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Simulation of gravitational wave detectors
J. F. de Ronde,a! G. D. van Albada, and P. M. A. Sloot
Faculty of Mathematics, Computer Science, Physics, and Astronomy, University of Amsterdam,
1098 SJ Amsterdam, The Netherlands

(Received 17 January 1997; accepted 11 June 1997)

A simulation program that provides insight into the vibrational properties of resonant mass
gravitational radiation antennas is developed from scratch. The requirements that are set
necessitate the use of an explicit finite element kernel. Since the computational complexity of this
kernel requires significant computing power, it is tailored for execution on parallel computer
systems. After validating the physical correctness of the program as well as the performance on
distributed memory architectures, we present a number of ‘‘sample’’ simulation experiments to
illustrate the simulation capabilities of the program. The development path of the code, consisting
of problem definition, mathematical modeling, choosing an appropriate solution method,
parallelization, physical validation, and performance validation, is argued to be typical for the
design process of large-scale complex simulation codes. ©1997 American Institute of Physics.
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INTRODUCTION

General background

Although the existence of gravitational radiation, predict
by Einstein’s theory of general relativity,1 is unquestioned,
its detection is a long-standing problem in experimen
physics. The aim of the GRAIL project2 is to realize a
spherical resonant mass detector with a sensitivity that
few orders of magnitude higher than the present genera
of detectors, thus offering the possibility of validating th
existence of gravitational radiation that is emitted by ast
physical sources.3 These sources include supernovae, s
lar collapses to black hole states, and coalescence of bi
neutron star systems.4

The quadrupole moment of a mass distributionr~x! is
given by

Di j 5E
V
dVr~x!S xixj2

1

3
d i j x

2D . ~1!

According to general relativity~GR!, an oscillation of this
quadrupole moment is the simplest mode of vibration t
can generate gravitational waves. The counterstatemen
absorption of gravitational waves is that in the simpl
case it also takes place via the excitation of the quadrup
modes of vibration of a massive object. This principle is t
main argument for constructing a gravitational radiation
tenna, which essentially is a large resonant mass tha
forced into oscillation by impinging gravitational radiatio

In GRAIL, the antenna will consist of a spherical res
nant mass of a Cu alloy, possibly CuAl, with a mass
about 100,000 kg and a diameter of 3 m. It will b
suspended in vacuum inside a large cryostat in such a
that the external vibrations at its resonant frequen

a!E-mail: janr@wins.uva.nl
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('700 Hz) are attenuated by at least a factor of 1016. The
sphere will be cooled to a temperature in the range
10–20 mK in order to cancel out thermal noise. Transd
ers will be attached to the surface of the sphere to detec
vibrations induced by gravitational radiation. An analys
of the electric signals from these transducers must give
formation ~such as source type and direction of incidenc!
about the gravitational radiation that interacts with t
sphere. The gravitational waves have extremely weak in
action with matter; the typical deformations induced on
Cu sphere of 3 m will be of the order of 10220 m, which
explains why detection is such a difficult task and why
has not yet been realized. Several arguments can be g
for using a spherically shaped antenna5–8 instead of, for
example, the cylinder or bar antennas in the pioneer
days of gravitational radiation detection9 and present-day
experimental setups like the NAUTILUS detector at t
Frascati National Laboratory in Rome.10

Since the estimated cost~' 45 million Dutch guilders!
of the project is quite high, a pilot study has been funded
NWO11 to investigate the technological feasibility o
GRAIL. In this project several critical aspects concerni
the design of the antenna had to be addressed. The ta
our simulation group was to construct detailed models
the antenna that provide insight into its vibrational prop
ties. A schematic design of the GRAIL antenna concep
shown in Fig. 1.

The development and design of complex systems
be significantly enhanced by means of simulation. A rec
example in which simulation was used in the analysis of
behavior of resonant mass antennas can be found in Re
In this work modal analysis was used to determine the
quency spectrum of a truncated icosahedral antenna.
accuracy of this simulation was fairly limited due to th
low model resolution. The main result was that one c
© 1997 AMERICAN INSTITUTE OF PHYSICS 0894-1866/97/11~5!/484/14/$10.00
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conclude that the behavior of a truncated icosahedral
tenna is very similar to that of a sphere.

In this article we will describe the development of
high-resolution simulation system for resonant mass gr
tational radiation antennas that can be applied to a num
of important design issues.

Design issues

The following questions need to be addressed by mean
extensive simulation experiments.

~1! How does the suspension of the huge resonant m
affect the eigenmodes and eigenfrequency of the f
damental quadrupole modes of a sphere?

~2! How will material inhomogeneities affect these eige
modes and eigenfrequencies?

~3! Given a perfect sphere, how will it deform under i
own weight?

~4! Does the coupling between the suspension rod and
sphere induce additional modes that will cause inter
ence with the modes we are looking for?

~5! What is the effect of mounting transducers on the
tenna on the frequency spectrum of the system?

~6! How will seismic noise, entering the sphere through
framework in which it is suspended, influence t
transducer signals?

~7! How will the fingerprint of typical gravitational wave
sources be seen by the antenna?

~8! Can energy that has been deposited by cosmic ray
particles like muons induce system eigenmodes that
not distinguishable from those induced by gravitation
waves?

