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Magnetic phase diagrams for three coupled magnetic moments 

P . E .  B r o m m e r  * 

Van der Waals-Zeeman Institute Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands 

A b s t r a c t  
For three arbitrary coupled magnetic moments (sublattices), the stable magnetic structures have been determined. Three 

classes do exist: three (all), two and no equal coupling parameters, respectively. At  any applied field, only one, collinear or 
non-collinear, structure is stable. Transitions are smooth: the magnetization curves show no jumps. 

Keywords: Magnetic phase diagram; Non-collinear structures 

In many lanthanide-transition metal (RT) compounds, 
the magnetic structures can be described, in a two-sub- 
lattice model, as a coupling between the total R-moment  
and the total T-moment  [1]. In applied fields, non-collinear 
structures can be formed [2], corresponding, in the absence 
of crystalline anisotropy, to a linear dependence, M = 
ixoH/[n]. In this way, for antiferromagnetic coupling, the 
molecular-field constant n ( <  0) can be measured directly. 
The influence of crystalline anisotropy is minimized by 
performing the experiments on an assembly of small, 
freely orientable, particles [3]. A two-sublatfice model is 
not always adequate. For instance, in the case of two 
different R-moments o n  one sublattice, a three-sublattice 
model is necessary. Recently, RMn6_xCrxSn 6 was de- 
scribed [4] as a three-sublattice system, simplified because 
the Mn-atoms occupy two equivalent sublattices (the R- 
moments form the third one). In Ref. [5], a complete 
treatment is presented for three inequivalent coupled mo- 
ments, with constant magnitude. Here, the method is ex- 
plained and the main results are presented. 

The (free) energy of a system of magnetic moments 
M 1, M 2, M 3, placed in an external field /~o//,  coupled 
either fen'o- (n i j  > 0) or antiferromagnefically (n i j  < 0) is 
given by 

E = - ( n l 2 M 1 M  2 + n 2 3 M 2 M  3 + n 1 3 M I M 3 )  

- / Z o H ( M  1 + M 2 + M3) .  ( 1 )  

The possible stable structures are found by deriving the 
equilibrium conditions: 

a i M  1 -- n i 2 M  2 --  n 1 3 M  3 = /£0 H ,  (2a)  

- n l 2 M  1 + a 2 n  2 - n23M 3 = / z 0 H  , (2b)  

- n l 3 M  1 - n23M 2 + a 3 g  3 = IXo H .  (2c)  
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The coefficients aj  and the determinant D of the 
coefficient matrix of this set of equations should be non- 
negative, mathematically in order to have an energy mini- 
mum, from a physical point of view, because the effective 
field acting on a moment  Mj should be oriented along Mj ,  
i.e. equals a j M j  with positive aj. For a non-collinear state, 
D must vanish, since non-zero components perpendicular 
to / /  should exist. Moreover, considering a fixed moment  
M a and variable moments M 2 and M 3, we find that the 
corresponding minor (subdeterminant) mll  = a 2 a 3 - n 2 23,  

should also be non-negative. Using m12 = a3n12 + n13n23 
(cycl), we can derive 

m a i m  2 = ( a  3 + n23)/XoH + m12M 1. (4)  

An analogous relation holds for M 3 (exchange indices 
2 and 3). Hence, by addition: 

m l l M  t = ( a  2 + a 3 + 2n23)/~0 H + (mi1  + m12 + m a 3 ) M  1. 
(~) 

For vanishing field, these equations reveal that either 
all minors have non-zero values (collinear structure) or all 
minors do vanish (non-collinear structure). In the latter 
c a s e "  

a a = _ n12 ni3/n23 ; a2 = _ n12 n23/n13; 

a 3 = --n13nz3/n12. (6)  

Since aj should be positive (all j ) ,  a non-collinear 
zero-field phase can only exist in case all molecular field 
constants are negative (antiferromagnetic) or in case only 
one such constant is negative, the other two being positive 
(ferromagnetic). 

For non-zero fields, we may exchange, in Eqs. (2a) -  
(2c), the first colon and the right hand side. Then, analo- 
gously, we find that a non-collinear solution may exist 
provided the sum mll  + m12 + ma3 vanishes. Looking in 
more detail, we find a natural classification of the coupled 
systems. Suppose, for instance, that mll vanishes. Then, 
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all minors should vanish. This can only happen in case all 4 . 0  
molecular-field constants are equal: n12 = n13 = n23 = n, 

3 . 5  referred to as Class I. Then, for n < 0, we find, from any 
of Eqs. (2a)-2(c),  the relation M = IxoH/In] in a non-col- 

3 . 0  
linear structure. Moreover, at a given field, all solutions 
(possibly non-coplanar) are degenerate. ~ 2 . 5  

In case mll  does not vanish, Eq. (4) shows that M 2 
(and by analogy M 3) is a linear combination of H and .~  2 . 0  
M1. Consequently, if  a non-collinear structure exists, with ~t 
non-collinear H and M 1, it is a coplanar one. Moreover, 1 .5  
inserting ml~ + m12 + m13 = 0 in Eq. (5), we see that M t 
points in the direction of H. Furthermore, in case two 1 .0  
molecular-field constants are equal (referred to as Class II, 
with say hi3 = n23), only two distinct types of non-collin- 0 . 5  

ear structures may exist: either M 3 is oriented along H 
(parallel or antiparallel), or M 1 and M 2 behave as one 
sublattice (oriented either parallel or antiparallel, °pseudo- 
two-sublattice model ') .  In these non-collinear states, the 
magnetization depends linearly on H.  The magnetization 
curve consists of straight lines and constant parts, without 
any jump (see Fig. 1). Finally, if all molecular-field con- 
stants are different (Class III), such non-collinear struc- 
tures cannot exist: no moment  is directed along another 
moment or along the field. The magnetization curve con- 
sists of constant parts (collinear states) connected by possi- 
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Fig. 1. Class II (the difference between hi3 and n23 must be 
ignored). See Ref. [5] for more details. 
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Fig. 2. Class HI; application to (Nd,Gd) Ni 2 (see Ref. [5]). 

bly strongly curved parts (the non-collinear states). Fig. 2 
shows, as an example, the result of a fitting procedure to 
some preliminary data observed on (Nd,Gd)Ni 2. The Ni 
sublattice is assumed to have a non-zero (constant) mo- 
ment. In this way, a way is opened to determine directly 
the ferromagnetic interaction between a light lanthanide 
and a transition metal. 

In conclusion, the relationships between the coupling 
parameters appear to form a natural basis for classification. 
Class I, ' three equal coupling parameters ' ,  is rather simple, 
but has the remarkable property that 'non-coplanar '  struc- 
tures can occur. Class II, 'only two equal coupling parame- 
ters' ,  yields interesting magnetization 'curves ' ,  still con- 
sisting of a combination of linear parts and constants. 
Class HI, ' three different coupling parameters' ,  allows a 
non-linear relation between H and M. 
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