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Abstract 

For an arbitrary system of three coupled magnetic moments (sublattices), the stable magnetic structures have 
been determined as a function of the applied field. At a certain field, only one structure (phase) appears to be sta- 
ble. A classification of the possible collinear and non-collinear structures is worked out. The transitions, from a 
collinear structure to a non-collinear one, or vice versa, are smooth: no jump in the total magnetic moment does 
occur. 

1. Introduct ion  

In the past few years, enormous progress has been 
made in the study of the basic magnetic interactions in 
various RT-compounds (R: rare earth, or Y; T: tran- 
sition metal) (see e.g. [1]). In many of these materi- 
als, the magnetic structures can be described in terms 
of a two-sublattice model with the following features: 
at low temperatures, all R-moments are parallel. The 
same is true for the T-moments. In many cases, the 
crystalline anisotropy is for the greater part due to the 
crystalline electric field acting on the R-moments. The 
ground state, at zero applied field, is collinear (ferro- 
magnetic or antiferromagnetic, depending on the sign 
of the magnetic coupling between the two moments). 
In an applied field, however, a non-collinear struc- 
ture (also called phase) can be formed (see e.g. [2]). 
In the absence of crystalline anisotropy, the magneti- 
zation curve has then a linear portion: M = ~on/lnl, 
of which the slope is determined by the (absolute 
value of the) coupling parameter n (here taken to 
be negative for anti-ferromagnetic coupling). In prac- 
tice, the influence of the crystalline anisotropy can 
be minimized by performing the experiments on 

an assembly of small, freely (re)orientable, parti- 
cles (see e.g. [3]): during the magnetization process, 
the particles are reoriented in such a way that the 
crystalline anisotropy energy is minimized. I f  the 
T-anisotropy can be neglected, the R-moments re- 
main directed along the easy axis. In this way, from 
the slope of the linear portion of the magnetization 
curve, the coupling parameter n can be, and has been, 
determined. 

One may ask, whether this model is not too simple. 
In ferritic materials it is well known, that a magnetic 
sublattice sometimes is split in two (antiferromagnet- 
ically coupled) subsystems. Moreover, in many of the 
RT-compounds under consideration, the R-atoms oc- 
cupy different (but equivalent) crystallographic sites: 
a splitting in two subsystems might not be unrea- 
sonable. Verhoef [3] treats a case, in which, because 
of the tetragonal local symmetry, the rare-earth mo- 
ments tend to point into two different (but equivalent) 
directions. Consequently, here, and in many more 
cases, a two-sublattice model is not adequate. For 
instance, even in the case that two different kinds of  
rare-earth moments are placed on one sublattice, a 
three-sublattice model is necessary, because the 
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different R-atoms in general have different coupling 
parameters. 

For the ferritic materials just mentioned, extensive 
studies have been performed of three-sublattice mod- 
els, including spontaneous breaking up of one sublat- 
tice into two (see e.g. Ref. [4], and references therein). 
Clark et al. focus attention on the temperature de- 
pendence of the sublattice magnetizations [5]. The 
author, however, is not aware of a systematic study 
of  the effect of an applied field. Recently, a simplified 
three-sublattice model was applied for the description 
of the system RMn6_xCrx Sn6 [6]. Here, the Mn-atoms 
are imagined to occupy two equivalent sublattices (so 
with equal magnetic moments, and equal coupling 
parameters with respect to the R-sublattice). 

In this article, a complete treatment is offered for 
the determination of the magnetization curves (i.e. the 
stable magnetic structures) in a three-sublattice model. 
Since the magnetization of  a subsystem may depend 
on the effective field acting on that sublattice, general 
expressions for these effective fields are derived and 
presented. In this article, however, the moments are 
taken to be of constant magnitude. In Section 2, the 
stability criteria are explained, and applied to estab- 
lish a classification of the possible stable structures. 
In Section 3, the class "three equal coupling parame- 
ters" is treated. In Section 4, the class "only two equal 
coupling parameters" is shown to yield the most inter- 
esting magnetization curves. For this interesting case, 
the stability criteria for the possible magnetic struc- 
tures are gathered in Appendix A. The phase diagrams 
are presented in Appendix B (actually, the magneti- 
zation curves with an emphasis on the critical fields, 
where transitions from a collinear phase to a non- 
collinear one do occur). In Section 5, the feasibility of 
the occurrence ofnon-collinear structures is discussed 
for the most general class "three different coupling 
parameters". In Section 6, some concluding remarks 
are gathered and an outlook on further generalizations 
is offered. 

(positive molecular-field constants nij, labelled i ~ j )  
or antiferromagnetically (nij < 0). The influence of  
crystalline anisotropy is assumed to be negligible. 
The moments are placed in an external field #0H. The 
(free) energy is given by 

E = - ( n l 2 M I M 2  + n23M2M3 + n I3MIM3)  

-uoH(M1 + Mz + M3). (1) 

Using the method of Lagrange multipliers, minimiza- 
tion of the energy with respect to the (directions of 
the) moments yields the equilibrium conditions below 
(see Eqs. (2)). These equations can be derived also, in 
a mathematically clear way, by direct differentiation 
to e.g. the x and y components only, or, in a physically 
clear way, by stating that, in order to have a stable 
configuration, the effective fields acting on each mag- 
netic moment should be oriented along that moment, 
i.e. can be written as a j M j  with positive aj. 

Mathematically, aj > 0 is a necessary condition 
for a (local) minimum of the energy (indeterminate if 
aj = 0). Moreover, from the following mathematical 
considerations (leading to e.g. Eqs. (7b) and (11)), 
or from an obvious physical argumentation, we con- 
clude that the total magnetic moment, Mt = MI + 
M2 + M3, should be oriented along the applied non- 
zero field H, i.e. Mt = Q#oH with, similarly, Q/> 0. 
In order to facilitate later derivations, we add this re- 
quirement as a separate equation. The resulting ex- 
pressions can be arranged as 

aiM1 - n12M2 - n13M3 z poll, (2a) 

-- nl2M1 + a2M2 - n23M3 -- #0 H, (2b) 

-- nl3Ml - n23M2 + a3M3 -- I.l.0H, (2c) 

M I + M 2 + M 3 = M t = Q # o H  ( H >  0). (3) 

The coefficients aj and the discriminant (determinant 
of the coefficient matrix of the set of Eqs. (2a)- (2c))  
should be non-negative in order to have an energy 
minimum. The determinant is 

2. Stability criteria, classification 

We consider a system of  magnetic moments 
Ml,/1//2,/143, with fixed non-zero magnitudes. 
The moments are coupled, either ferromagnetically 

D ---- ala2a3 - {aln23 + cycl.} - 2n12n23n13. (4) 

Taking the components perpendicular to a non-zero 
field H separately, one finds immediately that in case 
the determinant D does not vanish, all these compo- 
nents vanish: we have a collinear structure or phase. 
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At zero field strength the determinant should vanish. 
A vanishing determinant is also a necessary condition 
for the occurrence of a non-collinear structure. 

In the collinear cases Eq. (3) is fulfilled automati- 
cally. For non-vanishing D we can determine the pa- 
rameter Q (the "susceptibility") by inversion of the 
matrix of the coefficients in Eqs. (2). Most of the fol- 
lowing relations, however, are formulated in such a 
way that they are also valid and useful for the case 
that the determinant vanishes. 

The elements Qij of the inverse matrix are deter- 
mined by 

n 2 DOll ~ mll = a2a3 -- 23, 

DQI2 z m12 = a3/ '/12 + n13n23 .  

(5a) 

(cycl.) 

(5b) 

Here, DQij is the "ordinary" product of the determi- 
nant D and the element Qij, and mij represents the 
appropriate minor (subdeterminant with appropriate 
sign). The definitions of mij presented here are of 
course valid also in case D vanishes. 

The minor mll, i.e. the expression at the right-hand 
side of Eq. (5a), is the discriminant of the energy 
expression (1) in which the moment MI is fixed, 
describing the behaviour of the moments M2 and 
M3 (in different "external" fields # o H +  nl2M1, and 
#oH+ nl3M1, respectively). Consequently, the mi- 
nors mii should also be non-negative (whether or not D 
vanishes). 

For non-zero determinant D, the inverse matrix does 
exist. We find straightforwardly Mj = Qj#oH, with 
Qj = Qlj + Q2j + Q3j. Evidently, this corresponds to 
a collinear state. We have 

DQ1 =ml l  +m12 +m¿3 

and 

=a2a3+a3n~2+a2n13 

+n23(n¿2 + Hi3) - n~3 [cycl.], (6a) 

DM1 ---(mll +ml2+ml3)!toH [cycl.]. (6b) 

Notice that Eq. (6b) can be derived quite generally in a 
form where both the left-hand side and the right-hand 
side are multiplied by a2 or by a3. Hence, Eq. (6b) 
holds unless, by incident, both a2 and a3 happen to 

vanish. For a non-collinear state, Eq. (6b) tells us 
only that the determinant D and the s u m s  Z j  mij (i = 
1, 2, 3) all vanish (see also Eq. (10a)). The "suscepti- 
bility" Q (see Eq. (3)) is given by Q = Qi + Q2 + Q3. 
Hence, 

DQ = ala2 + 2asH12 + 2n13n23  - -  n~2 + cycl. (7a) 

o r  

D M t = ( ~ i j  mij)ItoH. (7b) 

Other useful, and quite general, relationships are 

mllM2 = (a3 + n23)poH+ ml2M1, (8a) 

mllM3 = (a2 + n23)/.toH + mt3M1. (8b) 

Hence, 

mllMt -- (a2 + a3 + 2n23)/~oH 

+(mll + m12 + ml3)Ml. (8c) 

Let us first discuss the cases in which the applied field 
H vanishes. Then, from Eqs. (8a) and (8b) we infer 
that either all minors have non-zero values (certainly 
a collinear structure) or all minors do vanish (then a 
non-collinear structure may occur). In the latter case 
we have 

al---n12n13/n23; a2=-n12n23/n13; 

a3 ---- --n13n23/n12. (9) 

Consequently, since aj should be positive (for all j ) ,  
a non-collinear zero-field phase can only exist in case 
all molecular field constants are negative (antiferro- 
magnetic) or in case only one such constant is nega- 
tive, the other two being positive (ferromagnetic). 

In the following, we find the zero-field structures 
without difficulty as the limits (for vanishing field) of 
the structures in non-zero field. Hence, in the follow- 
ing we assume non-zero values for H,  unless stated 
otherwise. 