We can identify two types of questions in this lis
First, the design questions that need to be answered in o
to tune the readout of the system, like the effects of
suspension hole, suspension rod, or material inhomog
ities on the frequency spectrum of the antenna. Second

Figure 1. TheGRAIL antenna in a heat isolating vacuum chamber.
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have those questions that pertain to the various source
vibration: How can we discriminate whether the vibratio
that we observe is the result of a gravitational wave or
something else? Clearly a simulation that can help us
answering these questions can be of great value to the
sign and development phase of the GRAIL project. Eve
tually, when the system is operational, a~well-defined!
simulation system can even be used to analyze the tr
ducer output by means of reverse engineering of the tra
ducer signal towards the original source. Incorporation
simulation in the experimentation cycle is sometimes
ferred to as ‘‘living simulations’’ or ‘‘simulation in the
loop.’’

The remainder of this article is structured as follow
Section I begins with a description of two solution metho
that can be used to answer a few basic questions but
are too restrictive for our overall goal. For this purpose
resort to development of a simulation that is based on
explicit finite-element~FE! method. The simulation accu
racy required necessitates high-resolution FE models.
performance of the FE solver is therefore enhanced by
ploiting the models’ parallelism~Sec. II!. Since the simu-
lation is developed from scratch, we can circumvent seve
pitfalls that are known to hamper the migration of existi
simulation codes to parallel computers.12–14 In Sec. III the
physical correctness of our simulation is validated by
comparison with an analytical solution as well as by expe
ments that were carried out with a small prototype anten
It is further shown that we benefit greatly by exploitin
computational concurrency. In Sec. IV we present a f
typical simulation experiments that can be carried out w
the simulation program. Some concluding remarks rega
ing the computational science approach taken in our st
are given in Sec. V.

I. SIMULATION METHODS

A. Analytical solution

The equation of motion for elastic objects, also known
the Navier equation@Eq. ~2!# describes the variation in time
of the displacement field~u! in homogeneous isotropic
elastic objects. The material of such objects is parame
ized by the two Lame´ parameters~l,m! and the material
density~r!.

mDu1~l1m!¹¹•u5rü. ~2!

Two parameters that are frequently used to desc
the elastic properties of a material are the Poisson ratio~n!
and Young’s modulus (E). Both parameters can be ex
pressed in terms of the Lame´ parameters as follows:

n[
l

2~l1m!
, ~3!

E[
m~3l12m!

l1m
. ~4!

The general solution of Eq.~2! consists of two differ-
ent contributions that correspond to divergence-free (¹•u
50) and rotation-free (¹3u50) waves that propagat
through the material with unique velocities.
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 485
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For both types of vibration a frequency equation c
be derived for a freely vibrating~traction-free! elastic
sphere and can be solved numerically.15 The rotation-free
vibrations are known asspheroidal eigenmodes. A general
spheroidal eigenmode,Cs, is given by Eq.~5!, which is the
superposition of all particular rotation-free solutions of E
~2! for a spherical object with traction-free boundary co
ditions; note that we use polar coordinates.

Cs5 (
n50

`

(
m52n

n

@an~r !êr1bn~r !R¹#Ynm~u,f!, ~5!

with R the sphere radius andêr the unit vector in the radia
direction;an(r ) andbn(r ) are dimensionless radial eigen
functions determined by the boundary conditions, a
Ynm are spherical harmonics. For each value ofn the fre-
quency equation contains infinitely many solutions. A ge
eral quadrupole mode of the sphere can be described a
superposition of the five modes withn52 (m522...2).
Since ~according to GR! only these modes interact wit
gravitational radiation, they are the primary subject of o
investigations. Figures 2 and 3 show the shape of one o
quadrupole modes~denoted as thel 50 mode16! differing
by half a period. This eigenmode oscillates between a p
late and an oblate shape.

The applicability of this analytical model fails as soo
as we perturb the sphere in any way. However, it provi
us with a useful gauge for a simulation program. First,
take a look at an elegant numerical model that is less
strictive than the analytical model described above.

Figure 2. The prolate stage of the l50 mode.
486 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
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B. Numerical method

If we write down the Lagrangian@Eq. ~6!# for a freely
vibrating elastic object~following Ref. 17! ~the summation
convention is used where appropriate!

L5E
V
S 1

2
rv2uiui2

1

2
ci jkl ui , juk,l DdV, ~6!

with ui the component of the displacement fieldu that is
parallel to thei axis,ui , j the derivative ofui in the j direc-
tion, ci jkl the elastic tensor~dependent onl andm!, andv
the eigen-~angular! frequency, and apply the principle o
least action, settingdL50, we get

dL5E
V
~rv2ui1ci jkl uk,l j !duidV

2E
S
~n j ci jkl uk,l !duidS

50, ~7!

where n j denotes the component along thej axis of the
outward-pointing normal vector on the surface of the o
ject. Equation~7! exactly expresses the elastic wave equ
tion ~2!, with traction-free boundary conditions, of Sec. I A
If we expand the displacement vector in a set of basis fu
tions according to

u5(
lmn

almnx
lymzn, ~8!

and truncate the expansion to a certain polynomial ord
Eq. ~7! can be rewritten in terms of a generalized eige
value problem~9!.

