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Chapter 5 
Improving Reasoning Methods 

Luchando por una verdad 
pero que sea rentable. 

from "El Ente," Los Visitantes 

As a warming up to the purely theoretical work we will do in Chapters 6 and 7, we will 
now show how ideas from description and hybrid logics can be put to work with benefit 
even when the subject is purely modal. In particular, aided by the notions of nominals 
or labeling, we will show how to define well behaved direct resolution methods for 
modal languages. This "case study" is a clear example of how the additional flexibility 
provided by the ability to name states can be used to greatly simplify reasoning methods. 
In addition, we can build over the basic resolution system and obtain extensions for 
description and hybrid languages. 

Reasoning methods for modal-like languages, can be broadly divided in two cate
gories: direct and indirect. Indirect methods start by translating modal formulas into 
some first-order language preserving satisfiability, and then take advantage of reasoning 
methods for FO [de Rijke et a/., 2000]. Direct methods instead, work directly on modal 
formulas devising specialized algorithms for each modal language [Fitting, 1983]. 

The most developed reasoning methods for modal and modal-like languages today 
are direct methods, and they are mainly tableau based. Most indirect methods use first-
order resolution. In contrast, direct modal resolution methods are poorly developed. 
By drawing on what we have learned in previous chapters about hybrid and description 
languages, we will provide a direct resolution-based proof procedure for modal languages 
which improves many aspects of previous proposals. After explaining in detail the 
resolution method for basic modal languages we will discuss extensions in the three 
fields of modal, description and hybrid logics. The main characteristics of the new 
resolution method can be summarized as follows: 

by using labeled formulas it avoids the complexity of earlier direct resolution-based 
methods for modal logic. 
it does not involve skolemization beyond the use of constants; 
it does not involve translation into large undecidable languages, working directly 
on modal, hybrid or description logic formulas instead: 
as far as we know, its extension to DLs is the first to account for knowledge base 
inference by means of a direct resolution approach; 
it is flexible and conservative in more than one sense: it allows the amalgamation 
of different ideas. In particular it incorporates the method of prefixes used in 
tableaux into resolution in such a way that different heuristics and optimizations 
devised in either field are applicable. 
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5.1 Resolution 

Resolution, introduced originally for FO in [Robinson, 1965], is the most widely spread 
reasoning method for first-order logic today: most of the available automatic theorem 
provers for FO are resolution based. The elegance of the resolution method and its 
appeal for implementation rely on its bare simplicity. 

Let us discuss the propositional case. To check whether a propositional formula ip 
is inconsistent, we first turn it into clausal form. To this aim, write <p in conjunctive 
normal form 

<P = A V (/'(''m)' 

and let the clause set associated with ip be 

ClSet(ip) = {{i\i,m) I m e M} \leL}. 

Now define ClSet*{ip) as the smallest set containing ClSet{ip) and closed under a unique, 
very simple to grasp rule, 

Ch U {N} e ClSef(>p) Cl2 U {^N} e ClSefjp) 

ChUCheClSet'ip) [ '' 

If {} e ClSet*(p), then ip is inconsistent. The intuition behind the (RES) rule is as 
follows: given that either N or -uV is always the case in any model they can be "cut 
away" if the sets of clauses are conjoined. The aim of the whole method is to "cut away 
everything" and arrive to the empty set. 

The resolution method seems to be specially devised for a dumb machine able to 
crunch symbols quickly. The only computational cost is a search for complementary 
atoms in the set of clauses. Of course, actual system implementations for first-order 
logic are not "dumb" at all. On the contrary, the field has developed into an extensive 
community, with an impressive collection of methods, optimizations, etc. [Bibel and 
Schmitt, 1998; Robinson and Voronkov, 2000]. 

In contrast, modern modal theorem provers, as well as the fastest description logic 
provers we mentioned in Chapter 2, are generally based on tableau methods. Strangely 
enough, nowadays resolution and modal languages seem to be related only when in
direct methods are used. In translation-based resolution calculi for modal logics, one 
translates modal languages into a large background language (typically first-order logic), 
and devises strategies that guarantee termination for the fragment corresponding to the 
original modal language [Fermüller et al. 1993; Hustadt. 1999; de Nivelle et al, 2000; 
Areces et al. 2000d]. First-order resolution provers like BLIKSEM or SPASS handle modal 
formulas in this way. This approach has both advantages and disadvantages with re
spect to the tableau approach. On the one hand we can translate many systems into 
the same background language and hence explore different, and also combined, systems 
without the need to modify the prover. But empirical tests show that the price to pay is 
high [Horrocks et al, 2000a; Areces et al, 2000d]. The undecidability of the full back
ground language usually shows up in degraded performance on the modal fragments, 
and first-order provers can hardly emulate their tableau based competitors. 
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It is natural to wonder why direct resolution methods for modal languages don't 
figure in the picture. Designing resolution methods that can directly (that is. without 
having to perform translations) be applied to modal logics, received some attention in 
the late 1980s and early 1990s [Enjalbert and Farinas del Cerro. 1989; Mints. 1989: 
de Nivelle, 1994]. Also the first (non-clausal) resolution methods for temporal languages 
go back to that period with the work of Abadi and Manna [1985]. Recently, new results 
on clausal temporal resolution have been presented (see [Dixon et al., 2000]). But 
even though we might sometimes think of modal languages as a "simple extension of 
propositional logic,'' direct resolution for modal languages has proved a difficult task: 
in basic modal languages the resolution rule has to operate inside boxes and diamonds 
to achieve completeness. This leads to more complex systems, less elegant results, and 
poorer performance, ruining the one-dumb-rule spirit of resolution. 

