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Abstract .  

The implementation of implicit Runge-Kutta methods requires the solution of large 
systems of non-linear equations. Normally these equations are solved by a modified 
Newton process, which can be very expensive for problems of high dimension. The 
recently proposed triangularly implicit iteration methods for ODE-IVP solvers [5] sub- 
stitute the Runge-Kutta matrix A in the Newton process for a triangular matrix T 
that approximates A, hereby making the method suitable for parallel implementation. 
The matrix T is constructed according to a simple procedure, such that the stiff error 
components in the numerical solution are strongly damped. In this paper we prove for 
a large class of Runge-Kutta methods that this procedure can be carried out and that 
the diagonal entries of T are positive. This means that the linear systems that are to 
be solved have a non-singular matrix. 

AMS subject classification: Primary: 65L06, Secondary: 15A23. 
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1 I n t r o d u c t i o n  a n d  motivat ion.  

For solving the stiff initial value problem 

~'(t) = l ( t ,  y ( t ) ) ,  y(to) = y0, y, f e R d, to ___ t < t~, 

one of the most  powerful methods  is an implicit R u n g e - K u t t a  (RK) method.  In 
such a method  we have to solve every t ime step a system of non-linear equations 
of the form 

(1.1) R(Yn) = 0; R(Y~) := Y~ - (e | I)y~_l - h~(A | I )F(Yn) ,  

where A denotes the s x s matr ix  containing the parameters  of the s-stage RK 
method,  Y,~-I the approximat ion to y(tn-1),  e is the s-dimensional vector with 
unit  entries, I is the d • d identi ty matrix,  hn is the step size tn - tn-1 and | 
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denotes the Kronecker product. The s components Yn,i of the sd-dimensional 
solution vector Yn represent s numerical approximations to the s exact solution 
vectors y(tn-1 + cihn); here, c denotes the abscissa vector and i ranges from 1 to 
s. Furthermore, for any vector X = (Xi), F ( X )  contains the derivative values 
( f (Xi ) ) .  It  is assumed that  the components of c are distinct and positive. 

Once we have solved (1.1), we obtain the step point value Yn "~ y(tn) by the 
formula 

Yn : Yn-1 + hn( bT @ I)F(Yn),  

where b is a vector of dimension s containing method parameters.  
To solve (1.1), in general one uses a Newton-type iteration scheme of the form 

(1.2) (I - B | hngn)AY (j+l) = -R(Y(J) ) ;  y ( j+ l )  = y(j)  + Ay(J+') ,  

where Jn is an approximation to the Jacobian of the right hand side function f 

at t~ - l ,  ii(0) is the initial iterate to be provided by some predictor formula and 
B is an s x s matr ix  that  defines the type of Newton iteration. To get insight 
in the convergence behaviour of (1.2), we apply the scheme to the scalar test 

equation y~ = ~y. Defining the iteration error e~ ) by Y(J) - Yn, we see from 
(1.1) and (1.2) that  these errors are amplified by the matrix Z defined by 

Z(z) = z(I  - zB) -~ (A  - B); z := ,~hn. 

We introduce the stiff and non-stiff amplification matrices of scheme (1.2), no- 
tation Zoo(B) and Zo(B), respectively, by 

Z ~ ( B )  := lim Z(z) = I -  B - 1 A  

and 

Zo(B) := lim Z(z) _ A -  B. 
tzl- 0 Izl 

Choosing B = A would lead to the modified Newton process, for which Z(z) = 

0 for all z. However, the computation of Y(J) now requires the solution of a 
linear system of dimension sd. For high-dimensional problems this requires a lot 
of computational effort. Several a t tempts  have been made to reduce these costs 
by selecting matrices B different from A. 

In [1], Cooper and Butcher propose the choice B -- P,  where P is a matrix 
that  has a one-point spectrum. By performing a similarity transformation to 
(1.2) they arrive at the scheme 

PQ 

(1.3) (I - L | hnJn)AX(J+l) 
y(j+ l ) 

= QL, 

= _(Q-1 |  

= y(J) + (Q | I )AX~  j+l), 

where L and Q are lower triangular and orthogonal matrices, respectively, that 
define the Schur decomposition of P.  Since the diagonal entries of L are equal, 
implementing (1.3) requires only one LU-decomposition of dimension d. 
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In [4], the authors select B = D, where D is a diagonal matrix. Iteration 
scheme (1.2) is now suitable for implementation on an s processor machine, 

since the s components of Y(J) can be computed independently. The matrix D 
is constructed such that  p ( Z ~ ( D ) )  -- 0, where p(.) denotes the spectral radius 
function. This method was called P D I R K ,  Parallel Diagonal-implicit I terated 
Runge-Kut ta .  

Recently, in [5], a mixture of the two strategies described above was presented 
and given the name P T I R K ,  Parallel Triangularly-implicit I terated Runge-  
Kutta.  Here, the matrix B was identified with a lower triangular matrix T 
such that  A = TU is the Crout decomposition of A, i.e., U is unit upper trian- 
gular. One easily verifies that  for this T the stiff amplification matrix Z ~  (T) 
is strictly upper triangular. Throughout this paper, T will always denote this 
special lower triangular matrix. This choice of B yields, just like in P D I R K ,  
a stiff amplification matrix that  has a zero spectral radius. However, the new 
strategy leads to an amplification matrix Z(z)  that  has a much smaller depar- 
ture from normality than the amplification matrix in P D I R K .  Consequently, the 
amplification after several iterations, i.e., the norm of the powers of Z(z) ,  is now 
considerably smaller (see [5, Table 3.1]). Suppose that  all diagonal entries of T 
are distinct and that  the eigenvalue decomposition of T is given by T Q = Q D, 
where D is diagonal and Q non-singular. Applying a similarity transformation 
in an analogous way as in [1], we arrive at the scheme 

TQ = QD, 

(1.4) ( I -  n | h n J n ) A X  (j+U = _ (Q-1  | i )R (y ( j ) ) ,  
y(j+l)  = y(j)  + (Q | 

It is clear that  the s components of Y,!J) can be computed in parallel. The 
only additional costs of (1.4) with respect to P D I R K  are the appliance of the 
transformations (Q | I)  and (Q-1 | I) .  