Let us further discuss the occurrence of non- 
collinear structures (or phases), in a finite field. 

As stated above, a non-collinear phase is only pos- 
sible in case D vanishes. Moreover, by interchanging 
the first colon in the set of  Eqs. (2a)- (2c)  with the 
right-hand side, and taking into account that, again, 
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the determinant should vanish in case a non-collinear 
solution exists (non-zero components perpendicular to 
Ml should exist), we find that the sum of the minors 
should vanish: 

mll  + m 1 2  + m 1 3  = 0 .  (lOa) 

Or, more generally, 

E m u = 0  ( i=  1,2,3). (10b) 
J 

Notice that in Eq. (6b) the left-hand side (D) and 
the right-hand side (mll + ml2 + m13 ) both vanish. Of 
course, the same observation can be made with re- 
spect to Eq. (7b). Inserting the result of  Eq. (10a) in 
Eq. (8c) we find 

mvMt = mll(M1 + M 2  + M 3 )  

= (a2 + a3 + 2n23)/.t0H [cycl.]. (11 ) 

For a non-vanishing mii (taken to be mll ) this equa- 
tion proves the validity of Eq. (3) for the non-collinear 
case. The parameter Q can be calculated straightfor- 
wardly. More in detail, Q should be non-negative. This 
can be established by considering the expression 

a2(a2 + a3 + 2n23) -- (a2 + n23) 2 + (a2a3 - n23), 

which is positive ((a2a3 - n~3) = mll > 0), hence 

Q = (a2 + a3 + 2n23)/mll > o. (12) 

Moreover, Eqs. (8a) and (8b) show that M2 and M3 
are linear combinations of H and M1. Consequently, 
if a non-collinear structure exists, it is a coplanar one 
(in this case, mll > 0, with non-collinear Hand  M1 ). 

Conversely, assuming mll to vanish (i.e. ava3- 
n23 = 0), and inferring from Eq. (8c), or rather from 
Eq. (11 ), that then also (a2 + a3 + 2n23) vanishes, we 
find a2 = a3 --- -n23. Thus, since the Eqs. (2b) and 
(2c) must not be false (which they would be in case 
n12 ~ n13), they have to be identical (so, rtl2 = n13). 
By cyclic permutation we conclude, that Eq. (3) (i.e. 
Eq. (11 )) holds as soon as any mjj does not vanish. In 
case all mjj do vanish, however, Eqs. (2a)- (2c)  are 
identical, and all molecular field constants are equal, 
i.e. 

- a j = n 1 2 = n 2 3  =n13[ = n ]  ( j =  1,2,3). 

We classify this case as Case I. Obviously, in this 
case, we have Q = - I /n ,  thus again Eq. (3) appears 
to be valid. Moreover, since the coefficients aj have 
to be non-negative, n is negative, ensuring a positive 
sign of Q. Furthermore, the resulting non-collinear 
structures in this case do not have to be coplanar, in 
contradistinction to the result obtained above for the 
other cases. In Section 3 we show in detail that a 
physically correct solution may exist. 

For any non-collinear state, Eqs. (2a)-(2c)  should 
be dependent. Consequently, we have either two de- 
termining equations (rank 2) or we are left with one 
independent equation (rank 1). Because Eqs. (2a)-  
(2c) have (non-zero) identical right-hand sides, we 
see immediately, that rank one (i.e. mij = 0 for all 
i and j )  implies the equality of all molecular-field 
constants, thus again Case I, to be discussed fur- 
ther in Section 3. So, in the remaining part of the 
present section, we restrict the discussion to the case 
that the molecular-field constants are not all equal. 
Then, we have two determining equations (rank 2), 
which we choose to be, without loss of  generality, 
the Eqs. (2b) and (2c). Above, we showed already 
that vanishing of roll implies the identity of Eqs. (2b) 
and (2c), now in contradiction to our present hypoth- 
esis. Hence, we can rule out the possibility that mll 
vanishes. 

Let us examine the situation further by assuming 
that M3 happens to be collinear with H. Then, from 
Eq. (8b) (with non-collinear H and M1 ), we find 
m13 = 0, i.e. a2---n12n23/n13, and, hence, mll = 
-(n23/n13)m12. In combination with mll =--m12 
(from Eq. (1 0a)), and recalling that m,1 does not van- 
ish, we find n13 = n23, leading to al = a2 = - n l 2 .  
This situation, i.e. nj2 y~ n23 = n13, will be classified 
as Case II and will be discussed in Section 4. 

Another particular situation is a non-collinear state 
in which for instance M1 and M2 would be collinear, 
but not collinear with H. Later on, we refer to this 
stituation as to the pseudo-two-sublattice model. Then, 
in Eq. (8a), (a3 + n23) should vanish, i.e. a3 = --n23. 
Inserting this result in the explicit expressions for the 
minors in Eq. (10a), we can write 

mll  + m12 + m13 = (a2 + n23)(n13 -- n23) = 0. 

Since we also have mll = -n23(a2 + n23) > 0 (i.e. 
a2 + n23 does not vanish), we must have n13 = n23. 
The feasibility of this situation is also discussed in 
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Section 4 (Case II). The other way round, in case two 
molecular-field constants are equal, say n13 = n23, we 
find, for a non-collinear state, 0 = mll + m12 + m13 = 
(a2 +n12)(a3 + n13). Hence, the two non-collinear 
states discussed presently (with either a2 + n12 = 0 
or a3 + n13 = 0) are the only ones which can exist in 
Case II. 

Finally, we discuss briefly the situation in case 
//12 Y~ n23 ~ n13 ~/ /12 ,  classified as Case III and dis- 
cussed in more detail in Section 5. From the discus- 
sion above, it is evident that (still in non-zero field) 
no minor mii does vanish, so the Eqs. (2a)-(2c)  are 
pairwise independent. Neither of  the particular non- 
collinear structures encountered in Case II can occur 
here. Still, we shall see in Section 5 that non-collinear 
phases do exist for certain field and parameter val- 
ues. From the general discussion in this section, 
we conclude that these structures are coplanar, and 
that Eq. (3) holds, with a positive susceptibility Q 
(see Eq. (12)). For zero field, of  course the general 
remark made above (Eq. (9)) holds here too: a non- 
collinear phase may exist in case all interactions are 
antiferromagnetic, or in case only one interaction is 
antiferromagnetic (see Eq. (9)). 

3. C a s e  I: all  molecular- f i e ld  cons tants  are equal  

(n12 = n23 = n13[ = n]) 

It is instructive to write the energy in the form 

E = - n ( M 1 M 2  + cyc l . )  - # 0 H M t  

1 nM2 = -~  t + ½n Z M~ - poHMt (13a) 

I nM2 - -~ t -- I'toHMt + const.  (13b) 

We rederive quickly some results already mentioned 
in Section 2. By combining Eqs. (2a) and (3) (and so 
on) we find 

( n + a l ) M l = ( n + a z ) M 2  

=(n+a3)M3 = (nQ+ 1)p0H. (14) 

Consequently, a non-collinear state is only possible if 

aj = - n  > 0 (all j ) ,  (15a) 

Q = -1In > O. (15b) 

This can only occur in case n < 0, i.e. all interac- 
tions are antiferromagnetic and equal. We refer to this 
possibility as "Case IA". The other possibility, n > 0, 
will be classified as "Case IF" (see below). 

In this case we take (without loss of generality) 

M3 >~M2 >~M~. (16) 

In order to indicate the collinear states, we define 
gl,/32, g3 with 

Mc[/31,g2,/33] =/31M 1 q-/32M 2 q- g3M3 (gj = -4-1). 

(17) 

We distinguish the following collinear states or 
phases, in an obvious notation: 

[+ + +] 

[+ - +] 

[ - + + ]  

E+ + -] 
or 

Mt =M1 +M2 +M3; 

Mt = M I  - M2 +M3; 

Mt = --Ml + M :  +M3; 

Mt = M 1 +  ME - M3; 

[ -  - +]  M, = -M~ - M 2  +M3.  

Notice, that the states [ -  + - ]  and [+ - - ]  are omit- 
ted, since they have a negative total magnetization. It 
is physically evident that the inverted states ([+ - +] 
and [ -  + +], respectively) are favoured. This can also 
be seen directly by application of Eq. (18). More pre- 
cisely, however, the states [ -  + - ]  and [+ - - ]  are 
not stable for any choice of the molecular-field param- 
eter n. This statement is proved in the detailed discus- 
sion hereafter. 

The energy difference between two collinear states 
can be written as 

Ecl - Ec2 = (Mel - Me2) {-½n(Mcl +Mc2) - / / o H } .  

(18) 

Using the notation given above (Eq. (17)), we find for 
the collinear states: 

(aj + n)e.jMj = #oH + nMe[el, e2, e3] (19) 
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and, for instance 

m33 :-- (#OH + ne3M3)(#OH + nMc[s1,82, 83]) 

/eI~:M~M2; 

m13 = nelM1 (#OH + nMc[el, ~2, e3]) 

(20a) 

the collinear state with the largest total magnetic mo- 
ment (i.e. the state [+ + +] with Mt = M1 + M: + 
M3) is always the preferred one (see Eq. (18)). 

Finally, it is necessary to show that in the state 
[+ + +] the effective fields acting on the moments are 
correctly oriented, i.e. that the coefficients aj (and Q) 
are positive. Indeed 

/~82M~M2; 

m23 = ne2M2(#OH + nMc[el, /~2, ~3]) 

(20b) aiM j = {#oH + n(Me[+ + +1 - Mj)} > 0; 

Q = Me[+ + +]/#OH > 0 ( j = 1 , 2 , 3 ) .  (23) 

/8182M1M2; (20c) 

DQ3 = ml3 + m23 + m33 

= ~3M3 (#OH + nMe [el, g2, 83 ] )2//~1 e2/~3MI M2M3; 

(21a) 

DQ = DQI + DQ2 + DQ3 

= Me[81,/~2, e3](#OH + nMc[el, 82,/~3]) 2 

/81e2e3MIM2M3 (21b) 

D = #OH(#OH + nMc[eb e2,/~3])2/e182e3M1M2M3. 

(22) 

From Eqs. (21b) and (22), we find Q = (Me[el, ~2, e3]/ 
#OH), as expected. 

From the condition D~>0, we infer from Eq. (22) 
that the only stable collinear states in Case I can be 
the states [+ + +] and [ -  - +]. 

We apply these equations in the more detailed de- 
scription of the Cases IF (n > 0) and IA (n < 0). 

