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Abstract

Before attempting to solve an instance of the satisfiability problem, what can we
ascertain about the instance at hand and how can we put that information to
use when selecting and tuning a SAT algorithm to solve the instance? We argue
for an ensemble-based approach and describe an illustrative example of how such
a methodology can be applied to determine optimal restart cutoff points for sys-
tematic, backtracking search procedures for SAT. We discuss the methodology and
indicate how it can be applied to evaluate such strategies as restarts, algorithm
comparison, randomization and portfolios of algorithms.

1 A prior: predictions

Satisfiability is a computationally hard problem [3]. In the face of this in-
tractability, when we need to solve an instance of SAT, there is no option
but to set about tackling it with one of the currently available algorithms.
But which one? And, once we have selected an algorithm, which parameter
settings and strategies should we use?

1 Supported by the Spinoza project ‘Logic in Action’ and by a grant from the
Netherlands Organization for Scientific Research (NWO) under project number 365-
20-005.
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This line of thinking leads us to a general question. When presented with a
SAT instance which we have not seen before, what a priori predictions can we
make about it? By a priori, we mean before attempting to solve the instance.
We allow ourselves a cursory scan of the instance, only permitting ourselves,
say O(n) steps.

Among the properties which it would be useful to make predictions about are:

Cost How hard is the instance? Can we predict with some degree of confidence
whether we can expect to solve the instance within 5 minutes or 5 days
or 5 years? The size of the instance is the best prima facie indicator of
computational cost.

Solubility Do we expect the instance to be satisfiable or not? The existence of
distinct satisfiable and unsatisfiable phases for the 3SAT ensemble of prob-
lems can give a indication of the probability that an instance is satisfiable
based on the ratio of clauses to variables [2,25,27].

Strong heuristics versus randomization Are strong heuristics (for exam-
ple, branching rules [17]) likely to lead to a quicker solution? If so, which
heuristics? Or would the introduction of randomization be beneficial? [11,12]
And, if so, how much randomization is appropriate?

Restart susceptibility For some instances, search cost can vary enormously
from run to run [8]. Sometimes, during a search attempt, it may be better
to cut one’s losses, give up and start again [11,21,29]. Many such restart
strategies are possible. Is the instance likely to be susceptible to one of
them? And, if so, which one?

Parallelizability To what extent should the search be parallelized? Does the
benefit gained from running a number of processes in parallel balance the
overhead of coordinating those processes? This issue is closely related to
that of restart strategies [14] and similar analysis can be applied.

Algorithm suitability Where more than one SAT algorithm is available,
which one is most likely to decide the instance most quickly?

Resource budgets When the available time, number of processors, and/or
storage is limited, how can the available resources best be allocated?

Portfolios Is a portfolio of the algorithms more suitable and, if so, how should
available resources (processor time, processors, storage, etc.) be allotted
among the algorithms? [20,9]

When presented with a new instance, two approaches to prediction are pos-
sible. One can view the instance as an element drawn from an ensemble.
Properties of the instance, such as number of clauses, number of variables,
connectivity, etc., can be measured. Predictions about the behaviour of the
instance under search can then be made based on knowledge of the behaviour
of those instances from the ensemble having those same properties.

Alternatively, one can sidestep the notion of a statistical ensemble and look



for directly-measurable parameters of the instance which provide indicators of
its behaviour under search.

We refer to the latter as ensemble-independent parameters while we refer to
the former approach as ensemble-based prediction.

While it may seem intuitively more direct to measure ensemble-independent
parameters than to bring an ensemble into consideration, we will see that
difficulties measuring ensemble-independent parameters together with some
statistical considerations concerning ensembles suggest that the latter may be
more promising.

In the rest of the paper we look at ensemble-independent parameters and a
methodology for ensemble-based prediction and compare the two. Then we
show how this methodology can be applied by rigorously deriving two criteria
for restart strategies. We conclude with a discussion of the methodology.