5.1.1 Direct Resolution for Modal Languages 

To understand exactly how we can use hybrid and description logic ideas to improve 
direct modal resolution, we introduce the system presented by Enjalbert and Farinas del 
Cerro in [1989]. We first provide some definitions and notation from [Enjalbert and 
Farinas del Cerro, 1989], as they are not completely standard. 

A modal formula is in disjunctive normal form if it is a (possibly empty) disjunction 
of the form 

iP = \/Liv\/ODjw\/OAk, 

where each Li is a literal, each Dj is in disjunctive normal form, and each Ak is in 
conjunctive normal form. A modal formula is in conjunctive normal form if it is a 
conjunction ip = /\Ct, where each Cr is in disjunctive normal form. A formula in 
disjunctive normal form is called a clause. The empty clause is denoted as J_. We 
identify a conjunction C\ A . . . A Cn with the set (Ci, . . . ,Cn). Clearly any modal 
formula is equivalent to a clause, and from now on we need only consider clauses. 

The following examples of applications of the resolution rule ''in modal contexts" are 
discussed in [Enjalbert and Farinas del Cerro. 1989] 

D(pVg) O-ip D(pVg) CHp 
0{-np,g) Dq 

Both inferences are sound, and are clearly instances of the (RES) rule. But if we 
attempt to apply a similar rule to the clauses 0(p V q) and O^p to derive 0(-<p,q) we 
don't preserve soundness. Also, inferences with only one premise seem to be needed, as 
for example 

0(^p, p V q) 
0(-ip,pVq,q)' 

In line with these intuitions, the following resolution system is introduced and proved 
complete for K. Define inductively two relations on clauses H(A,B) -> C (C is a direct 
resolvent of A and B) and T(A) -» C (C is a direct resolvent of .4). as indicated in 
Figure 5.1, where a, /?, K, SI, S2 are clauses, *, $ are sets (conjunctions) of clauses, and 
(a, ^) denotes the result of appending the clause a to the set $. 

Define the simplification relation A a B as the least congruence containing 
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Axioms 

(Al) S(p,-.p) -> _L 
(A2) S (± , a ) -> 1 

E-Rules 

£(a,/?)-»« 
v " ' S ( Q V 5U 0 V S2) -> K V <5i V 52 

, , S ( a , / 3 ) - > K 
(DO) V ; E(Da,0(/ ï ,#))->0( ,9,K.1 ' ) 

, . E(a, /?) -> K 
y~"' E(Da,D/3) -4 DK 

T-Rules 

r i ) S ( a , « ^ K 
v ~ x ' r (0(«, /? ,$)) -> 0(a,/3,K,$) 

(02) r ( Q ) "* ö 

(v) r ( a ) ^ v ' r ( ü V c ) -^ i3v K 

(•) r M-»' 

Figure 5.1: Resolution rules 

O l P 

I V f l P 
(±,F) P 

V ^ V D P 

a 1 

a £> 

a ± 
a i V D 

For any formula F there is a unique F' such that F pa F' and F' cannot be simplified 
further. We call F ' the normal form of F. C is a resolvent of A and B (respectively 
A) iff there is some C such that E(A, B) ->• C" (respectively. T(.4) -*• C") and C is the 
normal form of C'. We write E(A, B) => C (respectively, T(A) => C) if C is a resolvent 
of A and B (respectively, of A). 

Given a set of clauses S, let ClSet*{S) be the smallest set containing 5 and closed 
under resolvents of elements in ClSef(S). We say that F is a resolution consequence of 
a set of clauses S (notation S h D) iff D e ClSef(S). 

THEOREM 5.1. For S a .sei o/ clauses and D a clause, S V- D iff \=K S —» D. 

So much for the one-rule-spirit of resolution. Let us go through an example to better 
understand how this resolution method works. 

EXAMPLE 5.2. Consider the formula 0(pA(-ipVGrVg))Aa-.gAGO-ir. In the resolution 
proof below we underline the literals on which resolution takes place, and simplify many 
steps for succinctness. 

1. (0 (p ,2pVürVg) .Ü^ .DO- . r ) 
by (Al), (V) and (Ol) 

2. (0(p,-ipVörVg,GrV2),G-ng,ClO-ir) 
by (Al). (V) and (GO) 

3. (0(p, -ipVDrV q, Or V q. Or), O-q, D O ^ ) 
by (Al) and two applications of (GO) 

4. (0(p, ->p V Gr V g, Gr V g, Or, <>(-.?-, _L)), CHg. DO^r) 
by the simplification 0_L = _!_, (A2) and (Ol) 

5. _L 
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As we see, the direct resolution method for modal logics presented in [Enjalbert and 
Farinas del Cerro. 1989] (and similarly those in [Farinas del Cerro. 1982: Mints. 1989; 
de Nivelle, 1994] perform resolution "inside" modalities (in a similar way as how new-
tableaux have to be started in non-prefixed tableaux systems). 