Figure 3. The oblate stage of the l50 mode.
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Table I. The analytical and ‘‘numerical’’ frequencies in Hz for a few spheroidal modes of a Cu sphere.
The dashes denote that no frequencies in the same range were found for specificN. This is due to the fact
that the polynomial expansion in question is not able to represent the corresponding eigenmode properly

n
Analytical
solution

N55
R5168

N56
R5252

N57
R5360

N58
R5495

N59
R5660

N510
R5858

2 654.0828 654.090 654.090 654.085 654.085 654.085 654.0
1 891.7504 893.488 891.796 891.796 891.788 891.788 891.7
3 975.4565 988.374 975.550 975.550 975.464 975.464 975.4
4 1251.997 ••• 1281.98 1252.35 1252.35 1252.01 1252.01
2 1263.632 1270.78 1270.78 1263.78 1263.78 1263.68 1263.6
0 1395.698 1396.06 1396.06 1396.06 1396.06 1396.06 1396.0
5 1510.716 ••• ••• ••• 1511.6 1511.65 1510.83
3 1661.032 ••• 1681.20 1681.20 1661.6 1661.63 1661.04
6 1760.268 ••• ••• ••• ••• 1762.42 1762.42
1 1793.638 ••• 1843.70 1843.70 1795.91 1795.81 1793.67
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v2Ea5Ga. ~9!

The matricesE andG can be computed by integrating E
~7! properly. Solving forv provides us with estimates o
the eigenfrequencies of the system in question.16,17

1. Validation

Table I shows several eigenfrequencies found with the
merical method as well as the corresponding analytical
ues for a Cu sphere~material parameters:r58933 kg/m3,
E5129.8109 Pa, andn50.343!. N denotes the truncation
order of the basis function expansion, andR3R is the ma-
trix size of the corresponding eigenvalue problem. We h
used aLAPACK18 routine called DSYGV, which can be ap
plied to symmetric generalized eigenvalue problems
solve the system.

2. Spheroidal perturbations

An ellipsoid is described by its three semi-axesdx , dy , and
dz :

Figure 4. The fundamental quadrupole frequencies under variation
dz . The spherical symmetry is broken in theẑ direction, resulting in a
threefold splitting of the fivefold degenerate quadrupole frequency:
doublets and one singlet. The doublets are denoted by 1c–and–1s and
2c–and–2s and the singlet by 0.
x2

dx
2 1

y2

dy
2 1

z2

dz
2 51. ~10!

For a sphere these axes have equal length. When we m
one semi-axis longer and keep the other two constant,
object is called a prolate spheroid. If we make one se
axis shorter than the other two, we have an oblate spher
In Fig. 4 the dependence of the lowest quadrupole f
quency ondz is depicted@varied in the range~0.1, 5.0! m#,
while the other two axes are kept at 1.5 m for a Cu sphe
We can observe three lines that intersect atdz51.5. Since
the spherical symmetry is broken in thez direction, the
fivefold degeneracy is only partially removed. It splits in
two doublets and one singlet. Additional perturbations
the x and y directions would break the symmetry com
pletely, leaving us with five slightly different frequencies

C. A finite-element model

The numerical method of Sec. I B also was applied to
sphere with a suspension hole. Again it can be obser
that the five frequencies are split up~see Fig. 5!. It leaves
us with an uncomfortable feeling, however, since the sh
edges of the suspension hole possibly disrupt the nume

Figure 5. The fundamental quadrupole frequencies vs the radius of
suspension hole. The spherical symmetry is broken in theẑ direction,
resulting in a threefold splitting of the fivefold degenerate quadrup
frequency: two doublets and one singlet. The doublets are denote
1c–and–1s and 2c–and–2s and the singlet by 0.
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 487
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process. Therefore, we do not know whether the freque
splitting is an artifact or is physically correct. Furthermo
we are stuck with a variety of questions that cannot
answered by the analytical and numerical approac
above. Next we will consider the finite-element method a
third alternative to answer our questions. We discretize
antenna model in first-order tetrahedral elements~each ele-
ment has four nodal points!. As an example, Fig. 6 show
the hull of such a finite-element model, consisting
39,684 tetrahedral elements. One approach to the prob
is by means of modal analysis, that is, by studying
following eigenvalue problem:

Kd5v2Md, ~11!

with K the system’s stiffness matrix,M the mass matrix,d
an eigenmode, andv an eigenfrequency of the system. A
though it is theoretically possible to investigate a line
system such as ours on the basis of modal analysis
practical realization is a different story. First of all, th
model resolutions that we aim for are very high, necessi
ing solution of huge eigenvalue problems. These may
solvable using state-of-the-art numerical solvers. If we s
ceed in doing that, we have to cope with a storage probl
since for each nodal point a superposition of at least o
100 eigenmodes is necessary to characterize a general
frequency solution of the system. In addition, it is difficu
to model the effects that are due to coupling to exter
forces that are aperiodic, like seismic noise entering via
suspension or stochastic sources.

On the other hand we can choose for explicit tim
integration of the equation of motion~12!.

Ma1Cv1Kd1F50. ~12!

Figure 6. The hull of a finite-element antenna model with the suspen
rod discretized into 39,684 tetrahedral elements.
488 COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
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The matricesM , C, andK are constructed by assemblin
the local mass, the viscosity, and the stiffness matrices
all individual finite elements in which the antenna model
divided; a, v, andd are vectors that describe, respective
the acceleration, velocity, and displacement fields, andF is
an external force vector. In order to integrate this syst
explicitly in time we adopt the following Newmark
scheme:19

dn115dn1vnDt1an

~Dt !2

2
,

an115M 21K~dn11!, ~13!

vn115vn1~an1an11!
Dt

2

with an , vn , anddn vectors that describe, respectively, th
acceleration, the velocity, and the displacement fields in
FE system at timen. Viscous damping (C) and external
forces ~F! can easily be added to this algorithm.19–21 The
masses are ‘‘lumped’’ at the nodal points, resulting in
diagonal mass matrix. ThereforeM 21 can be calculated
quickly. For numerical stabilityDt must be less than the
Courant value, since the time integration scheme is con
tionally stable. The choice of the algorithm is, on the o
hand, motivated by the fact that it displays good numeri
properties~low numerical dispersion and damping!. This
was found through a number of exploratory experiments
a one-dimensional finite-element model~data not shown!.
On the other hand, it is very well suited for exploitin
computational concurrency, as we will see below. Althou
this explicit approach has the drawback that we have
solve our system in the time domain and afterwards p
form a spectral analysis, it is much more flexible for o
purposes, and is not hampered by the restrictions that a
to modal analysis. Furthermore, the simulation model c
be extended such that it can incorporate nonlinear effe
such asviolin modesin the suspension rod, that cannot b
realized by modal analysis.