Case IF: n12 = nz3 = n13[= n] > 0. 
Stable non-collinear states do not exist (see 

Eq. (15a)): n > 0, so a i would become negative. 
Indeed, it is easy to show that in any collinear 
state other than [+ + +], an effective field oriented 
along H is acting on an oppositely oriented mo- 
ment. As an example, we consider the effective 
field acting on M2, in the state [ - -  +]: a2M2 = 
#oH+ n(M3 + M1), or, using the parameters e j, 
azezM2 = #OH + ne3M3 + nelM1 with ~1 = e2 = - 1 
and e3 = 1, yields a2M2 = -#OH - n(M3 - M1 ) < O, 
evidently having the wrong sign. 

So, the only stable state is [+ + +]. This is corro- 
borated by the observation, that, at a certain field H, 

For the sake of completeness, we remark that also the 
determinant D and the minors mjj are properly positive 
(see Eqs. (20)-(22)). 

The resulting magnetization curve is very simple 
indeed: 

Mt =Me[+  + +] (constant: type C, see Table 1). 

Case IA: n12 = n23 = n13[= n] < 0. 
Using Eq.(13b), with M t = - # O H / n  (from 

Eqs. (15b) and (3)), we write the energy of a non- 
collinear state as 

Ene = - (½1nl) (#OH)  2 + const.  (24) 

Many (coplanar and non-coplanar) non-collinear 
states exist. In fact, any combination of the vectors 
M1,M2 and M3 yielding Mt = #oH/Inl forms a sta- 
ble non-collinear state. The coefficients aj are given 
by Eq. (15a): aj = In[, and Q = 1/Inl (Eq.(15b)). 
Hence, the combination mentioned of the vectors 
M1,M2 and M3 yielding M t  = #oH/Inl can be re- 
garded as representing also the sum of the vectors 
- n M l ,  -nM2,  and -nM3,  yielding #OH in accor- 
dance with Eqs. (2a)-(2c). The effective fields are 
thus correctly oriented. With these values for the 
coefficients aj (and Q) in the set of Eqs. (2a)-(2c) 
(and Eq. (3)), we see that the determinant D and all 
minors mi2 do vanish, in accordance with the results 
of the discussion in Section 2 (coefficient matrix of 
rank one). 

From Eq. (24), it is clear that all these states have 
the same energy (at the same field). Since it is neither 
possible to construct a vector Mt = MI + M2 + M3 
with a magnitude larger than M1 + M2 + M3 (that of 
the "stretched" vectors M1, M2 and M3), nor with a 
magnitude smaller than zero or, in case M3 ~>M1 + 
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Table 1 
Type of magnetization curve and possible configurations (Case II: hi2 # n13 = 023. The cases that can occur in case M2 = M1 are marked 
with an asterisk) 

Type Case Consecutive phases Extra conditions 

C *FF [+ + +] 
*AFa [+ + +] 

LC *FA [ncF] [+ + +] 
*AA> [ncF] [+ + +] 

NC *AFb [nc3++] [+ + +] 
*AA<b [nc3+-]  [nc3++] [+ + +l 

CLC *FA [ -  - +] [ncF] [+ + +] 
*AA> [ -  - +] [ncF] [+ + +] 
*FA [+ + - ]  [ncF] [+ + +] 
*AA>a [+ + - ]  [ncF] [+ + +] 

CNC AFc [ -  + +] [nc3++] [+ + +] 
*AA<c [ -  - +] [nc3+-]  [nc3++]  [+ + +] 

N-CLC *AA>b 

CN-CLC AA>c  

CLCN+C A A < a  
AA< 

LCN+C AA< 

N+CLCN+C A A < b  

CN+CLCN+C AA<c  

[nc3-] [+ + - ]  [ncF] [+ + +] 

[ -  + - ]  [no3-] [+ + - ]  [ncF] [+ + +] 

[+ - +] [heAl [ -  + +] [nc3++] [+ + +] 
[ -  + - ]  [heAl [ -  + +] [nc3++] [+ + +] 

[ncA] [ -  + +] [nc3++] [+ + +] 

[nc3+-]  [+ - +l IncA] ... 
... [ -  + +] [nc3++] [+ + +] 

[ - -  +] [ n c 3 + - ]  [ + -  +]  [ncA] . . .  
... [ -  + +] [nc3++l [+ + +] 

Be [+ + +] ~< 0 

M3 = M2 + M1 (compensation) 

Be[- + +]<0 < Be[+ + +] 
M2 = M I ;  B e [ - - + ] ~ < 0  

M3 > M2 +MI  

M3 < M2 +M1 
M3 < M2 +Ml ;  Be[+ + - ]  > 0 
(also if M3 < M2 - ml ) 

0 < Bc[ - -++] ;  (M2 > MI) 
ME = M1; M3 > 2M1; 
0 < Be[- - +] 

Ms < M2 +M1; 
Be[- + - ] < 0  < Be[+ + -I  

M3 < M x - M I ;  0 < B e [ - + - ]  

M3 > M 2 - M 1 ;  Be[+ - +]--.<0 
M3 < M2 -MI 

M3 = M2 -Mi  

Ms > M 2 - M ~  
Be[-  -- +]~<0 < Be[+ - +] 

M3 > ME +MI 
0 < Be[- - +] 

Note: Type: C constant; L linear M1 = #oH/In13 [; N, N +, N -  slope l/[nl2[. Case: indicates allowed range of molecular-field values. 
Collinear phases: [ + + + ]  and so on; non-collinear [ncF] and so on. Critical fields: Be[+ + +] and so on; see text for details. 

M2, smaller than the length o f  the smallest combina- 
tion, M3 - M1 - ME, we obtain straightforwardly that 
the non-collinear states can be constructed, and are 
stable, in case 

max[0,(M3 - M1 - M2)] ~< Mt = ~H/In] 

~< Ms +ME +M~.  (25) 

We may compare the energy of  the non-collinear states 
with that o f  any collinear state. At a certain field, the 
energy difference between a collinear state (with Mt = 
Me) and a non-collinear state is 

Ec - Enc = ½tn[{M~ - poH/ [n l }  2. (26) 

Obviously, the non-collinear states have the lower en- 
ergy, i.e. are preferred provided they exist. Hence, 
Eq. (25) defines a lower critical field, H1 (possibly 
zero) and an upper critical field H2, indicating the field 
values between which the non-collinear state is the 
preferred one: 

/~0H1 = max[0, [n](M3 - M1 -- M2)], (27a) 

]20H2 = I n [ ( e l  + M 2  + m 3 ) .  (27b) 

From Eq. (27a) we infer, that we have to distinguish 
two possibilities, according to the sign of (Ms - M1 - 
M2). We identify these cases by indicating the ground 
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state at zero field, i.e. we distinguish Case IA [ -  - +] 
and Case IA [nc], respectively. 

Case I A [ -  - +]: M3>>,(M1 +Me) .  

#oH! = [nl(M3 - M1 - M2); 

#oHe = [nl(Ml +M2 +M3).  

(28a) 

(28b) 

From the condition m33/> 0 we infer (using Eq. (20a)), 
that the collinear state [+ + +] is only stable at fields 
H exceeding //2, and, analogously, that the state 
[ -  - +] is only stable at fields lower than//1. In the 
intermediate region 

#oHl = [n[(M3 - M2 - MI ) < #oH 

< Inl(M3 +M2 + M I )  = #0//2, (29) 

only the non-collinear states are stable. 
At lower fields, #0H<<.#0Hl, in the collinear 

structure [ - -  +], the effective field acting on 
Mr, alMl, starts as Inl(M3 - M e ) -  #0H, decreases 
down to [nIMl at H = H 1 ,  remains constant in 
the non-collinear phase up to H = / / 2 ,  and in- 
creases in the collinear phase (state [+  + +])  as 
alMl = # o H -  [nl(M3 +Me) .  An analogous be- 
haviour is found for aeMe. a3M3 increases as 
#oH + ]nl(Ml + Me) up to a3M3 = [nlM3 at H = Hi, 
remains constant up to H = / /2 ,  and increases as 
a3M3 = #oH - Inl(M1 + Me) for larger fields. 

The magnetization curve is shown in Fig. 1 (type 
CLC, see also Table 1). In the next section, we show 
that the critical fields, and the concurrent magnetic 
phases, in this particular case, do not vary in a large 
region of n12 values (keeping n13 = n constant). 

Case IA[nc]: M3 < (Ml + Me). 
The non-collinear states exist for the field region 

0~<#0H < In[(M3 +M2 + M l )  = #0/-/2, (30) 

i.e. up to the field where the fully oriented state 
[+ + +] becomes stable. In the same way as in the 
previous case, we can show, that no other collinear 
structure is stable, for any field. The field dependence 
of the effective fields in the non-collinear phase and 
in the high-field collinear phase is as given in the 
previous case. 

The magnetization curve can be derived directly 
from Fig. 1 by shifting the origin upwards along the 
dashed line (type LC, see Table 1). 
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n23 
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[+++] 

= l 

= -0 .999  

= -1.001 
i 

20 25 (arb. units) 
Fig. 1. Type CLC in Case IIFA, with M3 > MI + M2. Since 
M 1 and M2 point always in the same direction, this case 
is referred to as the pseudo-two-sublattice model. The small 
difference between n13 and n23 is introduced by the com- 
puter program (Section 6), but can be ignored here. Critical 
fields: #oHI = Inl3[Mc[- - +] = Inl31{M3 - (M2 + M I ) }  and 
/toll2 = [nl3 IMc[+ + +] = Inl3 I{M3 + (M2 + Mj )}. The same 
critical fields occur in Case I A [ -  - +] (Eq. (29)). Type LC can 
be obtained by decreasing M3 until M3 = Ml + M2, i.e. by shift- 
ing the origin diagonally upwards, until [ncF] is reached. 

4. Case Ih  only two equal molecular-field constants 

(n12 :/: n23 = n13) 

Without loss of  generality we assume in this case: 
M2 ~>Ml. 

Notice, that now M3 can adopt any value larger or 
smaller than M2 or M1, or than M2 + M1 or M2 - M1. 

In Section 2, we derived that only two (main) types 
of  non-collinear structures may exist, both eoplanar: 

- M1 and M2 collinear (a3 -- -n13; pseudo-two- 
sublattice model), i.e. with M12 = Ml + 11'12, we 
have either Ml2 = M1 + M2, orMi2 = M2 - Ml. 
We refer to these states as [ncF] and [ncA], 
respectively. 

