UvA-DARE (Digital Academic Repository)

Transitional YSOs: candidates from flat-spectrum IRAS sources

Magnier, E.A.; Volp, A.W.; Laan, K.; van den Ancker, M.E.; Waters, L.B.F.M.

Publication date

 1999
Published in

Astronomy \& Astrophysics

Link to publication

Citation for published version (APA):

Magnier, E. A., Volp, A. W., Laan, K., van den Ancker, M. E., \& Waters, L. B. F. M. (1999).
Transitional YSOs: candidates from flat-spectrum IRAS sources. Astronomy \& Astrophysics, 352, 228-238.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Transitional YSOs: candidates from flat-spectrum IRAS sources ${ }^{\star}$

E.A. Magnier ${ }^{1,2}$, A.W. Volp ${ }^{2}$, K. Laan ${ }^{2}$, M.E. van den Ancker ${ }^{2}$, and L.B.F.M. Waters ${ }^{2,3}$
${ }^{1}$ Astronomy Department 351580, University of Washington, Seattle, WA 98195, USA
${ }^{2}$ Astronomical Institute "Anton Pannekoek", Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
${ }^{3}$ Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Heverlee, Belgium

Received 17 August 1999 / Accepted 5 October 1999

Abstract

We are searching for Young Stellar Objects (YSOs) near the boundary between protostars and pre-main-sequence objects, what we term Transitional YSOs. We have identified a sample of 125 objects as candidate transitional YSOs on the basis of IRAS colors and the optical appearance on POSS plates. We have obtained optical and near-IR imaging of 82 objects accessible from the Northern Hemisphere and optical images of 62 sources accessible from the South. We also created deconvolved $60 \mu \mathrm{~m}$ IRAS images of all sources. We have classified the objects on the basis of their morphology in the optical and near-IR images. We find that the majority of our objects are associated with star-forming regions, confirming our expectation that the bulk of these objects are YSOs. Of the 125 objects, 28 have a variety of characteristics very similar to other transitional YSOs, while another 22 show some of these characteristics. Furthermore we have found seven objects to be good candidates for members of the Herbig Ae/Be stellar group, of which three are newly identified as such. We have placed a set of images for each of the objects in the archives of the Centre de Données astronomique de Strasbourg (CDS).

Key words: stars: circumstellar matter - stars: evolution - stars: formation - stars: mass-loss - stars: pre-main sequence

1. Introduction

The process of individual star formation is usually divided into two important phases. First, the dense core of a molecular cloud collapses to form an embedded protostar which accumulates material by accretion from the surrounding cloud. At some point, the accretion stops, the enshrouding dust is cleared away, and the former protostar, now a pre-main-sequence star, begins to contract slowly, increasing its central temperature until hydrogen ignition takes place. Extensive theoretical and observational work over the past 4 decades has resulted in strong support for this general picture, with most of the major points well understood. One of the areas where uncertainty remains is the

[^0]transition between the protostar and the pre-main-sequence star. This period is also one of the more interesting in the evolution of the star as the ionized jets and molecular outflows are particularly active at this stage. We are investigating this transitional stage of star formation, and are searching for examples of stars at or near the transition from protostar to pre-main-sequence star. In this paper, we present new optical and infrared imaging observations of a sample of candidate transitional YSOs selected on the basis of IRAS colors and optical morphology. We begin with a background review to motivate our study and the selection criteria of our sample. We then discuss the observations and present our catalog of objects and the relevant observations for each. Finally, we summarize the results of this survey. In successive papers, we will present analyses of the optical and near-IR colors and optical spectroscopy of the best transitional YSO candidates from the sample presented here, as well as submillimeter spectral-line studies.

2. Background

Excellent reviews on the star formation process and the state of the observational evidence have been presented by Stahler (1988b, 1994), Staude \& Elsässer (1993), Fukui et al. (1993), and references therein.

The first important attempts to understand the pre-main sequence evolution of stars began in the mid-1950s, with the computer modelling of Henyey et al. (1955), and the identification of T Tauri and Herbig Ae/Be stars (Walker 1956; Herbig 1960). By the early 1970s, the 'standard model' for the evolution of pre-main sequence stars was more or less our modern version, with slow contraction of the star down the Hayashi track followed by a nearly-constant luminosity evolution to the main sequence. While some of the details of this process may have been improved since then, the general picture was already there.

The starting point for pre-main-sequence evolution remained an important theoretical question for the next two decades. Initially it was believed that the details of the cloud collapse were unimportant in determining the temperature and luminosity of the pre-main-sequence star since an insignificant fraction of the gravitational potential energy would be lost in the collapse. Later work showed that large amounts of energy are dissipated in the accretion, implying that the details of the
collapse were important in determining the starting point of the pre-main-sequence evolution. Further theoretical work by Shu (1977) demonstrated the 'inside-out' collapse process which resulted from the nearly isothermal nature of the dense cloud core.

Further work to model the protostar collapse resulted in the first believable starting point for the pre-main-sequence evolution. Stahler (1983; 1988a) suggested that pre-main-sequence stars should first be seen in a narrow locus, the "birthline", determined by the mass-radius relationship of the protostar during the final, deuterium-burning stage. Contemporary observational evidence from pre-main-sequence stars supported this claim (Cohen \& Kuhi 1979).

By the early 1980s, the existence of embedded, accreting protostars was widely believed, but observational evidence was limited. Dense cloud cores had been observed in studies of molecular gas (Myers \& Benson 1983). Lada \& Wilking (1984) studied the spectral energy distribution of the infrared sources in Ophiuchus and grouped the sources into three classes. Class I sources consisted of rising infrared spectral energy distributions and were nearly always unidentified at optical wavelengths. Class II sources consisted of T Tauri stars with flat or slightly falling infrared spectral energy distributions. Class III objects were consistent with reddened blackbody spectra. They equated Class III objects with main-sequence and pre-main-sequence stars with small amounts of extinction, Class II objects with pre-main-sequence stars with moderate amounts of warm dust, and Class I objects with protostars. Adams \& Shu (1986, 1985) and Adams et al. (1987) developed models for the spectral energy distributions of these systems and strengthened the connection between the sequence of Class I, Class II, Class III and the above evolutionary sequence.

2.1. Disks and outflows

The work discussed above has resulted in a generally accepted scenario for the formation and evolution of the central star, but it is lacking in two major areas: the presence of disks and outflows. While the presence of disks was predicted in theories, observational evidence for disks was slow to develop. Conversely, collimated outflows were not predicted in early theories, but observational evidence existed for many years: Optical spectra of T Tauri stars showed early on the presence of strong winds (Joy 1945; Herbig 1960, Kuhi 1964). Luyten (1971) pointed out the large proper motion of Herbig-Haro objects associated with L1551. Several groups explained HH objects as the result of wind-cloud interactions (Schwartz 1978, Norman \& Silk 1979 , Rodriguez et al. 1980). Cudworth \& Herbig (1979) confirmed the Luyten (1971) result and made several suggestions for the proper motion, including the suggestion that the objects were moving away from the position of the infrared source L1551 IRS 5. The real breakthrough came with the discovery of Snell et al. (1980) of a bipolar CO outflow from L1551 IRS 5. In this classic paper, they presented all of the modern components of an accreting YSO system: large lobes of the molecular outflow
driven by a fast, ionized wind collimated by a thick torus of material surrounding the central star.

