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 Primary open-angle glaucoma (POAG) is a multifacto-
rial eye disorder with a prevalence in the western world of
around 1% in people aged 55 and older [1]. Clinically, POAG
is recognized by an excavation of the optic nerve head, visual
field defects, and an open chamber angle. The continued deg-
radation of retinal ganglion cells by an apoptotic process un-
derlies POAG at the cellular level [2]. Risk factors include
age, elevated intraocular pressure (IOP), myopia, and African
descent. In addition, it is generally acknowledged that the eti-
ology of POAG has an important genetic component [3].

Linkage analysis in large families, segregating POAG in
an autosomal dominant fashion, yielded six major chromo-
somal regions named GLC1A to GLC1F [4] (OMIM 606689,
601682, 602429, 603383, 601652, and 602432). Only three
POAG genes have been identified to date. The first, MYOC,
encodes the 504 amino acid glycoprotein myocilin (also known
as TIGR) [5]. The prevalence of MYOC mutations generally
approximates 3% in different POAG populations. The precise
function of the ubiquitously expressed protein is unknown [6].
OPTN, the second POAG gene, encodes optineurin, a gene
previously identified as FIP-2. Disease-causing OPTN alter-
ations have been found with frequencies varying from 16.7%
to less than 0.1% in different studies [7,8]. OPTN is ubiqui-

tously expressed and mainly localized at the Golgi apparatus.
A role for the protein in regulating apoptosis and TNF-α sig-
naling is conceivable, though its precise cellular function is
remaining to be elucidated [8]. The third POAG gene, WDR36
was most recently identified [9]. Three out of four disease
mutations were located in separate WD40 repeats and may
therefore disturb protein-protein interactions. The overall
mutation frequency was estimated between 5 and 7% [9].

Our search for new POAG candidate disease genes was
guided by genetic localization, expression patterns, and po-
tential POAG-related biochemical function. We focused on
the genes located in the GLC1A-GLC1F loci, which are ex-
pressed in the optic nerve or neural retina. In terms of bio-
chemical data, we focused on those currently available for
OPTN, one of the genes known to be involved in POAG. OPTN
has been found to interact with Rab8, a small actin and micro-
tubule reorganizing GTPase. Rab8 plays an important func-
tion in the transport of membrane structures (vesicles) from
intracellular compartments towards cell surfaces. It is con-
ceivable that this protein may regulate targeted vesicle trans-
port in response to stress, such as exerted by TNF-α and cell
differentiation [10]. In addition, a putative direct role for OPTN
in protein secretion or the organization of the cytoskeleton
has been identified in chicken [11,12]. We consequently hy-
pothesized that targeted membrane transport processes may
be involved in POAG. Alterations in vesicular trafficking have
also been implicated in different other neurodegenerative dis-
eases such as Huntington’s disease [13] and sporadic
Alzheimer’s disease [14].
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The POAG locus GLC1B, located at chromosome 2p11-
2q12 [15], harbors two genes expressed in the optic nerve and
neural retina (personal communication, S. van Soest, March,
2003). These genes, VAMP5 and VAMP8 (encoding vesicle-
associated membrane proteins 5 and 8) encode SNARE pro-
teins, which are known to be present in vesicle membranes.
These proteins mediate the formation of SNARE complexes
(soluble N-ethylmaleimide-sensitive fusion protein attachment
protein receptor complexes), which is crucial for membrane
fusion and trafficking events such as secretion and exocytosis
[16]. VAMP8 is required for the secretion of granules in plate-
lets [17], which resembles exocytosis in neurons in many re-
spects [18]. Taken all data together, we hypothesized that se-
quence changes in VAMP5 or VAMP8 may be implicated in
POAG and investigated this hypothesis.

METHODS
 This study was approved by the medical ethics committee of
the Academic Medical Center (AMC) in Amsterdam. All par-
ticipants gave written informed consent. A total of 90 unre-
lated patients with a diagnosis of clinical POAG were enrolled
through the Netherlands Ophthalmic Research Institute and
the Academic Medical Center. POAG cases in this study were
both instant cases and cases with a positive family history.
POAG was defined as a glaucomatous optic neuropathy ac-
companied by glaucomatous visual field defects. IOP was not
included in the diagnosis. Eye examination included biomi-
croscopy with a 90 D lens, ophthalmoscopy, and stereo fun-
dus photography. Control subjects (n=60) were randomly cho-
sen from the Dutch population and were screened for the ab-
sence of POAG and macular disease.