- M 3  and H are collinear (al = a2 = - n 1 2 ) ,  
i.e. the component of  M3 parallel to H is ei- 
ther M3 or -M3. We refer to these states as 
[nc3+] and [nc3-] ,  respectively. In fact, [nc3+] 
can be subdivided in the alternatives [nc3++] 
and [nc3+- ] ,  with ACt = M3 +M12 and Mt = 
M3 - M I 2  >/0, respectively. A subdivision of the 
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state [nc3-]  is not necessary, because the state 
[ n c 3 - - ] ,  with Mt = - M r 2 -  M3, would have 
a total moment directed opposite to H. Conse- 
quently, only the state [nc3-]  = [nc3-+]  has 
to be considered. 

In this section, we start by determining the regions 
(for Mt, and for #0H) where the non-collinear states 
are stable, together with the subsidiary conditions 
on the molecular field constants, necessary for the 
stability of the non-collinear state. Rather than 
comparing energy expressions, we use the crite- 
ria mentioned in Section 2, i.e. aj 9 0  and mjj = 
a j - l a j + l  -- n2_l, j+l  >~0. Moreover, it must be possi- 
ble to construct Mt (with the appropriate length at 
the chosen field value) as the vector sum of/143 and 
the appropriate Ml2 = M1 + M2. We treated all non- 
collinear states in this way. In Appendix A we list 
the stability ranges for all these non-collinear states, 
together with the effective field parameters aj. Subse- 
quently, we derive the stability ranges for the collinear 
states, very much in the same way. The stability con- 
ditions, the field regions and the effective fields for 
the collinear states are listed also in Appendix A. 

Finally, the way to construct the possible magne- 
tization curves is treated. The results are given in 
Appendix B. 

Although all our actual derivations rest on stability 
criteria (not on comparing energies), it is instructive 
to write the energy in the forms 

E = -n l2MlM2 - (n13M3 + poll)M12 - IJoHM3 

(31a) 

1 = - ~ n 1 2 { m 1 2  q- ( / . toll  + n13M3)/n12}  2 

1 2 1 2 +~nlz(M 1 +M22) + ~nl3M~ 

_ 1 {(n12 -- n13)/n12n13 }{#0 u -1- n13M3 }2 

+ / (/./oH)2/n 13 

= - i ( n l 2  - nl3)Mt22 + inl2(M I 

1 2 1 2 2nl3M~ #oHMt q'- ~ n 13M~ -- 

(31b) 

(31c) 

__ 1 2 -- /(n12 -- n13)M22 + const. ~nl3M i 

- ItoHMt. (31d) 

In our discussion, we apply the notation established 
in Section 3 (Eq.(17)). Apart from Mc[el,e2,e3] 
(Eq. (17)), we introduce "critical fields" Bc [el, e2, e3 ], 
defined as 

Bc = Bc [el, s2, e3 ] 

---- --nl2(elMi + e2M2) - n13e3M3. (32) 

For the derivation of the stability ranges, we have to 
apply a number of simple mathematical tricks. We re- 
strict ourselves to demonstrate the application of the 
procedure in some detail to one non-collinear state 
(chosen to be the state [ncF]) and, for the collinear 
states, after some general derivations, also to one 
collinear state in particular (chosen to be the state 
[ -  + + ] ) .  

4.1. Stability ranges for the non-collinear state 
[ncF] 

[ncF] is the non-collinear state in which Ml and 
M2 are oriented "Ferromagnetically", i.e. in the same 
direction (MI2 = Ml + M2). 

As stated above, this state may occur in case 
a3 = - n l 3 .  Since a3 should be non-negative, we 
have n13 < 0 (we exclude vanishing coupling con- 
stants), hence, also a3 > 0. Vectors Mt can be con- 
structed only with a length Mt in the range from 
]M3-(MI  +M2)[ up to (M3 +M1 +M2),  i.e. be- 
tween Mc[-  - +] {or Mc[+ + - ] }  and Mc[+ + +]. 
From Eq. (2c) (with a3 = - - n 1 3  and n23 ----n13) we 
find Mt = poH/ln~31, or (in Eq.(3))  Q =  1/[n~31 
(hence, Q > 0). In this way, the range of allowed 
magnetization values can be established. After multi- 
plication by [nl3l the corresponding range of allowed 
fields is found. 

We proceed by checking the remaining stabil- 
ity criteria. Substracting Eqs. (2a) and (2c) we find 
aiM1 = ]nl3l(M1 +/142) + nl2M2. From the condition 
m22 = Inl3[(a, --[nl3[)~>0, we find al/> [nl3l, imply- 
ing also al > 0. The calculated value of al satisfies 
this inequality only in case nl2 + [n131~>0. Since 
we treat Case II, with nl2 ¢ hi3, we should demand 
nl2 q-tn131 > 0 (hence, m22 > 0). The analogous 
reasoning with respect to a2 yields no other limita- 
tions. Neither do the conditions mlt ~>0 and m33/> 0 
(actually, also mll > 0 and m33 > 0). We omit the 
detailed calculations. 
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We treated all non-collinear states in this way. In 
Appendix A we list the stability ranges for all these 
non-collinear states, together with the effective field 
parameters aj. 

4.2. Stability ranges for the collinear states 

We start by expressing aj, and so on, in the para- 
meters 8j defined in Eq. (17): 

al = (poll + 82n12M2 + 83n13M3)/81MI; (33a) 

a2 = (~oH + 81nl2Ml + 83nl3M3)/82M2; (33b) 

a3 = (]20H -~- 81n13Ml + 82n13M2)/83M3. (33c) 

Using the notation established before (Eq. (27a, b)), 
we find 

?/13 : n23; 
gous way, 

M! = (a2 

see also Eq. (8)). Proceeding in an analo- 
we find 

+ nl2)(#oH + n13M3)/m33, (38a) 

3/2 = (a! + n 1 2 ) ( / A o H +  n13M3)/m33; (38b) 

n 1 2  = (al + a2 + 2 n 1 2 ) ( / ~ o H +  n13M3)/m33. (38c) 

Eq. (38c), the addition of Eqs. (38a) and (38b), re- 
veals that MI2 points in the direction of the effec- 
tive field ( # o H +  nlaM3), since (al + a2 + 2n!2) > 0 
(see Eq. (11 ), and discussion there, in Section 2). In 
order to have ME pointing in the same direction, we 
have to demand a! + n!2 > 0 in Eq. (38b). This rela- 
tion is useful in case n12 < 0. According to Eq. (34), 
we have then 

sign(p0H - Bc[81,82, 83] ) = 81. 

a l  + n12 = (#oH - Bc[81,82, 83])/81M1, (34) 

ml! = {(poll) 2 + ].toH(nl3gc[81,82, 83] + 81n12M1 ) 

-Sl?/13MlBc[81,82,83]}/82M283M3", ( 3 5 a )  

ml2 = { nl3(P-oH -- Be[e1,82, 83]) 

+ ( h i 2  -- n l a ) # 0 H  }/83M3; (35b) 

m13 = nl3(fl, o H  -- Bc[8l ,  82, 83])/82M2; (35c) 

m33 = (#oH + 83n13M3) 

x (/ . toll  -Be[el,82,83])/81MI82M2; (35d) 

In the same spirit, we have sign(a2 + n12)= 8182. 
Hence, 

sign(p0H - Bc[eb 82, 83]) = st; (39a) 

sign(#0H + rt1383M3) = 82; (39b) 

sign(broil + ?/13gc)  • 8283 • (39c) 

These relations (Eqs. (39a)-(39c))  should not be con- 
sidered as "extra" conditions, but only as being useful 
in a quick derivation. 

As an example of the detailed analysis of the 
collinear states, we show here the application of 
the inequalities in the analysis of  the collinear state 
[ -  + +]: 

DQ3 = m13 + m23 -~- m33 = (// .oH - Bc[81,82,83]) 

x(#0H + n13Mc)/81M182M2; (36) 

D = #oH(poll - Bc[81,82, 83]) 

)< (#oH -Jr- n13Mc)/81M182M283M3. (37) 

The stability criteria to be checked are, again, D > 0, 
aj > 0 and mjj > 0. A consequence of  our choice 
M2 >>-Ml is, that, in the collinear states under consid- 
eration, ME should point in the direction of M12. 

After multiplying Eq. (2a) by a2 and Eq. (2b) 
by hi2, and adding, we find Eq. (38a) below (using 

M, = g ~ [ - +  +] = - g ~  + g 2 + g 3 ,  

el = - 1 ,  /32 = /33 = -t-1. 

Since MI is opposite to Mi2, we have a2 + hiE < 
0 (from Eq. (38a)), so necessarily n12 < 0. From 
Eq. (39a), we infer (#oH - Be[ -  + +])  < 0, hence, 
p0H < Bc[- + +]. 

Consequently, the state can only be stable in case 
B e [ - + + ]  > 0, i.e. n13M3 < [nlz[(M2-MI).  This 
limitation is only important in case nl3 > 0, and then, 
for instance excludes the case M2 = MI. We treat 
the cases n12 < 0, n13 > 0 (Case AF) and nlz < 0, 
nj3 < 0 (Case AA) separately. 

Case AF: n12 < 0, nl3 > 0. 
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The field range (and stability conditions) can be 
written as 

0 < //oH < - n l 3 M  3 ÷ Inl2[(M2 - M I )  

= B c [ -  + +]  > 0. 

It is easy to show, that, in the field range indicated, 
the conditions aj > 0 ( j  = 1,2, 3) and m33 > 0 are 
satisfied. 

As a last step we investigate the sign of  m22 and 
m33. From Eq. (35a) (exchanging the indices 1 and 2) 
we find, irrespective of  the sign of  n 13: 

M1M3m22 = - ( / t 0 H )  2 ÷ lzoH{lnlzlM2 - nl3Mc} 

+nl3M2Bc[-, +, +]. 

At the limiting values/~oH = 0 and/~oH = Be [ - ,  +,  +] ,  
we find 

MIM3m22 = nl3M2Bc[- ,÷,÷] > 0 

and 

M1M3m22 = (In121 ÷ nl3)M2Bc[-, ÷, +] > O, 

respectively. Hence, since m22 has only one contin- 
gent positive region (being a maximum parabola as a 
function of  H) ,  it must be positive in the complete in- 
terval, mll is equally positive at H = 0, with positive 
slope nl3Mc + Int2lM1. So, we are at the right-hand 
side of  the minimum, where mll is a monotonously 
increasing function of  H .  Hence, it must be positive 
for all positive field values. 