At about the same time that outflows were recognized, evidence was mounting for the presence of disks in YSO systems. The spectral energy distribution models of Adams \& Shu (1985) implied the presence of warm circumstellar disks to explain the amount mid-IR emission. The large observed amounts of mid and far-IR emission in systems with relatively low extinction to the central star also imply a large amount of warm dust in a disk geometry. Several systems such as L1551 IRS 5 and R Mon show evidence for disks in the axisymmetric pattern of light reflected off nearby reflection nebulae. The shape of emission line profiles in which blue-shifted wings are preferentially seen are further evidence of obscuring circumstellar disks (e.g., Mundt 1984). Recently, disks have been directly imaged, via their IR emission (e.g., Beckwith et al. 1989, Chen et al. 1998, and with HST via the absorption of the background emission (McCaughrean \& O'Dell 1996).

Disks may be present in YSO systems in a variety of shapes and sizes. On the largest scales, the envelope of molecular gas may be rotating slowly around the central object. Evidence for such large scale (1000-10 000 AU) bulk motions has been seen in the CO velocity fields for several embedded YSOs (see Staude \& Elsässer 1993 for a review). The disks which have been imaged directly had diameters in the range of $10 \mathrm{~s}-100$ s of AU and consist largely of warm dust. Finally, on the smallest scales, accretion is thought to take place from the hot boundary layer of an accretion disk with scales of only a few stellar radii. The presence of UV excesses and strong high-Balmer line emission in active systems are thought to be evidence for hot accretion disks (see e.g. Batalha \& Basri 1993), though other models have been suggested in the literature.

2.2. YSOs in transition

One of the most important issues in the formation of young stars is the end of accretion. The point at which accretion stops determines the mass of the star which will develop. The mechanism which interrupts the accretion process is not well understood, but one likely possibility is that the presence of a strong outflow may disrupt the cloud. During this period, outflow activity is usually quite strong. The end of accretion approximately marks the transition between the embedded and exposed phases of evolution. The transition between these two stages is apparently quite quick, as seen in the dichotomy between Class I sources and Class II sources: there are few sources with very flat farIR SEDs. It is difficult to study the sources which are close to this transition as they tend to have substantial extinction to the central star, making optical observations difficult or impossible. Certain systems which are close to this boundary, such as L1551 IRS 5, may be observed optically only via a reflection off of a nearby dusty cloud.

IRAS 05327+3404, first discussed in depth by Magnier et al. 1996; Paper I), is an excellent example of a YSO in transition. IRAS 05327+3404 (Holoea) has some features typical of Class I sources (rising spectral energy distribution, molecular bipolar
outflow) and some features typical of Class II sources (visible central star, ionized outflow). Furthermore, the outflow is of an unusually high velocity ($\sim 650 \mathrm{~km} \mathrm{~s}^{-1}$) for a low-mass star (roughly K1), and the central star has brightened by >1.5 magnitudes since the 1954 POSS plates. All of these pieces of evidence suggest that this source is not only close to the Class I / Class II (Lada \& Wilking 1984) boundary, but in fact in the process of becoming optically exposed. IRAS $05327+3404$ (Holoea) clearly represents a unique opportunity to study an optically visible low-mass star which retains substantial circumstellar material.

There are other well-studied systems, such as L1551 IRS 5 and Parsamyan 21, consisting of low-mass stars which must also be close to the Class I / Class II transition, but which are more embedded than IRAS $05327+3404$ (Holoea) and have substantially higher extinctions. Other objects with nearly flat IRAS spectra, such as DG Tau and T Tau, are close to the boundary, but have substantially less mid- and far-IR emission than IRAS $05327+3404$ (Holoea). The object HL Tau is probably at a very similar state of evolution, and it shows an SED very similar to that of IRAS $05327+3404$ (Holoea). We have searched for more examples of objects near the embedded/exposed transition by searching for objects with properties similar to IRAS 05327+3404 (Holoea).

3. Candidate selection

Our goal is to find objects near the transition between the embedded and exposed phases of evolution. Such sources will naturally have generally flat IRAS spectra, and will likely exhibit some of the properties of other sources thought to be near the transitional phase, such as strong ionized and molecular outflows, nearby reflection nebulae, moderate to high optical extinction. Similar searches have been performed in the past by researchers who selected candidate YSOs from the IRAS Point Source Catalog (1985) by identifying objects with IRAS colors similar to known YSOs (e.g., Persson \& Campbell 1987. Campbell et al. 1989; Prusti et al. 1992). In this project, we have used the source IRAS 05327+3434 (Holoea) as a guideline. We are searching for sources which resemble this source, starting with the IRAS colors.

We have selected candidate transitional YSOs from the IRAS Point Source Catalog (1985) based on their IRAS colors. IRAS colors may be defined as logarithmic flux ratios, e.g., $[12]-[25]=-2.5 \log \left(\frac{f_{12}}{f 25}\right)$. We used the IRAS [12] $-[25]$, [25] - [60] color-color diagram to make the initial selection of candidates. We based our selection partly on the IRAS colors of Holoea and partly on the colors of a perfectly flat IRAS spectrum. We chose all sources in the [12] - [25], [25] - [60] color-color diagram within a specific box. We chose the center of our box to have the [12] - [25] color of a flat IRAS source ($[12]-[25]=0.75$), while the $[25]-[60]$ center was chosen as the color of Holoea ($[25]-[60]=1.5$). The width of the box was chosen to be roughly 2σ for each color, giving us the following color ranges: $1.3<[12]-[25]<0.40,2.0<[25]-[60]<1.0$. We also demanded that all IRAS sources have a good detection
with reliable data (Category 3 detection) in the bands $12 \mu \mathrm{~m}$, $25 \mu \mathrm{~m}$, and $60 \mu \mathrm{~m}$. These criteria resulted in 327 IRAS sources.

To narrow down the list, we examined the Digitized Palomar Observatory Sky Survey (DSS) in the vicinity of each source. We extracted small ($4^{\prime} \times 4^{\prime}$) images around each source and searched for any hint of nebulosity. Since the reflection nebula of Holoea is quite faint in the DSS images, we did not demand a very significant level of nebulosity for the new candidates. Since the nuclei of Seyfert galaxies may have IRAS colors similar to our selected range, a number of sources which were clearly associated with spiral galaxies were also rejected. These criteria reduced our initial sample to a manageable selection of 125 sources. Table 1 lists the entire sample of sources in the final selection. In this paper, we report on imaging observations of the sources. We present optical, near-IR and deconvolved IRAS images (HIRAS) of each source, available in electronic form only.

