z−+}, so there are four possible choices:

Ω = η(log z++ + ε log z−−), with ε2 = η2 = 1

= η(log
(

1
2
y+ +

1
6

√
9y2

+ − Λ8

)
+ ε log

(
1
2
y− +

1
6

√
9y2− − Λ8

)
)(5.132)

with the choice η = 1, ε = −1 the resolvent reads

R(x) = ∂xΩ =
3∂xy+√
9y2

+ − Λ8
− 3∂xy−√

9y2− − Λ8
. (5.133)

The expansion of the resolvent around x = ∞ should have the form of (5.122).
Indeed the choice η = 1, ε = −1 was correct, since after doing the expansion one
ends up with

R(x) =
8
x

+
4u

x3
+

4u2

x5
+

4u3 + 6v

x7
+

4u4 + 16uv + 20Λ8

3

x9

+
4u5 + 30u2v + 30uΛ8

x11
+

4u6 + 48u3v + 6v2 + 250
3 Λ8

x13

+ O
(

1
x15

)
. (5.134)

One can check that the coefficients in this expansion correspond to the traces of
powers of the Lax matrix. Classically, one could write for the resolvent :P ′6(x)/P6(x),
this would generate the correct expansion if one would set to zero the terms in the
expansion that explicitly depend on Λ. Apparently this naive guess for the resolvent
is correct up to order 1/x7.

Next the flow equations (5.114) are used to determine the minima of the superpo-
tential. One therefore has to calculate the one-forms ∂u,vΩ

ωu = ∂uΩ = ∂ua(x)R1(x) + ∂ub(x)R2(x) (5.135)

ωv = ∂vΩ = ∂va(x)R1(x) + ∂vb(x)R2(x). (5.136)

The conditions that the flows on the Jacobian vanish (vl = 0) then imply:

x2R2(x)W ′(x) = rv(x) +
∑

l=1

cl

x2l+1

(
−x2

3
R1(x) + 4x4(2u− 3x2)R2(x)

)
W ′(x) = ru(x) +

∑

l=1

dl

x2l+1
. (5.137)

76



Chapter 5 - Three-dimensional supersymmetric gauge theories

The polynomials ru and rv are the regular parts of the expansion. The flow equa-
tions for the U(N) case allowed the factorization of the gauge theory and Matrix
model curve (see [25] section 4) to be derived, in a similar spirit equations 5.137
should somehow define the analog of the Matrix model curve for G2. Unfortunately,
equation 5.137 is hardly a manageable equation, and it is therefore hard to draw
general conclusions from these equations. In section 5.2 of [26] the factorization
of the Matrix model curve for a superpotential with terms up to order six is worked
out.

The remaining part of this section will be used to show that (5.137) is indeed equiv-
alent to minimizing the superpotential. For definiteness the superpotential will be
chosen to be W ′(x) = g2x + g6x

5. The values of u and v in the minimum determine
the Seiberg-Witten curve completely and therefore also the factorization properties
of this curve. To study the factorization properties it is useful to consider the condi-
tions for the curve to develop a double zero:

P6(x0) = ±2Λ4(x2
0 − u/3) (5.138)

P ′6(x0) = ±4Λ4x0, (5.139)

these equations can be used to solve for u and v in terms of x0. So there is only one
free parameter, not two. Therefore the two equations (5.137) are replaced by the
single equation

resx=∞ (∂x0ΩW ′(x)) = 0. (5.140)

This equation can be used to solve for x0, which allows the u and v to be expressed
in terms of the coupling constants and the energy scale Λ. One can then substi-
tute u and v into equation (5.138) and study its factorization properties. For the
superpotential W ′(x) = g2x + g6x

5, three classes of solutions are found:

First Solution

x0 = 0 ⇒ P6(x)− 2Λ4(x2 − u/3) = x4(x2 − 2
√

2Λ2) (5.141)

Second Solution

x0 = η

(
8
3

)1/4

, η4 = −1 ⇒ P6(x)− 2Λ4(x2 − u/3) = (x2 ± 2i

√
2
3
Λ2)3. (5.142)

This factorization has the same form as one would expect for a superconformal
point.

77



Chapter 5 - Three-dimensional supersymmetric gauge theories

Third Solution

x0 = ε

(
Λ4 − 6e− 5

33

√
9
e2
− 66

Λ4

e
+ 22Λ8

)1/4

, ε4 = 1, e =
g6

g2

⇒ P6(x)− 2Λ4(x2 − u/3) = (x2 − α)(x2 − β)2
(5.143)

α and β can be expressed in terms of e and Λ.

In order to check the claim that equation (5.140) is equivalent to minimizing the
superpotential, if suffices to minimize

W =
g2

2
u +

g6

6
v + A(P6(x0)± 2Λ4(x2

0 − u/3)) + B(P ′6(x0)± 4Λ4x0) (5.144)

with respect to u, v, A,B and x0. The Lagrange multipliers A and B are there to
enforce the formation of a double zero. The calculations are pretty straightforward
and complete agreement is found, suggesting that Ω indeed generates the one-forms
as described.

The resolvent derived in this section also hints at the existence of a hyper-elliptic
curve for G2. This can be seen as follows. The resolvent can be written in the form

R(x) =
r(x)

x2
√

P6(x)2 − 4Λ8(x2 − u/3)2
(5.145)

with r(x) some function without poles. Comparing this resolvent to that of U(N)
suggests that

y2 = P6(x)2 − 4Λ8(x2 − u/3)2 (5.146)

is in fact a hyper-elliptic curve for G2. Indeed, in analyzing the factorization of the
G2 curve, expressions like P6(x)±2Λ4(x2−u/3) pop up everywhere. As it turns out,
this hyperelliptic curve is just a small modification of an earlier (rejected) proposal
for a hyperelliptic curve for G2 (see [44]).

Note that the resolvent of the gauge theory contains arbitrarily high powers of the
adjoint scalar field. The precise definition of such operators in the quantum theory
depends on a choice of UV completion of the theory. The integrable system approach
prefers one particular UV completion over the others. This choice is basically set by
the following requirement that was imposed:

tr(Φi) ≡ tr(L(z)i)|z0 . (5.147)

In the case of U(N), this was also the UV completion preferred by string theory.
Here, the integrable system provides a natural UV completion for the exceptional
gauge groups as well. It would be interesting to explore other UV completions.
Other UV completions can be obtained by using a different representation for the
Lax matrix. Previously the fundamental representation was used to describe the Lax
matrix, choosing a different one will yield a different UV completion.
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CONCLUSIONS

In the first part of this thesis a method was proposed to calculate the exact quantum
vacua of four-dimensionalN = 2 supersymmetric gauge theories deformed toN = 1
by a superpotential. The effective superpotential could be calculated in the theory
compactified on R1+2 × S1. In the three-dimensional limit the superpotential was
easy to calculate, no quantum correction had to be calculated. It was only a matter
of finding the right variables such that the minima of the superpotential give the
correct quantum vacua. Those variables were conjectured to be given by a classical
mechanical system: the Toda system. This system is an integrable system with a
Lax matrix description. The adjoint scalar field should be substituted with the Lax
matrix of the Toda system. In formula

Weff = Wtree(L). (6.1)

Ample evidence for various gauge groups was found for this conjecture [24, 25,
36, 26]. Much of the evidence came from comparing the results with field theory
calculations, Seiberg-Witten curve factorizations to be more specific.

Using a special technique, ”integrating in”, it was also possible to obtain the su-
perpotential in terms of the glueball field S. This made it possible to compare the
results with the recent progress known as the Dijkgraaf-Vafa method. Because the
use of the integrable system involves no integrals, some results were very easy to ob-
tain. Exact agreement was found with known results, sometimes new results were
obtained. Among the new results is the exact expression equation 5.59.

The conjecture was also extended to the gauge group G2. Although of academic
interest only, being an exceptional gauge group it is particularly interesting because
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one cannot take a large N limit of an exceptional gauge group. Matrix Model meth-
ods usually rely on taking a large N limit (see for example [45]). If the conjecture is
correct and extentable to G2, the proposed method can be used to obtain completely
new results. As far as known results are concerned, agreement was found, strength-
ening the confidence in the conjecture. A proposal for the resolvent, an effective
way to summarize vacuum expectation values of chiral operators, was put forward
and tested, finding a hyperelliptic Seiberg-Witten curve for G2 along the way.

This thesis began by reviewing confinement and supersymmetric gauge theories.
The following question naturally arises: “Did we make progress?”. It is certainly true
that the use of integrable systems is useful in studying non-perturbative aspects of
supersymmetric gauge theories. Although non-perturbative knowledge is necessary
in order to understand confinement, current methods are still not powerfull enough
to proof it. The closest thing to an analytical proof is that of Seiberg and Witten
for a mass deformed N = 2 theory [2]. The calculation of the superpotential in
terms of the fermion bilinear glueball field S is sometimes used as an argument
for confinement. In those arguments the mass of the glueball field in the quantum
vacuum is determined. Usually the glueball field is massive, signaling a mass gap
(and hinting at confinement) if the glueball field is the field with lowest mass. The
question of the existence of a mass gap is then turned into the question whether or
not the glueball field is the lightest field. The results obtained in this thesis do not
shed light on that question. However, the use of integrable systems does allow one
to answer non-perturbative question using a completely algebraic approach. In fact
the quantum effective superpotential is determined by the dynamics of a classical
mechanical system. Since the algebraic methods are easier to tackle than the path-
integrals one encounters in field theory, it is easier to find (exact) results. Those
results will hopefully add to the understanding of the vacuum structure of gauge
theories in general.
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Part II

D0-branes in a curved
background
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CHAPTER 7

INTRODUCTION AND MOTIVATION

Often string theory is proposed to be a candidate for a theory of everything, by which
is meant a quantum theory of the four fundamental forces. Before 1995 string theory
was in the embarrassing situation of having at least five possible candidates for a
theory of everything. However, all these string theories are related to one another
through a web of dualities. In 1995 [46] it was realized that all string theories
could be derived from one big elusive theory: M-theory. The five known string
theories can be seen as special limits of this M-theory. Although many properties of
M-theory are still ill understood, the M-theory picture has proven to be quite useful
in understanding string theory.

In the literature M-theory is often defined in the following way:

• its low energy (compared to the Planck scale) description is d = 11 supergrav-
ity.

• compactified on a circle with radius R, it is equivalent to type IIA string theory
with coupling gs = R/ls.

The second part of this thesis will deal mainly with the second defining property of
M-theory. Type IIA string theory has, besides closed strings, many extended objects
in its spectrum: the D-branes. The simplest of those, the D0-branes, are point-like
BPS objects charged under the Ramond-Ramond one-form. The BPS property relates
the mass and the charge of the D0-branes:

mD0 = q =
1

lsgs
. (7.1)

One can wonder what the corresponding objects are in M-theory. It turns out that
D0-branes correspond to M-waves (the quantum counterparts of the supergravity
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pp-waves [47, 48]). The momentum of the M-waves in the compactified dimension
translates into RR one-form charge from the ten-dimensional string theory perspec-
tive. The easiest way to see this is to use the supersymmetry algebra of d = 11
supergravity. Rewriting this algebra in terms of ten-dimensional spinors reveals that
the momentum in the compactified dimension becomes a central charge in the ten-
dimensional supersymmetry algebra. From this one can derive the following formula
for the mass (and charge) of a D0-brane:

mD0 = q =
1
R

. (7.2)

Combining equations 7.1 and 7.2 yields the relation between the string coupling
and the radius of the circle: gs = R/ls. One should be able to recover M-theory
by taking the decompactification limit (i.e. taking R → ∞). In that limit the D0-
branes become massless and, since this limit takes the system to a strong coupling
regime, the D0-branes dominate the dynamics (see for [49] for a review). This
reveals that the physics of D0-branes should be able to capture the physics of M-
theory, and therefore of all the string theories. It is well known that the low energy
dynamics of D0-branes is described by supersymmetric Yang-Mills theory in 9 + 1
dimensions, reduced to 0 + 1 dimensions. The dimensionally reduced theory is a
theory of supersymmetric matrix quantum mechanics, it is sometimes referred to as:
Matrix theory.