In the next sections we develop a direct resolution method for modal, description 
and hybrid logics that retains as much as possible of the lean one-rule character of 
traditional resolution methods. The key idea introduced here, from a basic modal logic 
perspective, is to use labels to decorate formulas with additional information. Labels 
allow us to make information explicit and resolution can then always be performed at 
the "top level." From a description or hybrid logic perspective we have just taking 
advantage of the new expressive power that individuals/nominals provide. 

5.1.2 Labeled Resolution 

In this section we introduce a direct resolution proof procedure for the basic multi-modal 
logic K m . In what follows, we assume fixed a modal similarity type S = (REL. PROP), 
together with a hybrid/description logic similarity type (without state variables) S' = 
(REL. PROP, LAB) where LAB is a countably infinite set of nominals/individuals. 

D E F I N I T I O N 5.3. [Weak negation normal form] Define the following rewriting procedure 
wnnf on modal formulas 

,„„„ƒ 

ii. (R)tp ~ ' - p ] ^ ) , 

in. {tpi V <p2) ™ -|(->¥>i A ^tp2). 

For any formula tp, wnnf converges to a unique normal form wnnf(tp) which is logically 
equivalent to tp. If we take V and (R)<p as defined operators, then wnnf is slightly more 
than an expansion of definitions. 

D E F I N I T I O N 5.4. [Clauses] A clause is a set CI such that each element of CI is a labeled 
formula of the form t : <p or (ti,t2) : R for t,ti,t2 € LAB, R e REL and tp a basic 
multi-modal formula. Let tp be a basic multi-modal formula. The set S^ of clauses 
corresponding to tp is simply {{a : wnnf(tp)}}. for a an arbitrary label in LAB. 

Notice that formulas in a clause can be seen as assertions in a description language. 
Let CI be a clause, and 1 = (A. •z) be a description logic interpretation on S', we write 
I \= CI \l I \= \] CI. A set of clauses S is satisfiable if there is interpretation 1 such 
that for all CI G S, 1 (= CI. 

The following proposition is straightforward, 

P R O P O S I T I O N 5.5. Let tp be a basic multi-modal formula and Sv its corresponding set 
of clauses. Then tp is satisfiable iff S^, is satisfiable. 

P R O O F . For the left to right implication, given a model M and m e M such that 
M..m \Y tp, just define a1 = m and give any interpretation to others elements in LAB. 
For the other direction, just drop the interpretation of elements in LAB. QED 
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ClU{t:^A^2} Cl U {«:-•(¥>! A % ) } - — r - ^ i - ^ J h A ] 

CÏ U { t : ^ i } 07 U {t:wnnJ(-^ipi)J:wnnf(^<p2)} 
C / U { f : y 2 } 

C/iU{t:y-} C/2U{f :^?} 
C/i U Cl2 

ChU {h:\R\ip} Cl2U{(tut2):R} 

CZi U CZ2 U { i 2 : ¥>} 

HJR]) - ^ i ( ^ r ' snew-
C7 U {n: wnnf{-^ip)} 

(RES) 

([*]) 

Figure 5.2: Labeled resolution rules 

Figure 5.2 provides a set of rules transforming sets of clauses into sets of clauses. 
If you read the rules with the standard translation ST of Definition 1.19 in the back 

of your mind, the meaning of ([R]) and {->[R]) will be immediately clear. ([R]) is needed 
to account for the "hidden" negation in the guard of the quantifier in the translation 
of the box, and in that sense it is indeed a standard resolution rule which cuts away 
complementary binary literals. On the other hand, (->[R\) can be seen as a mild kind 
of skolemization which only involves the introduction of constants. From this point of 
view we can consider the (A), (-*A) and {-*[R]) rules as preprocessing the input formula 
and feeding it into the resolution rules (RES) and (-'[i?]). Equivalently, we can view 
the system as intermingling the reduction towards a standard clausal form with the 
resolution steps as in [Fitting, 1990]. One immediate advantage of this method is that 
resolution can be performed not only on literals, but on complex formulas. 

D E F I N I T I O N 5.6. [Deduction] A deduction of a clause CI from a set of clauses 5 is a 
finite sequence Si,... , S„ of sets of clauses such that S = Si, CI 6 Sn and each S, (for 
i > 1) is obtained from S^i by adding the consequent clauses of the application of one 
of the resolution rules in Figure 5.2 to clauses in S,_i. CI is a consequence of S if there 
is a deduction of CI from S. A deduction of {} from S is a refutation of S. 

The set ClSet*(S), defined as the smallest set containing 5 and all its consequences, 
need not be finite because the rule {^[R]) can introduce infinitely many clauses which 
only differ on the label. By restricting [->[R]) to be "fired only once" in a way similar as 
how is done for constraint systems in Table 2.2, we can ensure finiteness of ClSef(S), 
and hence termination of the search for consequences. 

Before moving on, let's redo Example 5.2 in the new resolution system. Again we 
underline the part of the formula where a rule applies. Notice that we are now explicitly 
showing all steps. 

E X A M P L E 5.7. 