2 Ensemble-independent parameters

Kolmogorov complexity theory is an elegant and appealing approach to cap-
turing the inherent complexity of individual objects independently of their
origin [22]. Attempts have been made to relate the hardness of a SAT instance
to its Kolmogorov complexity which is in turn related to its incompressibility.
Such attempts are stymied by the fact that Kolmogorov complexity is not
computable and only roughly approximable [22].

Vlasie [28] claimed that algorithms for hard problems behave well in general
but that certain very hard instances exist. These hard instances have a very
particular non-random structure which makes them compressible. However
evidence seems not to be consistent with this view [26,15]. Rare, exceptionally
long runs appear to be due to infelicitous choices made by the algorithm rather
than being due to an inherent hardness in the instance itself. Performing many
runs of a (randomized) algorithm shows that very few runs are long. Selman
& Kirkpatrick [26] conclude that the practical consequence of this is that none
of the instances they tested was inherently hard.

Hogg [15] considers the Entropy of an instance but dismisses it as a param-
eter since it applies to the process which generates instances rather than the
instance itself. As a practical measure which is readily computable, he con-
siders the Approximate Entropy. His experiments show a correlation between
approximate entropy and clustering but finds no correlation between instance
hardness and approximate entropy. He concludes pessimistically that these re-
sults suggest that no additional readily computable problem parameters will



predict search cost or number of solutions.

3 Ensemble-based prediction

We consider the 3SAT ensemble, which has been the subject of much empirical
investigation [16]. By building up a picture of the runtime behaviour of algo-
rithms for a range of values of the parameters for 3SAT, we can predict the
behaviour of a new instance from the behaviours of instances from the mea-
sured sample. More generally, since the 3SAT ensemble covers the entire 3SAT
problem, we can, in principle, make predictions about any 3SAT instance.

To illustrate how ensemble-based predictions can be applied, we use Bayesian
methods to make predictions for restart strategies based on these profiles.
Taking two criteria for performing restarts as a point of departure, we derive
formulae which can be applied to the empirically measured distributions to
provide cutoff points which are optimal for the criteria.

Two criticisms have been levelled at the ensemble-based approach [15]:

(1) The variance of behaviours across an ensemble is very large, limiting the
accuracy of predictions based on ensemble averages.

(2) Any given instance can be regarded as having been sampled from many
different ensembles. What justification is there for predicting the be-
haviour of the instance based on that of instances of one of these en-
sembles?

In answer to the first point, we base our predictions not on averages or other
descriptive statistics, but on complete runtime distributions (RTD) for the
ensemble. RTDs give a fuller picture of the runtime behaviour without re-
quiring more data to be collected that necessary for calculating the standard
descriptive statistics [18]. The justification for the second point can be found
in the fundamentals of the theory of statistical inference from samples. The
predictions are based on the assumption that the instance has been drawn
from the ensemble and, as such, will depend on the variance of the properties
across the ensemble and the typicality of the instance for the ensemble. This
degree of confidence can be quantified as a measure of the reliability of the
prediction.

3.1 Mapping 3SAT

We are currently running a large experiment to collect runtime data for a
DPLL style algorithm [7,6] running on 3SAT instances of a range of sizes



containing up to 500 variables.

The purpose of the experiment is to generate a data set which can be analyzed
to provide answers to many of the questions posed in the first section of this
paper. In particular, the data set can be used together with the results of the
following section to provide optimal cutoffs for restart strategies.

4 'When to Restart

Restart techniques for CSPs have been explored by several authors. Gomes
et al. [11], noting the significant variability of runtimes on different presenta-
tions of a single problem instance, give methods for introducing “controlled
randomization” into complete, systematic, backtrack search procedures for
CSPs leading to their Randomization and Rapid Restart (RRR) strategy. In
[11] and [10] the behaviour of such procedures is modelled using Pareto-Lévy
distributions and it is proven that these randomization methods eliminate
“heavy tails” in these distributions, where such tails exist. They obtain what
they call a “near-optimal” cutoff value by a trial-and-error process of varying
the cutoff value.