There is something puzzling about this, there is a mismatch between the ten-dimen-
sional space-time the D0-branes live in and the eleven-dimensional nature of M-
theory. The puzzle is resolved by considering the nine-dimensional transverse space
of the D0-branes as the transverse space of M-theory in the infinite momentum (or
light-cone) frame. In the infinite momentum frame (IMF) only objects with momen-
tum in the compactified dimension survive, which means that only objects with RR
one-form charge survive (the D0-branes). This is the essence of the Matrix-theory
conjecture: D0-branes capture the full physics of M-theory in the IMF [50].

Although not explicitly mentioned, the discussion about Matrix and M-theory was
for a flat background. If one wants to address any cosmological questions in M-
theory, then a description of M-theory in a curved background must be given. A
natural starting point would be to try to describe D0-branes in a curved background.
Since the arguments that lead to the Matrix theory conjecture did not mention the
background explicitly, it is tempting to generalize the conjecture to hold for arbitrary
backgrounds (see for example [51, 52], note that subtleties arise when the curved
space has a compact part [53]). Hence D0-branes in a curved background will cap-
ture the physics of M-theory in that same background. This is the main motivation
for studying D0-branes in a curved background. As it turns out, it is far from triv-
ial to extend the action of D0-branes in a flat background to that of an action for
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a curved background. The larger part of the coming chapters will be devoted to
introducing and applying a calculational tool that is helpful in constructing such an
action.

Before discussing the interplay between D0-branes and gravity, the theory of D0-
branes in a flat background will be reviewed in chapter 8. To set the stage the
D-geometry axioms will then be discussed in chapter 9, followed by an extension of
these axioms in the shape of a new symmetry principle, to be discussed in chapter
10. Finally the D-geometry axioms and symmetry principle will be put to work in
chapter 11. Evidence for interesting collective behavior of D0-branes in a curved
background will be presented in chapter 12.
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CHAPTER 8

D0-BRANES IN A FLAT

BACKGROUND

The low energy action for a collection of D0-branes in a flat background can be
derived from the d = 9 + 1 supersymmetric Yang-Mills theory. To be more specific,
to describe N D0-branes one takes the gauge group U(N). The field content of this
supersymmetric field theory is a gauge field Aa

µ and an adjoint Majorana-Weyl spinor
λa

α. The field strength and covariant derivatives are defined as follows (in a basis
where the gauge field is Hermitian):

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (8.1)

Dµλ = ∂µλ + i[Aµ, λ]. (8.2)

The action is just that of the spinor minimally coupled to the gauge field:

SSYM =
−1

2g2
SYM

∫
d10xTr

(
1
2FµνFµν + iλ̄ΓµDµλ

)
. (8.3)

To dimensionally reduce the theory to 0 + 1 dimensions one has to compactify the
theory on a nine-dimensional torus with a volume V = (2πR)9 and drop all depen-
dence on the compact dimensions. This then leads to the following simplifications
(the index i runs over the compact dimensions):

F0i → ∂0Ai + i[A0, Ai] = D0Ai, Fij → i[Ai, Aj ], (8.4)

Diλ → i[Ai, λ]. (8.5)
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Here, the Ai and λ are Lie algebra valued N × N matrices. Substituting these
simplifications into the action and rewriting it in terms of Xi = 2πl2sAi gives:

SD0 =
V

g2
SYM

∫
dtTr

(
1

2(2πl2s)2
ẊiẊ

i +
1

4(2πl2s)4
[Xi, Xj ]2

+
i
2
λλ̇ +

1
4πl2s

λ̄Γi[Xi, λ]
)

.

(8.6)

The A0 = 0 gauge is chosen here, turning the covariant derivatives into ordinary
ones. This action has the following form:

SD0 =
∫

dtTr
(

m
2 Ẋ2

i + λ2

4 [Xi, Xj ]2 + i
2λλ̇ + 1

4πl2s
λ̄Γi[Xi, λ]

)
, (8.7)

from which one can infer (using m = 1/(gsls)) that λ2 = 1/(4π2l3s) and 1/g2
SYM =

4π2l3s/(V gs). At a first glance it might seem odd that N point-particles are described
by nine N × N matrices instead of N nine-dimensional vectors. This is easily ex-
plained if one remembers the string theory origin of the D0-branes. The diagonal
components of the matrices form N nine-dimensional vectors, describing the po-
sition of the D0-branes. The off-diagonal elements correspond to the open strings
stretching between the D0-branes. The effect of these strings is captured by the
potential, the [X, X]2 term.

The classical vacua are easily determined from equation 8.7, the potential reaches it
minimum when the matrices Xi all commute:

dV = 0 ⇒ [Xi, Xj ] = 0 ∀i,j . (8.8)

Configurations for which all the matrices Xi commute are configurations in which
the D0-branes are all on top of each other, hence the matrices Xi are proportional
to the unit matrix.

D-branes in general carry RR charge, naturally coupling to the RR p + 1 form. A
single D0-brane thus couples to the RR one-form

SCS =
∫

C(1) =
∫

dτC
(1)
i

dXi

dτ
. (8.9)

In the presence of an NSNS two-form B-field or an open string gauge field back-
ground, a single Dp-brane can even have couplings to the other RR forms as well

SCS =
∫

P

[∑
n

C(n)eB

]
e2πl2sF . (8.10)
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For the D0-brane this general expression reduces to 8.9. If this expression is gener-
alized to the case of more D0-branes [54], additional terms proportional to commu-
tator terms appear

SCS =
∫ [

eiλiX iX

∑
n

C(n)eB

]
e2πl2sF . (8.11)

Here iX is the innerproduct operator as is common in the theory of differential
forms, that is

iXC(1) = XiC
(1)
i . (8.12)

The effect of extra commutator terms, from a different origin, in the action for D0-
branes will be studied in chapter 12.
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CHAPTER 9

D-GEOMETRY

In the previous chapter it was shown that the action for D0-branes in a flat (gravita-
tional) background can be derived from Yang-Mills theory in ten dimensions. To de-
rive the action for D0-branes in a curved background one would perhaps be tempted
to use Yang-Mills theory in a curved background and follow the same procedure as
for the flat case. This procedure however uses T-duality, which requires isometries
in the nine spatial directions. Generically a curved space does not have these isome-
tries, rendering the T-duality method useless.

Also there is no obvious generalization of the action of a single D0-brane to that of
multiple D0-branes since one is confronted with difficult ordering problems. How
would one for example generalize the following expression

S =
∫

dτ x2δij ẋ
iẋj ? (9.1)

Would this be
S =

∫
dτ δijTrX2ẊiẊj , (9.2)

or would it be
S =

∫
dτ δijδklTrXkẊiX lẊj ? (9.3)

Ordering problems like this make it extremely difficult to find an action for D0-
branes in a curved background. In fact there could be completely new terms that
should be added, terms that vanish in the point-particle case such as any expression
involving commutators. It turns out that this is exactly the case [55][56][57]: find-
ing the correct action for multiple D0-branes is more than an ordering problem, new
terms have to be added.
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Chapter 9 - D-geometry

It should be clear by now that one has to look for alternative methods. The most
direct method would be to calculate the β-functions of the superstring with some D0-
branes present. This method is troublesome because of the massive strings stretching
between the D0-branes (see [58, 59] for an attempt). If direct methods do not work,
or are technically too difficult, there are indirect methods that have proven to be
very powerful. One method is to list all the requirements for a sensible action of
D0-branes in a curved background. This list then serves as the axioms the action
needs to satisfy.

(9.1) THE D-GEOMETRY AXIOMS

In [60] Douglas compiles a list of rules, axioms, the action for D0-branes in a curved
background should satisfy. The idea behind this, in his own words, is to “state the
problem in a self-contained way which we could give to a mathematician”. The main
idea behind his axioms is to view the degrees of freedom of the D0-brane, d N ×N

matrices, as ordinary coordinates in a larger dN2-dimensional space endowed with
a metric:

matrix: Xi → coordinate: XIwith I = iab, a, b = 1, . . . , N. (9.4)

The geometry of this space describes the D0-branes, explaining the term D-geometry.
The action for D0-branes can then be written compactly as

S =
∫

dτ GIJẊIẊj − V (X). (9.5)

Here GIJ is the metric on the dN2-dimensional space and V (X) is the potential. Of
course this is just another way of writing the action, no new information was added
to it. The action is supposed to satisfy the following axioms [60]

• The action is assumed to have an U(N) isometry.

• GIJ is a metric on the dN2-dimensional space.

• The classical moduli space of the action for N D0-branes is equal to the space
of N unordered points on the d-dimensional space.

• If the D0-branes are partitioned into groups of D0-branes that are on top of
each other in the following way: N = N1 + · · ·+Nn, then the unbroken gauge
group is equal to U(N1)× · · · × U(Nn).

• Strings stretching between two D0-branes have a mass equal to the geodesic
distance between the two D0-branes. For equation 9.5 this implies that the
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mass terms in a quadratic fluctuation analysis should be proportional to the
geodesic distance between the D0-branes.

• The action is single trace.

According to Douglas these axioms should be enough to determine the action com-
pletely. In practice however, one takes into account all known properties of the
D0-brane action, axiomatic or not. The action is well known if all the D0-branes are
separated far from each other (it reduces to the action of N regular point-particles).
Also, there are partial results when the action is reduced to terms linear in the Rie-
mann tensor [61].

(9.2) MATRIX VALUED DIFFEOMORPHISMS

Even after a quick look at the axioms it seems that one obvious ingredient appears to
be missing. If one tries to write down the coupling of D0-branes to gravity, wouldn’t
it be logical to impose diffeomorphism invariance, the gauge symmetry that corre-
sponds to gravitational couplings? For the point-particle action this procedure is
very successful, imposing diffeomorphism invariance there completely determines
the coupling of a point-particle to gravity (see [55] for a short review).

In [55] an attempt is made to impose diffeomorphism invariance on the action for
D0-branes. This is far from straightforward since it is not clear what diffeomorphism
invariance means in D-geometry. Of course, one has the diffeomorphism invariance
in the dN2-dimensional space: since GIJ is a metric and ẊI a vector the combina-
tion

GIJẊIẊJ (9.6)

is diffeomorphism invariant. However what is required is invariance under diffeo-
morphims of the d-dimensional space. It is not at all clear how those diffeomor-
phisms act on the XI . Take for example the d-dimensional diffeomorphism (diff)

xi = f i(x) = xi + f i
jkxjxk + f i

jklx
jxkxl + . . . (9.7)

and its generalization to dN2-dimensional diffeomorphisms (DIFF or matrix valued
diffeomorphisms)

XI = F I(X) = XI + F I
JKXJXK + F I

JKLXJXKXL + . . . (9.8)

If one wants to impose diff invariance in the action for D0-branes one has to lift
the transformation 9.7 to DIFF. That is, given f i construct a unique F I . In [55]
it is shown that this is not possible. One can only find a lift from diff to DIFF if
the diff are actually a subgroup of DIFF. It turns out that this is not the case [55],
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any attempt of assigning some F I to a certain f i will destroy the homomorphism
property of the map, making it impossible to lift diff to DIFF. From this one can
conclude that imposing general coordinate invariance in D-geometry is far from
straightforward. In the next chapter a new symmetry principle will be put forward,
a symmetry principle that implements general coordinate invariance.

As an aside, note that diff can be seen as a quotient of DIFF

diff =
DIFF
C . (9.9)

The operation C equates all elements in DIFF that differ by terms that involves com-
mutators (and hence go to zero in the limit N → 1).
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CHAPTER 10

THE PRINCIPLE OF BASE-POINT

INDEPENDENCE

Given the fact that it is impossible to lift d-dimensional diffeomorphisms to diffeo-
morphisms in the larger dN2-dimensional space, an alternative way to implement
diffeomorphism invariance is discussed in this chapter: base-point independence.

The principle of base-point independence is usually based on the background field
expansion. This tool, which is useful regardless of base-point independence, will be
introduced first.