1. {r.^a^(pA^(pA^nrA^q))}.{i:a^q}.{i:n^Or}. by (-.D) 
2. {R(i,j)},{j:(pA^(pA-iOrA^q))},{i:n-,q}, { i : D n D r } , by (A) 

file://{h:/R/ip}
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3. 
4. 
5. 
6. 

{R(iJ)},{J 
{R(hJ)}AJ 
{R(iJ)},{3 

p},{j ' :^(pA-'°rA-«)},{t:n-^} ) {i:D-iDr}, 
P } . { j : ^ - J : n r . j : g } : { / : D ^ } . {i:D-,Dr}, 
• r , j :g} ,{ i : • - !?} , {i:0-.Dr}, 

Dr}, 

by (-.A) 
by (RES) 

by(n) 
by (RES) 
by (RES) 

{j^r.j:q_},{j:^q}. {j : 
7. 0 ' :S r} . {j:ziQr}, 
8. {}. 

It is straightforward to prove that the resolution rules in Figure 5.2 preserve satisfiability. 
That is. given a rule, if the premises are satisfiable. then so are the conclusions. In 
Section 5.2.2. we will extend the system to deal with knowledge bases in the description 
language ACCR, and prove there in detail, soundness, completeness and termination. 

5.2 Extensions and Variations 

The system we have just introduced can be extended in different directions. In this 
section we discuss first how to account for modal systems different from Km. The next 
step — one which should by now come very naturally to us — is to internalize into the 
object language the labels we used to assist resolution. In particular, we will extend 
the calculus above to deal with (simple, acyclic) knowledge bases in ACCU.. Finally, we 
briefly discuss extensions for hybrid languages. 

5.2.1 M o d a l Logics 

From a traditional modal point of view we often want to consider systems above Km. 
We choose systems T, D, and 4 as examples. Each system is axiomatically defined as an 
extension of the basic system K by the addition of an axiom scheme which characterizes 
certain property of the accessibility relation. 

Name Axiom Scheme 

T 
D 
4 

p —¥ Op 
Op ->• Op 

OOp ->• Op 

Accessibility Relation 

reflexivity: Vx.R(x, x) 
seriality: \/x3y.R(x,y) 
transitivity: \/xyz.(R(x, y) A R(y, z) - R(x,z)) 

Corresponding to each of the axioms we add a new resolution rule. 

ClU{t:0^} 
(T) 

(D) 

ClU {t-.ip} 

Cl\j{t-.nip} 

:R} 

ClU{t:^Ownnf(->tp)} 

, CfiU{fi:Dy} ChUJitutt) 
1 ' ChU Cl2 U {r2 : Uip} 

Soundness for these systems is immediate: 

THEOREM 5.8. The resolution methods obtained by adding the rules (T), (D) and (4), 
are sound with respect to the class of models where the relation R is reflexive, serial and 
transitive, respectively. 
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For completeness and termination we should modify the constructions in Section 5.2.2 
(in particular (4) needs a mechanism of cycle detection): this can be done using methods 
from [Enjalbert and Farinas del Cerro, 1989]. 

T H E O R E M 5.9. The resolution methods obtained by adding the rules (T), (D) and (4), 
are complete and terminate with respect to the class of models where the relation is 
reflexive, serial and transitive, respectively. 

5.2.2 Description Logics 

In this section we will spell out the details of a labeled resolution system to decide 
consistency of simple, acyclic knowledge bases in the description logic ACCTZ (see Sec
tion 2.2.2). We assume fixed a description logic signature (CON. ROL. IND) together 
with an additional countable set of labels LAB. 

The new definition of weak negation normal form is simply a notational variation, 
obtained by exchanging V by U, A by n, etc. Again, for any concept C, wnnf always 
converges to a unique normal form which we denote as wnnf(C). The definition of clauses 
and set of clauses associated to a knowledge base are only slightly more involved. 

D E F I N I T I O N 5.10. A clause is a set CI such that each element of CI is either a concept 
assertion of the form t: C where t e IND U LAB, or a role assertion of the form (ti,t2): R, 
where tllt2 are in IND U LAB. 

We will use the notation t: C for concept assertions and (ti, h): R for role assertions. 
We use the notation t: N to refer both to concept and role assertions. 

A formula in a clause is a literal if it is either a role assertion, a concept or negated 
concept assertion on an atomic concept, or a universal or negated universal concept as
sertion. The notions of model for a clause and for a set of clauses are as in Definition 5.4. 

Let E = (T, ,4) be a knowledge base with simple, acyclic definitions. As we discussed in 
Section 2.2.2, any such knowledge base can be transformed into an "unfolded"' equivalent 
knowledge base of the form ({}, A). Hence, from now on we will only consider knowledge 
bases with empty T-boxes. 

D E F I N I T I O N 5.11. [Set of clauses of a knowledge base] The set 5 E = ({}. A) of clauses 
corresponding to E is the smallest set such that 

if a:Ci n - n C „ = wnnf(a:C) for a:C e A then {a:Ct} e Ss, 
if {a, b): Rl n • • • n Rn € A then {(a, b): R,} 6 S s . 