Genomic DNA was isolated from peripheral blood lym-
phocytes according to standard procedures. VAMP fragments
were amplified by polymerase chain reaction using the prim-
ers listed in Table 1. The search for sequence variations was
carried out by denaturing high performance liquid chroma-
tography (dHPLC) on an automated system (Wave;
Transgenomic, Santa Clara, CA) equipped with a DNASEP
column (Transgenomic). Fragments were eluted with a linear
gradient of acetonitrile in 0.1 M triethylammonium acetate
(TEAA) buffer pH 7.0, at a constant flow rate of 1.5 ml/min.
Melting temperatures and running conditions were predicted
by using NAVIGATOR™ software (Transgenomic). Samples
were analyzed at the predicted optimal temperature (RT

m
; Table

1) and RT
m
+2 °C. For each fragment, the obtained dHPLC

elution profiles were grouped according to similarity. Bidi-
rectional nucleotide sequences of at least 2 samples from each
group were determined on an ABI-310 (Applied Biosystems,
Foster City, CA) by cycle sequencing with the Big Dye Ter-
minator Cycle Sequencing kit (Applied Biosystems). The
dbSNP database was used as a database for known single nucle-
otide polymorphisms (SNPs) and their frequencies. The sig-
nificance of differences between allele frequencies in cases
and controls was evaluated from 2x2 contingency tables by χ2

tests of homogeneity.

RESULTS
VAMP5 and VAMP8 are encoded by three exons each. The
first exon of both genes encodes the translation initiation codon,
Met, only. For both VAMP5 and VAMP8, exons 2 and 3, in-
cluding the intron-exon boundaries and neighboring fragments
of the introns were screened for alterations in 90 unrelated
POAG cases and 60 controls. Analysis of the VAMP amplicons
by dHPLC and cycle sequencing did not reveal any
nonsynonymous sequence change that could possibly under-
lie POAG pathology. We analyzed several SNP variants in
both the patient and control group. Novel and previously de-
scribed SNPs were identified and are presented in Table 2 and
Table 3.

In VAMP5, three known SNPs were screened (Table 2).
The first two SNPs, dbSNP2289976G>A and
dbSNP14976C>T, located in intron 1 and exon 2, were found
to be in complete linkage disequilibrium. The SNP in exon 2
does not introduce any changes at the protein level. The third
SNP, dbSNP14242C>T, was located in the untranslated re-
gion (UTR) of exon 3. In VAMP8, four previously described
SNPs were identified (Table 3). dbSNP3731827T>C and
dbSNP3731828C>T were located in intron 1 and exon 2, re-
spectively. The latter SNP does not introduce an amino acid
alteration. The exon 3 SNP dbSNP6547625A>G was also
synonymous and the last known SNP, dbSNP1058588, was
present in the UTR. For both the VAMP5 and VAMP8 SNPs,
no significant differences were found between the allelic fre-
quencies in POAG cases and controls (Table 2 and Table 3).

In both VAMP genes, seven new SNPs were identified.
The VAMP5 introns 1 and 2, and the region flanking the UTR,
respectively, contained changes at nucleotide -106, nucleotides
+62, -96, -44, and nucleotide +21 (Table 2). The second in-
tron of VAMP8 harbored a SNP at position +46, and an addi-
tional alteration was found at position +62 in the sequence
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TABLE 1. EXPERIMENTAL PARAMETERS USED IN THIS STUDY

                        PCR primers          Optimal
Gene    Fragment     (forward/reverse)      temp (°C)
-----   --------   ---------------------   -----------
VAMP5   Exon 2     CACTCCGCACACATCATACC       61.3
                   TCTAGGCTATGGGTGCCTGA

        Exon 3,    GACAAGATGGGGAGGATGC        62.1
        part 1     GCTCTGAGGGAGAAAGACGA

        Exon 3,    GCTCATCATCCTGATTGTGCT      59.4
        part 2     GTGGAGTCCTTTGGGTGATG

VAMP8   Exon 2     CTCACCTTCTGGGGCTTACA       60.4
                   GTCAAACTTCTGGCCCTCCT

        Exon 3,    TGTGGGCTGCACTTGTACTC       59.6
        part 1     CCGAGCAGCATTCTCTGTAG

        Exon 3,    CAGGGACAACCCTCCATAAA       57.6
        part 2     TCTTTGCCCTTCCAACAACT

PCR primers and predicted optimal temperatures for dHPLC analy-
sis of the corresponding amplicons.
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flanking the UTR (Table 3). All new SNPs did not lead to
functional changes or to the introduction of potential splice
sites, as analyzed by the program SpliceSiteFinder (using a
nonparametric algorithm [19,20]). Moreover, the allele fre-
quencies of frequent SNPs were similar in POAG cases and
controls. Two rare, nonfunctional variants were found in one
single POAG case and one control only (Table 2 and Table 3).
The observed haplotype distributions were either close to those
expected under Hardy-Weinberg equilibrium (p>0.05; χ2 test),
or showed significant disequilibrium in both cases and con-
trols.

DISCUSSION
 POAG causing mutations in the two genes known to date,
OPTN and MYOC, include missense mutations and the intro-
duction of premature stop codons [6,8]. In addition, potential
POAG risk associated sequence changes have been found in,
among others, the genes MYOC, OPTN, and OPA1 [21-23].
Neither pathological nor risk associated sequence changes were
identified in the VAMP5 or VAMP8 genes in our cohort. More-
over, no evidence for associations between VAMP SNPs and
POAG was found. All variants present in the patient group
showed similar allelic frequencies in controls, except for the
newly identified VAMP5 SNP IVS3+21G>A. The latter SNP
was detected in a single POAG case only and does not appear
to have any functional effect. In summary, we studied VAMP5
and VAMP8 from the GLC1B locus in a cohort of Dutch POAG
patients and controls, and we did not find any clues for patho-
logic molecular aberrations. These genes are therefore most
likely not involved in POAG.