(10.1) THE BACKGROUND FIELD EXPANSION

As explained in chapter 9, the action for D0-branes is written as a non-linear sigma
model (NLσM) in dN2 dimensions

S[X] =
∫

dτ GIJ(X)ẊIẊJ . (10.1)

Here X(τ) is a map from the manifold M (of dimension one) to the target space Σ,
a manifold of dimension dN2:

X : M → Σ. (10.2)

It so happens that this NLσM is precisely of the same form as the bosonic action
used in string theory. Now, it turns out that it is hard to do calculations with this
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action that yield manifestly covariant results. The reason is the following. Suppose
one wants to calculate the effect of quantum fluctuations π around some classical
background configuration X̄, i.e. one writes

X = X̄ + π. (10.3)

Since X is a map from the space-time M to a point in the target-space Σ, the quan-
tum fluctuation π = X − X̄ is a difference of two-points. Although X can be viewed
as a coordinate on Σ and therefore has well defined transformation properties, the
difference of two points has no nice geometrical meaning in curved space. The
consequence of this is that the expansion of the action S in terms of π will not be
manifestly covariant under diffeomorphisms of Σ. The background field expansion
is a solution to this problem. Actually the solution is very simple: connect the back-
ground field X̄ with the full quantum field X using a geodesic in the target-space.

The problem of finding a covariant expansion is now turned into the problem of
finding a general expression for the geodesic. For the geodesic λ(t) one can write
the following boundary value problem

λ(0) = X̄

λ(1) = X

d2λI

dt2
+ ΓI

JK

dλJ

dt

dλK

dt
= 0.

(10.4)

Instead of specifying the end-points of the geodesic it is a lot simpler to specify the
starting point and the initial velocity

λ̇I(0) = ξI , (10.5)

with a judiciously chosen vector ξ. In fact the choice of ξ is such that the length of
the geodesic is given by the length of ξ

s2 = GIJξIξJ . (10.6)

The advantage of this, seemingly unimportant, change of boundary conditions is that
the solution to the geodesics equation can be written as a power series in the vector
ξ. This ultimately leads to a manifestly covariant expansion of the NLσM action
in terms of ξ. In order to derive an explicit expression for the geodesic solution
expanded in terms of ξ, one first writes the geodesic solution as a formal power
series in the parameter t

λI(t) = λI(0) +
∞∑

k=1

1
k!

dkλI(t)
dtk

∣∣∣∣
t=0

tk. (10.7)
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The k = 1 term of this expansion can be written as

dλI(t)
dt

∣∣∣∣
t=0

t = ξIt. (10.8)

After plugging this expression into the geodesic equation the second term of the
expansion can be expressed in terms of ξ

d2λI

dt2

∣∣∣∣
t=0

= −ΓI
JK

dλJ

dt

dλK

dt

∣∣∣∣
t=0

= −ΓI
JK(X̄)ξJξK . (10.9)

One can continue this process by differentiating the geodesic equation with respect
to the parameter t. This procedure results in the following expansion

λI(t) = X̄ + ξIt−
∑

k=2

1
k!

ΓI
J1...Jk

(X̄)ξJ1 . . . ξJktk. (10.10)

The generalized Christoffel symbols ΓI
J1...Jk

are defined as follows

ΓI
J1...Jk

= ∇Jk
· · · ∇J3Γ

I
J2J1

, (10.11)

where the covariant derivatives act solely on the lower indices. The generalized
Christoffel symbols are evaluated at the background point X̄. With this power series
solution it is possible to express π covariantly in terms of the tangent vector ξ

πI = λI(1)− X̄I = ξI −
∑

k=2

1
k!

ΓI
J1...Jk

ξJ1 . . . ξJk . (10.12)

If this expression is used to expand the action, then the expansion will be a mani-
festly covariant expansion in terms of the vector ξ.

The vector ξ can also be used as a coordinate. Such a coordinate system will have
a base-point, a point of origin, located at X̄. Since the length of ξ is equal to the
length of the geodesic, geodesics are straight lines in these coordinates (see figure
10.1). Straight lines obey the differential equation

d2λI

dt2
= 0. (10.13)

Comparing this with the geodesic equation one learns that, in this coordinate system
the Christoffel symbol evaluated at the base-point vanishes

ΓI
JK(X̄) = 0. (10.14)

As a consequence of this the generalized Christoffel symbols vanish too

ΓI
J1...Jk

(X̄) = 0. (10.15)
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Figure 10.1: Changing to Riemann Normal Coordinates straightens geodesics.

A choice of coordinates satisfying equation 10.15 are called Riemann Normal Co-
ordinates (RNC). Such a coordinate system has very convenient properties. For
example, since the Christoffel symbol vanishes, partial derivatives are equal to the
covariant derivatives. This leads to identities like

ξK1ξK2∂K1∂K2GIJ = − 1
3ξK1ξK2RIK1JK2 . (10.16)

The background field is also called the base-point of the Riemann Normal Coordinate
system. When the term background field is used the fact that X̄ is a field over M is
emphasized. The term base-point stresses that X̄ is also a point in Σ.

To covariantly expand the action in equation 10.1 one can now proceed as follows:

1. Write a Taylor series for the metric and convert “ordinary” derivatives acting on
the metric into covariant derivatives acting on (combinations of) the Riemann
tensor.

2. Substitute πI = ξI .

3. Collect terms of the same order in ξ.

This is a rather lengthy and technical procedure, but due to the systematics in this
procedure it boils down to remembering a few simple rules [62]. The rules are most
easily described using an operator ∆, implicitly defined by

• ∆(ẊI) = ξ̇I

• ∆(ξ̇I) = RI
JKLξJξKẊL

• ∆(TI1...Ip) = ξM∇MTI1...Ip for a tensor T

• ∆(O1O2) = O1∆(O2) + ∆(O1)O2.
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The background field expansion is then obtained by systematically writing out the
following expression

S =
∫

dτ e∆
(
GIJ(X)ẊIẊJ

)
. (10.17)

The first few terms of this expansion are [63]

S[X̄ + π] =
∫

dτ (GIJ(X̄) + 1
3RIKLJ(X̄)ξKξL

+ 1
6∇MRIKLJ (X̄)ξKξLξM )ξ̇I ξ̇J .

(10.18)

(10.2) SHIFTING THE BASE-POINT

From the previous section it is clear that RNC are a useful tool in constructing a
manifestly covariant background expansion of the action for the non-linear sigma
model. However the split of the full quantum field X in a background (base) and
a fluctuation part is an arbitrary one. This means that the action should always
be invariant under a change in the background compensated by a change in the
fluctuations. In terms of RNC this means that the action should be invariant under
a shift of the base-point.

On a formal level this is obvious, expressing the action in terms of a RNC system at
X̄ with tangent vector ξ

S = S[X̄, ξ, G(X̄), R(X̄), . . . ] (10.19)

or at a different base-point Ȳ and tangent ζ

S = S[Ȳ , ζ, G(Ȳ ), R(Ȳ ), . . . ] (10.20)

does not matter. The functional form of both expressions is exactly the same (after
all, the two expressions are related by simply renaming the variables). However to
test the invariance explicitly one needs to relate the two coordinate systems. That is,
the tangent vector ξ in the X̄ system should be expressed in terms of the Ȳ system.
The way to relate the two systems is by realizing that both systems should describe
the same point in M , that is

X̄ + π = Ȳ + ρ, (10.21)

with ρ the fluctuation around Ȳ and π the fluctuation around X̄. Now the relation
10.12 can be used to relate ξ to ζ. After having chosen RNC in X̄ one gets

X̄I + πI = X̄I + ξI = Ȳ I + ζI −
∞∑

k=2

ΓI
J1...Jk

(Ȳ )ζJ1 . . . ζJk . (10.22)
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If the two base-points are chosen (infitesimally) close to each other, X̄ = Ȳ − ε, one
can express ξ in terms of ζ and tensors in the X̄ system:

ξI = εI + ζI − εL
∞∑

k=2

∂LΓI
J1...Jk

(X̄)ζJ1 . . . ζJk , (10.23)

where

ΓI
J1...Jk

(Ȳ ) = ΓI
J1...Jk

(X̄) + εL∂LΓI
J1...Jk

(X̄) +O(ε2)

= εL∂LΓI
J1...Jk

(X̄) +O(ε2)
(10.24)

was used. Since the ∂Γ expressions are evaluated in RNC it is possible to convert
them to manifestly covariant expressions

ξI = εI + ζI − εL
∞∑

k=2

1
(k+1)!RJ1(LI)J2...Jk

(X̄)ζJ1 . . . ζJk , (10.25)

with
RJ1(LI)J2...Jk

= 1
k!∇(Jk

. . .∇J3RJ2|LI|J1) + (L ↔ I). (10.26)

As an example the procedure will be applied to the action for the NLσM, expanded
up to first order in the Riemann tensor (and no covariant derivatives)

S[X̄ + π] =
∫

dτ
(
GIJ(X̄)− 1

3RIK1JK2(X̄)ξK1ξK2
)
ξ̇I ξ̇J , (10.27)

which after plugging in equation 10.12 becomes

S =
∫

dτ
(
GIJ(Ȳ )− 1

3RIK1JK2(Ȳ )ζK1ζK2
)
ζ̇I ζ̇J

− 2
3RIK1JK2(Ȳ )εK1ζK2 ζ̇I ζ̇J − 2

3RIK1JK2(Ȳ )εJ ζ̇I d
dτ

(
ζK1ζK2

)
.

(10.28)

Here the fact that, in this approximation, g(X̄) = g(Ȳ ) and R(X̄) = R(Ȳ ) is used.
The last two terms cancel, leaving the expression

S =
∫

dτ
(
GIJ (Ȳ )− 1

3RIK1JK2(Ȳ )ζK1ζK2
)
ζ̇I ζ̇J (10.29)

which is precisely the action expressed in RNC around Ȳ . Hence

S[X̄ + π] = S[Ȳ + ρ] (10.30)

thereby proving base-point independence for the NLσM in this approximation (the
general proof is similar but more technical).
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(10.3) A NEW SYMMETRY PRINCIPLE

Since the base-point is essentially a point in d-dimensional space, the base-point
shift imposes a kind of d-dimensional diff on the action for D0-branes. Although this
diff cannot be lifted to the DIFF (see chapter 9) it is possible to lift base-point shifts
in the d-dimensional space to base-point shifts in D-geometry. To see this, look at
the base-point transformation equation 10.25. If one chooses the base-point such
that all the D0-branes are on top of each other

X̄ = x̄I (10.31)

and restricts the shifts to be diagonal as well

εI = εiδab, (10.32)

then all tensors evaluated at the base-point decompose in a tensor over the d-
dimensional space and a tensor in the matrix indices:

RIJKL(x̄I) = Rijkl(x̄)Taibiajbjakbkalbl
. (10.33)

This leaves the tensor T undetermined. These matrix-tensors can be determined
by imposing base-point invariance as a self-consistency condition, together with the
D-geometry axioms. In [55] the following results were found

RIJKL = Riaibijajbjkakbklalbl
= Rijkl∆Sym(aibiajbjakbkalbl), (10.34)

with the tensor ∆ defined by

∆aibiajbjakbkalbl
= δbiaj δbjak

δbkal
δblai . (10.35)

The tensor ∆ basically takes for four matrices, multiplies them and takes the trace:

∆aibiajbjakbkalbl
XiaibiXjajbj XkakbkX lalbl = TrXiXjXkX l. (10.36)

From this it is now easy to see that equation 10.34 defines a completely symmetric
tensor

RIJKLXIXJXKXL = RijklStr XiXjXkX l. (10.37)

The symbol Str is defined as the symmetrized trace, i.e.

Str ABC = 1
6Tr (ABC + ACB + . . . ). (10.38)

The symmetrized trace prescription remains valid for the ∇R tensor

∇MRIJKL = ∇mambmRiaibijajbjkakbklalbl

= ∇mRijkl∆Sym(aibiajbjakbkalblaambm).
(10.39)
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Beyond this order (i.e. tensor of type ∇nR, n > 1) the symmetrized trace pre-
scription is no longer valid [55].

To summarize: Implementing base-point invariance as described above, lifts a sym-
metry from the d-dimensional space to the dN2-dimensional space. Since the base-
point symmetry in the d-dimensional space is equivalent to diff invariance [55] one
can take the base-point invariance in D-geometry as a definition of diff invariance in
D-geometry.

In contrast to the point-particle in a curved background, this symmetry principle
does not determine the action of D0-branes in a curved background uniquely. This
is reflected by the fact that the expressions for ∇M1 · · ·∇Mn

RIJKL for n > 1 are not
fixed by the D-geometry axioms and base-point independence [55].