It was expected that the required simulation accura
necessitates the use of a very-high-resolution FE model
is computationally and memory intensive. The simulati
code was therefore designed and implemented for exe
tion on distributed-memory computers.

II. PARALLELIZATION

In good tradition, we have chosen to base our paralleli
tion method on the decomposition of the FE mesh. T
consequences of the decomposition method for the t
integration algorithm as well as the calculation of importa
system parameters~like energy! had to be considered in th
design. In our discussion we will only consider the pu
finite-element system. In the full-fledged simulation a va
ety of phenomena can be taken into account, such as tr
ducer mounting, suspension rod, and sources of vibrat
At this point it suffices to say that the parallelizatio
method chosen does not have major consequences fo
full-fledged simulation, and therefore may be left out of th
discussion. We focus on two important aspects of the p
allelization process: parallel time integration~the kernel!
and parallel calculation of the energy.
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The code was implemented in C with PVM22 message
passing primitives according to the single-progra
multiple-data paradigm.23 The problem domain~the finite-
element mesh consisting ofN tetrahedral elements! is par-
titioned intoP subdomains. Each subdomain is assigned
a single process and executes the same program appli
its local data. The process with identifier 0 is used to re
in the whole mesh; it supplies the otherP21 processes
with their locally essential data, and is used for input/out
~I/O!, a primus inter paresor masteramong the paralle
processes.

A. Energy

In order to check energy conservation, we have to mon
the energy in the system. The total energyEtot is given by

Etot5
1
2~vTM v1dTKd!, ~14!

with v the velocity vector in which the individual velocit
vectors of all nodal points are concatenated, andd the dis-
placement vector, also formed by concatenating the fie
at all nodal points. How do we calculate this in parallel?

The FE mesh is decomposed along the surfaces of
tetrahedral elements that constitute the mesh. First, a
graph of the mesh is constructed; this then can be p
tioned using any graph-partitioning method.24 Nodal points
that lie on shared boundaries are replicated on each pro
with this boundary in its local domain, whereas eleme
belong to a unique process. This procedure is schematic
depicted in Fig. 7 for a simple quadrilateral mesh.

The global mass and stiffness matrices are constru
by assembling the individual contributions from each e
ment in a global matrix. If we denote the assembly of tw
element stiffness matricesk1 andk2 by k1% k2 , K is con-
structed~analogously for the mass matrix! as follows:

K5k1% k2% ...% kN , ~15!

with N the number of tetrahedral elements. If we moni
the energy values during a simulation run~it would be nice
if this could be done completely separate!, that is, for each
subdomain (i ), the energy content (Etot

i ) is calculated, and
once in a while we assemble the subdomain energy co
butions and accumulate them on process 0. This can
done as follows:

Etot
i 5 1

2~viTMr
i vi1diTKid

i!, ~16!

vi denotes the velocity vector for the nodes in subdomaii ,
di is the displacement field,Ki is the stiffness matrix of

Figure 7. Partitioning of a quadrilateral mesh into four parts. The nod
points at the shared boundaries are replicated while elements are
signed to unique processes.
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subdomaini , which is simply the assembly of its loca
element stiffness matrices, and finallyMr

i is an adjusted
version of the~diagonal! mass matrix of subdomaini . The
‘‘normal’’ mass matrix contains the mass for each nod
point at the appropriate entry. In this adjusted version
masses of the internal nodal points are untouched. H
ever, for the shared nodal points this value is divided by
‘‘redundancy’’ value, which denotes how many process
have a replica of it. For example, in Fig. 7 nodal point 5 h
a redundancy value of 4. As a consequence, the co
sponding entry in each local adjusted mass matrix, eit
being on process 0, 1, 2, or 3, has to be divided by 4. In
way we can assure that we are not counting any ene
contributions twice.

B. Time evolution

If we have constructed the mass and stiffness matrices
each subdomain~or process! correctly, we can parallelize
the Newmark scheme above as follows: Each process g
unique process identifier~ID! equal to the subdomain iden
tifier ( i ) above. Nodal points that are shared among two
more processes are considered to have one real owner~the
owning process considers it as a node of type A!, while the
other processes only have the replica of this node~consid-
ering the node as type B!. Assigning a node to a specifi
process is based on the process ID. The process with
lowest ID considers a shared nodal point as A type, wh
the other processes see it as B type. Consequently, pro
0 can only have shared nodes of type A, while procesP
21 ~assuming we haveP processes! can have only shared
nodes of type B. The following construction parallelizes t
Newmark scheme correctly:

dn115dn1vnDt1an(Dt)2/2,
Senddn11 from A nodes to B nodes,
Receivedn11 for B nodes from A nodes,
an115M 21K(dn11),
Sendan11 from B nodes to A nodes,
Receivean11 for A nodes from B nodes,
Add contributions toan11 from B nodes,
vn115vn1(an1an11)Dt/2.