4. Observations

Observations of the Southern sources were performed using the Dutch 90 cm telescope at the European Southern Observatory, La Silla. Observations have been made in June 1996 by S. Kramer, in September 1996 by T. Thomas, in December 1996 by D. Janssens, in January 1997 by H. Sellmeijer, and in August 1998 by J. Arts. The Dutch telescope is equipped with a TEK $512^{2} \mathrm{CCD}$ with a pixel scale of about $0!\prime 44$. Bessel V $\left(\lambda_{c}=\right.$ $5442 \AA, \mathrm{FWHM}=1171 \AA)$, Bessel R $\left(\lambda_{c}=6481 \AA\right.$, FWHM = $1645 \AA)$, and Gunn i $\left(\lambda_{c}=7972 \AA, \mathrm{FWHM}=1407 \AA\right)$ have been used. Exposure times were 5 minutes per image. All sources have been imaged three times in each filter. These three exposures were then averaged, during which outliers caused by cosmic ray impacts on the CCD were rejected. Images were then bias subtracted and flat-field corrected. Positional calibration was done by identifying field stars using DSS images.

Observations of the Northern Hemisphere sample were performed using the Apache Point Observatory (APO) 3.5m telescope. Observations were distributed over a number of nights between Aug 1996 and Feb 1998. Table 2lists the nights of observations and the instruments used. Observations were made using three different instruments. The APO 3.5 m was remotely operated from the University of Washington control room for all of the observations. The Apache Point Observatory has a midIR all-sky imager which operates at $10 \mu \mathrm{~m}$ and observed the entire sky once every 5 to 10 minutes. This camera, the CloudCam allows the observer to directly see the presence of even quite low levels of cirrus clouds, making it possible to judge the conditions as the night progresses. The photometric conditions of the sky during each of the nights are listed in Table 2 Consistency of the standard star photometry during the photometric nights was used to judge the accuracy of the photometric calibrations. Although not all of the nights of observation were photometric, good calibrations for nearly all Northern sources were determined during the photometric nights. Calibrated photometry for individual objects will be presented in a follow-up paper.

Table 1. Transitional YSO candidate IRAS sources

IRAS ID	RA (J2000) DEC	g' r' i' g r V R I J H K ID	notes
00294+6510	$003218.5+652719$	\times	1 v . red star, bright neighbour, refl. neb.
$00353+6249$	$003817.1+630601$	$\times \times \times$	1 v . red star, refl. neb.
$00544+5609$	$005726.1+562516$	$\times \times \times \bullet \bullet \times \times \times \bullet \times \bullet 5$	reddened cluster
$02048+5957$	$020827.0+601145$	$\times \times \times \bullet \bullet \times \times \times \bullet \times \bullet 5$	reddened cluster
$02259+7246$	$023043.8+725939$	$\times \bullet \bullet \bullet \times \times \times$ • • 2	in L1340, faint red star, refl. neb.
$03260+3111$	$032910.4+312158$	$\times \times \times$	in NGC 1333, v. red star, lots of refl. neb.
$03383+4343$	$034144.8+435254$	$\times \times \times$	red star, some neb.
$03412+6759$	$034608.7+680905$	$\times \times \times$ • • 6	in IC 342, H it region in spiral galaxy arm
$03507+3801$	$035405.5+381039$	$\times \times \times$	by refl. neb. PP 11, red star
$04020+5017$	$040547.0+502507$	$\times \times \times \times \times$	several (2-3) m. red stars, no obv. neb.
$04038+5437$	$040750.1+544533$	$\times \times \times \times \times$ - • 2	several (2-3) m. red stars, no obv. neb.
04104+5029	$041414.9+503725$	$\times \times \times \bullet \times \bullet 5$	m . red group of stars
$04115+5027$	$041522.2+503437$	$\times \times \times \bullet \times$	v. red star, several m. red stars
$04278+2435$	$043052.7+244149$	$\times \times \times \times \bullet \times \bullet 2$	ZZ Tau YSO, by mol. cl. OMK96 30, 1 m . red star
04287+1807	$043138.8+181356$	$\times \times \times$ - \times • 3	HL Tau YSO, in L1551, 2 v. red stars, emis. + dark neb.
$04362+4913$	$044002.5+491852$	$\times \times \times \bullet \times \bullet 6$	ZOAG 156.16+01.78, highly extinguished galaxy
04553-6921	$045505.3-691655$	$\times \times \times \times \times$ • $-\times \times \times 1$	in $L M C$, some neb., busy field
05017+2639	$050450.6+264318$	$\times \bullet \times \times \times \times \times \bullet \times \bullet 4$	HD 32509, bright star, some faint neb. HAeBe?
05044-0325	$050655.7-032112$	- \times • \times - • • - \times • 3	NSV 1832, by L1616 in NGC 1788, several stars in neb.
05111+3244	$051424.7+324757$	$\times \times \times \bullet \times \bullet 3$	HD 241699, 2 v. red stars, other m. red stars, HAeBe?
$05177+3636$	$052109.3+363934$	- \times • $\times \times \times \times \times$ • \times • 3	2 red stars + neb.
$05198+3325$	$052308.3+332836$	- $\times \times \times$ - \times • 3	CPM 16 YSO, in NGC 1893, by S236, red stars, emis. neb.
$05223+1908$	$052516.3+191045$	$\times \times \times \times \bullet \times \bullet 2$	1 red star, some neb.
$05235+4033$	$052703.9+403540$	- $\times \times \times$ - \times - 5	in S225, some neb.
$05293+1701$	$053214.2+170325$	$\times \times \times \times$ - \times • 4	HD 36408, pair of bright stars, highly sat.
$05318+2749$	$053456.8+275058$	- \times • $\times \times \times \times \times$ • $\times \times 3$	pos. dark neb., 2 v . red stars, 1 m . red, some neb.
05327+3404	$053605.4+340611$	- \times • $\times \times \times \times \times$ • \times • 1	Holoea!, in M36, NGC 1960, v. red star + refl. neb.
05341-0610	$053636.0-060824$	- \times • \times • ${ }^{\text {e }}$ - \times • 7	Nothing obvious
$05343+3605$	$053741.8+360720$	$\times \times \times \bullet \times \bullet 2$	by S233, S231, several m. red stars, 1 v. red + neb.
05364-0722	$053851.2-072105$	$\times \bullet \bullet \bullet \bullet \times \bullet 3$	Haro 4-254 YSO, in L1641, 2-3 red stars, dark + emis neb
05373+2349	$054024.5+235053$	- \times • $\times \times \times \times \times$ • \times • 1	CPM 19 YSO, in KOY98 811 v. red star
$05437+2502$	$054651.6+250344$	- $\times \times \times$ - \times • 6	CAP 0543+25
$05440+2059$	$054702.2+210010$	- \times • $\times \times \times \times \times$ • \times • 5	in CB88 34 several red stars in group
05482+0306	$055053.3+030741$	- \times - 3	RNO 57 (HH Obj.), in L1617, 1 v. red, 2 m . red, much neb.
05555-1405	$055749.6-140541$	$\times \times \times$ • • - • - \times • 5	in $v d B 64$, several red stars in group?
06005+3010	$060343.5+301016$	- \times • $\times \times \times \times \times$ • \times • 5	by S241, in LBN 825 , several red stars, 1 v . red
06017+3006	$060457.1+300640$	$\times \times \times \bullet \times \bullet 5$	by S241, some red stars
$06040+2958$	$060716.1+295800$	- $\times \times \times$ - \times - 5	CPM P3 YSO, P85b 4 one red clump, faint red stars
06041+3012	$060723.8+301144$	$\times \times \times \times \times$ - \times • 2	MWC 790 HAeBe? 1 v. red star, is cluster?
06047-1117	$060708.3-111751$	$\times \bullet \times \times$ - • • \times • 1	a v. red star + neb. (emis?)
06059-0935	$060820.7-093603$	$\bullet \times \bullet \times \times \bullet \bullet \bullet \bullet \times \bullet 3$	2-3 red stars, neb. multi-HIRAS source
06134+2348	$061632.8+234722$	$\times \times \times \times \times \bullet \times \bullet 5$	ZOAG 187.90+03.46 (mis-ID?), v. red group in IR
$06142+1439$	$061704.6+143751$	- \times • $\times \times \times$ • • • \times • 5	by $S 267$, red group, some fuzz in opt
$06244+0336$	$062702.5+33421$	$\bullet \times \bullet \times \times$ • \bullet • \times • 1	v. red star
$06303+1021$	$063304.4+101920$	$\times \times \bullet \bullet \bullet \bullet \times \bullet 4$	NGC 2247 nebula, sat in g, i, J, K. neb?
$06323+0718$	$063501.3+071557$	$\bullet \times \bullet \times \times \bullet \bullet \bullet \bullet \times \bullet 5$	m. red clump of stars
06351-0055	$063742.2-005836$	$\times \times \times \times \times \bullet \bullet \times \times \times 7$	CPM 28,by S283, globules on DSS?
06384+0932	$064111.0+092931$	$\bullet \times \bullet \times \times \bullet \bullet \bullet \bullet \times 3$	NGC 2264 IRS 1 yso, by S273, 2-3 v. red stars, lots of neb.
06502-0040	$065245.0-004356$	$\times \times \times \times \times \bullet \bullet \times \times \times 7$	ZOAG 213.73-00.04 (mis-ID?) nothing obvious
06522-0350	$065445.0-035418$	$\bullet \times \bullet \times \times \bullet \bullet \bullet \bullet \times \bullet 3$	ZOAG 216.79-01.04 (mis-ID?), in G216-2.5, red stars, neb
06535+0037	$065606.0+003351$	$\bullet \times \bullet \times \times \bullet \bullet \bullet \times \times 2$	CPM 31 YSO, ZOAG 212.96+01.29, m. red star, neb
06547-0105	$065717.9-010948$	- \times • \times • \bullet • $\times \times \times 7$	in FT96 214.7+0.7, nothing obvious
06548-0815	$065714.7-081954$	$\times \times \times \times \times \bullet \bullet \times \times \times 3$	BFS 63,in FT96 220.9-2.5, red stars, neb.
06567-0350	$065914.5-035451$	$\times \times \times \times \times \bullet \bullet \times \times \times 1$	BFS 56,in FT96 217.4-0.1 v. red star, neb.
06568-1154	$065913.0-115856$	$\times \times \times \times \times$ • $\bullet \times \times \times 1$	CMa West