102



CHAPTER 11

APPLICATIONS AND CHECKS

(11.1) APPLYING BASE-POINT INDEPENDENCE

After having introduced the concept of base-point independence it is time to apply
the technique to D-geometry. The basis of this D-geometry is the realization that
the final action must be a constrained form of a dN2-dimensional non-linear sigma
model (NLσM).

S =
∫

dτ GIJ (X)ẊIẊJ . (11.1)

Each index I describes a triplet I = {i; ab} built from a d-dimensional space-time in-
dex i and two U(N)-indices a, b. The dN2-dimensional metric GIJ(gij , Rijkl, . . . , X)
is a functional of the d-dimensional metric gij and its derivatives. Using a dN2-
dimensional expansion in normal coordinates, one must impose the following con-
ditions to obtain the d-dimensional base-point independent action for matrix normal
coordinates [55]:

(a) When functionally expressed in terms of the d-dimensional constituents the
dN2 dimensional metric, Riemann tensor, and covariant derivatives thereof
must obey all the usual identities of symmetry/antisymmetry, Bianchi identity,
commutation relations of covariant derivatives, etc.

(b) The U(N) indices must be such that the action is a single trace; i.e. no traces
may occur within the functional expressions.

(c) It should have the right U(1) limit for diagonal matrices.

(d) At linearized order the symmetrized ordering should emerge.
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(e) Most importantly, base-point independence follows from the requirement that
the “trace” of the dN2-dimensional covariant derivative, acts as the d-dimensional
covariant derivative:

δab∇i;ab(anything) = ∇i(anything) . (11.2)

For instance at order 4 and 5 in matrix normal coordinates Xi;ab the two rele-
vant dN2-dimensional tensors are the Riemann tensor and its covariant deriva-
tive. Imposing the above matrix-geometry constraints one finds that in terms of
d-dimensional curvature tensors, they are

RIJKL = RijklΣaibiajbjakbkalbl
,

∇MRIJKL = ∇mRijklΣambmaibiajbjakbkalbl
, (11.3)

where Σa1b1...anbn is the object that when contracted with n-matrices returns the
symmetrized trace

Σa1b1,...,anbnOi1a1b1 · · ·Oinanbn = Str(Oi1 · · ·Oin) . (11.4)

At order six, the fully symmetrized ordering is no longer consistent with the identity

[∇N ,∇M ]RIJKL = R P
NMI RPJKL + . . . (11.5)

This illustrates why the symmetrized approximation corresponds to the linearized
approximation.

(11.1.1) SECOND ORDER IN Ẋ

To explicitly show how the matrix-geometry generates a base-point independent
action, the application for the kinetic term — order two in derivatives — to order
O(X4) will be reviewed, i.e. it is shown that the action

L2 = − 1
2 (δijtr(ẊiẊj) + 1

3RikljStr(ẊiẊjXkX l)) +O(X5) (11.6)

is base-point independent. Writing the action in terms of a dN2 NLσM

L = − 1
2ηABΠAΠB , (11.7)

with
ΠA = EA

I ẊI . (11.8)

Capital letters refer to a multi-index notation in which a matrix Πi is represented as
ΠI = Πiαβ . Sometimes it is easier to work in a local-Lorentz frame, in this case the
matrix is written as: ΠA = Πıab. The vielbein relating the ΠI and the ΠA,

ΠA = EA
I ΠI ⇒ Πıab =

∑

iαβ

Eıab
iαβΠiαβ , (11.9)
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has a convenient flat space representation:

ηAB = ηıab,cd = δıδadδbc. (11.10)

The flat metric is defined in such a way that:

tr(XiXj)δij = ηIJXIXJ ⇒ ηIJ = ηiαβ,jγδ = δijδαδδβγ . (11.11)

The metric for curved space is then given by:

GIJ = EA
I EB

J ηAB (11.12)

Expanding in RNC the vielbein equals:

EA
I = δA

I +
1
12

RA
(PQ)IX

P XQ + 1
24∇P RA

(QR)IX
P XQXR + . . . (11.13)

Substituting this into equation 11.7, and using 11.3, equation 11.6 is recovered. By
virtue of the fact that eq. 11.3 is the solution to the matrix-geometry constraints,
this action is basepoint independent. For this simple case, one can check it explicitly
[55].

An instructive illustration of the power of the matrix-geometry method, is the fol-
lowing exercise. Although from the flat space limit it is clear that the one-form ΠA

should be contracted with the tangent space metric ηAB of eq. 11.10, it is possible
to start off with a more general form

L2 = − 1
2MAB(X)ΠAΠB . (11.14)

Expanding in RNC as prescribed one obtains the action (with the base-point X̄):

−2L2 =
{

MAB |X̄ + ∇CMAB |X̄ XC

+ 1
2 ( 2

3MQBRQ
CDA +∇D∇CMAB)

∣∣∣
X̄

XCXD + . . .
}

ẊAẊB .
(11.15)

Comparing with the flat space case one reads off: MAB |X̄ = ηAB . Assume that it is
possible to set ∇ . . .∇ M |X̄ = 0, then one has M(X)AB = ηAB (remember: in RNC
partial and covariant derivatives are the same). This results in the action:

−2L2 = (ηAB + 1
6RB(CD)AXCXD)ẊAẊB

= ηABΠAΠB .
(11.16)

Given that the vielbein is constructed from tensors obeying the matrix-geometry
constraints, the properties the action needs to have can be checked without explicit
calculations. The only thing that needs to be verified is that MAB also satisfies
the matrix-geometry constraints. Single traceness of the action follows from the
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fact that MAB = ηAB has no internal U(N) contractions. The correct U(1) limit
follows from the vanishing of all the covariant derivatives ∇ . . .∇M = ∇ . . .∇η =
0. The crucial property to check is base-point independence. Note that, since the
expansion of MAB is SO(dN2) covariant, it is manifest that the action is invariant
under any matrix valued diffeomorphism. However, the tensor MAB should also be
a functional of the d-dimensional metric, and its derivatives. This functional will be
consistent with base-point independence, if under a shift in base-point, it is parallel
transported in the d-dimensional sense. As before, this is guaranteed if

εkδab∇kab = εk∇k, (11.17)

on the tensor MAB . For MAB = ηAB this is obviously so, so that the result is indeed
base-point independent. Note that this is a truly non-trivial constraint that does not
follow from the fact that the Lagrangian L2 is a scalar quantity under matrix valued
diffeomorphisms.

Focussing on MAB alone, these results can be extended to arbitrary order in X; at all
orders ∇ . . .∇M can be set to vanish, in a way consistent with the matrix-geometry
constraints. In particular, the non-trivial identity

∇[C∇D]MAB

∣∣
X̄

= R Q
CDA MQB |X̄ + R Q

CDB MQA|X̄
= RCDBA + RCDAB = 0. (11.18)

and higher order analogues are satisfied. For these, it is crucial that MAB evaluated
at the base-point is equal to the tangent space metric. In section 11.1.2, where the
consistency of the base-point independence approach for higher derivative terms is
discussed, it will be shown that these non-trivial identities do impose constraints.
Thus the two-derivative action, equation 11.7, is recovered here. The lesson is that
base-point independence and the other constraints of matrix geometry are automati-
cally satisfied when∇ . . .∇M can be put to zero. The power of the above argument,
by generalization, is that the expansion of the action in RNC allows to, almost, read
off whether the action is base-point independent and therefore a candidate for the
non-Abelian generalization of the DBI-action.

(11.1.2) HIGHER ORDER CORRECTIONS: FOURTH ORDER IN Ẋ

In section 11.1.1 the covariant expansion approach was used as a straightforward
approach to determine the crucial properties of the action. Therefore this route will
be followed for the action L4, the part of the DBI-action of fourth order in Ẋ, as well.
Before doing that, it will be instructive to show explicitly why the symmetrized trace
approximation starts to fail at this order. If the action would be the symmetrized
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trace, then it could be written as:

L4 = − 1
8Str (gij(X)gkl(X)ẊiẊjẊkẊ l)

= − 1
8 (δijδklStr (ẊiẊjẊkẊ l) + 2

3RimnjδklStr (XmXnẊiẊjẊkẊ l)) + . . . .

(11.19)

Using the base-point transformation (a constant shift ε)

∆Xi = εi + 1
6εkSym (Zp1Zp2)Rp1(ki)p2 , (11.20)

one gets for the variation (schematically and up to first order in the Riemann tensor)

∆L4 ∝ εRStr (Ż3Sym (ŻZ)) + εRStr (Ż4Z) 6= 0. (11.21)

From this it is obvious that the two combinatorial structures cannot be combined,
hence the symmetrized trace prescription does not yield a base-point independent
action.

To determine what the correct ordering is, the same steps are followed as before.
The starting point is an action of order four in one-forms ΠA contracted with an
arbitrary symmetric four-tensor MABCD(X):

L4 = − 1
8MABCD(X)ΠAΠBΠCΠD . (11.22)

Expanding in RNC up to second order in X, one finds

−8L4 =
{

MABCD|X̄ + ∇F MABCD|X̄ XF

+ 1
2 ( 4

3MQBCDRQ
EFA +∇E∇F MABCD)

∣∣∣
X̄

XEXF
}

ẊAẊBẊCẊD.

(11.23)

The lesson from section 11.1.1 is to check whether or not one can put∇ . . .∇ M |X̄ =
0. This would ensure the correct U(1) limit and base-point independence. Suppose
it is possible. In that case the action would be:

−8L4 =
{

MABCD|X̄ + 2
3MQBCDRQ

EFA

∣∣∣
X̄

XEXF
}

ẊAẊBẊCẊD. (11.24)

From the flat space limit, 1

−8Lflat
4 = MABCD|X̄ ẊAẊBẊCẊD = Str (ẊiẊjẊkẊ l)δijδkl, (11.25)

one learns that:

MABCD|X̄ ≡ ηABCD = δabδcdΣα1β1...α4β4 6= ηABηCD, (11.26)

1The flat space limit follows indirectly from explicit string computations which show that the non-
abelian DBI-action at order F 4 is given by the symmetrized trace [64, 65, 66, 67]. This breaks down at
higher orders; see [68] for the latest status.
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Note that the single trace requirement means that the tensor M is not proportional
to two tangent metrics. This will be important.

The crucial question is: Are all the requirements (a)-(e) of matrix geometry satis-
fied? Since the assumption was that all covariant derivatives on M can be put to
zero, the U(1) limit is automatically right. The single trace condition is met, by con-
struction. What about the base-point independence? This is also guaranteed if one
can truly put all covariant derivatives on M to zero (evaluated in the base-point). It
therefore remains to test this assumption. Because M is not the tensor product of the
metric tensor, it is not clear that a covariantly constant MABCD exists. The litmus
tests are the identities involving commutators of covariant derivatives on MABCD;
the simplest being

∇[E∇F ] MABCD|X̄ = 2(R Q
EFA MQBCD + R Q

EFB MQACD

+R Q
EFC MQABD + R Q

EFD MQABC)
∣∣∣
X̄

.
(11.27)

This directly shows that a covariantly constant M , not proportional to the metric,
is not consistent since the right-hand side of the equation will not evaluate to zero.
Recall that in the two derivative case, this was explicitly tested. There MAB was
equal to the metric, and this problem did not occur since

∇[C∇D]MAB

∣∣
X̄

= R Q
CDA MQB |X̄ + R Q

CDB MQA|X̄
= RCDBA + RCDAB = 0. (11.28)

The mathematical cause for the inconsistency of a covariantly constant MABCD is
the single trace requirement. It was responsible for the fact that MABCD could not
equal two tangent space metrics. One might object that the identity 11.28 appears
to be irrelevant as in the action ∇E∇F MABCD is contracted with the symmetric
combination XEXF . The remaining discussion will show why this is not so.

Lacking a deeper insight in the requirements on MABCD, one is forced to check base-
point independence by hand. Recall that the base-point transformation is given by:

∆Xi = εi + 1
6εkSym (Zp1Zp2)Rp1(ki)p2 . (11.29)

Using this transformation calculate the variation of L4 with MABCD ≡ ηABCD:

−8L4 = ηABCDEA
I ẊIEB

J ẊJEC
KẊKED

L ẊL

= δijδklStr (ẊiẊjẊkẊ l) + 1
3Ri(kl)jδmnStr (ẊiẊmẊnSym (ẊjXkX l)),

(11.30)
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which reads

−∆L4 = 1
8

4·2
3·2εkRβ(kα)p2Str (ŻαŻ2Sym (ŻβZp2))

+ 2
3·8Rk(αβ)p2ε

kStr (ŻαŻ2Sym (ŻβZp2))

= 1
6εkStr (ŻαŻ2Sym (ŻβZp2))

{
Rβ(kα)p2 + 1

2Rk(αβ)p2

}
.