The A–B nodal point scheme was adopted from Lonsd
et al.25

III. VALIDATION

Here we show a selection of experimental results that w
produced for validation of our parallel FE simulation. Firs
we investigate whether the model is physically corre
Next, we measure the performance benefits that we
from exploiting parallelism for different mesh resolution
Meshes are decomposed by two different graph-partition
methods: recursive spectral bisection~RSB! and a general-
ized version of orthogonal recursive bisection~ORB!,24

which we callgeneralizedORB ~GORB!. GORB operates
in such a way that consecutive partitionings are not nec
sarily orthogonal and that partitioning cardinalities are n
necessarily a power of 2~as is the case in ORB!. Figure 8
shows partitioning in the case of GORB in four par
where the consecutive partitionings are not performed
thogonally but at an angle of 80°. GORB recursively b
COMPUTERS IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997 489



n-

ally
ras
ec-
al

he

the
ec-
dif-
B
r-
ple

two

2

loy

of
nts
ors

le-

re
tem

or-
htly
d.
und

ing

first
d
this

as
s

sects the geometrical domain in equal partitions~work load
balancing!, in alternating directions, not paying any atte
tion to the mesh connectivity~communication!. RSB ap-
plies a more complex, and consequently computation
more expensive, method to partition the mesh. In cont
with ~G!ORB it also takes into account the mesh conn
tivity. It recursively bisects a finite-element mesh into equ
numbers of elements~work load balancing!, while ~ap-
proximately! minimizing the number of edges between t
resulting subdomains~communication load balancing!. Fig-
ures 8 and 9, respectively, show the partitioning in
cases of GORB and RSB into four parts, with both bis
tions applied to a FE sphere of 79,556 elements. The
ference in partitioning quality between GORB and RS
will have to be determined by explicitly measuring the ke
nel execution times because it cannot be found by sim
visual inspection.

The performance measurements are carried out on
target platforms both installed at the IC3A in Amsterdam;26

a Parsytec PowerXplorer@32 PowerPCs 601, with each 3
Mbytes of random access memory~RAM!# and a Parsytec
CC ~40 PowerPCs 604, each having 96 Mbytes of RAM!.
Our target material in the experiments below is the al
CuAl ~90–10! ~with r57534.0 kg/m3, E5154.03109 Pa,
and n50.3265!, and only considers spheres with radii
1.5 m. All results with respect to the physical experime
given below are independent of the number of process

Figure 8. The hulls of the four partitions obtained for a sphere consist
of 79,556 tetrahedral elements obtained using theGORB partitioning
method. Each of the four hulls has about 3140 triangular faces. The
bisection is along thex̂ direction. Next, the bisection surface is rotate
80° and the two subdomains are both bisected individually along
second direction.
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used, which indicates the correctness of our parallel imp
mentation.

A. Physical correctness

Let us consider simulations that are initiated with a pu
quadrupole mode, that is, each nodal point in the sys
gets an initial velocityvT5ḣ(x,2y,0), with ḣ the time
derivative ofh, a scale-free parameter denoting the def
mation of space. Since the FE models are always slig
asymmetric, the fivefold degeneracy will be remove
Table II enumerates the average frequencies that are fo
around the analytical eigenfrequencyf 0 ( f 05780.25 Hz)

Figure 9. The hulls of the four partitions obtained for the same sphere
in Fig. 8, but now using theRSBpartitioning method. Although the edge
in this partitioning appear more ragged than those obtained usingORB,
they have only about 3010 faces.RSB optimizes the connectivity within
partitions and minimizes the communication between them.

Table II. The average frequency ^ f & and the approximated error
s( f ) in % for the quadrupole principal mode for various model
resolutions.

n ^ f & s( f ) %

84 7.91e102 8.72e201
124 7.92e102 1.70e100
698 8.01e102 4.87e201

1086 7.97e102 4.44e201
2724 7.90e102 3.23e201
2851 7.96e102 3.62e201
6114 7.86e102 2.25e201
9412 7.85e102 3.01e201

51501 7.82e102 2.85e201
79556 7.82e102 1.56e201
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ure
and the deviation in % of the average value for 10 differ
FE models that consist ofn tetrahedral elements. Thes
results indicate that the dominating frequency for the
models approaches the analytical frequency value for
creasing model resolution~up to 0.16% from the analytica
value for the highest resolution model!.

Figure 10 shows thex̂ displacement of an arbitrar
nodal point at the sphere surface in the same simulation
the highest-resolution model. At first glance, it seems t
the nodal point oscillates with a frequency of about 780 H
with a signal of'70 Hz superimposed. However, Fouri
analysis~data not shown! has pointed out that this signa
mainly results from superposition of the three oscillatio
that are most pronounced, that is, those oscillating at 78
1493, and 1499 Hz, respectively. Possible beats that re
from superposition of the principal quadrupole mod
~around 780 Hz! are not visible in this picture.

We can also observe the system energy during si
lation. It can be derived that the analytical energy (Equad)
for a sphere vibrating in a pure quadrupole mode can
expressed in terms of the radius (R) and the material den
sity ~r! as follows:

Equad5
4

15 prR5ḣ2. ~17!

For the CuAl sphere with a radius of 1.5 m it follows th
Equad547,929.2 Nm. Within the finite-element simulation
it was found that the energy approaches this value very w
for increasing model resolution~data not shown!. For in-
stance, the total energy for the highest-resolution mode
79,556 elements is approximately equal to 47,924.7, wh
approaches the analytical value up to 0.01%.