Case AA: nl2 < 0, n13 < 0. 
For negative nl3 and e2 = e3 = +1,  the inequal- 

ity Eq. (39c) is stronger than (implies) inequality 
Eq.(39b).  Consequently, /~0H > ]n13[Mc[- ,+ ,+] .  
This leads to 

Inl3lM3 ÷ lnl3l(M2 - M r )  = jnl3lMc[--, + , ÷ ]  

< #oH < In13[M3 ÷ In12[(M2 - M I )  

= Be [ - ,  + ,  +].  

We see, that this field range exists only in case 
M 2 - M I  > 0 (excluding M2 = M 1 ) ,  and ]nt3l < 
1n12t, implying n12 < n13 < 0 (to be referred to as 
Case AA < ). 

It is, again, easy to show, that, in the field range indi- 
cated, the conditions aj > 0 ( j  = 1,2,3)  and m33 > 0 
are satisfied. 

In order to check m22 > 0, we consider again the end- 
points (see above). At the left end-point, po l l  = [n13[ 
M c [ -  + +],  we find m22 = [n13[(ln12[ - [nl31) > 0, 
and at the right end-point, again, MlM3m22 = 
([n121 - [nl3l)MzBc[ - ,  ÷,  ÷ ]  > 0, apparently correct 
under the same extra subsidiary condition nl2 < n13 
( <  0). In the same way as above, we conclude that 
m22 is positive in the complete interval. 

mll equals m2z at the left end-point (exchange 
indices 1 and 2), and possesses a positive slope 
[n13[M~ + [nl2[Ml, so must be positive in the com- 
plete field interval. 

The stability conditions, the field regions and the 
effective fields for the collinear states are listed also 
in Appendix A. 

We are now in a position to construct the magnetic 
phase diagrams and the magnetization curves, for any 
set of  parameters satisfying rtl2 • n23 = n13. 

In Appendix B we give the complete list of  all pos- 
sible magnetization curves. These curves appear to 
consist o f  a sequence of  constant and linear portions. 
This property is the basis o f  a shorthand type defini- 
tion, explained in Appendix B. 

As an example we treat Case I I A A < ,  i.e. n12 < 
n13 < 0. More precisely, we only discuss the situation 
in case M3>~MI + Mz;M2 > Ml. 

We start by listing the critical fields, in decreasing 
order. These fields are read from the detailed descrip- 
tion of  the different cases in Appendix A. 

BeE+ + ÷1 = In,2t(M2 +Ml)  + Int3lM3 (>  0); 

B e [ -  + +]  = [n12](M2 - M1) + Inl3lM3 ( >  0); 

Inl3[Mc[ - ÷ ÷]=ln~31(M2 --Ml)+lnl31M3 ( >  0); 

[ n t3 lMc[+-  ÷]=[nlalM3-ln13](M2 -- M1) ( > 0 ) ;  

Be[+ - ÷ ]  = ]n13{M3 - Inl2l(M2 - M1 ); 

B c [ -  - ÷ ]  = In13{M3 - [n121(M2 + M ) ) .  

Here, we indicated that, in the present situation, only 
the fields Bc[+ - +]  and B c [ -  - +]  may adopt neg- 
ative values. That means, that we have to distinguish 
the following possibilities. In each case, the stable 
structure is given, in an obvious notation, between the 
appropriate "critical" field values. 
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Case (a): Be[+ - +] ~<0. 

poll :  0 < [ + -  +] < In131Me[+- +] 

< [ncA] < In l3 lMc[ -++]  

< [ - + + ]  < Bo[- ++] 
< [ n c 3 + + ]  < B e [ + + + ]  < [ + + + ] ;  

M t :  M 3 - ( M 2 - M 1 )  < M t  

= #oH/[n131 < M3 -b (M2 - M1 ) 

< Mt =/143(1 - [nl3Hnl2l) + poH/lnl2 I 

< M3 + M2 + M1; 

Type: CLCN+C. 

Case (b): B~[- - +]~<0 < B~[+ - +]. 

85 

20 

15 

A 

u~ = I '/ /I 
M~=4 

M 3 = lZ / [+++] 
[ - + + ~  

, ./(ncA] 

~ +-+1 

: - - + ] /  n t a  = - 8  
/ n l a  = -0.999 

/ n~a = - 1 . 0 0 1  
i i i i 
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B ( a r b .  u n i t s )  

#0H: 

M,: 

0 < [ n c 3 + - ] < B ¢ [ + - + ] < [ + - + ]  

(and so on, see Case (a)); 

M3(1 - [nlal/ln121) + poH/lnl2l 

Fig. 2. Type CN+CLCN+C in Case IIAA<c, with M3 > 
M1 + M2; M1 # M2. The small difference betweeen n13 and n23 
can be ignored here. Types N+CLCN+C, CLCN+C and LCN+C 
can be obtained by decreasing M3 until M3 = ME -- Mh i.e. by 
shifting the origin diagonally upwards, until IncA] is reached. 

< M3 -(M2 -MI) 

(and so on, see Case (a)); 

Type: N+CLCN+C; N + parts extrapolated form one 
straight line. 

Case (c): 0 < Be[ -  - +] < Be[+ - +]. 

We infer from the condition Be[-  - +] > 0, that 
M3 > (In121/ln131)(M2 + M1). Since (Inl2l/lnl3]) > 1 
(see above), we have now also the restriction on the 
moments: 

M3 > (ME + M1 ), excluding M3 ---- (ME + Ml ). 

poll:  0 < [ -  - + ]  < Be[-  - + ]  < [nc3 + - ]  

(and so on, see Case (b)); 

Mr: M3 - (M2 + M1) 

< g3(1 - Inl31/Ini21) + goH/Inl2l 

(and so on, see Case (b)); 

Type: CN+CLCN+C; N + parts extrapolated form 
one straight line. 

An example of this very interesting type of magneti- 
zation curve (Case (c)) is given in Fig. 2. The dashed 

line shows that the extrapolated N + parts do form one 
straight line, indeed. The other types (results from 
Case (b) and Case (a)) can be imagined by shifting 
the origin diagonally upwards (until the [ncA] phase 
is reached). 

For Case II, all magnetic phase diagrams have been 
investigated (see Appendix A and B). The results are 
listed in Table 1. i.e. for all possible types of magne- 
tization curve, the possible concurrent configurations 
are given. Some examples of magnetization curves are 
given in Fig. 1 (already discussed in Section 3), Fig. 2 
(discussed above), Fig. 3 (see Remark 2), and Fig. 4. 

We conclude this section by making two remarks: 

Remark 1. In the end-points of the stability regions, 
the criteria for a local minimum are no longer fulfilled. 
This means, in general, that a second derivative of the 
energy vanishes, or rather, changes sign, signalling the 
transition to another stability region. In the above ex- 
ample, and indeed quite generally (see Appendix B), 
we find, that only one structure is stable given a cer- 
tain set of nq-parameters and magnetic-moment val- 
ues, and that all transitions to another regime are of 
second order. Indeed, jumps in the calculated mag- 
netization curves do not occur. Apart from that, we 
never have to compare the energies of two competing 
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Fig. 3. Type CNC in Case IIAA<c,  with MI = Me; M3 >2Mj.  
The small difference between n13 and n23 allows the computer 
program to identify the transition from [nc3 + - ]  and [nc3 + +] 
as (a remnant of) the collinear structure [+ - +] (see Remark 2, 
end of Section 4). 
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Fig. 4. Type CN-  CLC in Case I1AA > c, with M 3 < M2 - M1. 
The small difference between n13 and n23 can be ignored here. 

structures: the investigation of the stability appears to 
be sufficient. 

cannot be stable, whereas, in general, the non- 
collinear states [nc3 + +] or [nc3 + - ]  can be stable. 
Nevertheless, in case, incidentally, #oH+nt3M3 
vanishes, so/~0H = 1n13 IM3, we have rotational free- 
dom (keeping Mi2 = 0), and we have a choice to 
consider this state as a non-collinear [nc3+] state or 
a collinear one ( [ -  + +] or [+ - +]). We prefer to 
consider this situation as the transition point (field 
value) between the region where [nc3 + +] is stable 
and the region where [nc3 + - ]  is. Comparing this 
situation with the example given in Fig. 2, we see that 
the fields B e [ - +  +] down to B c [ + -  +] coincide. 
The result is that the N + parts are joined, i.e. at the 
transition point,/t0H = In13 ]M3, the part [nc3 + - ]  is 
joined to the part [nc3 + +]. An example is given in 
Fig. 3. The applied computer program (see Section 5) 
introduces a small difference between n13 and n23, 
strictly speaking not quite according to Case II under 
discussion here. Nevertheless, we see that the small 
difference can be ignored in Fig. 2, but here forces 
the programme to identify the transition, in this case, 
as a remnant of the collinear phase [+ - +]. 

5. Case IIh three different molecular-field constants 

(n12 q: n23 :¢ n13:1[: n12) 

In this case, there is no reason to impose any sub- 
sidiary condition on MI,M2 and M3. We start by in- 
vestigating the stability of the non-collinear structures, 
then that of the collinear states. Finally, the way to 
construct the magnetization curves is discussed. 

5.1. Non-collinear structures 

In Section 2, we derived already that in the non- 
collinear phases, the Eqs. (2a) - (2c)  are pair-wise 
independent, whereas the determinant does vanish. 
Taking into account also the right-hand side of  these 
equations, we conclude that there must be, for in- 
stance, a real, non-zero, number ~, such that Eq. (2b) 
plus a times Eq. (2a) yields (1 + ~) times Eq. (2c). 
Hence, the coefficients aj and the minors m U can be 
expressed as functions of  the single parameter ~: 

Remark 2. In the case that MI = M2, and nl2 < 
hi3 < 0 (Case I I A A < ) ,  in our formalism, strictly 
speaking, the collinear states [ - +  +] or [ + -  +] 

al = --n13 ÷ (n12 -- n13)/~; 

a2 = - n 2 3  q- (hi2 - n23)~; 

(40a) 

(40b) 
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a3 = -(ocnl3 + n23)/(1 + 0~); (40c) 

m13 ---- n23(n12 - n13) + n13(n12 - n23)0~; (41a) 

m23 = ml3/Oq (41b) 

m33 = --(m13 + m23) = --(1 + 1/o~)m13. (41c) 

For any suitable ~ value, the non-collinear state can 
be constructed in the following way. By subtracting 
Eq. (2b) from Eq. (2a) we obtain 

(a l  + n l 2 ) M l  - (a2 + n12)M2 + (n23 - n13)M3 = 0. 