(11.31)

Note that Sym (. . .) expressions are treated as one block within the symmetrized
trace. Using (note A(ab) = Aab + Aba),

Rα(p1β)p2 = − 1
2Rp1(αβ)p2 + 3

2Rαβp1p2 , (11.32)

this simplifies to (with the notation Ap1...pn = A1...n):

∆L4 = − 1
4ε6R3456δ12Str (Ż1Ż2Ż3Sym (Ż4Z5)) 6= 0. (11.33)

So the proposed action is indeed not base-point independent. To see that the single
trace requirement is responsible — and hence the correlated inconsistency of choos-
ing MABCD(X) = ηABCD — look at the corresponding calculation for L2. The steps
are analogous and the L2 result comes down to removing the δ12Ż

1Ż2 part in the
L4 result and adjusting some factors:

∆L2 ∝ ε6R3456Str (Ż3Sym (Ż4Z5)). (11.34)

Using the identity

Str (ABCD . . .) = Tr (ASym (BCD . . .)). (11.35)

makes it possible to write ∆L2 as

∆L2 = ε6R3456Str (Ż3Ż4Z5), (11.36)

which is obviously zero. In the case of ∆L4 the identity in equation 11.35 is of no
use, because of the extra δ12Ż

1Ż2 factor. If one had not insisted one a single trace
result and used MABCD = ηABηCD, then the variation of ∆L4 would have had the
structure:

∆L4 = ∆L2δ12Str (Ż1Ż2) = 0. (11.37)

So, as claimed, the single trace property spoils base-point independence. As a re-
sult of this, the importance of the identity (11.28) is confirmed. ∇E∇F MABCD|X̄
should not be zero if one insists on base-point independence.

Fortunately is it not terribly difficult to find an correction term to L4 that renders
the action base-point independent while keeping the correct U(1) limit. One possible
answer is:

LC
4 = αR1356δ24Str (Ẋ1Ẋ2Sym (Ẋ4X5)Sym (Ẋ3X6)). (11.38)
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Since R1356 is antisymmetric in 1 and 3, this result vanishes in the U(1) limit. The
variation of LC

4 equals

∆LC
4 = αR1356δ24Str (Ż1Ż2Ż4ε5Sym (Ż3Z6))

+ αR1356δ24Str (Ż1Ż2Sym (Ż4Z5)Ż3ε6)

= αε6R1465δ24Str (Ż1Ż2Ż3Sym (Ż4Z5))

= 4α∆L4.

(11.39)

Requiring base-point independence determines the constant α to be − 1
4 .

So it is possible to find a correction term LC
4 that renders the total action base-point

independent. However this correction term was not written in the form of a tensor
MABCD. Therefore the obvious question is: What is the value for∇ . . .∇ MABCD|X̄
that corresponds to LC

4 ? Since there is no O(X) term in the U(1) limit, it seems
logical to try to maintain this property for the non-abelian case: require that there is
no∇F MABCD|X̄ XF term in the action. For the∇E∇F MABCD|X̄ XEXF part, one
can only determine the part symmetric in EF and ABCD from LC

4 . It is determined
by:

∇E∇F MABCD|X̄ XEXF ẊAẊBẊCẊD

= 4R1456δ23Str (Ẋ1Ẋ2Sym (Ẋ4X5)Sym (Ẋ3X6)) (11.40)

Write this schematically as

∇E∇F MABCD|X̄ XEXF ẊAẊBẊCẊD

= 1
48s(ABCD)(EF )X

EXF ẊAẊBẊCẊD (11.41)

with

sA1A2A3A4A5A6 = 4Ri1i4i5i6δi2i3Σa1b1a2b2a7b7a8b8S
a7b7
a4b4a5b5

Sa8b8
a3b3a6b6

Aj = ijajbj .
(11.42)

The object S takes a set of matrices and combines them (symmetrically) into one
matrix:

Sa1b1
a2b2...anbn

Oi2a2b2 · · ·Oinanbn = Sym(Oi2 · · ·Oin)a1b1 . (11.43)

As already shown explicitly, the action thus obtained is base-point independent.
However, consistency of the more general approach demands that base-point in-
dependence can also be shown by proving the following:

εiδab(∇iab∇F MABCD|X̄) = εi(∇i∇F MABCD|X̄). (11.44)
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In order to check this, one has to know what the right-hand part of the previous
equation is. It corresponds to the variation of the∇F MABCD|X̄ XF term. Since this
term vanishes, one concludes that the right-hand side of equation 11.44 should be
zero in the action. Recall that ∇E∇F MABCD|X̄ can receive several contributions,
of which only the S part contributes to the action. Of course, it would be the more
satisfactory if it vanishes as a single formal tensor. Using the explicit representation
for sABCDEF (equation 11.42), we find for the left-hand side of eq. (11.44):

εiδabs1234 iab 6 = εiδab(R14i6δ23Σ1278S
7
4 abS

8
36 + . . .)

= εi(R14i6δ23Σ1248S
8
36 + . . .)

∝ εi(R14i6δ23Σ1248S
8
36 + εiR41i6δ23Σ1248S

8
36 + . . .) = 0.

(11.45)

This confirms the base-point independence. The other contributions to ∇∇M , such
as the parts anti-symmetric in E, F , are of no concern since these vanish in the ac-
tion. It is, however, possible to add other corrections terms to M such that equation
11.44 is zero, even as a formal tensor.

Presumably these results can be generalized to arbitrary order in the velocity Ẋ.
However, the extension to higher order in X is far from trivial due to the compli-
cations from the inability to put ∇ . . .∇M to zero in matrix geometry. For every
order in X it is necessary to find the appropriate tensor ∇∇ . . .∇ M |X̄ , which is
beyond present capabilities. The fact that it is possible to do so for fourth order in
derivatives does give confidence that this is possible in general. This computation
does explicitly show that, at the first corrective order in derivatives, the symmetrized
trace approximation is no longer consistent with the single trace requirement in the
presence of gravity.

(11.2) CHECKING T-DUALITY

One of the consequences of the non-abelian nature of the coordinates X is that
new terms can be present in the action, proportional to commutators, which have
no U(1) equivalent. Indeed for non-abelian D0-branes in flat space, string theory
requires that at lowest order in derivatives there is a potential equal to

V = −Tλ2

2
Tr([Xi, Xj ][Xi, X

j ]) . (11.46)

The form of the potential is dictated by consistency with T-duality. Under this stringy
symmetry the potential and kinetic terms are exchanged. T-duality holds for any
spacetime with isometries, and the curved space analogues of both the potential and
the kinetic term should be consistent with the duality. In addition to constructing a
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base-point independent kinetic term, in [55] a potential for D0-branes in a curved
background was also put forward. This conjectured potential passed a strong consis-
tency test. It satisfied the non-trivial D-geometry constraint that fluctuations around
a diagonal background have masses proportional to geodesic lengths. In this section
it will be shown that the conjectured form of the potential reproduces the kinetic
term after a T-duality transformation. This is strong confirmation that the proposed
form of the potential is correct.

To generalize the expression 11.46 to curved space, an analogue of the vector ẊI ,
which can be contracted with the vielbein EA

I , is needed. Define the “commutation”
operator

D(X)icb;ad ≡ δabXicd − δcdXiab . (11.47)

Acting on a matrix Mda it returns the commutator

D(X)icb;adMda = [Xi, M ]cb . (11.48)

Commutators obey the Leibniz rule and act as a derivation on the space of matrices.
Analogous to the standard time derivative Ẋ, one can expect any Xiab appearing
inside a commutator to transform as a vector under matrix coordinate (i.e. base-
point) transformations. The matrix-valued “commutation operator” D(X)I,ad can
therefore be pushed forward to the tangent space with the SO(dN2) vielbein. The
commutator term is the basic building block of the flat space potential. A small
calculation shows that it is equivalent to four building blocks, D(X)I,ad, contracted
with exactly twice the SO(dN2) metric [55].

Vflat = −Tλ2

4
ηIKηJLD(X)I,abD(X)J,bcD(X)K,cdD(X)L,da

= −Tλ2

4
ηIKηJLTrD(X)ID(X)JD(X)KD(X)L . (11.49)

In the last line the trace is only over the explicit U(N) indices of the matrix valued
SO(dN2) vector D(X)I,ab.

The generalization to curved space is now straightforward. Simply insert the appro-
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priate number of vielbeins into the flat space potential:

Vcurved = −Tλ2

4
ηACηBDEA

I EB
J EC

KED
L TrD(X)ID(X)JD(X)KD(X)L

= −Tλ2

4
(ηACηBD +

4
12

RC(PQ)AXP XQηBD)TrD(X)AD(X)BD(X)CD(X)D

+O(∇2)

= −Tλ2

4
(Tr ([Xi, Xk][Xj , X l])δijδkl

+
1
3
Ri(kl)jδmnStr (XkX l[Xi, Xm][Xj , Xn])) + . . . ,

(11.50)

The last two steps shows that in the linearized approximation it correctly reproduces
the symmetrized result from [69], as is expected.

Under T-duality the parallel part of the curved space potential 11.50 must transform
into the kinetic term 11.7. To check this, assume that the d-dimensional geometry
is a product of a (d − 1)-dimensional piece times a circle along the direction i = 9.
The following expression for the dN2 metric can then be written down

Giαβ,jγδ(Xi) =
(

Gµαβ,νγδ(Xρ) 0
0 δαδδβγ

)
µ, ν, ρ = 1, . . . , d− 1. (11.51)

The expression in the lower right corner is a simply a consequence of the non-trivial
form of the flat-space metric:

Gflat
iαβ,jγδ = ηiαβ,jγδ = δijδαδδβγ . (11.52)

Because the space-time is chosen to be a direct product form, the tangent space
decomposes trivially:

ηd−dim
aαβ,bγδ =

(
η
(d−1)−dim
mαβ,nγδ 0

0 δαδδβγ

)
. (11.53)

In particular, the component of the vielbein EA
I along the circle is

Ea;εζ
9αβ = δa

9δε
αδζ

β . (11.54)

In this background the potential splits into three parts. One has no tangent-vectors
lying along the isometry direction; this will become the potential in the T-dual case.
A second term has all components along the circle: since the flat limit corresponds
to the commutator squared, this term will vanish. The crossterm with half the com-
ponents along the circle is the interesting part. Using that the vielbein is trivial in
the ninth direction, the crossterm equals

V cross
curv = −Tλ2

2
η9ab,9cdηBDEB

J ED
L TrD(X)9abD(X)JD(X)9cdD(X)L . (11.55)
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The triviality of the vielbein allows the use of the following contraction identity,

ηIJD(X)I,adDJ,ef = 2(Xk)af (Xk)ed − δaf (X2)ed − δed(X2)af , (11.56)

in the direction of the circle. Thus

V cross
curv = −Tλ2ηBDEB

J ED
L

[
Tr

(
X9D(X)J

)
Tr

(
X9D(X)L

)

−Tr
(D(X)J

)
Tr

(
X9X9D(X)L

)]
. (11.57)

Due to the defining property 11.48 of the commutation operator, the last term van-
ishes as Tr(D(X)I) = [Xi, I] = 0. The remaining term yields

V cross
curv = −Tλ2ηBDEB

jαβED
`γδ

(
[Xj , X9]αβ [X`, X9]γδ

)
. (11.58)

Upon using the standard T-duality rule which replaces commutators with deriva-
tives,

iλ[X9,F(X)] → ∂9F , (11.59)

the kinetic term equation 11.7 is recovered exactly. Notice that the vielbeins have
basically just gone along for the ride. The proof of T-duality in a flat background
would be identical. This clearly shows the power of the matrix-geometry approach.
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CHAPTER 12

EVIDENCE FOR A GRAVITATIONAL

MYERS EFFECT

(12.1) CORRECTION TERMS AND THE MYERS EFFECT

The flat-space action (equation 8.7) derived from the supersymmetric Yang-Mills
theory is only valid for low energies (in fact Ẋ2 ¿ 1) and receives different types of
corrections if one tries to extend the validity of this action.