Other approaches to finding suitable cutoffs have been tried by Kautz et al. [21]
who used iterative deepening and by Walsh [29] who used iterative deepening
along a geometric progression for his Randomization and Geometric Restarts

(RGR).

Ad hoc restart strategies have also been used for SAT and other CSPs by [4,1]
and also for non-systematic methods such as global optimization, stochastic
search, and genetic algorithms by Shonkwiler and others [19].

To the best of our knowledge, we provide here the first rigorously derived
optimal cutoff points for restart criteria. Our work is similar in spirit to that
of [24,23] who, we feel, underestimated the potential of such analysis. Luby et
al. describe the existence of an optimal strategy as “an interesting theoretical
observation” which is “of little value in practice because it requires for its
implementation detailed information about the distribution [of runtimes].”
We are more optimistic in the light of the following two observations:

(1) These techniques can be used to tune a search algorithm to run on prob-
lem instances drawn from a known ensemble. For example, a satisfiability
tester may be required for an application which generates instances which
are similar enough to lead to a beneficial restart strategy.

(2) If restart techniques can be shown to scale in a systematic way, a restart
schedule calculated from running many small instances can be scaled to



improve the behaviour of an algorithm on larger instances.

4.1 Restart Criteria

When we speak of a run we will mean the execution of the search algorithm
from the beginning until termination without restarts. Thus a run is a complete
execution in the standard sense of the word.

The execution of a search algorithm under a restart strategy will consist of a
sequence of runs of the search algorithm. Each of the runs, except the last, will
have been aborted after a predetermined number of steps, the cutoff, before
starting a new run.

4.2 Optimization

Let the random variable F : N — R be the number of steps it takes the search
algorithm to halt on a single run. Let n be the probability density function
associated with F.

We will consider the following events:

n : the algorithm halts in precisely n steps.

N : the algorithm runs for n steps without halting.
and similarly for events m, M, t, T etc.

The probabilities associated with these events are given by:

We use the notation (X) for the expectation of the event X. The expectation
of the run time of the algorithm is given by:

(n) = Xk: kn(k) (3)

We will derive two conditions for restarting, based on two criteria. The first

2 We write events in sans serif font to distinguish them from symbols denoting
numbers and truth values.



will be based purely on the given distribution n and the comparison between
continuing the current run and initiating one new run.

4.2.1 One run or two

Stated in words, the criterion for performing a restart is that the expected
number of steps for starting from scratch is less than the expected number of
steps remaining in the current run. After m steps have been completed, the
expected total number of steps for the current run is given by (n|M). Therefore
the criterion is to restart at the smallest number of steps m for which:

(n|M) —m > (n) (4)

This criterion compares just two runs: the current run and one newly initiated
rumn.

To obtain an expression for (n|M), we apply Bayes’ theorem:?

Pl = g )
_ [n> mlyfn)

From this expression we can determine the expectation for the total number
of steps in those runs which do not halt during the first m steps:

(n[M) = >_nP(n[M) (7)

0> my(n)

(B ©

_y )
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Plugging these expressions into Criterion 4, we get:

Ek>m ]W?(k)

ST —-—m > zk:kn(k) (11)

3 We use the notation that the expression [S] has the value 1 if the proposition S
is true and 0 otherwise. So [n > m] = 1 when n > m and 0 otherwise. [13]



Given a runtime frequency distribution 7, we should restart the algorithm
after m steps if the algorithm has not yet halted and m is the smallest positive
integer satisfying Criterion 11.

4.2.2  Taking account the probability of satisfiability

Given an instance of 3SAT, the ratio of clauses to variables, m/n gives a
good indication of the probability that the instance is satisfiable. Evidence
indicates that the transition from the satisfiable region to the unsatisfiable
region is approximately given by: m = 4.25n [5]. That is, for values of m,n
such that m < 4.25n, the vast majority of instances are satisfiable while the
vast majority of instances are unsatisfiable for other values of m, n.