\bullet = data obtained; $\times=$ data not obtained

Table 1. (continued)

IRAS ID	RA (J2000) DEC	g' r' i' g r V R I J H K ID	notes
06584-0852	$070051.6-085628$	$\times \times \times \times \times$ • $\bullet \times \times \times 1$	CPM 33 YSO, in FT96 221.9-2.0, red stars, neb.
07166-1816	$071850.8-182211$	$\times \times \times \times \times$ • $\bullet \times \times \times 2$	some neb.
07183-2741	$072021.1-274702$	$\times \times \times \times \times \bullet \times \bullet \times \times \times 2$	Bran 19,1 red star, some neb.
07221-2544	$072413.6-255003$	$\times \times \times \times \times$ • $\bullet \times \times \times 2$	in Bran 23,1 red star, some neb. (emis?)
07254-2259	$072735.0-230525$	$\times \times \times \times \times \bullet \bullet \times \times \times 2$	some neb.
07466-2631	$074843.4-263929$	$\times \times \times \times \times \bullet \bullet \times \times \times 2$	some neb., spike from HD 63599
08100-3818	$081155.1-382754$	$\times \times \times \times \times$ • $\bullet \times \times \times 7$	nothing obvious
08211-4158	$082252.3-420756$	$\times \times \times \times \times \bullet \bullet \times \times \times 1$	HH obj, in $v d B 15$, refl. neb.
08404-4033	$084217.1-404410$	$\times \times \times \times \times \bullet \bullet \times \times \times 2$	ESO H α 162, in BRAN 174, refl. neb.
08474-4649	$084907.7-470023$	$\times \times \times \times \times$ • $\bullet \times \times \times 3$	in BRAN 187,3 red stars, ringlike neb.
08500-4254	085149.2 -43 0530	$\times \times \times \times \times \bullet \bullet \times \times \times 2$	in star forming region?, red star, some faint neb.
08534-4301	$085513.9-431257$	$\times \times \times \times \times$ • $-\times \times \times 7$	in GUM 19?, nothing obvious
09207-4757	$092230.8-481008$	$\times \times \times \times \times$ • $\bullet \times \times \times 7$	in BRAN 259, nothing obvious
10075-6647	$100850.5-670152$	$\times \times \times \times \times \times \times \times \times \times 6$	IC 2554 galaxy
$10207+2007$	$102330.4+195154$	$\times \times \times \times \times \times \times \times$ - \times • 6	NGC 3226, 3227 Seyfert 1, clear spiral galaxy
10292-4148	$103123.3-420341$	$\times \times 6$	SGC 102912-4148.2 galaxy,
10381-5704	$104009.0-572003$	$\times \times \times \times \times \bullet \bullet \times \times \times 2$	1 red star, some neb.
10406-6253	1042 28.3-63 0939	$\times \times \times \times \times$ • $\bullet \times \times \times 3$	in DCld 289.0-03.8, sev. red stars, some faint neb.
11507-6213	$115312.8-623017$	$\times \times \times \times \times$ • $\bullet \times \times \times 7$	nothing obvious
12190-6215	$122150.8-623142$	$\times \times \times \times \times$ • $-\times \times \times 7$	nothing obvious
12196-6300	$122223.8-631714$	$\times \times \times \times \times$ • $-\times \times \times 3$	in $v d B 57$, sev. red stars, neb.
12389-6147	$124153.4-620406$	$\times \times \times \times \times \bullet \bullet \times \times \times 3$	in DCld 302.0+00.8, sev. red stars, neb.
12391-6156	$124207.8-621314$	$\times \times \times \times \times$ • $\bullet \times \times \times 7$	nothing obvious
13168-6208	$132005.7-622402$	$\times \times \times \times \times$ • $\bullet \times \times \times 7$	nothing obvious
13224-5928	$132540.6-594342$	$\times \times \times \times \times \bullet \bullet \times \times \times 1$	YSO, in DCld 307.3+02.9,1 very red star, neb.
14047-6123	$140825.8-613740$	$\times \times \times \times \times$ • $\bullet \times \times \times 7$	nothing obvious
$14188+7148$	$141926.6+713515$	$\times \times \times$ • $\times \times \times$ • \times • 6	NGC 5607, Mrk 286 galaxy, obvious galaxy
14375-6052	$144125.4-610512$	$\times \times \times \times \times \bullet \bullet \times \times \times 7$	nothing obvious
14454-4343	144844.2 -43 5541	$\times \times \times \times \times$ • $-\times \times \times 6$	ESO 273-4 Seyfert 2
14563-6301	$150024.9-631334$	$\times \times \times \times \times \bullet \bullet \times \times \times 1$	in $v d B 65,1$ red star, neb.
15064-6429	$151040.9-644028$	$\times \times \times \times \times \bullet \bullet \times \times \times 1$	NGC 5844, PK 317-5.1 PN Plan. neb.
15365-5435	$154021.0-544500$	$\times \times \times \times \times \times \bullet$ • $\times \times \times 1$	red star with cometary neb.
15532-4210	$155642.5-421925$	$\times \times \times \times \times \bullet \bullet \times \times \times 4$	HD 142527 HAeBe
16017-3936	$160504.7-394503$	$\times \times \times \times \times$ • $-\times \times \times 7$	in BHR 126, nothing obvious
16309-5758	$163513.0-580447$	$\times \times \times \times \times \bullet \bullet \times \times \times 6$	ESO 137-34 Seyfert 2
17199-3711	$172322.9-371347$	$\times \times \times \times \times \bullet \bullet \times \times \times 7$	nothing obvious