Higher derivative corrections come in the form of the Dirac-Born-Infeld (DBI) action

SDBI = m

∫
dτTr

√
−ηµν∂τXµ∂τXν . (12.1)

It is easy to see that in the limit Ẋ ¿ 1 the kinetic term as in equation 8.7 is
recovered. R.C. Myers [54] showed that, in order for this action to be consistent with
T-duality in a background of constant RR 4-form fieldstrength F (4), the potential
must receive further contributions of the form (see also equation 8.11):

V = −λ2

4 Tr
(
[Xi, Xj ]2

)− i
3λ2Tr

(
XiXjXk

)
F

(4)
0ijk. (12.2)

These type of corrections have very interesting consequences. To see this, take the
following constant background field:

F
(4)
0ijk =

{
fεijk i, j, k ∈ 1, 2, 3

0 otherwise
. (12.3)
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The minima of the potential are now given by configurations that satisfy

[Xi, Xj ] = ifεijkXk. (12.4)

If the background flux was turned off somehow, the matrices Xi would have to
be proportional to the unit matrix, hence all D0-branes would be on top of each
other. This configuration would have zero energy. However, with f not equal to
zero this configuration does not minimize the potential anymore. Configurations
that do minimize the potential are given by:

Xi = f
2 αi, (12.5)

with αi a N × N matrix representation of the SU(2) algebra. Instead of sitting on
top of each other, the D0-branes are now separated. To get an idea for how far the
D0-branes are separated one can calculate the following quantity:

R =
√P3

i=1 Tr (Xi)2

N = f
2

√
N2 − 1. (12.6)

The surprising thing is that this configuration actually has a lower energy than the
diagonal configuration:

V = −λ2f2

6
N(N2 − 1). (12.7)

So, due to the background flux, the D0-branes find it favorable to blow up in three
directions to form a higher dimensional extended object that couples to the back-
ground flux. This effect is called the Myers effect. As an analogy one can think of
this as a dielectric effect. A neutral dielectric material only shows its bound elec-
tric charges, in the form of dipoles, after an external electric field is applied. Here
the RR 4-form charge of the D0-branes only appears after turning on a RR 4-form
background field.

(12.1.1) TACHYONIC INSTABILITIES

The fact that the configuration of having N D0-branes on top of each other is not
the lowest energy configuration in a RR four form background means that there
must be tachyonic modes signaling the instability. To find those tachyonic modes
one calculates the spectrum of quadratic fluctuations around this configuration. As
an illustration the case of two D0-branes will be worked out (see [56]).

As the background configuration the D0-branes are not taken exactly on top of each
other, instead the following is used

X̄i =
(

x̄i 0
0 x̄i + ∆i

)
. (12.8)
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In the end ∆ can always taken to be zero. The fluctuation δX is written as

δXi =
(

ai bi

b̄i di

)
. (12.9)

Pluggin X = X̄ + δX into equation 12.2 gives

δ2V
∣∣
X=X̄

=
∫

dτbi(δijλ
2∆2 + iF0ikj∆k)b̄j . (12.10)

In this calculation the Gauss law (the equation of motion for A0 that still needs to
be imposed)

[Ẋi, Xi] = 0, (12.11)

states that only fluctuations transverse to the static diagonal background are dy-
namical. Physical fluctuations therefore satisfy [δXi, X̄i] = 0. This means that the
physical fluctuations are orthogonal to the D0-brane separation ∆i ≡ (xi

1 − xi
2).

Therefore the physical fluctuations are the bi.

Note that there are only quadratic fluctuations in the off-diagonal elements, rep-
resenting the strings stretching between the branes. To determine to existence of
tachyonic modes it is necessary to calculate the eigenvalues of the mass matrix that
follow from this expression. Taking the flux background to be (in accordance with
equation 12.3)

F0ijk = λ2ρεijk, (12.12)

the eigenvalues become (listed as (eigenvalue)degeneracy):

(∆2)2, (∆2 − ρ∆)2, (∆2 + ρ∆)2. (12.13)

By judiciously choosing ∆ (small) and ρ (close to unity) one can make two of the
eigenvalues negative, signaling instabilities in the off-diagonal components of X: a
hint for the Myers effect. An interesting aspect of this instability is that it does not
occur if ∆ is exactly zero. One could interpret this as the instability being marginally
stable, having the D0-branes on top of each other is a stable configuration, but even
the slightest perturbation will cause the system to expand into the Myers configura-
tion. However one should be careful with such line of reasoning since technically
the action that is used to derive these results is not valid if the D0-branes are taken
exactly on top of each other [56]. Therefore the end-conclusion remains, there is an
instability that causes a blow-up of the D0-brane configuration if the D0-branes are
separated slightly.

117



Chapter 12 - Evidence for a gravitational Myers effect

(12.2) INSTABILITIES IN CURVED BACKGROUNDS

One can ask the question if there exist gravitational backgrounds that cause a Myers
effect, i.e. causing an instability in D0-brane configurations. Since the action of D0-
branes in a curved background is still under discussion, it is difficult to find exact
solutions one can trust. However one can try, within the limits of applicability, to
find the tachyonic instabilities. Those instabilities are a necessary condition for the
Myers effect to occur.

The action for D0-branes is known in a certain approximation, that of low velocity
(Ẋ ¿ 1) and weak curvature (such that terms quadratic in the Riemann tensor can
be ignored), also known as the linearized approximation. In this approximation the
ordering of all terms is completely symmetric. The computation is essentially the
same as in section 12.1.1, however in the case of a gravitational background it is
also necessary to take into account the fluctuations of the kinetic term. The result of
this calculation is (see [56] for a complete derivation)

δ2S = −
∫

dτ [bν( 2λ2gµν(x̄)gαβ(x̄)∆α∆β

−m(Rαµνβ(x̄) + Rανµβ(x̄))( ˙̄xα ˙̄xβ + 1
12∆̇α∆̇β))b̄µ

]

≡ −
∫

dτbνmνµ(p)b̄µ.

(12.14)

Because the metric is positive definite by definition, the static configurations of D0-
branes clearly have no tachyonic modes. Therefore one has to look at configurations
where D0-branes move along the geodesics of the curved background.

To illustrate the method the computation will be done for D0-branes moving on a
positive curvature background, a sphere, and a negative curvature background, a
hyperboloid. An interesting distinction between the two will be found.

To facilitate the computation, the metric of the sphere is written in RNC. Since the
sphere is a homogeneous space the transformation from the standard metric to RNC
is easily found and one obtains the metric:

ds2
S2,RNC = dz2

x + dz2
y −

1
3D2

(zxdzy − zydzx)2 +O(z3). (12.15)

One easily checks that geodesics through the origin zi = 0 can be written as zi = viτ

as required. Furthermore one immediately reads off the Riemann tensor at the origin
zi = 0:

ds2
RNC = ηµνdxµdxν + 1

3Rµαβν(0)xαxβdxµdxν + . . .

⇒ Rxyyx(0) = − 1
D2

.
(12.16)
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Consider a system of two D0-branes both moving along the same great arc through
the origin, but slightly separated along this arc. If one chooses the zx-axis as this arc,
this implies that ży

i = 0, ∆y = 0 and bx is the unphysical fluctuation. Substituting
this data into equation 12.14 leads to:

δ2S = −
∫

dτ

[
bx

(
2λ2∆2

)
b̄x + by

(
2λ2∆2 +

2m

D2

(
( ˙̄zx)2 + 1

12 (∆̇x)2
))

b̄y

]
.

(12.17)
Again the mass-matrix for the unphysical fluctuation bx is that given by D-geometry
and strictly positive definite. For the physical by fluctuation the mass matrix is ex-
plicitly positive semidefinite, and there is no tachyon in this case. The physical
picture explains this in simple terms. There are two forces acting: the force due
to the geodesic deviation and the force of open string between the branes. In this
positive curvature background the geodesic deviation works in the same direction
as the force by the stretched open strings, leading to a stable configuration.

As promised the same procedure will be applied to a negatively curved space. For
two nearly coincident D0-branes on a two-dimensional hyperboloid, the mass-matrix
of fluctuations is simply equation 12.17 with the substitution D2 → −D2. The
gravitational tidal force has changed sign and can now counterbalance the attracting
strings. Specifically there is a tachyonic instability in the spectrum if and only if the
D-brane separation is small compared to the velocity times the curvature:

2λ2∆2 ¿ 2m

D2

(
( ˙̄zx)2 + 1

12 (∆̇x)2
)

. (12.18)

Note, however, that for large separations the attractive force of the open strings
dominates the repelling force of the background geometry, and the tachyon disap-
pears.

To truly test whether a tachyonic instability is found, one question remains. The
tachyon appears to be evident for large speeds or small separations. Both extremes,
however are outside the range of validity of the action [56]. Large speeds violate the
truncation to second order in derivatives, while separations ∆ must be larger than
the eleven-dimensional Planck length. One needs to check whether the inequality
12.18, signaling the instability, can be satisfied within these bounds. Without loss of
generality, one may simplify the inequality by approximating ∆̇x ' 0. Substituting
żx = v with |v| ¿ 1, expressing m and λ in string units gs, `s and multiplying both
sides of equation 12.18 by `2s, one obtains

∆2

`2s
¿ v2 `2s

D2
¿ 1 . (12.19)

In words, the condition for a tachyon to be present is that the separation in string
units must be less then the velocity times the curvature in string units. Also used
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here is the implicit weak gravity and Born-Infeld condition: both sides must be less
than unity. Most importantly, however, the separation ∆ must also be larger than
the eleven-dimensional Planck length

g1/3
s `s ¿ ∆i ¿ `s . (12.20)

The window where equation 12.19 can be satisfied within the range of equation
12.20 is when the velocity times the curvature is much larger than the eleven-
dimensional Planck length:

g2/3
s ¿ v2 `2s

D2
. (12.21)

This is easily satisfied for very weak string coupling. The region where the “individ-
ual” geodesic solution is unstable thus falls easily within the region of validity of the
action. This is evidence for the existence of a lesser energetic stable configuration.
It suggests that a purely gravitational Myers effect exists.
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CHAPTER 13

CONCLUSIONS

Finding the action for multiple D-branes proves to be a challenging problem. The
approach taken in this thesis is that of D-geometry. The D-geometry axioms put for-
ward by Douglas do not seem to be sufficient to derive the action for D0-branes in
a gravitational background. Perhaps in principle they are, but in practice certainly
not. Therefore a method that has proven to be successful in theoretical physics is
used: imposing a symmetry constraint. The symmetry closest to gravity is that of
general coordinate or diffeomorphism invariance. Since the diffeomorphism invari-
ance, of the space the D0-branes move around in, can not be lifted to the group of
coordinate transformations in the larger matrix space, essential in the D-geometry
formulation, imposing this symmetry is not straightforward.

Finding inspiration from the manifestly covariant background field expansion, a new
symmetry principle is used to implement a kind of diffeomorphism invariance in the
D-geometry formulation. In short this symmetry principle entails the expansion of
the action around some base-point and the independence of the expansion of the
choice of base-point. This base-point independence can be taken as a definition of
diffeomorphism invariance in D-geometry.

The base-point independence can be successfully applied to the action of D0-branes
in a curved background. Results obtained using other methods are found to be
consistent with base-point independence. A common claim, that the symmetrized
trace prescription is a general solution to the ordering problem in the action for
D0-branes, is not consistent with base-point independence. The inconsistencies are
found when trying to extend the action to be valid for higher velocities (expansion in
Ẋ) or higher curvatures (expansion in R). Non-symmetrized trace corrections, ren-
dering the action base-point independent, can be found. However those corrections
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terms are not uniquely determined by this new symmetry principle.