We can identify in S s a (possibly empty) subset of clauses RA of the form {(a, b): R} 
which we call role assertions, and for each label a a (possibly empty) subset CAa of 
clauses of the form {a: C} which we call concept assertions for a. Because of the format 
of a knowledge base it is impossible to find in 5 S mixed clauses containing both (in 
disjunction) concept and role assertions. Furthermore there are no disjunctive concept 
assertions on different labels, i.e.. there is no clause CI in S s such that Cl = Cl' U {a: 
C\}U {b: C2} for a ^ b. We will take advantage of these properties in the first steps of 
the completeness proof. 



5.2. Extensions and Variations s l 

Clu{t:.X1nX2} C7u{^(dnC2)} 
C/U{F:A*i} C f U { t : u m n ^ C i ) , t : u m n / H 2 i ) } 
C 7 u { f : A 2 } 

Chu{t:N} Cl2U{t:-iN} 
(RES) 

(V) 

C7u{f:-W?.C} 
(-V) b r — • where n is new. 

ClL){(t.n):R} 

Ch U C/2 

ChU {h:\ZR.C} Cl2U{{tut2):R} 

ChUCl2U{t2:C} 

t-.-VR.C} 

(t,n):R] 
ClU{n:wnnf{^C)} 

Figure 5.3: Labeled resolution rules for ACCTZ 

Proving that E is consistent if and only if SV has a model is straightforward. Fig
ure 5.3 shows the labeled resolution rules, but this time recast for the language ACCR. 
Before proving soundness, completeness and termination we present a simple example 
of resolution in our system. 

E X A M P L E 5.12. Consider the following description. Ignoring some fundamental genetic 
laws, suppose that children of tall people are blond (1). Furthermore, all Tom's daugh
ters are tall (2), but he has a non-blond grandchild (3). Can we infer that Tom has a 
son (4)? 

(0) FEMALE = -.MALE 
(1) TALL C VChild.BLOND 
(2) tom:VChild.(^FEMALEUTALL) 
(3) tom:3Child.3Child.^BL0ND 

(4) tom:3Child.MALE. 

As is standard, we use a new proposition letter REST-TALL to complete the partial 
definition in (1) and we resolve with the negation of the formula we want to infer. After 
unfolding and applying wnnfwe obtain the following three clauses 

1. {tom:VChild.^OMALE n ^((VChild.BLOND) n REST-TALL))} 
2. {torn :^VChild.VChild.BLOND} 
3. {tom:VChild.^MALE}. 

Now we start resolving, 

4. {s: ^VChild.BLOND} by (~>V) in 2 
5. {(torn, s ) : Child} by (->V) in 2 
6. {s:-MALE} by (V) in 3 
7. {s:-.(->MALE n-.((VChild.BLOND) n REST-TALL)} by (V) in 1 
8. {s:MALE. s: ((VChild.BLOND) n REST-TALL)} by (-ill) in 7 
9. {s: ((VChild.BLOND) n REST-TALL)} by (RES) in 6 and 8 
10. {s: VChild.BLOND} by (n) in 9 
11. {s:REST-TALL} by (n) in 9 
12. {} by (RES) in 4 and 10. 

file://{h:/ZR.C}
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T H E O R E M 5.13. [Soundness] The rules described in Figure 5.3 are sound. That is, ifH 
is a knowledge base, then .SV has n refutation only if y. is nnsatisfiable. 

P R O O F . We prove that labeled resolution rules preserve satisfiability. We only discuss 
(-•V). Let I be a model of the antecedent. If T is a model of CI we are done. If 1 
is a model of t: -<\/R.C, then there exists d in the domain, such that (tz , d) G Rx and 
d G -^C1. Let T' be identical to I except perhaps in the interpretation of n where 
nr = d. As n is a new label, also T \= t: -A/.R.C. But now I ' h C I U {(t. n): R} and 
T |= Cl U {n: wnnfi^C)}. ' QED 

We now prove completeness. We follow the approach used in [Enjalbert and Farinas del 
Cerro, 1989]: given a set of clauses 5 we aim to define a structure Tg such that 

(f) if S is satisfiable, a model can be effectively constructed from T s; and 
(ft) if S is unsatisfiable, a refutation can be effectively constructed from T$. 

But in our case we have to deal also with A-Box information, that is, with named objects 
(concept assertions) and fixed constraints on relations (role assertions). We will proceed 
in stages. To begin, we will obtain a first structure to account for named states and 
their fixed relation constraints. After that we can use a simple generalization of results 
in [Enjalbert and Farinas del Cerro, 1989]. We base our construction on trees which will 
help in guiding the construction of the corresponding refutation proof. 

Let I] be a knowledge base and S% its corresponding set of clauses. Let a be a 
label and CAa the subset of CA of concept assertions concerning the label a. Construct 
inductively, for each CAa, a binary tree Ta. Let the original tree u consist of the single 
node CAa and repeat in alternation the following operations. 

Operat ion A l . Repeat the following steps as long as possible: 
- choose a leaf w. Replace any clause of the form {a:^(Ci PIC2)} by {a:wnnf(^Ci), 

a: wnnf(^C2)}; and any clause of the form {a:C\ n C^} by {a:C\} and {0:6*2}. 