(42) 

Inserting the functions of  ~ given above, we find 

(n12 -- rtl3)(1 + 1/ct)M1 - (n12 - n23)(1 + ~)M2 

+(n23 -- n13)m3 = 0. (43) 

In other words, a necessary condition for the existence 
of the non-collinear state (corresponding to the chosen 

value) is, that a triangle can be constructed with sides 
of length ](n12 - n 1 3 ) ( l  + 1/~)Mll, I(n12 - -n23)(1 + 
00M21 and ](n23 - n13)M3], respectively. Having con- 
structed the triangle, we can derive the relative ori- 
entations of the magnetic moment vectors, as well as 
that of the total moment. The appropriate field value 
can now be calculated by applying any one of the 
Eqs. (2a)-(2c).  One may imagine that the constructed 
triangle is rotated in such a way that the total magnetic 
moment vector points in the direction of  the applied 
field. 

We remark here, that for zero applied field the pa- 
rameter ~ must have the value 

9t = (n23/n t3  )(n12 -- n13 ) / (n23 -- n12). (44)  

For this ~ value, the relations for aj given in Sec- 
tion 2 (Eq. (9)) are easily verified. Of course, the 
choice of • should be restricted in such a way that 
the stability criteria are fulfilled (aj >10, mjj >>.0). 
The quantities aj happen to be monotonous functions 
of  ~ (see Eqs. (40a)-(40c)).  Consequently, for any 
contingent region of ~ values, only the end-points 
have to be investigated. With regard to the minors 
mjj, we infer from Eq. (11 ), and the related dis- 
cussion in Section 2, that, for finite fields H, mjj 
cannot change sign as long as Mt remains finite. 
Since the Mt value is limited (Mt ~<M1 + M2 + M3), 

and since the quantities m j j  are continuous func- 
tions of ~, also for the minors an investigation of 
the end-points suffices. This statement remains true 
in case one of the end-points happens to be the 
zero-field value given in Eq. (44) (where mjj van- 
ishes). For finite fields, it is obvious, from a physical 
point of view, that the end-points must correspond 
to collinear structures, being the limiting triangles in 
the construction discussed above. Moreover, just as 
we found in Case II (preceding section), the corre- 
sponding field value must be a "critical" field for the 
collinear structure (for that field value, the determi- 
nant vanishes). We refrained from searching for a 
concise, mathematically sound, proof for these phys- 
ically plausible properties. We return to this question 
after a discussion of the stability of the collinear 
structures. 

5.2. Collinear structures 

In this general case, we used a computer program 
to find the stability regions for the collinear struc- 
tures. For a given set of molecular-field constants nij 
and magnetic moments M1,M2 and M3, the program 
does calculate the field values at which the determi- 
nant D, or rather DQ1 = mll + m12 + m13 vanishes 
(see Eq. (6b)). In a comparison with Case II (Sec- 
tion 4), one should consider the relations given by 
Eqs. (36) and (37). Notice, that in a collinear struc- 
ture, Eqs. (2a)-(2c)  just define the quantities aj (and 
so on) as functions of H. 

As a next step, the stability criteria are checked 
at these field values. Non-stable situations are re- 
jected, the stable ones yield the actual "critical" 
fields. In view of the discussion of the non-collinear 
phases above, the ~ values in these end-points are 
calculated. The program does order the critical fields 
according to their magnitude. In all cases inves- 
tigated, we find that the higher critical fields do 
correspond to collinear structures with higher to- 
tal magnetic-moment values. Moreover, at any field 
value we find at most one stable collinear structure 
(Case II, preceding section, exhibits the same prop- 
erty). Again, whereas for Case II we did investigate 
all possibilities, in this more general Case III, we 
did not bother to look for a general, mathematically 
sound, proof. 
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5.3. Magnetization curves 

From a physical point of view, we expect that (in 
the non-collinear structures) the total magnetic mo- 
ment will increase with increasing applied field. So, 
we expect that, in this general case, the magnetization 
curves do resemble those found in Case Ih constant 
parts (collinear structures), connected by - in the 
general case possibly curved - parts corresponding 
to the non-collinear phases. In fact, the program 
does calculate the full curves. The magnetization 
curves for the non-collinear phases are calculated by 
taking a large number of ~ values, interpolated be- 
tween the values found for the end-points, i.e. at the 
"critical fields". For each ~ value, the triangle con- 
struction (Eq. (43)) is applied in a calculation of the 
total magnetic moment and the corresponding field 
value, in the manner discussed above. The resulting 
curves do resemble those found in Case II, indeed. 
Actually, all examples in this article were treated 
as if they belonged to Case III, just by introducing 
small deviations between n13 and n23, if necessary 
(see Figs. 1-4).  In general, strong curvatures can 
occur, especially in cases where, in a comparison to 
Case II, an intermediate collinear structure cannot 
be reached completely. An example is presented in 
Fig. 5. 

In case, at vanishing applied field, a non-collinear 
phase does exist (see Fig. 6), the program takes the 
value from Eq. (44), and calculates the total moment, 
again using the triangle construction discussed above. 
In the example of Fig. 6, we have ~=0.5,  yielding 
a total moment Mr(0)= 7.75. These zero-field values 
are taken to be the starting point for the interpolation 
procedure, up to the first "critical field" for a collinear 
structure. 
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Fig. 5. An example of a magnetization curve in Case III, with three 
different negative (antiferromagnetic) molecular-field constants. 
The strong variation of the curvature indicates that a collinear 
structure (i.e. [+ + - ] )  is approached, but not formed. The dashed 
curve is a guide to the eye. 
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6. Concluding r e m a r k s  

Let us start by remarking that the present "three- 
sublattice model without anisotropy" does contain 
all the results of  the "two-sublattice model without 
anisotropy" (as a part of Case II) and also of the "sym- 
metric three-sublattice model without anisotropy" 
(considering MI = Me in Case II). In this sense, the 
present work does extend the work of Colpa et al. 

Fig. 6. An example of a magnetization curve in Case II1, with two 
positive (ferromagnetic) molecular-field constants and a negative 
one. Noticie that at vanishing field a non-collinear phase does 
exist. 

[6], in particular by discussing more precisely the 
stability criteria. It is perhaps worthwhile to mention 
that the computer program (discussed in Section 5) 
can be applied to all cases, inclusive of the (pseudo) 
two-sublattice model. Moreover, we want to stress 
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Ref. [8] for more details. 

the fact that, in both models, no first order transi- 
tions (no jumps) do occur, and that, at any applied 
field, only one stable structure does exist. Compar- 
ison of energies of two stable configurations is not 
necessary. 

With respect to actual applications, we may stress 
that the type of the magnetization curve does not 
change by scaling up all the magnetic moments by the 
same factor, neither does scaling up of the molecular- 
field constants. In both cases, the (critical) fields are 
scaled up with the same factor. 

We have shown that in the "three-sublattice 
model without anisotropy" rather complicated mag- 
netization curves may occur. One should bear in 
mind, however, that in the "two-sublattice model" 
similar curves can be expected in case the crys- 
talline anisotropy cannot be neglected (see Zhao 
Zhi-gang [7]). Nevertheless, we expect the model 
to be useful in the determination of  the molecular- 
field constants, i.e. the relevant exchange inter- 
actions, in a number of applications. Indeed, one 
of the motivations to undertake this analysis was 
to investigate the possibility to determine the 
(ferromagnetic) RT-interaction between a transi- 
tion metal T and a light rare earth R, just by 
placing on one sublattice a mixture of light and 
heavy rare-earth atoms (preferably Gd, in order to 

minimize anisotropy complications). Some pre- 
liminary experiments do confirm the feasibility of 
this approach [8]. As an example, we show the 
expected kind of results for e.g. (Nd, Gd)Ni2 in 
Fig. 7. Moreover, it should be possible to apply 
and test the model by preparing suitable multilayer 
samples. 

An obvious, and desirable, extension of the model 
is to include the field dependence of the magnetic 
moments. In fact, in the preliminary experiments 
mentioned, the magnetic moment in the collinear 
phase(s) often appears to be field dependent, even 
at temperatures well below the ordering temperature. 
Including (free) energy terms Fj(Mj) in Eq. (1), we 
see that the equilibrium conditions as represented 
by Eqs. (2a)-(2c) ,  remain valid, the quantities aj 
now being functions of (the variable) Mj. These 
functions, in principle, can be determined exper- 
imentally. So, the extension of the model seems 
to be straightforward. At the moment we restrict 
ourselves to two remarks. Whereas in the "two- 
sublattice model", in a non-collinear phase, the ef- 
fective field acting on a sublattice magnetization 
is strictly constant (ajMj = Inln D, in the "three- 
sublattice model" the effective field can vary. Con- 
sequently, in the "two-sublattice model" the sub- 
lattice magnetization remains constant, whereas in 
the "three-sublattice model" the magnetic moments 
can change, possibly given rise to even more com- 
plicated magnetization curves. Nevertheless, as a 
second remark, it is straightforward to show that 
in case the sublattices possess linear magnetiza- 
tion curves (field-independent high-field suscepti- 
bility, for instance), the system is equivalent to 
a system with constant magnetic moments, possi- 
bly even to a two-sublattice system. That means, 
that the present model can be applied to a large 
number of actual systems, provided the influence 
of crystalline anisotropy can be circumvented or 
ignored. 
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Appendix A: Stability ranges and effective fields in 
Case II (hi2 ~ hi3 =/123) 

A. 1. Notation 

IM3 - ( M 2  -M1)I  < Mt = #on/ln131 

< M3 + (M2 - M1 ) : Me[--q-+]; 

Inl3llM3 - (M2 -M1)I  < #OH 

The sign ofnl2 is indicated by F ( >  0) o rA(< 0); 
consecutively, the sign of n13 is indicated in the same 
way. The condition n12 > [<]n13 is indicated by 
a trailing > [<  ]. In this way, we distinguish Case 
AA > and Case AA <.  Moreover, in order to stress 
the importance of the signs, we write Inl2l and In13[ 
rather than -n12 and -n13, respectively, in case 
non-negative values of the coupling parameter are 
excluded. The notation of the states themselves is 
explained in the beginning of  Section 4. 

A.2. Non-collinear states 

[ncF]: Only in case n13 < 0 and n12-n13 > 0 
(Cases IIFA and IIAA > ). 