Within the GRAIL project, a prototype spherical an
tenna of the same CuAl alloy as that above, but with
radius of 0.075 m was fabricated. The following expe
ment was carried out. The prototype is excited by a rad
impulse. Next, the time series of radial vibrations are
corded at several~arbitrarily chosen! places on the antenn
surface. From these time series we have derived the po
spectrum of the antenna vibrations by alternately applyin
fast Fourier transform~FFT! and a nonlinear least-square

Figure 10. The time trajectory in thex̂ direction of an arbitrary nodal
point at the surface of a FE model of 79,556 elements initiated with a p
quadrupole velocity field.
r

,
lt

-

l

r

fitting procedure on the signal residue. Simultaneously
simulation experiment was performed in which the sa
procedure was carried out. That is, a radial displacemen
induced on an arbitrary surface point of a detailed fini
element model consisting of 191,310 tetrahedral eleme
The model is realistic in the sense that it incorporates
suspension rod and the suspension hole. For several p
at the model surface we record the time series, analogou
the real experiment, followed by the same procedure
produce a power spectrum. Table III lists a part of t
frequency spectrum that is obtained for a radial impulse
the prototype antenna, accompanied by the frequen
found from the finite element simulation. The third colum
in Table III corresponds to the ratio of model frequency
experimental frequency. We can observe that the freque
spectrum found in the simulation model is quite close
experimental values. The residue of the experimental sig
and the simulated signal turns out to be less than 0.1%

Table III. Matches between frequencies computed using the explicit
finite element code and experimental values for a 15 cm sphere that is
excited by a purely radial excitation. In both sets of data, mode exci-
tations may have been below the detection threshold, explaining fre-
quencies occurring in a single set only. The analytical frequencies that
are found for a pure sphere with the same material specifications are
„within the same frequency range… 14830 „2,1…, 15,708„2,2…, 21,243
„1,2…, 22,915 „3,1…, 23,407 „3,2…, 30,025 „4,2… Hz, with, for instance,
14,830„2,1… denoting a mode vibrating with 14,830 Hz,n52 of toroi-
dal type „1…, and 15,708„2,2… a mode vibrating with 15708 Hz,n52 of
spheroidal type „2….

Computed
~Hz!

Measured
~Hz!

Computed/
measured

13,650 13,687 0.997
13,740 13,720 1.001

13,797
13,849 13,815 1.002
14,391 14,424 0.998
14,500 14,470 1.002
14,626 14,587 1.003
19,580
19,689 19,690 1.000
19,797 19,812 0.999
21,045
21,171 21,138 1.002
21,207 21,289 0.996
21,316 21,307 1.000

21,343
21,371

21,623 21,647 0.999
21,667

21,750 21,777 0.999
21,840 21,809 1.000
27,716 27,719 1.000

27,739
27,802

27,843 27,863 0.999
27,919
27,954
27,972

27,987 27,991 1.000
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Table IV. The kernel execution times in seconds on the PowerXplorer, for four different mesh sizes and
two different decomposition methods„GORB denoted by suffix G and RSB denoted by suffix R… versus
the partitioning cardinality.

6114-G 6114-R 9412-G 9412-R 51501-G 51501-R 79556-G 79556

1 3.46e201 3.46e201 5.25e201 ••• ••• ••• •••

4 1.47e201 1.45e201 2.05e201 2.02e201 8.89e201 8.85e201 1.31e100 1.30e100
6 1.58e201 ••• 2.02e201 ••• 6.95e201 ••• 1.01e100 •••

8 1.22e201 1.13e201 1.77e201 1.72e201 5.98e201 6.00e201 7.65e201 7.84e201
9 1.52e201 ••• 2.17e201 ••• 5.99e201 ••• 7.80e201 •••

12 1.25e201 ••• 1.84e201 ••• 5.14e201 ••• 6.55e201 •••

16 1.10e201 1.04e201 1.64e201 1.63e201 5.00e201 4.53e201 6.34e201 6.41e201
18 1.02e201 ••• 1.57e201 ••• 4.78e201 ••• 6.71e201 •••

24 7.99e202 ••• 1.31e201 ••• 4.61e201 ••• 6.93e201 •••

27 8.01e202 ••• 9.75e202 ••• 4.72e201 ••• 6.59e201 •••

32 7.00e202 8.58e202 9.07e202 1.21e201 4.42e201 4.59e201 6.11e201 6.36e201
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B. Parallel performance

Next we consider the parallel performance of the simu
tion kernel. We apply GORB~partitioning cardinalities of
2, 4, 6, 8, 9, 12, 16, 18, 24, 27, and 32! and RSB~parti-
tioning cardinalities of 4, 8, 16, and 32! to four different
meshes consisting of 6114, 9412, 51,501, and 79,556
ments, respectively. Table IV displays the single-kernel
ecution times~one time step in the Newmark scheme! that
were obtained for simulations on the PowerXplorer for
varying number of processors. Table V shows similar
sults obtained on the Parsytec CC. The execution times
the best case, that is, energy and external force calcula
~modeling gravitational radiation sources! are left out.

In both Tables IV and V we can observe that the d
ference in execution speed between GORB and RSB is
significant. In fact GORB is often slightly better than RS
for partitioning cardinalities that are powers of 2. This c
be ascribed to the fact that both partitioning methods cre
compact three-dimensional subdomains that do not con
any disconnected parts, and this leads to an ave
surface–volume ratio~or, equivalently, communication–
calculation ratio! of these subdomains that is approximate
the same.