Operat ion A2. Repeat the following steps as long as possible: 
- choose a leaf w of u and a clause CI in w of the form CI = {a: C\, a: Ci} U CI'; 

add two children W\ and wi to w, where W\ = w\{Cl} U {{a : Ci}} and it'2 = 
w\{Cl} U {{a:C2} Li CI'}. 

The leaves of Ta give us the possibilities for "named states'' in our model. We can view 
each leaf as a set S^, representing a possible configuration for state a. 

P R O P O S I T I O N 5.14. Operation A (the combination of Al and A2) terminates, and upon 
termination 

i. all the leaves S\,... , 5 " of the tree are sets of unit literal clauses, 
ii. if all S*,... , 5 " are refutable, then CAa is refutable, 

iii. if one SJ
a is satisfiable, then CAa is satisfiable. 

P R O O F . Termination is trivial, i) holds by virtue of the construction, and ii) is proved 
by induction on the depth of the tree. We need only realize that by simple propositional 
resolution, if the two children of a node w are refutable, then so is w. iii) is also easy. 
Informally. Operation A "splits" disjunctions and "carries along" conjunctions. Hence 
if some S3

a has a model we have a model satisfying all conjuncts in CAa and at least one 
of each disjunct. QED 
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We should now consider the set RA of role assertions. Let NAMES be the set of la
bels which appear in E. If a is in NAMES but CAa is empty in Sv. define S\ = 
{{a: C,a: ~^C}} for some concept C. We will construct a set of sets of nodes Af = 
{Nt | Ni contains exactly one leaf of each Ta}. Each Ar, is a possible set of constraints 
for the named worlds in a model of SVj-

P R O P O S I T I O N 5.15. If for all i, [jN, U RA is refutable, then so is SVj. 

P R O O F . If for all i. \jNt U RA is refutable, then for some label a we have that for all 
Si obtained from CAa, SJ

a U RA is refutable. Hence by Proposition 5.14, CAa U RA is 
refutable, and so is SVj. Q E D 

For all i, we will now extend each set in Nt with further constraints. For each Sa £ A",, 
start with a node wa labeled by Sa. 

Opera t ion B l . Equal to Operation Al. 

Operat ion B2. Repeat the following steps as long as possible: 
choose nodes wa, wb such that {{a,b):R} in RA, {a-.VRi.Ci} e wa, {b:C,} g wb, 
where w/, is without children; 

- add a child to wi, w'b = W\, U {{b:Ci}}. 

Call Ar* the set of all leaves obtained from the forest constructed in B. 

P R O P O S I T I O N 5.16. Operation B terminates, and upon termination 
i. all nodes created are derivable from \J Ni U RA, and hence if a leaf is refutable so 

is\JNiURA, 
ii. if some \J N* is satisfiable, then S% is satisfiable. 

P R O O F . TO prove termination, notice that in each cycle the quantifier depth of the for
mulas considered decreases. Furthermore, it is not possible to apply twice the operation 
to a node named by a and b and a formula a:ViJj.Cj. 

As to i), each node is created by an application of the (V) rule to members of NiURA 
or clauses previously derived by such applications. To prove ii), let I be a model of 
N*. Define T = (A', -r) as A' = A, a1' = a1 for all labels a, Cr = C1 for all atomic 
concepts C, and R1' = Rx U {(a1, b1) \ {{a, b):R} e RA}. 

Observe that T differs from 1 only in an extended interpretation of role symbols. 
By definition, 1' \= RA. It remains to prove that T' \= CA. By Proposition 5.14, we 
are done if we prove that T \= \JN*. Since we only expanded the interpretation of 
relations, 1 and I ' can only disagree on universal concepts of the form a : VR.C. By 
induction on the quantifier depth we prove this to be false. 

Assume that 1 and X' agree on all formulas of quantifier depth less than n, and let 
a:\fR.C be of quantifier depth n, for {a:Vi?.C} 6 5*. Suppose X' \£ VR.C. This holds 
iff there exists b such that {ar\bT') e R1' and X' ^ b:C. By the inductive hypothesis, 
X ft b:C. Now, if (a1, b1) e Rz we are done. Otherwise, by definition {{a,b):R} G RA. 
But then {b : C} e S£ by construction and as X \= S6*, we also have X \= b: C — a 
contradiction. Q E D 

file://a:/fR.C
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As we said above, each Ar* represents the ''named core"' of a model of S. The final step 
is to define the non-named part of the model. The following operations are performed 
to each set in each of the A* obtaining in such a way a forest Ft. 

Fix X*. and a. We construct a tree "hanging' from the corresponding S* e Ar*. 
The condition that each node of the tree is named by either an individual or a new 
label (that is. all the formulas in a node have the same prefix) will be preserved as an 
invariant during the construction. Set the original tree u to 5* and repeat the following 
operations CI, C2 and C3 in succession until the end-condition holds. 

Operat ion C I . Equal to Operation Al. 

Operat ion C2. Equal to Operation A2. 

Operat ion C3. For each leaf w of u. 
- if for some concept we have {C}. {->C} e w, do nothing; 

otherwise, since w is a set of unit clauses, we can write w = {{t:C\} {t: Cm}. 
{tiWR^-At} { i : V i ? ^ . A J , {t:->VRtl.Pi}, . . . , {t:^Riq.Pq}}. Form the 
sets Wi = {{wnnf(t': ->Pi)}} U Si, where t' is a new label, and St = {{*' : Ah) \ {t: 
\/Rj.Ah} e w}, and append each of them to w as children marking the edges as Ri 
links. The nodes w, are called the projections of w. 