On this basis, we can put our prior belief concerning the satisfiability of a
given instance to use. A more or less precise prior can be assumed but, for
convenience, let us take for our prior belief:

1, m<4.25n
¥ = (12)
0, m>4.25n

Now, instead of lumping the frequencies of all runs together into one distribu-
tion, let us measure separately the runtime frequency distributions n; and 7,
of the instances that turn out to be satisfiable and unsatisfiable respectively.
These distributions are quite distinct.

Let s and u be the events that an instance is satisfiable and unsatisfiable
respectively. As in the previous subsection, we consider a run that has not
yet halted after m steps and calculate the consequences of this for our beliefs
about how many more steps the run will take, how many steps a restarted run
would take and the satisfiability of the instance.

By Bayes’ theorem,

Mis) P(s)

P(s|M) = L S (13)

Since s and u partition the space of all events, we can write P(M) = P(M|s)P(s)+
P(M|u)P(u), giving

P(Mls) P(s)

(M(s) P(s) + P(M]u) P(u) (14)

P(sM) = 5



We interpret P(s|M) as the posterior belief concerning the satisfiability of the
instance in the knowledge that a run has failed to halt after m steps. We write
¢ for P(s|M). To calculate a form for Criterion 4 which takes advantage of
this information we need expressions for P(n) and P(n|M). These expressions
are given in terms of the posterior ;.

By the same reasoning as above we can write

P(n) = P(n|s) P(s) + P(nlu) P(u) (17)
=ns(n)Y1 + nu(n)(1 — 1) (18)

and, by a further application of Bayes’ Theorem,

(i) = Lo (19)

_ P(Min) P(n)
= P(MJs) P(s) + P(Mlu) P(u) (20)
> ml(n(n) + () (1 - ) o)

Zk>m ns(k)wl + Zk>m nu(k)(l - 1/}1)
The corresponding expectations are given by:
(n) = Y nP(n) (22)
= 3" n(m,(n) s + mu(n)(1 — 1)) (23)
(n[M) =3 _nP(n|M) (24)
_ 5,y (> m](05(n)3r + 0u(n)(1 — 1)) (25)
n Ek>m ns(k)d}l + Zk>m ﬂu(k)(l - djl)

T o s (B) 01+ S T () (T — 1)

Plugging these expressions into Criterion 4, we get:

Donom M0s (M1 +nu(n)(1=y1)) m
D ko Ms(R)Y1+) (k) (1=91) (27)

> 3, n(Ms(n)r + nu(n) (1 — 1))




Should this criterion be applied and the algorithm restarted, then a criterion
for a further restart can be derived but this time using v, as the prior in
place of ¥. By iterating, we can find a schedule of restarting points for the
first, second, and subsequent restarts until termination. This allows us to, not
so much start from scratch, but start again each time in the knowledge that
one or more runs, of given lengths, have failed to terminate. This knowledge
influences our belief that the instance is satisfiable.

For any instance of 3SAT with values of m and n, we can use Criterion 27 to
calculate, in advance, an optimal sequence of restart cutoffs. We call such a
sequence a restart schedule for the instance.

5 Discussion

We have considered the relative merits of using ensemble-independent param-
eters and ensemble-based methods for making a prior: predictions about SAT
instances. We propose a methodology for ensemble-based prediction based on
Bayesian methods. We have illustrated this methodology by deriving two cri-
teria for restart strategies for systematic, backtracking search procedures for
SAT. The methodology can be applied to provide testable results for com-
parison of algorithms, optimization of algorithm portfolios, parallelization of
algorithms, and algorithm randomization, among others.

We note that the results presented here have not been tested empirically to
evaluate just how accurately ensemble-based predictions of the above prop-
erties can be made. As mentioned earlier, we are currently collecting a large
data set for the 3SAT ensemble. Future work will be directed at analyzing
these data to evaluate the practical usefulness of this approach.
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