The working memory of the CC processors is mu
larger than that of the PowerXplorer. Therefore on the
IN PHYSICS, VOL. 11, NO. 5, SEP/OCT 1997
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all problems can be executed on a single processor, in c
trast to the PowerXplorer, where single-processor per
mance cannot be determined for high-resolution proble
The CC communication network and CPU are significan
faster than those of the PowerXplorer, which accounts
the fact that the kernel execution time for each problem
shorter on the CC.

For the PowerXplorer the kernel execution times a
not significantly decreased for more than 16 partitio
whereas in case of the CC increasing partitioning cardin
ity consequently leads to faster execution times, at least
high-resolution models. Since we have considered the
performance, we can expect that the absolute performa
of the simulation code in a more realistic simulation~taking
other phenomena into account! will be degraded compared
to the best case and, consequently, result in a relativ
better ‘‘scalability’’ of the code, since the amount of wor
per subdomain increases whereas the communication
tern and size remain unchanged.

IV. ‘‘SAMPLE’’ SIMULATION EXPERIMENTS

Since the main theme of this article is the concept o
complex parallel simulation program, we will not prese
detailed quantitative results with respect to the feasibility
Table V. The kernel execution times in seconds on the CC for four different mesh sizes and two different decomposition methods„GORB denoted
by suffix G and RSB denoted by suffix R… versus the partitioning cardinality.

6114-G 6114-R 9412-G 9412-R 51501-G 51501-R 79556-G 79556-R

1 1.38e201 1.38e201 2.10e201 2.10e201 1.12e100 1.12e100 1.71e100 1.71e100
2 8.68e202 ••• 1.27e201 ••• 6.23e201 ••• 9.20e201 •••

4 5.41e202 5.34e202 7.63e202 7.48e202 3.47e201 3.39e201 4.99e201 4.93e201
6 6.26e202 ••• 7.61e202 ••• 2.39e201 ••• 3.47e201 •••

8 5.49e202 5.40e202 7.94e202 7.84e202 2.23e201 2.26e201 2.92e201 2.93e201
9 4.85e202 ••• 7.14e202 ••• 2.17e201 ••• 2.72e201 •••

12 4.26e202 ••• 5.93e202 ••• 1.83e201 ••• 2.72e201 •••

16 3.74e202 3.99e202 5.02e202 4.88e202 1.83e201 1.87e201 2.64e201 2.37e201
18 3.66e202 ••• 4.84e202 ••• 1.64e201 ••• 2.30e201 •••

24 3.73e202 ••• 4.36e202 ••• 1.17e201 ••• 1.80e201 •••

27 3.75e202 ••• 4.36e202 ••• 1.24e201 ••• 1.79e201 •••

32 3.98e202 4.40e202 4.42e202 4.66e202 1.15e201 1.19e201 1.62e201 1.66e201
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building a gravitational wave detector. Nevertheless,
will illustrate the capabilities of the FE simulation progra
using a few ‘‘sample’’ experiments.

All simulations are carried out with full-fledged an
tenna models of high resolution~approximately 130,000
elements! on the two high-performance distributed-memo
platforms discussed in Sec. III B. The antenna material
sembles CuAl~90–10!. Six resonant mass transducers a
mounted on the antenna in somewhat of an arrangem
that places the transducers at the pentagons on the l
half of a truncated icosahedron; this was also done in
TIGA project.27 Each transducer consists of two mass
The first mass ofM15100 kg is attached to the antenna
a spring that is described by the diagonal stiffness ma
K15diag(2.273109,2.2731010,2.2731010) N/m. The sec-
ond mass ofM250.385 kg is attached to the first mass by
spring with stiffness matrix K25diag(8.703106,8.70
3107,8.703107) N/m.

Figure 11 schematically depicts a transducer tha
attached to the antenna. The principal resonance frequ
f r of the transducer system is equal tof r5780 Hz, which
coincides with the principal quadrupole frequency of t
ideal detector~see Sec. III A!. The two masses are chose
such that the amplitude of vibration detected at the an
na’s surface will be amplified by two orders of magnitud
The addition of the multimode resonant transducers res
in a significant splitting of the resonant frequencies of
system~data not shown!. Although the transducer mode
that we have implemented are rather simplistic~point
masses coupled with ideal springs!, they have already given
quite satisfactory results in several applications~see, for
example, Sec. IV B!.

A. Gravity

Earth’s gravity will induce internal strain in the antenn
The sphere that is suspended is expected to deform du
this strain. We would like to quantify the amount of defo
mation that results due to the presence of gravity. In or
to do this we perform the following simulation. At tim
zero we ‘‘switch on’’ gravity (g59.8 m/s2), and let the
antenna fall down. The suspension rod is fixed at the to
prevent the sphere from dramatically accelerating towa
the Earth’s surface. The velocities in the sphere
quenched by a small damping factor in order to get rid
the kinetic energy in the system. When the system
come to rest, we take a look at the displacement and st
distribution within the sphere. Figure 12 displays a conto

Figure 11. The spherical antenna with one transducer system moun
t
r

y

-

o

plot of the displacement field in theẑ direction within the
antenna, after this deformation process. Figure 13 zoom
on the suspension region, again showing a contour plo
the displacement in theẑ direction. Overall, the sphere
moves about 2 mm downwards, which results from the f
that the suspension rod is elongated by this amount in thẑ
direction. The displacement values within the sphere v
from about 231023 to 331024 m when we traverse the
sphere from the outside towards the suspension rod.
other interesting view is provided by the vertical stra

Figure 12. Contour plot of the displacement in theẑ direction of the
suspendedCuAl sphere due to gravity (g59.8m/s2). The displacement
values of the various contours correspond to (1)20.35, (2)21.96, (3)
22.18; further contours do not differ significantly from the value of co
tour (3); all values are in 1023 m. The minus signs indicate displace
ments towards the Earth’s surface.
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(]uz /]z) within the antenna, which is shown in Fig. 14. A
expected, the suspension rod is subjected to the hig
strain, as is the region where the sphere and rod make
tact.