End-condition. Operation C3 is inapplicable. 

P R O P O S I T I O N 5.17. Operation C cannot be applied indefinitely. 

D E F I N I T I O N 5.18. We call nodes to which Operation Cl or C2 has been applied of type 
1, and those to which Operation C3 has been applied of type 2. The set of closed nodes 
is recursively defined as follows, 

if for some concept {t:C}. {t :^C} are in w then w is closed, 

- if w is of type 1 and all its children are closed, w is closed, 

if w is of type 2 and some of its children is closed, w is closed. 

Let Fi be a forest that is obtained by applying Operations Cl . C2. and C3 to Ar* as 
often as possible. Then Ft is closed if any of its roots is closed. 

L E M M A 5.19. If one of the forests Ft is not closed then 5 E has a model. 

P R O O F . Let F, be a non-closed forest. By a simple generalization of the results in 
[Enjalbert and Farinas del Cerro. 1989. Lemma 2.7] we can obtain a model 1 = (A. -1) 
of all roots S* in F%. from the trees ••hanging" from them, ie., a model of U ^ ? - BY 
Proposition 5.16. SV has a model. QED 

Lemma 5.19 establishes the property (f) we wanted in our structure Ts. To establish 
(ft) we need a further auxiliary result. 

P R O P O S I T I O N 5.20. Let w be a node of type 2. If one of its projections w{ is refutable, 
then so is w. 
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PROOF. Let w be a set of unit clauses w = {{t:Ci} {t :Cm}. {t :^Rkl.Ai}. . . . . 
{t-.VRkn.An}, {t:-WRh.Pi} {t:->\/R,q.Pq}}. And let it', be its refutable projection: 
Wi = {{wnnfit'-.^Pi)}} U Si, where t' is a new label, and S, = {{f :Ah} | {t:VRi.Ah} e 
w}. We use resolution on w to arrive at the clauses in w, from which the refutation 
can be carried out: Apply (-iV) to {t :^Vi?,.P!} in w to obtain {£': wnnfttf: ~>Pi)} and 
{{t.t'):Ri}. Now apply (V) to all the clauses {t:VR,.Ah} in w to obtain {t':Ah}. QED 

LEMMA 5.21. In a forest Fi, every closed node is refutable. 

PROOF. For w a node in F$, let d{w) be the longest distance from it' to a leaf. 
If d(w) = 0. then w is a leaf, thus for some concept C. {t:C} and {i:-iC} are in ID. 

Using (RES) we immediately derive {}. 
For the induction step, suppose the proposition holds for all w' such that d(w') < n 

and that d(w) = n. If w is of type 1, let W\ = w\{Cl}U{Cli} and ui2 = w\{Cl}Ll{Cl2} 
be its children. By the inductive hypothesis there is a refutation for vj\ and w-2- By 
propositional resolution there is a refutation of w: repeat the refutation proof for u>2 
but starting with w, instead of the empty clause we should obtain a derivation of CI2, 
now use the refutation of u>2- Suppose w is of type 2. Because w is closed, one of 
its projections is closed. Hence, by the inductive hypothesis it has a refutation. By 
Proposition 5.20, w itself has a refutation. QED 

THEOREM 5.22. [Completeness] The resolution method described above is complete: if 
E is a knowledge base, then S^ is refutable whenever E is unsatisfiable. 

PROOF. We only need to put together the previous pieces. If E does not have a model 
then neither does S^. By Lemma 5.19 all the forests Fj obtained from 5V are closed, 
and by Lemma 5.21, for each N*, one of the sets 5*. is refutable. By Proposition 5.16, 
for all i, \JNi U RA is refutable. By Proposition 5.15, SV; is refutable. QED 

Because we have shown how to effectively obtain a refutation from an inconsistent set of 
clauses we have also established termination. Notice that during the completeness proof 
we have used a specific strategy in the application of the resolution rules (crucially, the 
(->V) rule is never applied twice to the same formula). By means of this strategy, we 
can guarantee termination of labeled modal resolution when verifying the consistency 
of any knowledge base in ACC1Z. 

THEOREM 5.23. [Termination] Labeled resolution can effectively decide the consistency 
of simple, acyclic knowledge bases in ACC1Z. 

We have spelled out in detail the method for the basic description logic ACC1Z. the next 
natural step is to consider extensions. For instance, in [Calvanese et al, 1997] some 
attention has been given to n-ary roles (in modal logic terms, n-ary modal operators). 
Our approach generalizes to this case without further problems. 

Considering additional structure on roles is another possibility. We have limited 
ourselves to conjunction, but disjunction, negation, composition, etc. can be considered. 
And, of course, the addition of counting operators should be hight on our to-do list. A 
very attractive idea which matches nicely with the resolution approach is to incorporate 
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a limited kind of unification on "universal labels" of the form x: C. to account for on the 
fly unfolding of definitions and more °"eneral T-Boxes. The use of such universal labels 
would make it unnecessary to perform a complete unfolding of the knowledge base as a 
pre-processing step. The leitmotiv would be "to do expansion by definitions only when 
needed in deduction." On the fly unfolding has already been implemented in tableaux 
based systems like KRIS [Baader et ah, 1994]. See also our discussion in Section 4.5.1. 