D0-branes can exhibit interesting collective behavior. Since there are strings stretch-
ing between the branes one would think that it is always energetically favorable
to put the D0-branes on top of each other. However in a special background (a
Ramond-Ramond four form flux) the D0-branes tend to blow up into a spherical
configuration. This is usually referred to as the Myers effect [54]. This is very pe-
culiar since a single D0-brane is insensitive to this flux. It turns out that a system of
multiple D0-branes can couple to this flux. One can wonder if gravitational couplings
can also show such collective behavior. Evidence for this is found [56] in the sense
that D0-branes moving along geodesics on a negatively curved space experience an
instability (tachyon) in the modes that represent the strings stretching between the
D0-branes, just like in the original Myers effect. Of course it may happen that the
instability does not lead to a nearby stable vacuum. To decide about the fate of the
instability one would have to extend the validity of the action for D0-branes in a
curved background. Hopefully it is clear by now that this is not an easy thing to do.
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APPENDIX A

AFFINE LIE ALGEBRAS

This appendix provides the necessary background in affine Lie algebras, needed to
understand part one of this thesis. Familiarity with Lie algebras is assumed, only the
more advanced topics will be explained. Excellent introductions into the theory of
(affine) Lie algebras can be found in [70][71][72].

(A.1) SIMPLE LIE ALGEBRAS

Central in the discussion of Lie algebras is the Cartan matrix. The Cartan matrix
defines literally all the properties of the Lie algebra. Because of the importance of
the Cartan matrix, its properties will be discussed here. A simple Lie algebra of rank
r has associated to it an r × r matrix A, the Cartan matrix, satisfying the following
properties

1. Aii = 2

2. Aij = 0 ⇔ Aji = 0

3. Aij ∈ Z and Aij < 0 for i 6= j

4. detA > 0

5. It cannot be brought in block diagonal form by rearranging columns and rows.

There is also a graphical representation of the Cartan matrix: Dynkin diagrams. A
Dynkin diagram is a diagram with r nodes. Two nodes i and j are connected by one
or more lines if Aij is not equal to zero. The number of lines connecting the nodes i
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Figure A.1: The Dynkin diagram of G2.

and j is given by the formula

AijAji (no summation). (A.1)

In the case that
∣∣Aij

∣∣ ≥
∣∣Aji

∣∣ one draws an arrow pointing from node i to j. As a
simple example consider the following matrix

A =
(

2 −3
−1 2

)
. (A.2)

It is easy to check that this matrix satisfies all the above listed properties a Cartan
matrix should satisfy. Therefore this matrix is the Cartan matrix of some simple rank
two Lie algebra. The Lie algebra is called G2. The Dynkin diagram of this Lie algebra
is shown in figure A.1. The Cartan matrix for the Lie algebra of SO(8), D4 is

AD4 =




2 −1 0 0
−1 2 −1 −1
0 −1 2 −1
0 −1 −1 2


 . (A.3)

The Cartan matrix for the Lie algebra of SU(r + 1), Ar is given by a tri-diagonal
matrix

AAr
=




2 −1

−1
. . . . . .
. . . . . . −1

−1 2




. (A.4)

There is a particularly useful basis of the Lie algebra in which the role of the Car-
tan matrix becomes very clear. In this basis, the Chevalley basis, the whole al-
gebra is generated by 3r elements hi, ei and f i satisfying the following algebra

[
hi, hj

]
= 0[

hi, ej
]

= −Aijej

[
hi, f j

]
= Aijf j

[
ei, f j

]
= δij

(A.5)

All the other elements of the algebra are then generated by computing all Lie brack-
ets possible for the elements h, e and f . The h-elements form an Abelian subalgebra,
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called the Cartan subalgebra. The ei and f i form pairs similar to the raising and low-
ering operators of the SU(2) algebra (A1).

It is more common to define the Cartan matrix in terms of the root system like this

Aij = 2
α(i) · α(j)

α(j) · α(j)
. (A.6)

Where the α(i) are the simple roots. Knowing the root system is therefore equivalent
to knowing (in principle) everything about the Lie algebra. The highest root of the
root system is given by the following expression

θ =
∑

i

aiα
(i). (A.7)

The natural numbers ai are called the marks (or Coxeter numbers) of the Lie algebra.
For G2 the marks are

θ = α(1) + 2α(2). (A.8)

Of course, one can calculate the marks by constructing the highest weight. However
it is much easier to use the affine extension of the Lie algebra, to be introduced in
the next section.

The Coxeter number is easily calculated once the marks are known

g = 1 +
∑

i

ai. (A.9)

Likewise, for the dual Coxeter number

g∨ = 1 +
∑

i

a∨i . (A.10)

The co-marks a∨ are defined below.

(A.2) AFFINE EXTENSIONS

Affine Lie algebras are obtained by allowing more general Cartan matrices. For
affine Lie algebras the condition

detA > 0 (A.11)

is replaced by
detA{i} > 0 for all i = 0, . . . , r. (A.12)

The matrices A{i} are the principal minors of A, obtained by removing the i-th row
and column. One can associate a Dynkin diagram to these Cartan matrices using
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Figure A.2: A
(1)
r , the affine extension

of Ar.
Figure A.3: G

(1)
2 , the affine extension

of G2.

exactly the same rules as for the simple Lie algebras. The condition in equation A.12
then corresponds to the following statement: removing a single node from the affine
Dynkin diagram should result in the Dynkin diagram of a semi-simple Lie algebra.

The Chevalley basis for the affine Lie algebra is still given by equation A.5, however
now the index is running from 0 to r (r is the dimension of the Cartan matrix, it is
not the rank anymore). So the description of the affine Lie algebra in terms of the
Chevalley basis is just as simple as for the simple Lie algebras. However in the affine
case the algebra does not close: it is infinite dimensional.

The marks and co-marks for the affine Lie algebra are particularly simple to calcu-
late. The co-marks are given by the eigenvector, belonging to eigenvalue zero, of the
affine Cartan matrix ∑

j

Aija∨j = 0. (A.13)

The a∨j are fixed by requiring that the co-mark for the affine node is zero: a∨0 = 1.
To find the marks one uses the transposed affine Cartan matrix

∑

j

(AT )ijaj = 0. (A.14)

Again, a0 = 1 is required. The Coxeter numbers are now given by

g =
r∑

i=0

ai, g∨ =
r∑

i=0

a∨i . (A.15)

To every simple Lie algebra one can associate an affine extension, defined by the
fact that the marks of the affine extension reproduce the marks for the simple Lie
algebra. For the Ar series the affine extension is obtained by adding a node and
connecting it to the outermost two nodes. See figure A.2 for the affine extensions of
Ar and G2. The Cartan matrix of the affine extension of G2 is




2 −1 0
−1 2 −3
0 −1 2


 . (A.16)
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Figure A.4: The Dynkin diagram of the dual affine Lie algebra of G2, or G
(1)
2 = D

(3)
4 . Compared

to the Dynkin diagram of G
(1)
2 only the direction of the arrow is reversed.

THE DUAL ALGEBRA

In this thesis the notion of a dual algebra appears. In terms of the Cartan matrix
the dual algebra is very easy to define. The only thing one needs to do is to take
the transpose of the Cartan matrix. Thus, if A is the Cartan matrix of Lie algebra g,
then AT is the Cartan matrix of the dual Lie algebra g∨. The Ar and Dr series are
self-dual, the Br and Cr series are each others dual.

TWISTED ALGEBRAS

Sometimes the dual algebra can also be obtained by twisting another algebra. The
twisting procedure will be described briefly here. Consider a Dynkin diagram of a
simple Lie algebra. Generically this diagram has some discrete symmetry group Γ.
This symmetry group interchanges nodes of the Dynkin diagram. On the level of the
Lie algebra this means that this symmetry interchanges generators in the Chevalley
basis. The twisted algebra is obtained by constructing a subalgebra, invariant under
the symmetry group Γ. The relevant example in this thesis is D4. Is has an S3

symmetry, the invariant subalgebra being a G2 algebra (see the discussion in section
5.5.2). After this twisting one can add an affine root to the algebra to obtain the
D

(3)
4 algebra, which happens to be equivalent to the G

(1)∨
2 algebra (see figure A.2).

The Cartan matrix of this algebra is




2 −1 0
−1 2 −1
0 −3 2


 , (A.17)

which is indeed the transpose of equation A.16.
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APPENDIX B

A RECURRENCE RELATION FOR

PN (x)

In this appendix a recurrence relation for characteristic polynomial of the Lax matrix
for U(N) is derived. This characteristic polynomial is defined as

PN (x) = det(xIN − L), (B.1)

written out more explicitly

PN (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x− p1 −y1 0 . . . 0 −z

−1 x− p2 −y2 0 . . . 0
0 −1 x− p3 −y3 0 . . 0
. . . . . . . .

. . . . . −1 x− pN−2 −yN−1

−y0
z 0 . . . . −1 x− pN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B.2)

This determinant can be expressed in terms of determinants of the following form

GN (x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x− p1 −y1 0 . . . 0 0
−1 x− p2 −y2 0 . . . 0
0 −1 x− p3 −y3 0 . . 0
. . . . . . . .

. . . . . −1 x− pN−2 −yN−1

0 0 . . . . −1 x− pN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (B.3)
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Expanding PN (x) along the bottom line and keeping only z-independent terms one
gets

PN (x) = (x− pN−1)GN−1(x)− (−1)(−yN−1)GN−2(x)

+ (−1)N+1(−y0

z
)(−1)N (−z)G+

N−2(x)

= (x− pN−1)GN−1(x)− yN−1GN−2(x)− y0G
+
N−2(x),

(B.4)

here G+
N (x) is equal to GN (x) with shifted p’s and y’s (i.e. pi → pi+1, yi → yi+1).

The GN (x) and G+
N (x) are tri-diagonal and therefore satisfy the recurrence relations

GN (x) = (x− pN−1)GN−1(x)− yN−1GN−2(x) (B.5)

G+
N (x) = (x− pN )G+

N−1(x)− yNG+
N−2(x). (B.6)

As a special case, take all the y’s and p’s equal, then G+
N (x) = GN (x) and the recur-

rence relation for PN (x) is

PN (x) = (x− p)GN−1 − 2yGN−2 = GN (x)− yGN−2, (B.7)

in this case it is easy to show that the PN satisfies the same recurrence relation as
the GN

PN (x) = (x− p)PN−1(x)− yPN−2(x), (B.8)

which is, up to some rescaling, the Chebyshev recurrence relation. Therefore the
PN (x) (with all y’s and p’s equal) are given by the Chebyshev polynomials of the
first or of the second kind.
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APPENDIX C

EQUATIONS OF MOTION FOR G2

Here the equations of motion for G2 with the potential given in (5.93).

For p1 one gets

0 = 3g2(2φ1 − φ2) + 2g6

(
− 27y2y1φ2 + 9y1y0φ2 − 12y2y0φ2 +

4
3
y2
0φ2 − 12y0φ

3
2

+ 9y0φ
2
1φ2 − 81φ3

2φ
2
1 + 54φ2

2φ
3
1 +

1
3
y2
0φ1 + 6y0φ1φ

2
2 + 27y2

2φ1 + 54y1φ
2
2φ1

− 81y2φ
2
1φ2 + 54y2φ1φ

2
2 − 6y2y0φ1 − 27y1φ

3
2 + 27φ4

2φ1

)
.

(C.1)

For p2 one has

0 = 3g2(2φ2 − φ1) + 2g6

(
− 8

3
y2
0φ2 + 27y2

1φ2 − 27y2φ1y1 + 9y0φ1y1 − 12y2y0φ1

+
4
3
y2
0φ1 − 36y0φ1φ

2
2 + 3y0φ

3
1 − 81φ2

2φ
3
1 + 27φ2φ

4
1 + 6y0φ

2
1φ2 + 24y0φ

3
2 + 54y1φ2φ

2
1

− 27y2φ
3
1 + 54y2φ

2
1φ2 + 24y2y0φ2 − 81y1φ

2
2φ1 − 12y1y0φ2 + 54φ3

2φ
2
1

)
.

(C.2)

For y0 one finds

`

y0
= g2 + g6

(
− 16

3
y0φ

2
2 +

4
9
y2
0 +

8
3
y1y0 + 18y1φ1φ2 − 24φ1φ2y2 − 12y1y2

+
16
3

φ1y0φ2 − 24φ3
2φ1 + 6φ3

1φ2 +
2
3
y0φ

2
1 + 6φ2

2φ
2
1 + 12φ4

2 + 12y2
2 − 6φ2

1y2

+ 24φ2
2y2 − 12y1φ

2
2 −

16
3

y2y0

)
.

(C.3)
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For y1 one gets

2`

y1
= 3g2 + g6

(
54y1φ

2
2 +

4
3
y2
0 − 54φ1φ2y2 + 18φ1y0φ2 − 12y2y0 + 54φ2

2φ
2
1

− 54φ3
2φ1 − 12y0φ

2
2

)
.