17340-3757	$173729.6-375922$	$\times \times \times \times \times \bullet \bullet \times \times \times 1$	v. red star, ext. emis. neb.
18018-2426	$180453.8-242640$	$\times \times \times$ • • • • \times •	RAFGL 2059, in M8E region, by $S 25$, v. red star, emis. neb.
18064-2413	$180930.6-241233$	$\times \times \times$ • • - • - • 3	PK 6-2.1 PN mis-ID, by S29, sev. stars, neb.
18361-0647	$183850.7-064453$	$\times \times \times$ • • $\bullet \times \times \times \times 7$	in L 495, nothing obvious
18585-3701	$190155.3-365711$	$\times \times \times \times \times \bullet \times$ • $\times \times \times 4$	R CrA HAeBe, in NGC 6729 dif. neb., v. lum. refl. neb.
19025+0739	$190460.0+074424$	$\times \times \times \bullet \bullet \bullet \bullet \times \times \bullet 2$	several red stars, no neb.
19050+0524	$190732.7+052941$	$\times \times \times \bullet \bullet \times \times \times \bullet \times \bullet 2$	by 574 , sev. m. red stars, dark neb?
$19111+0212$	$191341.7+021739$	$\times \times \times \times \times \times \times \times \times \times 4$	PK 37-3.3 symb, bright star
19187+1556	$192058.2+160216$	$\times \times \times$ • - • - \times • 7	nothing obvious
$19340+2228$	$193609.6+223514$	$\times \times \times \times \times \times \times \times$ - • 4	HD 184961, bright star
19348-0619	$193732.7-061305$	$\times \times \times \bullet \bullet \bullet \bullet \times \times \times 6$	probable galaxy with bright core
$19365+2557$	$193834.6+260447$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet \bullet 2$	1 red star, no neb, globule?
$19520+2616$	$195405.5+262428$	$\times \times \times \bullet \bullet \times \times \times$ • • 5	some red stars
20024+3330	$200422.5+333858$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet 1$	G070.7+01.2 (many IDs), Some controversy...
$20049+3326$	$200652.7+333446$	$\times \times \times$ • $\times \times \times$ • • 5	in LBN 162, many red stars
$20072+2720$	$200920.1+272924$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet 3$	anon. dark cloud, v. red star, sev. red stars, neb.
$20078+3528$	$200944.7+353705$	$\times \bullet \times \bullet \bullet \times \times \times \bullet \bullet \bullet 2$	in LBN 182, diff. neb, sev. m. red stars
$20172+3554$	$201910.7+360354$	$\times \times \times \bullet \bullet \times \times \times$ • -2	1 v . red star, some m. red stars, no neb
20193+3448	$202118.7+345748$	$\times \times \times \bullet \bullet \times \times \times$ • -1	v. red star + neb.

\bullet = data obtained; $\times=$ data not obtained

Table 1. (continued)

IRAS ID	RA (J2000) DEC	g' r' i' g r V R I J H K ID	notes
$20236+4058$	$202527.8+410819$	$\times \bullet \times \bullet \bullet \times \times \times \bullet \bullet \bullet 1$	in $L B N 253$, v. red star + neb.
$20337+4036$	$203532.7+404633$	$\times \bullet \times \bullet \bullet \times \times \times \bullet \bullet \bullet 1$	in LBN 271, v. red star
$20489+4410$	$205043.2+442158$	$\times \bullet \times \bullet \bullet \times \times \bullet \bullet 3$	in LBN 353, lots of dark neb., refl neb, v. red stars
$20496+4354$	$205126.2+440522$	$\times \bullet \times \bullet \bullet \times \times \bullet \bullet \bullet 3$	in LBN 343, 2-3 v. red obj, refl. + emis. neb.
$20582+7724$	$205713.1+773546$	$\times \bullet \times \bullet \bullet \times \times \times \bullet$	in $L 1228$, dark neb., several red obj, neb
$21004+7811$	$205914.2+782300$	$\times \bullet \times \bullet \bullet \times \times \bullet \bullet 3$	G82b 20, dark neb, refl. neb, red stars
$21351+5625$	$213646.4+563856$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet 5$	IC 1396, red cluster
$21485+5645$	$215012.6+565923$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet$ ¢	Trumpler 37, red cluster
$21569+5842$	$215836.4+585708$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet \bullet 1$	in L 1143, v. red star, neb
$22172+5549$	$221909.0+560444$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet 5$	in S132, LBN 473, several red stars, lots of neb (emis?)
$22206+6333$	$222218.0+634851$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet \bullet 2$	in L 1204, some red stars
$22299+6435$	$223134.9+645046$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet \bullet 7$	in LBN 520, by S150, nothing obvious
$23262+0314$	$232847.0+033045$	$\times \times \times \bullet \bullet \bullet \bullet \bullet \times 6$	NGC 7679 (galaxy pair), probable galaxy
$23350+6413$	$233724.5+642945$	$\times \times \times \bullet \bullet \times \times \times \bullet \times \bullet 5$	faint, red cluster
$23395+6358$	$234156.0+641509$	$\times \times \times \bullet \bullet \times \times \times \bullet \bullet \bullet 1$	a single v. red star