5.2 .3 H y b r i d Log ics 

It's the turn of hybrid languages now. But of course, we have already been dealing with 
hybrid languages throughout the previous section: just remember the tight connections 
between description and hybrid logics that we built in Chapter 4. 

But what about binders? Extending the system to account for hybrid sentences 
using | is fairly straightforward. Consider the rules 

... ChU{t:lx.<p} ChU{t:-4x.<p} 
ChU{t:(p[x/t]} ChU{t:lx.wnnf(^ip)}' 

Notice that the rules transform hybrid sentences into hybrid sentences. If, in addition, 
we add the following rules to handle nominals 

(NOM) ChU{t:i} CkU{l^} (SYM) ClU{t:^ 
[ ' ChüCkU{t:tp} [ ' ClU{i:t} 

we obtain a complete calculus for sentences in H${1)- Of course, in this case we cannot 
expect a heuristic ensuring termination as the satisfiability problem for full %s(4-) is 
undecidable. As we discuss in Section 4.5.4, we need strong restrictions in the language 
to achieve decidability like considering only sentences with non-nested occurrences of 4-
(see Theorem 7.10). 

Let's work out a short example. We prove that lx.O(x A p) —> p is a tautology. 
Consider the negation of the formula in clausal form 

1. {i:±x.^n-,(xAp)}, {*:-*}, by (|) 
2. {li iDnftAp)}, {i:->v}, by (-.•) 
3- {R(i,j)h {J:(»'AP)}, {*:-*>}, by (A) 
4- 0":i},0 ' :p}, {*:-?}, by (SYM) 
5- {i-l}, {J-Ph {»:-*>}, by (NOM) 
6. {i:p}, {ii-jp}, by (RES) 
7. {}. 

5.3 Reflections 

In Section 2.4 we showed how constraint systems for instance checking could decide 
the different reasoning task we introduced in the previous sections. In Section 3.2 we 
argued how hybrid languages were able to internalize labeled deduction. The same ideas 
play a fundamental role in the labeled resolution systems we introduced in this chapter. 
Once again, individuals/nominals/labels together with the satisfiability operator : or @ 



5.3. Reflections ^ 

are the key to achieve smooth and well behaved reasoning methods. And the systems 
we introduced in this chapter should have made clear that labeled resolution has many 
advantages with respect to previous direct resolution proposals, supporting our claim 
that description/hybrid logic ideas can indeed be used to improve reasoning methods. 
We complete the chapter with a discussion on a number of independent directions for 
future research. 

Once labels are introduced the resolution method is very close to the tableaux ap
proach, but we are still doing resolution. As we said, the rules (n), (-in) and (~iV), 
prepare formulas to be fed into the resolution rules (RES) and (V). And the aim is still 
to derive the empty clause instead of finding a model by exhausting a branch. But, is 
this method any better than tableaux? We don't think this is the correct question to 
ask. We believe that we learn different things from studying different methods. For ex
ample. Horrocks and Patel-Schneider [1999] study a number of interesting optimizations 
of the tableaux implementation which were tested on the tableaux based theorem prover 
DLP. Some of their ideas can immediately be (or have already been) incorporated in our 
resolution method (lexical normalization and early detection of clashes, for instance), 
and others might perhaps be used in implementations of our method. On the other 
hand, optimizations for direct resolution such as those discussed in [Auffray et al., 1990] 
can also be exploited in conjunction with the others. For example, in implementations 
of the resolution algorithm, strategies for selecting the resolving pairs are critical. This 
kind of heuristics has been investigated by Auffray et al. and some of their results easily 
extend to our framework. In certain cases, establishing completeness of these heuristics 
is even simpler because of our explicit use of resolution via labels. 

The issue of heuristics is very much connected with complexity. The basic heuristic 
we used in the proof of Theorem 5.22 keeps the complete clause set "in memory" all 
the time and hence requires non-polynomial space. A similar situation occurs in clausal 
propositional resolution where the translation into clausal form can introduce an ex
ponential blow up. We conjecture that a PSPACE heuristic for labeled resolution can 
be obtained by exploiting further the presence of labels (and given that we don't force 
a translation into full clausal form). Notice that labels and role assertions let us keep 
track of the accessibility relation and we can define the notion of "being a member of 
a branch.'' Now we can attempt to use the tree property of modal languages to guide 
resolution. We used similar ideas in [Areces et al., 2000d] to improve the performance 
of translation based resolution provers. 

The ideas behind labeled resolution are simple enough so that adapting available 
provers should not prove to be a very difficult task. It would be interesting to perform 
empirical testing on the performance of this resolution prover following the lines drawn 
in, for example [Horrocks et al., 2000a], both in comparison with translation based 
resolution provers and those based on tableaux. 

Finally, our completeness proof is constructive: when a refutation cannot be found 
we can actually define a model for the formula or knowledge base. Hence, our method 
can also be used for model extraction. How does this method perform in comparison 
with traditional model extraction from tableaux systems? 