A shortcoming of our simulation program is that
relies on a linear finite element solver. As a consequen
we are not able to model nonlinear effects, such as so ca
violin modesin the suspension rod, or show how the inte
nal strain of the sphere affects the eigenmodes. Incorpo
ing these into our simulation program is a future challen

Figure 13. The same contour plot as that displayed in Fig. 12, but zoo
in on the suspension region. The displacement values of the various
tours correspond to (1)21.60, (2)21.82, (3)22.16, (4)22.18; further
contours do not differ significantly from the value of contour (4);
values are in 1023 m. The minus signs indicate displacements towar
the Earth’s surface.
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B. Seismic noise

The suspension system of the antenna must attenuate v
tions at the principal resonance frequency to a factor of 3
dB.28 If we let seismic noise enter the system via the su
pension, how does it appear at the transducer readout?
following experiment is carried out. The suspension poin
~connections to the outside world! of the suspension rod are
driven by forced oscillation in theẑ direction. That is, thez
coordinate of the displacement fielduz(t) of each suspen-
sion point oscillates as follows:

-

Figure 14. The vertical strain(]uz /]z) within the antenna. High strain
values (dark areas) are found in the suspension rod, that is carrying
entire sphere, and near the contact region of the sphere and the rod.
strain in the sphere itself is much lower (light colored areas).
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@An cos~2p f nt !1Bn sin~2p f nt !#. ~18!

The amplitudesAn andBn and the frequency spectrumf n
model the seismic noise. In the following experiment t
narrow-banded noise spectrum depicted in Fig. 15 w
used. Theẑ displacement versus time, which is driving th
suspension points according to this spectrum, is displa
in Fig. 16.

Figures 17~inner mass! and 18~outer mass! show the
radial displacement of the two transducer masses startin
t50 in one of the six transducers. The maximum amplitu
in the noise spectrum~Fig. 15! has the same order of mag
nitude as the maximum amplitude of the outer mass. C
sequently, it is of paramount importance that all seism
vibrations in the target frequency range are attenuated
low the expected amplitude of vibrations that are induc
by gravitational radiation in order to assure that we hav
decent signal-to-noise ratio.

Figure 15. Narrow-banded seismic noise around the principal quadrup
frequency.

Figure 16. Theẑ displacement for the suspension point driven by t
noise spectrum of Fig. 15.
t

-

C. Chirps

A so-called gravitational radiation ‘‘chirp’’ will be emitted
~expected theoretically! just before coalescence of a bina
neutron-star system.29 The effects of this phenomenon o
the detector can be modeled by applying a time-vary
‘‘chirp force’’ f(t) on the antenna, which acts along a pu
quadrupole field, according to

fT~ t !}ḧ~x,2y,0!, ~19!

with ḧ the second-order time derivative of the deformati
of space, derived in a Newtonian approximation.

Let us consider a chirp that enters the antenna at t
t520.04 s. Figure 19 models its time varying amplitu
ḧ. The normalization of the chirp signal has an order
magnitude that is representative for an event in the Vi
cluster. Since the antenna responds purely linearly,
shape of the response signal resulting from interaction w
any other identically shaped incoming signal will be e
actly the same.

Figure 17. Time trajectory of the inner transducer mass on one tra
ducer. The system is forced into oscillation by the seismic noise spec
of Fig. 15.

Figure 18. Time trajectory of the outer transducer mass on one tra
ducer. The system is forced into oscillation by the seismic noise spec
of Fig. 15.
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Figure 20 shows the evolution of the energy in t
antenna from the moment that the chirp enters until it
passed. The energy of the chirp gets deposited in the
tenna. After the chirp has passed, the energy stabilizes~at
t50 s!.

The response to this chirp can again be measured.
ure 21 shows the time trajectory in theẍ direction of one
of the outer transducer masses. We observe the
('10219 m) displacements of the transducer masses.

V. CONCLUSIONS

In this article we have sketched the complete path al
which a complex high-performance simulation was dev
oped. We were able to identify the problem definitio
modeling choices, the code design for parallel syste
validation, and experimentation. In order to realize suc
system, it is mandatory that we have knowledge of a v
ety of disciplines, like computer science, numerical ma
ematics, and~computational! physics. It is our feeling tha

Figure 19. The time dependent amplitude h¨ of a chirp initiating at time
t520.04s. The chirp ends at t50.

Figure 20. The time evolution of the total energy deposited by the chir
Fig. 19. After t50 the energy stabilizes. Note that we have used a
scale on the energy axis.
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the whole process that is described above is typical for
development of new simulation systems that utilize hig
performance methodology and therefore can serve as
example ofcomputational science, which inherently is an
interdisciplinary research field. Mixing the best of seve
worlds allowed us to realize a full-fledged simulation sy
tem that meets our purposes.

In the future we will focus on embedding the simul
tion program within the experimentation cycle of GRAIL
referred to as ‘‘simulation in the loop’’ in the Introduction
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