IM3 - (M2 +M1)[ < Mt 

= #OH/InI3[ < M3 +(M2 +MI) ;  

[nl3llM3 - (M2 +M1)] < #oH 

< [nl3l(M3 +(Mz +MI) ) ;  

or, equivalently, 

[nl3lMe[- - +] < /ton < [nl3[Me[+ + +] 

M3 > M2 +M1; 

[nl3lMc[+ + - ]  < #OH < Inl3lMc[+ + +] 

M3 < M2 +MI ;  

0 < # o H <  Inl3 lMc[+++]  M3 = M 2 + M 1 ;  

aiM1 = ]nl3l(M1 +Me)  + n12M2; 

a2M2 analogous; 

a3M3 = [n13[M3. 

Remark. Notice that the effective fields do not depend 
on the applied field, a pseudo-two-sublattice model 
feature. 

[ncA]: Only in case hi2 < n13 < 0, implying n12 - 
n13 < 0 (Case I IAA<).  

< [nl3l{M3 + (M2 - M I ) ) ;  

or 

[nl3]Mc[+-+] < #OH < [nl3[Mc[-+ +] 

M3 > M z - M 1 ;  

[n l3[Mc[-+-]  < #oH < ]nl3[Mc[-+ +] 

M3 < M2 - MI; 

aiM1 = -In131(M2 - Ml ) + InlzlMz 

= In 31M1 + ¢ln 21- In 3L)M2; 

a2M2 analogous; 

a3M3 = Inl31M3. 

Remarks. (1) This state does not exist in case Ml = 
M2 (see also [no3+-]) .  

(2) Again, the effective fields do not depend on the 
applied field. 

[no3++]: Only in case n12 < 0  and nlz-n13 < 0  
(Cases IIAF and IIAA<). Moreover 
Be [+++]  = Inlz[(M2 + Ml ) - n13M3 > 0 
(otherwise already "stretched" at zero 
field). 

max{M3(1 + nl3/lnl2[),M3 + M2 - M1 } 

< Mt = M3(1 + nl3/lnl2l) + #oH/In12[ 

< M3 +M2 +M~; 

max{0,-n13M3 + [n121(M2 - M1 )} 

< #oH < -n13M3 + [n12](M2 +MI) ;  

or 

max{0 ,Bc[ -++]}  < #oH < Be[+++] ;  

al = a2 = In121; 
a3M3 = [#oH(In12[ + n13) + n~3M3]/lnl2[. 

[nc3+-] :  Only in case n12 < n|3 < 0, implying 
n12-n13 < 0  (Case IIAA<). Moreover 
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B e [ + - + ]  = Inl3[M3 - [n121(M2 - MI )  
> 0 .  

max{M3(1 - [n13[/[n12[),M3 - M2 - Ml } 

< Mt = M3(1 - In131/ln121) + #on / ln l z  I 

< M3 - M2 + M~; 

max{0, [n13[M3 - [n12](M2 + M 1 ) }  

< HoB < [nl3]M3 -[nlEl(M2 - M 1 ) ,  

o r  

m a x { 0 , B ¢ [ - - + ] )  < po l l  < B ¢ [ + - + ] ,  

al,a2 and a3: see [nc3++] :  

al = a2 = 1n121; 

a3M3 ----[#on(In~21- [n13[)+ n~3M3]/[n12[. 

Remark .  In case M1 = M2, the regions [nc3++]  and 
[ n c 3 + - ]  can be joined. 

[nc3-] :  Only in case n13 < n12 < 0, implying n t2-  
n13 > 0  (Case I I A A >  ). Moreover B ¢ [ + + - ]  
= [n12[(M2 + M I )  -[n13[M3 > 0. 

max {M3(lnl3l/[nl2l -- 1),M2 - M1 - M3} 

< Mt = M3([n13]/ln121 - 1) + #on/lnl2[ 

< M2 + M I  - M 3 ,  

max{0,-[n13[M3 + In12[(M2 - M 1 ) }  < ~ o n  

< -[n13[M3 + [nl2l(M2 + M 1 ) ,  

o r  

m a x { 0 , B e [ - + - ] )  < #oH < B e [ + + - ] ,  

al and a2: see [nc3++] :  

al = a2 = Inl21; 

a3M3 = {#oH(In13] - 1n121) q'- n213M3}/ln121. 

A.3. Collinear states 

[ + + + ] :  no extra conditions, always stable at high 
enough field. 

Mt = M e [ + + + ]  = M1 + M 2  + M 3  

Case IIFF: n12 > 0;n13 = n23 > 0. 

#0H > 0; 

aiM1 = #0H + n12M2 + n13M3; 

a2 analogous; 

a3M3 = #0H + nl3(Ml + M2). 

Case IIAF: n12 < 0;n13 = n23 > 0. 

#oH > max{ln121(M1 + M 2 )  - -  n 1 3 M 3 , 0 )  

= m a x { B e [ + + + ] ,  0}; 

aiM1 = #oH - [nlzlM2 + n13M3; 

az analogous; 

a3 : see IIFF. 

Case IIFA: n12 > 0;n13 = n23 < 0. 

#oH > [n13[(Ml + M 2  + M 3 ) =  [nl3]Mc[W+W]; 

aiM1 = pol l  + nt2M2 - [n13[M3; 

a2 analogous; 

a3M3 = #oH - In13[(M1 +M2) .  

Case I I A A > :  n12 < 0;n13 = n23 < 0;n12 > n13. 

HoB > [n13[(M1 +ME + M 3 )  = [n l3 lMc[+++] ;  

alMl = #0H - In l2 lM2 --[nl3lM3; 

a2 analogous; 

a3 : see IIFA. 

Case I I A A < :  n12 < 0;n13 = n23 < 0;n12 < n13. 

#oH > InlEl(Ml + M E ) +  Inl3lM3) = B e [ + + + ] ;  

a l ,a2  and a 3 : see I IAA > .  

[ - + + ] :  Only in case n12 < 0, and In121 + n13 > 0. 
Moreover ME > M1 (excluding ME ---- M1 ). 

Mt = M e [ - + + ]  = -M1 + M 2  +M3.  



P.E. Brommer/ Physica B 225 (1996) 143-165 161 

Case IIAF: n12 < 0; n13 > 0. Only in 
B e [ - +  +]  = -n13M3 + In12[(M2 - -M1)  > 0. 

0 < #o H < -n13M3 + [n121(M2 - M 1 )  

=Be[-++]; 

a~M1 = - # o H  + In ,e lM2 - n13M3; 

a2M2 = #oH + Inl2[Ml + n13M3; 

a3M3 = #o H + n13(M2 - M1 ). 

case 

Case I I A A < :  n~2 < 0 ; n 1 3  = n23 < 0;n~2 < n13. 

Inl31M¢[-+ +]  = In131M3 + Inl31(Mz - M 1 )  < #oH 

< In131M3 + [nlzl(Me - M 1 )  

= B e [ - , + , + ] ;  

alMt = - p o l l  + In121M2 + In131M3; 

a2M2 = #oH + InlzlMl -- [n131M3; 

a3M3 = #oH - [nl3l(M2 - M1). 

[ + - + ] :  Only in case nt2 < n13 < 0 (Case I I A A <  
only). Moreover: M3 > ( M 2 -  M1) > 0 
(excluding M2 = M1 ). 

Mt = M c [ + - + ]  = M 1  - M 2  +M3.  

Case I I A A < :  n~z < 0;n13 =n23 < 0;n12 < n13. 

m a x { 0 , B c [ + - + ] }  = In~3lM3 - In~21(M~. - M~)} 

< #oH < [n13[M3 -[n131(M2 - M 1 ) ;  

aiM1 = #oH + In121M2 - In13[M3; 

aeMe = - # o H  + In121Ml + In131M3; 

a3M3 = #oH + Im31(M2 - Ml). 

[ + + - ] :  Only in case n13 < 0, and In131 + n12 > 0 
(Cases IIFA and I IAA > ). Moreover M1 + 
M2 > M3. 

Mt = M e [ + + - ]  = M 1  + M 2  - M 3 .  

Case IIFA: n12 > 0;nl3 = n23 < 0. 

0 < #oH < [n13[(M1 + M 2  - M 3 )  

= In131Mc[+ + - ] ;  

alMl = #oH + nleM2 + Inl31M3; 

a2 analogous; 

a3M3 = - # 0 H  + [nt3l(Ml +M2) .  

Case I I A A > :  n12 < 0;n13 = n23 < 0;n12 > n13. 
If  Be[+ + - ] ( =  [n121(M2 + M1) - [n13 [M3) < 0, then 
see Case IIFA (with nl2 = -Int21), else: 

Bc[+ + - ]  < /.ton < [nl3[(M~ + M 2 )  - [nl3lM3) 

= [nl3[Me[+ + - ] ;  

aiM1 = #oH -[n12{M2 + [n13[M3; 

a2 analogous; 

a3 : see IIFA. 

[ - - + ] :  Only in case n13 < 0 (Cases IIFA, I I A A > ,  
I IAA < ). Moreover M3 > (M1 + Me). 

Mt = M c [ - - + ]  = -M1 - M 2  + M 3  

Case IIFA: n12 > 0;n13 = n23 < 0. 

0 < #0H < [n131(m3 - ml - M2) 

= [ n l 3 l M e [ - - + ] ;  

aiM! = - # 0 H  + n12M2 + [n13[M3; 

a2 analogous; 

a3M3 = Iron + [n13[(M1 + Mz).  

Case I I A A > :  n12 < 0;n13 = n23 < 0;nl2 > nl3. 

#0H : see IIFA; 

aiM1 = - # o H  - [n12[M2 + Inl3lM3; 

a2 analogous; 

a3 : see IIFA. 

Case I I A A < :  n12 < 0;nl3 = n23 < 0;n12 < nl3. 
Only in case B e [ - - + ]  = In131M3 - In121(g l  + 
M 2 ) > 0  

0 < #oH < B c [ - - + ] ;  

al ,a :  and a3 : see I IAA > .  
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[ - + - ] :  Only in case nl3 < 0 and hi2 < 0 (Cases 
IIAA > and IIAA < ). Moreover M2 - 
Ml > M3 (excluding M2 = M1 ). 

Mt = M e [ - + - ]  = -M1 +M2 - M 3 .  

aiM1 = - # o H  + Inl2lM2 - [n131M3; 

a2M2 = #oH + Inl2lM1 + }n13[M3; 

a3M3 = - # o H  + In131(M2 - g l ) .  

Case I IAA<:  n12 < 0;n13 =n23 < 0;n12 < nl3. 

0 < #oH < [ n 1 3 [ ( M 2 - M l ) -  ]nl3lM3 

= i m s l M d - + - ] .  