\bullet = data obtained; $\times=$ data not obtained

Near-IR images of the Northern sources were taken with GRIM II, a near-IR imager and spectrograph which uses a 256^{2} NICMOS- 3 detector. The images were taken using the $\mathrm{f} / 5 \mathrm{cam}-$ era which gives a pixel scale of about $0^{\prime \prime} .48$ with this detector. Images were obtained using a large number of short ($1.2-10 \mathrm{sec}$) observations laid out in a dithering pattern to minimized the effects of bad pixels and to improve the total observed field-ofview. Analysis of the images requires the construction of a dark image and a flat-field image for each night. Since the scattered light contribution changes substantially during the course of a night, a template background must be constructed from a set of images taken over a short period of time. This background can then be subtracted from each of the dithered images before they are combined into a single mosaicked image.

Near-IR observations were made principally in J and K^{\prime}, but some observations were made with the H and K filters. The K and K^{\prime} filters are generally similar, with the K^{\prime} bandpass slightly bluer than K. We used only K standards and transformed the K^{\prime} observations to K magnitudes. This step theoretically introduces some scatter, but given our relatively limited photometric accuracy, we are not sensitive to the difference between the two filters. We used only an airmass term and a linear $J-K$ color term for the calibrations. The scatter was large compared with the correction introduced by the color term. On the nights which were photometric, we used a variety of photometric standards from the Faint Standards list of the United Kingdom Infrared Telescope (UKIRT) to perform photometric calibration (Casali \& Hawarden 1992). The zero points determined throughout the different nights were in good agreement with each other, at the 0.07 mag level. The major exception were those nights before the re-aluminization of the primary mirror in December 1996. In those observations, the zero points are about 0.5 mag brighter, consistent with the overall improvement in the throughput of the telescope observed after the re-aluminization process. A limitation of our calibration is the lack of very red standards. The target objects mostly have $J-K>1$ while all
of the standards have $J-K<1$. The difference introduces a systematic error, but we believe the magnitude is small since the color term was less than a few percent. As a result of a limited number of calibration observations and internal scatter during photometric nights, the photometric calibrations are accurate to $\sim 0.07 \mathrm{mag}$.

Optical observations of the Northern sources were performed with the Dual Imaging Spectrograph (DIS) in an imaging mode and with the imager SPIcam. DIS uses a dichroic to allow for simultaneous observations in a red and a blue channel. The dichroic transition is roughly $5350 \AA$, and the red and blue sides were imaged with a Thuan-Gunn r and g filter respectively. The blue side uses a SITe 512^{2} CCD with $27 \mu \mathrm{~m}$ pixels while the red side uses a TI $800^{2} \mathrm{CCD}$ with $15 \mu \mathrm{~m}$ pixels. The resulting pixel scales are roughly $1^{\prime \prime} 11$ for the blue chip and $0!\prime 6$ for the red chip. Photometric calibrations of the r and g images were performed using observations of Landolt (1992) standard stars with Thuan-Gunn photometry reported by Jørgensen (1994). Formal errors for the calibration are 0.05 mag for r and 0.04 mag for g.

The Seaver Prototype Imaging camera (SPIcam) uses a 2048^{2} SITe CCD with $24 \mu \mathrm{~m}$ pixels. Images are normally read out in a 2×2 binned format, resulting in a plate scale of $0!28$. SPIcam has a filter wheel with 6 slots. For most of our observations with SPIcam, we used filters designed to match the Sloan Digital Sky Survey filter set. We denote these as g_{*}, r_{*}, and i_{*} in keeping with the recommendations of Krisciunas et al. (1998) since the final photometric system has not yet been defined. Photometric calibrations were performed using the observations of standard stars from Krisciunas et al. (1998). For the first set of observations performed with SPIcam, the filter wheel was not yet installed and only one filter could be used during the course of the night. For those observations, as marked, we used a filter designed for a separate project with approximately the same passband as r_{*}. These observations do not have a useful zero

Table 2. Log of APO 3.5 m observations

Date	Camera	Filters	Conditions
96.08 .12	DIS	r, g	non-photometric
96.11 .13	DIS	r, g	non-photometric
97.11 .19	DIS	r, g	photometric first half
96.08 .20	GRIM	J, K^{\prime}	non-photometric
96.10 .02	GRIM	J, K^{\prime}	non-photometric
97.01 .29	GRIM	J, K^{\prime}	photometric
97.05 .14	GRIM	J, H, K^{\prime}	photometric
97.11 .19	GRIM	J, K	cirrus near end
97.12 .05	GRIM	H	non-photometric
96.11 .14	SPIcam	B_{45}	non-photometric
97.02 .02	SPIcam	g_{*}, i_{*}	non-photometric
97.11 .23	SPIcam	g_{*}, i_{*}	non-photometric
97.12 .05	SPIcam	g_{*}, i_{*}	photometric

point calibration and are therefore useful only for relative colors and for the detection of filaments bright in $\mathrm{H} \alpha$.

5. The catalog

Table 1 lists all of our candidate transitional YSOs identified on the basis of IRAS colors and the morphology in the DSS. In this table, we have listed the filters which have been used to image each of the targets, as well as the IRAS source number and the J2000 coordinates of each object, derived from the IRAS Point Source Catalog. For each filter listed, a dot indicates that observations have been performed while an \times indicates no observations. We also have included our category IDs for each source, as discussed above, as well as a short description of the optical / near-IR appearance of the source. We have also included cross-identifications in cases where specific identifications have been made for the objects, using the Simbad database for initial cross-references. In the cross identification, objects which are alternative names for the same object are listed with bold print. As an example, IRAS $05293+1701$ is the bright star HD 36408. We have also made notations where the IRAS source is in the vicinity or contained within a larger object, such as a Lynds Bright Nebula (LBN), a Lynds Dark Nebula (Lnnn), or a Sharpless Hir region (Snnn). These notations are made using italic print and include a preposition "in" or "by".