The two POAG genes known to date, OPTN and MYOC,
account for only a minority of cases [6,7]. These genes had
been previously screened in our cohorts. In MYOC, we found
a single sequence change, Asn480Lys in a single POAG fam-
ily [24]. This family was not included in the present study. In
OPTN, the Met98Lys sequence change was found (unpub-
lished). This variant has been implicated in normal tension
glaucoma [21], though frequency distributions of several other
studies do not support a role [25]. While the current study is

obviously limited by the relatively low amount of POAG cases
and controls, we interpret our results as a significant indica-
tion for the absence of a causal relation between the VAMP
genes analyzed and POAG. Taken into account the MYOC
mutation rates of around 3% [6] and our previous findings,
we would have expected to identify at least one or two muta-
tions. In this study, we used dHPLC for identifying nucleotide
changes. This method, which is used by multiple diagnostic
labs as the method of choice, is generally known to be cost
effective, rapid, and sensitive. Denaturing HPLC has been
shown to have a sensitivity of around 95% at the RT

m
. How-

ever, analysis at two different temperatures (RT
m
 and RT

m
 + 2

°C), as applied in this study, is known to detect single nucle-
otide changes with a sensitivity and specificity that approaches
100% [26]. Consequently, our results imply that screening of
VAMP5 and VAMP8 in different populations or larger num-
bers of POAG patients is not worthwhile.

Although VAMP5 and VAMP8 are probably not involved
in POAG etiology, this study does not exclude the hypothesis
that defects in cellular (vesicular) trafficking are involved in
POAG. The GLC1B locus, and the other POAG loci, still har-
bor several other genes putatively involved in intracellular
transport. Examples are TGOLN2, which may regulate mem-
brane traffic to and from the trans-Golgi network [27], and
ACTR1B, which is part of a complex involved in microtubule
based vesicle motility [28].

Due to the limited number of POAG disease genes iden-
tified to date, our current insight into cellular POAG mecha-
nisms remains limited. A mouse model recently confirmed that
at least some forms of aggressive, early onset, primary con-
genital glaucomas originate from abnormalities in ocular drain-
age structures [29]. Mouse models for the POAG gene MYOC
point out that the disease, in some cases, results from a gain of
function rather than a loss of function. Accumulation of the
mutant protein inside the endoplasmic reticulum (ER) of cells
and accompanying ER stress is putatively involved [30,31].
The selection and continued screening of other positional can-
didates should yield new disease genes and are instrumental
for the elucidation of the molecular pathology of POAG.
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TABLE 2. ALLELE FREQUENCIES OF SNPS IN THE HUMAN VAMP5
GENE

     SNP            POAG       Control     p       dbSNP
---------------   ---------   ---------   ----   ---------
IVS1-106C>T          nf       0.99/0.01             new
dbSNP2289976G>A   0.75/0.25   0.77/0.23   0.83   0.94/0.06
dbSNP14976C>T     0.75/0.25   0.77/0.23   0.83   0.90/0.10
IVS2+62G>A           nf       0.99/0.01             new
IVS2-96G>A        0.99/0.01   0.99/0.01   0.77      new
IVS2-44A>G        0.18/0.82   0.21/0.79   0.52      new
dbSNP14242C>T     0.96/0.04   0.95/0.05   0.83   0.72/0.28
IVS3+21G>A        0.99/0.01      nf                 new

The reference for previously identified SNPs is its dbSNP accession
number. The association between POAG and an SNP was evaluated
using 2x2 contingency tables with χ2 (2 sided) testing. Some SNPs
were not found (nf) in the POAG or control group. Allele frequen-
cies from the dbSNP database are presented under the header
“dbSNP”.
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TABLE 3. ALLELE FREQUENCIES OF SNPS IN THE HUMAN VAMP8
GENE

     SNP            POAG       Control     p       dbSNP
---------------   ---------   ---------   ----   ----------
dbSNP3731827T>C   0.58/0.42   0.63/0.37   0.40   0.64/0.36
dbSNP3731828C>T   0.73/0.27   0.77/0.23   0.43   0.70/0.30
IVS2+46G>C           nf       0.99/0.01             new
dbSNP6547625A>G   0.80/0.20   0.76/0.24   0.42   not listed
dbSNP1058588C>T   0.80/0.20   0.76/0.24   0.42   0.64/0.36
IVS3+62T>C        0.98/0.02   0.99/0.01   0.75      new

The reference for previously identified SNPs is its dbSNP accession
number. The association between POAG and an SNP was evaluated
using 2x2 contingency tables with χ2 (2 sided) testing. One SNP was
not found (nf) in the POAG group. Allele frequencies from the dbSNP
database are presented under the header “dbSNP”.
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