Case I IAA>:  n12 < 0;n13=n23 <0;n12 > n13. 
Only in case B e [ - + - ] = l n 1 2 1 ( M 2 - M l ) - l n ~ 3 [  
M 3 > 0 .  

0 < #oH < Im21(M2 -M~) -Im31M3) 
= Bc[-+-]. 

Appendix B: The magnetic phase diagrams 
(magnetization curves) in Case II (n~z * hi3 = n23) 

whereas N -  has a slope 1/Inl21 > 1/In131: 

Mt = M3(ln131/ln121 - 1) + #oH~In121. 

Case IIFF: n12 > 0;n13 = n23 > 0. 

No critical field; 

No non-collinear states; only the collinear state 
[+ + +] is stable. 

#OH: 0 < [+ + +]; 

Mt = M e [ + + + ]  =M1 +M2 +M3, 

for #oH > 0; 

Type: C. 

Case IIAF: nl2 < 0;n13 > 0. 

Critical fields: 

Bd+ + +] = Im21(g2 + g l )  - n13M3; 

B e [ - +  +] = tnl2l(M2 -3//1) - n13M3 

(only in case M2 > M1 ). 

Case (a): Be[+ + +]~<0: only [+ + +], see IIFF. 

We use the same notation as before to indicate re- 
gions of parameter values. For each range of param- 
eters, we start by giving expressions for the relevant 
"critical fields", in decreasing order. 

The field ranges and the field dependence of the 
magnetization in each field range are given in an ob- 
vious notation. 

We classify the magnetization curve by its type. The 
magnetization curves appear to consist of a sequence 
of  constant and linear portions. The type is a sequence 
of characters C, L and N, or N + or N - ,  where C 
indicates a constant total magnetic moment, L a linear 
portion (i.e. Mt = #OH/In~3 I, in practice checked by 
extrapolation: the extrapolation should pass through 
the origin; the slope yields 1/In131). N, N + and N -  
represent also linear portions (by extrapolation cutting 
off a (positive) magnetic moment at vanishing field; 
the slope now yields 1/Inl21), the difference being that 
N + and N -  occur in a magnetization curve with a L 
part, so one can determine the differences in the slopes. 
N + has a slope 1/In121 < 1/Inla{: 

M t  = M 3 ( 1  - In~al/lnl2l) + #oH/In121, 

Type : C. 

Case (b): B c [ - +  +]~<0 < Bc[+ + +]. 

#oH: 0 < [ n c 3 + + ]  < B e [ + + + ]  < [ + + + ] ;  

g t :  g3(1 + n13/ln121) + #oH/In12[ 

< M3 + M2 + Ml; 

Type: NC. 

Case (c): 0 < B e [ - +  +] < Be[+ + +]; (M2 > M1 ). 

#oH: 0 <  [ - + + ]  < B c [ - + + ]  < [ n c 3 + + ]  

< Bd+ + +] < [+ + +]; 

Mr: M 3 + M 2 - M 1  < M3(l +nls/lnl2l)  

+#oH~Ira21 < M3 +M2 + n l ;  

Type: CNC. 

Case IIFA: n12 > 0; n13 = n23 < 0 (pseudo-two- 
sublattice system). 

case 3'/3 > M1 + M2. 
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Critical fields: 

[nl3lMe[+ + +] = [n13[{M3 + (M2 +M1)};  

In13]Mc[--+] = [n131{M3 - (ME + M1)}; 

# o H :  0 < [ - - + ]  < In131Me[--+] < [ncF] 

< [nl3lMe[+ + +] < [+ + +]; 

Mr: M 3 - ( M 2 + M 1 )  < M t  

= #on/]nl3] < M3 +(M2 + M l ) ;  

Type: CLC. 

case M3 = M1 + M2 (compensation: M e [ - - + ]  = 
0). 

The critical field In13]Me[--+] vanishes (only 
[ncF] and [+ + +] remain). 

Type: LC. 

case M3 < M1 
Critical fields: 

[n131 Me[+ + +] 

[n131 Me[+ + - ]  

#oH: 0 < [+ 

< [n13 [ 

+M2. 

= [n131 {(M2 + M l )  +M3}; 

= [n13[ {(M2 + M r )  - M s } ;  

+ - ]  < [ni3lMe[+ + - ]  < [ncF] 

Me[+ + +] < [+ + +]; 

Mt: (M2 + M1) - M3 <Mr = #on/]nl3[ 

<M3 + (M2 +M~); 

Type: CLC. 

Case I IAA>: n13 <n12 < 0 ,  so [nl2l < [n13]. 
case M3 ~>M1 + M2. Same as IIFA, cases M3 > 

M1 +M2 andM3 =M1 +M2. 
case 0~<M2 - M 1  ~<M3 < M l  +/142. 
Critical fields: 

[nl3]Me[+ + +] = [n13[ (M2 + M I )  + ] n13[M3 (> 0); 

[n~3lMd+ + - ]  = [n~31 (M2 + M ~ ) -  ] nl3lM3 (>0);  

Be[+ + - ]  = Inl2l(M2 + M l )  -- [nl3l M3. 

Case (a): Be[+ + - ]  ~<0: same as IIFA, case M3 < 
Ml +M2. 

Type: CLC. 

Case (b): 0 < Be[+ + - ] .  

#oH: 0 < [nc3-] < Be[+ + - ]  < [ + + - ]  

< Inl3lMe[+ + --] < [ncF] 

< Inl3lMe[+ + +] < [+ + +]; 

Mt: Mt = M3(ln131/In12[ - 1) + #on/lnlzl 

< (M2 +M1) -M3 <Mr = #oH~In13[ 

<M3 +(M2 +M1);  

Type: N-CLC. 

case M3 < ME - -  M1 (> 0). 
Critical fields, see above, now added (possibly 

positive): 

Be[-  + - ]  = Inl21 (M2 - M 1 )  -]n13[M3. 

Case (a): Be[+ + - ]  <~0: see Case (a) above, same 
as IIFA, case M3 < MI + M2 

Type: CLC. 

Case (b): Be[-  + -]~<0 <Be[+  + - ] :  see Case 
(b) above 

Type: N-CLC. 

Case (c): 0 < Bc[-  + - ]  < Be[+ + - ] .  

#oH: 0 < [ - + - ] < B c [ - + - ] < [ n c 3 - ]  

< {and so on, see Case (b) above}; 

Mt: ( M 2 - M I ) - M 3  <Mt 

= M 3 ( l n 1 3 [ / l n 1 2 1  - 1) + #on/ln121 

< (etc.) {see Case (b) above}; 

Type: CN-CLC. 

Case IIAA <:  n12 < n13 = n23 < 0, so 1n13[ < In~21. 
Case M 3 > ~ M I + M 2 ; M 2 > M 1  {M2=M1:  see 

below}. 
Critical fields (decreasing order). 

Be[+ + +] = In121 (/142 +M1)  + [n13[M3 (> 0); 

Be[-  + +] = In121 (M2 - M1 ) + [n131 M3 (> 0); 
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In]3lgc[- + + ]  = Inl3[ (M2 - M I ) +  In131M3 

( > 0); 

In13[M~[+ - +]  = [nl3lM3 - [n131 (M2 - M1) 

( > 0); 

Bc[+ - +]  = mnl3mM3 - [n121 (M2 - M 1 ) ;  

n c [ -  - +] = Inl3lM3 -[nlEI (M2 +M1).  

Case (a): Bc[+ - +]~<0. 

#OH: 0 < [ + - + ] < l n l 3 l M ¢ [ + - + ]  

< [ncA] < In~31nc[- + +] < [ -  + +] 

Type: CN+CLCN+C; N + parts extrapolated form 
one straight line. 

Note. In case M2 = M1 the curves are simplified: Case 
(a) (above) does not occur; in Case (b) the type is 
reduced to type NC, and in Case (c) to type CNC. 

Case 0 < M 2 - M 1  <M3 <M1 +M2. 

Critical fields: see above; now B c [ - - + ]  
< 0, so Case (c) does not occur only the Cases (a) 
and (b) are still possible. 

Note. In case M2 = MI the curves are reduced in the 
same way as above: only Case (b), curve type NC, 
remains. 

< Be [ -  + +]  

< [nc3 + +]  < Bc[+ + +]  < [+ + +]; 

Mr: M 3 - ( M 2 - M 1 ) < M t =  #OH/Inl3I 

< M3 + (M2 - M1) <Mr = n 3 ( 1  - [nl3l/lnl2]) 

+#oH/ln~2l <M3 +M2 + M l ;  

Type: CLCN+C. 

Case 343 = M2 - M1 (M2 > M1 ). 

Critical fields: see above, down to ]n13]Mc[+ - +]  
= 0 .  

Case (a) (above): the curve type is now reduced to 
type LCN+C also to be regarded as a limit of  the case 
M3 < M2 - M1 below. 

Case M3 < M2 -/141. 

Critical fields: 

#OH: 

g t :  

< g 3  - ( m 2  - m l )  

Case (b): Bc [ -  - +] ~<0 < Be[+ - +]. 

0 < [nc3 + - ]  < B d +  - +]  < [+ - +]  

{and so on, see Case (a)}; 

M3(1 - [n13[/ln121) + #OH/InI2[ 

{etc., see Case (a)}; 

Bc[+++] = mn121(M2+M1)+mn13[M3 (>0); 

Wc[- ++] = In121(M2 -MI)+ Inl3lM3 (>0); 

[nl3lMc[- + +]  = [nl3l (MR - M,) + [n131 M3 

(> o); 

Type: N+CLCN+C; N + parts extrapolated 

form one straight line. 

Case (c): 0 < Be[ -  - +] < B d +  - +], so M3 > 
(Jn12[/[n13[)(g2 + g l )  > (g2  + M I ) .  

#oH: 0 < [ -  - +] < B c [ -  - +]  < [nc3 + - ]  

{and so on, see Case (b)}; 

Mt: M 3 - ( M 2 + M 1 ) < M 3 ( 1 - m n l 3 H n I 2 1 )  

+#o#/In121 

.[and so on, see Case (b)}; 

In131Mc[- + - ]  = [n131 (M2 - MI ) - [n13mM3 

(> 0); 

#oH: 0 < [ -  + - ]  < mnl31Mc[ - + - ]  < [ncA] 

.[and so on, see Case (a)}; 

Mr: (M2 - M 1 )  - M 3  <Mr  = #OH/In131 

.[and so on, see Case (a)}; 

Type: CLCN+C. 
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