We also present in electronic form optical and near-IR images for each source. For the optical images, we have selected the best image near Johnson V : the g images for the DIS data and g_{*} images for the SPIcam data. If neither image was available for a given source, we used one of the other optical filter images. For the near-IR images, we present the best J and K band image of each source.

We have also generated high-resolution $60 \mu \mathrm{~m}$ IRAS images for each of the sources in the catalog. These images were produced using the HIRAS image restoration technique (Bontekoe et al. 1994), which is essentially an extension of maximum entropy. The HIRAS images cover a large field ($32^{\prime} \times 32^{\prime}$) compared to the optical and near-IR images. We include the full HIRAS image in the electronic catalog. In the optical and
near-IR images, the 1σ confidence location of the IRAS source is marked with an error bar or ellipse and contours from the HIRAS image are overlayed.

In the process of generating the HIRAS images, we have inspected the information in the raw IRAS snips. For IRAS 06584-0852 a glitch is present in the IRAS positional data. For this source, the orientation of the error ellipse listed in the IRAS Point Source Catalogue is also not oriented perpendicular to the average IRAS scan direction. Therefore we conclude that the orientation of the error ellipse quoted in the Point Source Catalogue is probably incorrect. We estimate the true orientation to be $100 \pm 10^{\circ}$.

The complete set of images is available electronically for each source from the Centre de Données astronomique de Strasbourg (CDS). We also present the results for a single source, IRAS 03507+3801 in Fig. 1 Notice that this source is an excellent example of a probable YSO in transition. This source is significantly reddened, and is surrounded by an apparent reflection nebula. Several pieces of evidence suggest the nebula is a reflection nebula: the relatively blue color of the nebula, the absence of strong emission in g (ie, H α emission), and the generally smooth nature (no tendrils of ionization fronts typically seen in emission nebulae) all support this suggestion. The fact that the morphology of the nebula changes shape with wavelength is reminiscent of the reflection nebula of IRAS 05327+3404 (Holoea) and may point to varying amounts of obscuration between the central star and the nebula, as expected in disk systems.

6. Results

Our major goal was to identify transitional YSOs, using IRAS $05327+3404$ (Holoea) as a guide. In this case, we expect to find a single, significantly reddened stellar object with an associated reflection nebula. It is possible to distinguish reflection and emission nebulae on the basis of wide-band images: reflection nebulae are relatively blue and in general have comparable flux in a variety of wide-band images. Emission nebulae, on the other hand, have principally Balmer emission and therefore are much more evident in the wide-band images which include $\mathrm{H} \alpha$ (r and r_{*}) and are much fainter in other bands. Emission nebulae are likely to be seen with higher mass YSOs (Herbig Ae/Be stars) or with Planetary Nebulae, a likely contaminant. Reflection nebulae, particularly bipolar reflection nebulae, are typically seen with heavily embedded YSOs (see Staude \& Elsässer 1993), although they may also be found in the vicinity of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars.

We present our identifications of each of the objects observed in Table 1 We have defined 7 categories of objects seen in the optical and IR images:

1. A likely transitional YSO: A single moderately-bright, veryred stellar object with extensive associated reflection nebulosity. (28 objects)
2. A possible transitional YSO: a moderately red stellar object with weak nebulosity or a significantly red object with no nebulosity. (22 objects)

Fig. 1. Example of catalog images - IRAS $03507+3801$. Shown are the HIRAS 60μ m image and the APO images in the $\mathrm{g}_{*}, \mathrm{~J}$ and K bands. The contours in the HIRAS image and in the g_{*} band image indicate the HIRAS $60 \mu \mathrm{~m}$ flux levels. The contours are drawn at 0.5 and 20σ above the background level, where σ is the standard deviation in background region. The error bar shows the size and orientation of the position give by the IRAS Point Source Catalogue. All images have North up, East left. The HIRAS image is $32^{\prime} \times 32^{\prime}$, while the other three images are each $4^{\prime} \times 4^{\prime}$.
3. A YSO group: Several very red objects, usually with extended nebulosity. No single object stands out. (21 objects)
4. Bright star. (7 objects)
5. A cluster of stars: usually a red cluster with no single very red star. (18 objects)
6. A galaxy. (11 objects)
7. nothing: no object stands out, and no object can be associated with any of the other classes. (18 objects)

The first three of these categories are likely to include the isolated YSOs or groups of YSOs. The first two probably include the transitional YSOs which we were interested in finding, though objects in the second category are somewhat weaker candidates. Objects in the third category are also likely to be YSOs, but it is less likely in these cases that the YSOs are transitional in the sense we have defined above. Although a single flatspectrum IRAS source is identified with these groups, it is prob-

Fig. 2. Greyscale CO Maps of the inner (left) and outer (right) Galactic plane (Dame et al. 1987) with the locations of our Transitional YSOs marked with boxes. The fact that essentially of of our candidates lie close to the plane or in areas of strong CO emission implies that the bulk of our objects are a young population. These images are $45^{\circ} \times 180^{\circ}$.
able that the emission is due to more than one source. In this case, the flat-spectrum may be due to the overlap of emission from different sources and only more detailed studies in the mid-IR,
far-IR, or submillimeter may identify true transitional sources among these object. Objects in category 4 are mostly likely too bright optically to be considered transitional, and may be good
candidate Herbig Ae/Be stars; indeed some are already identified as such. The objects IRAS 05017+2639 (HD 32509), IRAS $05111+3244$ (HD 241699) and IRAS 06041+3012 (MWC 790) may be previously unknown HAeBe candidates and deserve further study. Category 5 objects are likely to be young, embedded clusters, which may contain YSOs of a range of evolutionary states. However, the flat IRAS spectra of these sources is, like category 3 , likely to be due to the superposition of several different sources. The 11 objects in category 6 are all clearly associated with objects which are obviously galaxies, some of which have been identified in a search for galaxies in the Zone of Avoidance (Weinberger et al. 1995). Many of these are likely to be Seyfert galaxies which are known to have flat IRAS spectra. Finally, for group 7, a small number of objects had no obvious optical or near-IR counterparts to the IRAS source. In several of these cases, the HIRAS image is very crowded. It is possible in these cases that the flat IRAS spectrum may be the result of IRAS source confusion.

Fig 2 shows the distribution of the transitional YSO candidates relative to the Galactic CO distribution. Each object is overlayed on the CO map of Dame et al. (1987). The vast majority of the objects in the catalog are found in the general vicinity of CO clouds and generally near other signs of active star formation. This association, along with the general tendency for these objects to lie near evidence of star formation (see Table 1), lends credence to our claim that the bulk of these sources are young stellar objects. Except for the 11 sources which are clearly associated with galaxies, essentially all of the sources lie in the Galactic plane or in the CO spurs. We conclude that the contamination by Planetary Nebulae is insignificant, though a small number of specific objects may possibly be PNe.