(C.4)

For y2 one gets

`

y2
= 3g2 + g6

(
− 54y1φ1φ2 − 24φ1y0φ2 − 12y1y0 + 54φ2

1y2 + 24y2y0 − 54φ3
1φ2

+ 54φ2
2φ

2
1 − 6y0φ

2
1 + 24y0φ

2
2 −

8
3
y2
0

)
,

(C.5)

and finally for ` one has y0y
2
1y2 = Λ8/36.
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SAMENVATTING

DEEL ÉÉN: SUPERSYMMETRISCHE IJKTHEORIE

Eén van de meest geheimzinnige eigenschappen van de sterke wisselwerking is wel
het feit dat de quarks nooit vrij voorkomen, maar altijd in zogenaamde kleurloze
combinaties. Quarks zijn als het ware opgesloten. Als de Quantum Chromo Dynam-
ica (QCD) ook daadwerkelijk een theorie van de sterke wisselwerking is, dan zou
de opsluiting van de quarks ook met deze theorie beschreven moeten kunnen wor-
den. Tot op de dag van vandaag is dat nog niet geheel gelukt. De reden daarvoor
is dat opsluiting plaatsvindt bij lage energieën (typisch lager dan enkele honderden
MeV). Juist bij deze lage energieën is de koppelingsconstante van QCD groter dan
één. Dit maakt het toepassen van perturbatieve technieken vrij hopeloos. Zelfs al
zou het lukken om de volledige reeks van Feynman diagrammen te sommeren, dan
nog ontkomt men niet aan het feit dat deze reeks slecht asymptotisch convergeert.
De beschrijving van de opsluiting van quarks met behulp van QCD vraagt dan ook
om nieuwe niet-perturbatieve methoden.

Er is een theorie, de snaartheorie, die een frisse kijk op dit probleem kan geven.
De effectieve veldentheorie voor een D-braan opstelling wordt gegeven door één of
andere ijktheorie. Het is mogelijk om op deze manier ijktheorieën te construeren die
veel gelijkenis vertonen met een supersymmetrische extensie van QCD. De dynamica
van ijktheorieën bij lage energie kan op deze manier worden begrepen door naar de
dynamica van de, beter begrepen, D-branen te kijken. Zo kunnen nieuwe inzichten
worden verkregen in het mechanisme van de opsluiting van quarks.

Het is zelfs zo dat de snaartheorie kan worden gebruikt als een nieuwe invalshoek
om veldentheoretische technieken te genereren. Een goed voorbeeld hiervan is het
werk van Dijkgraaf en Vafa. Dit werk laat zien hoe men een exacte niet-perturbatieve
superpotentiaal kan afleiden met behulp van een convergerende storingsreeks. Deze
methode kan men uiteindelijk ook helemaal in de veldentheorie afleiden, maar hij
vindt zijn oorsprong in een reeks dualiteiten toegepast op D-branen op Calabi-Yau
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variëteiten.

De methode van Dijkgraaf en Vafa komt erop neer dat men, in plaats van een
volledige pad-integraal, slechts een gereduceerde matrixintegraal hoeft te bereke-
nen. Er hoeft geen impuls afhankelijkheid te worden meegenomen en alleen de
planaire diagrammen moeten worden berekend. Alhoewel dit al een enorme sim-
plificatie is, kan het nog iets gemakkelijker door naar ijktheorieën in drie dimensies
te kijken. Seiberg en Witten hebben laten zien dat de lage energie effectieve super-
potentiaal in vier dimensies kan worden berekend door naar de drie-dimensionale
theorie te kijken die men krijgt door compactificatie op een cirkel. Het blijkt dat
in de zo verkregen drie-dimensionale theorie het relatief eenvoudig is om de su-
perpotentiaal te berekenen. Er zijn geen fractionele instantonen of monopolen die
bijdragen aan deze superpotentiaal, het is “slechts” een kwestie van het vinden van
de juiste variabelen om deze superpotentiaal in uit te drukken.

Voor theorieën met N = 2 supersymmetrie gebroken naar N = 1, door middel
van een superpotentiaal, bestaat het sterke vermoeden dat de juiste variabelen wor-
den gegeven door de Lax matrix van een onderliggend integreerbaar systeem. De
vacuüm structuur van ijktheorieën met uitgebreide supersymmetrie kan worden
gevonden middels een hyperelliptische kromme. Deze kromme kan ook worden
gezien als een spectrale kromme van een integreerbaar systeem met een Lax-paar
formulering. Precies dit integreerbaar systeem, in dit geval een periodiek Toda sys-
teem, geeft de juiste variabelen om de superpotentiaal in uit te drukken. Na het
invullen van de Lax matrix in de superpotentiaal moeten alleen nog de extrema
worden berekend. Aangezien de superpotentiaal een polynoom is, is dit een een-
voudige opdracht in vergelijking met het berekenen van een matrix integraal. De
verkregen resultaten kunnen worden vergeleken met resultaten verkregen met be-
hulp van de methodes van Seiberg-Witten en Dijkgraaf-Vafa. De drie-dimensionale
berekeningen komen uitstekend overeen met de al bekende resultaten, iets wat het
vertrouwen in het vermoeden versterkt.

In een poging om het vermoeden te bewijzen is een braan opstelling beschreven.
Deze opstelling van NS5-branen met D4-branen daartussen opgehangen, beschrijft
een ijktheorie met hypermultipletten, maar zonder superpotentiaal. Deze ijktheo-
rie wordt effectief beschreven door een Hitchin systeem, een integreerbaar systeem
gebaseerd op een Riemann oppervlak. In de limiet waarin de hypermultipletten
oneindig zwaar worden gaat dit Hitchin systeem over in een periodiek Toda sys-
teem. De adjoint scalar in dit systeem is precies gelijk aan de Lax matrix, een essen-
tieel ingrediënt van het vermoeden. De verwachting is dat het aandraaien van een
superpotentiaal deze redenering niet zal ontkrachten.

Het toepassen van een integreerbaar systeem bleek ook nuttig bij het bepalen van de
vacua van theorieën met G2 ijksymmetrie. Hier is het gelukt, naast het verifiëren van
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bekende resultaten, om de superpotentiaal uit te drukken in het chirale superveld
S, iets wat met matrix technieken moeilijk gaat. Bij het uitwerken van een voorstel
om de resolvent voor G2 te berekenen, is een hyperelliptische Seiberg-Witten curve
gevonden. Voorheen waren de curves die de vacuüm structuur voor G2 beschreven
van een ingewikkelder structuur dan de hyperelliptische.

Al met al kan worden geconcludeerd dat het toepassen van de Lax matrix, van het
onderliggende integreerbaar systeem, resultaten geeft die precies in overeenstem-
ming zijn met de resultaten van andere, vaak complexere, technieken. Vooral het
uitdrukken van de superpotentiaal in het chirale superveld S is erg interessant. Het
vermoeden bestaat namelijk dat dit veld het lichtste veld is. Berekeningen, waaron-
der die in dit proefschrift, tonen aan dat dit veld massief is. Dit is dan weer sterk
bewijs voor het bestaan van een “mass gap”, een van de onbewezen eigenschappen
van Yang-Mills theorie. Zo’n “mass gap” wordt ook wel gezien als een noodzakelijke
voorwaarde voor het bestaan van de opsluiting van quarks en veldlijnen. Helaas
moet ook worden geconstateerd er geen sluitende argumenten zijn die aantonen of
het superveld S ook daadwerkelijk het lichtste veld is.

DEEL TWEE: D0-BRANEN

De meest prominente kandidaat voor een allesomvattende theorie die uit de snaar-
theorie voortkomt is de zogenaamde M-theorie. Aangezien de verschillende snaar-
theorieën speciale gevallen zijn van M-theorie, hoopt men dat M-theorie een consis-
tente beschrijving van de kwantumgravitatie kan geven. Het is dus de moeite waard
om M-theorie te bestuderen.

Een van de manieren om iets over M-theorie te weten te komen is door type IIA
snaartheorie te nemen in de limiet waar de snaarkoppeling zeer sterk wordt. In
deze limiet wordt de dynamica in de type IIA snaartheorie volledig gedomineerd
door de puntvormige D0-branen, soliton-achtige geladen objecten waarop snaren
kunnen eindigen. De theorie van deze D0-branen beschrijft M-theorie in het Infinite
Momentum Frame (IMF).

Om M-theorie op een gekromde ruimte te beschrijven, kan het dus nuttig zijn om
D0-branen in een gekromde achtergrond te beschrijven. Nu is het echter zo dat het
erg moeilijk is om een actie voor D0-branen in een gekromde achtergrond te vinden.
Waar het eisen van diffeomorfisme invariantie de actie volledig vastlegt in het geval
van slechts één D0-braan, is de situatie volledig anders in het geval van meerdere
D0-branen. In dat laatste geval krijgt de dynamica namelijk een niet-commutatief
karakter waardoor het zelfs niet meer duidelijk is hoe diffeomorfisme invariantie
gedefinieerd moet worden.
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Om een oplossing te vinden voor dit probleem kan men basispunt-onafhankelijkheid
van de actie eisen. Het principe hierachter is eenvoudig. Men splits de velden die
de D0-branen beschrijven in een achtergrond deel en een fluctuatie deel. Vervol-
gens expandeert men de actie in de fluctuatie velden, in een manifest covariante
wijze. Het mag natuurlijk geen verschil maken hoe de opdeling in achtergrond en
fluctuatie is gekozen, aangezien deze keuze volledig artificieel is. Vervolgens kan
men transformaties van de velden definiëren die van de ene keuze naar de andere
transformeren. De invariantie onder deze transformaties wordt ook wel basispunt-
onafhankelijkheid genoemd.

Deze basispunt-onafhankelijkheid kan worden gezien als een definitie van diffeo-
morfisme invariantie voor de actie van meerdere D0-branen. In tegenstelling tot de
actie voor één D0-braan, legt de basispunt-onafhankelijkheid de actie voor meerdere
D0-branen niet volledig vast. Men kan proberen om de actie van één braan te ge-
bruiken en deze generaliseren naar de actie voor meerdere branen. Hier stuit men
echter, als direct gevolg van het niet-commutatieve karakter van de dynamica, op
problemen met betrekking tot de ordening van de termen. De symmetrische or-
dening die vaak wordt aangenomen voor D0-branen blijkt alleen consistent te zijn
met basispunt-onafhankelijkheid voor lage snelheden en kromming. Wel is het mo-
gelijk om correcties te vinden op de symmetrisch geordende actie, zodanig dat de
actie basispunt-onafhankelijk is. Aangezien de correcties niet uniek zijn, is de orde-
ningsproblematiek nog niet opgelost.

Een belangrijke eigenschap die elke actie voor branen, in een gekromde ruimte
met een isometrie, moet hebben is T-dualiteit. Een voorstel voor de potentiaal
in een gekromde achtergrond, die zodanig is geconstrueerd dat deze basispunt-
onafhankelijk is, blijkt inderdaad consistent te zijn met T-dualiteit.

D0-branen op een negatief gekromde ruimte blijken eigenschappen te vertonen die
doen denken aan een gravitationeel Myers effect. Het Myers effect is een bijzondere
eigenschap van branen, waarbij een collectie van branen gevoelig blijkt te zijn voor
een veld waaraan een enkel braan niet koppelt. De D0-branen, die normaal gespro-
ken alleen koppelen aan de RR één-vorm, kunnen zo onder de invloed van een RR
vier-vorm worden opgeblazen in een bol-achtige configuratie. Deze bol-achtige con-
figuratie heeft een lagere energie dan wanneer men alle D0-branen op elkaar zet.
Het bestaan van deze configuratie met lagere energie wordt gekenmerkt door het
bestaan van tachyonen in het spectrum van kwadratische fluctuaties. Precies dit
kenmerk kan ook worden gevonden in de theorie van bewegende D0-branen op een
negatief gekromde achtergrond. Dit is geen bewijs voor het bestaan van zo’n lagere
energie configuratie (de tachyonen wijzen op een instabiliteit, maar zeggen niets
over het bestaan van een stabiele configuratie met lagere energie), maar het geeft
zeker een reden om D0-branen in een gekromde achtergrond verder te bestuderen.
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