7. Conclusions

We have surveyed a total of 125 candidate transitional YSOs. Our goal was to find isolated YSOs with flat IRAS emission, indicating a relatively young age, but with a visible central star, indicating the star is at the transition between the embedded and exposed phases of early stellar evolution. In this task, we have been very successful. Of the 125 objects, 28 are very strong candidates (category 1) to fit this description, while another 22 are possible (category 2). There are also 21 objects for which a group of several stars is visible, one or more of which may be transitional YSOs (category 3). In this case, however, follow-up observations in the mid and far IR will be needed to determine which of the sources contribute to the strong $60 \mu \mathrm{~m}$ emission and if any specific one of these sources can be considered transitional. Two other classes of objects are related to the YSOs of interest, but do not fit the group we are interested in. First, the objects for which a very bright star is seen are likely to be Herbig Ae/Be stars which have very large, or very cool, circumstellar disks. In these cases, the star has clearly been exposed, since it is strongly detected in the optical, so it does not fit our description of a transitional object. There are 7 of these stars in our sample of which three were not previously considered HAeBe candidates. The other group are the reddened clusters.

These are likely to be young clusters either recently formed or still in the process of forming. The flat far-IR emission is probably due to the superposition of many sources. While interesting in themselves, these sources will not make for simple study of an early, transitional star. There are 18 embedded clusters in the sample. Finally, there are 11 sources associated with galaxies. One of these appears to be a giant association or H il region in the galaxy IC 342. The other 10 appear to be the cores of Seyfert galaxies, which are known to have IRAS colors similar to our selections. The bulk of our candidates sources lie in the plane of the Galaxy, near areas of recent star formation, lending support to our expectation that most of these are young stars. The complete set of images is available electronically for each source from the Centre de Données astronomique de Strasbourg (CDS - http://cdsweb.u-strasbg.fr/CDS.html).

Acknowledgements. EAM acknowledges support by the Netherlands Foundation for Research in Astronomy (ASTRON) with financial aid from the Netherlands Organization for Scientific Research (NWO) under contract number 782-376-011. Support for EAM was also provided by NASA through grant number GO-06459.01-95A from the Space Telescope Science Institute, which is operated by the Association of Universities for research in Astronomy, Inc., under NASA contract NAS5-26555. LBFMW acknowledges financial support through a NWO Pionier grant. MvdA acknowledges financial support from NWO grant 614.41.003. The IRAS data were obtained using the IRAS data base server of the Space Research Organisation of the Netherlands (SRON) and the Dutch Expertise Centre for Astronomical Data Processing funded by the Netherlands Organisation for Scientific Research (NWO). We gratefully thank Do Kester and Romke Bontekoe for use of the IRAS-GIPSY system. The IRAS data base server project was also partly funded through the Air Force Office of Scientific Research, grants AFOSR 86-0140 and AFOSR 89-0320. This article uses data from the Digitized Sky Survey, based on photographic data of the National Geographic Society - Palomar Observatory Sky Survey (NGSPOSS) obtained using the Oschin Telescope on Palomar Mountain. The NGS-POSS was funded by a grant from the National Geographic Society to the California Institute of Technology. The plates were processed into the present compressed digital form with their permission. The Digitized Sky Survey was produced at the Space Telescope Science Institute under US Government grant NAG W-2166.

References

Adams F.C., Shu F.H., 1985, ApJ 296, 655
Adams F.C., Shu F.H., 1986, ApJ 308, 836
Adams F.C., Lada C.J., Shu F.H., 1987, ApJ 312, 788
Batalha C.C., Basri G., 1993, ApJ 412, 363
Beckwith S.V., Sargent A.J., Koresko C.D., Weintraub D.A., 1989, ApJ 343, 393
Bontekoe Tj.R., Koper E., Kester D.J.M., 1994, A\&A 284, 1037
Campbell B., Persson S.E., Matthews K., 1989, AJ 98, 643
Casali M.M., Hawarden T.G., 1992, JCMT-UKIRT Newsletter 3, 33
Chen H., Bally J., O’Dell C.R, et al., 1998, ApJ 492, L173
Cohen M., Kuhi L.V., 1979, ApJS 41, 743
Cudworth K.M., Herbig G.H., 1979, AJ 84, 548
Dame T.M., Ungerechts H., Cohen R.S., et al., 1987, ApJ 322, 706
Fukui Y., Iwata T., Mizuna A., Bally J., Lane A.P., 1993, In: Levy E.H., Lunine J.I. (eds.) Protostars and Planets III, University of Arizona Press, p. 603

Henyey L.G., LeLevier R., Levee R.D., 1955, PASP 67, 154
Herbig A.G., 1960, ApJS 4, 337
IRAS Point Source Catalogue, 1985, US Government Publication Office
Jørgensen I., 1994, PASP 106, 967
Joy A.H., 1945, ApJ 102, 168
Krisciunas K., Margon B., Szkody P., 1998, PASP 110, 753
Kuhi L.V., 1964, ApJ 140, 1409
Lada C.J., Wilking B.A., 1984, ApJ 287, 610
Landolt A.U., 1992, AJ 104, 340
Luyten W.J., 1971, The Hyades. Univ. Minnesota Press, Minneapolis
Magnier E.A., Waters L.B.F.M., Kuan Y.-J., et al., 1996, A\&A 305, 936 (Paper I)
McCaughrean M.J., O’Dell C.R., 1996, AJ 111, 1977
Mundt R., 1984, ApJ 280, 749
Myers P.C., Benson P.J., 1983, ApJ 266, 309

Norman C., Silk J., 1979, ApJ 228, 197
Persson S.E., Campbell B., 1987, AJ 94, 416
Prusti T., Adorf H.-M., Meurs E.J.A., 1992, A\&A 261, 685
Rodriguez L.F., Moran J.M., Ho P.T.P., Gottlieb E.W., 1980, ApJ 224, 845
Schwartz R.D., 1978, ApJ 223, 884
Shu F.H., 1977, ApJ 214, 488
Snell R.L., Loren R.B., Plambeck R.L., 1980, ApJ 239, L17
Stahler S.W., 1983, ApJ 274, 822
Stahler S.W., 1988a, ApJ 332, 804
Stahler S.W., 1988b, PASP 100, 1474
Stahler S.W., 1994, PASP 106, 337
Staude H.J., Elsässer H., 1993, A\&AR 5, 165
Walker M.F., 1956, ApJS 2, 365
Weinberger R., Saurer W., Seeberger R., 1995, A\&AS 110, 269

[^0]: Send offprint requests to: Eugene A. Magnier

 * Based on observations collected at the European Southern Observatory, La Silla, Chile.
 Correspondence to: gene@pikake.astro.washington.edu