In order to ensure the non-singularity of the matrix (I - D | hnJn) in (1.4), 
the positiveness of the diagonal entries of D is required. In [5] the positiveness 
of D was proved for s _< 5 and conjectured for s > 5. The main scope of this 
paper is to prove this conjecture. This will be done in Section 3, using operator 
theory. 

The outline of the rest of the paper is as follows. Section 2 gives some prelim- 
inaries to the conjecture. In Section 4 we prove for s -- 2, that  the choice B = T 
made in P T I R K  is in some sense optimal. 

2 Pre l iminar ies .  

The s • s matrix A belonging to the RK collocation method with abscissa 
vector c has the form [3, p.82], 

A = C V R V  -1, 

where C = diag(cl ,  c2 , . . . ,  cs}, R = diag(1, 1 / 2 , . . . ,  i / s )  and V is the Vander- 
monde matrix generated by c, i.e., 
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s -1  / 
1 ci . . .  Cl 

V ~ �9 . . . 
8--1 1 cs . �9 �9 cs 

Here, the abscissae ci have to be distinct. In the sequel the abscissae are also 
supposed to be positive. Without loss of generality, we assume that the RK 
method is written such that ci < c2 < . . .  < c8. Let A = T U  denote the Crout 
decomposition of A. The diagonal entries tkk of T satisfy the formula [5] 

IAkl 
(2.1) t k k -  iAk_ l l ,  

where IAjl denotes the determinant of the j t h  principal sub-matrix of A and 
IA01 := 1. From (2.1) we see that the existence of the Crout decomposition 
immediately follows from the positiveness of tkk. 

In [5] the authors proved the positiveness of tkk,  k E {1, 2 , . . . ,  s}, for s _ 5 in 
the following way: first they showed that IA1] and IAsI are positive (for general 
s); then the positiveness of the remaining I A21,.. . ,  I A~_ll was demonstrated by 
computing them explicitly; this approach does not lead to a proof for general s. 

Another idea is to investigate whether the matrix V R V  - i  is positive definite. 
By using the result that every positive definite matrix has an LU-decomposition 
with positive diagonal entries [2, p. 140], the proof of the conjecture would then 
easily follow, realizing that T = CL,  where L is the lower triangular matrix 
in the Crout decomposition of V R V  - i .  However, the following example shows 
that V R V  -1 is not always positive definite: If s = 3, c = (1/3, 1/2, 2/3) T and 
x = ( 1 , - 3 , - 7 )  T, then x T v R V - l x  ~- -11.  

In the following section the proof of the conjecture will be given by considering 
V R V  - i  as the matrix of an operator on the space of polynomials of degree less 
than s with respect to a basis of Lagrange polynomials. 

3 P r o o f  o f  t h e  c o n j e c t u r e .  

THEOREM 3.1. Let V be the s x s Vandermonde matr ix  generated by cl, c2,. �9 
cs, where 0 < Cl < c2 < " "  < cs, let R be the diagonal matr ix  diag (1, 1 /2 , . . . ,  
1/s ) .  There exist a lower triangular matr ix  L,  and unit  upper triangular matr ix  
U, such that L U  -- V R V  -1.  The diagonal entries of  L are positive. 

Notice that from this theorem it immediately follows that for any s x s RK 
collocation matrix A with positive distinct abscissae, there exists a lower trian- 
gular matrix T with positive diagonal entries such that Z ~ ( T )  is strictly upper 
triangular, by setting T = CL.  

PROOF. Let P~ be the s-dimensional linear space of polynomials of degree 
less than s with real coefficients, and C the canonical basis for P~, i.e., 

C =  { 1 , X , . . . , X S - 1 } .  
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Define the operator H : P8 --+ P~ by H ( p )  = q where q is defined by 

q(x)  -- x p( t )  dr. 

We use the notation m a t (H)c  for the matrix of the operator H with respect to 
the basis C. I t  can be easily verified that  

m a t (H)c  = R. 

We denote the kth Lagrange polynomial with respect to cl, c2 , . . . ,  c8 by Ik: 

Zk(x) = I-[  L -  ; k e {1, 2 , . . . ,  s}. 
is~k ck  -- Ci 

Notice that  lk is of degree s - 1 and thus an element of Ps.  The Lagrange 
polynomials define also a basis for P~, which will be denoted by Z:: 

= { / 1 , / 2 , . . . , I s } .  

We write Cc for the matr ix  that  expresses the canonical basis in the Lagrange 
basis. Since for every m E {0, 1 , . . . ,  s - 1 }  the equality 

X m -~ C~nll  q- C~nl2 -4- . . .  -4- csmls 

should hold, it can be seen that  Cc = V. Consequently, the matrix of the 
operator H with respect to the basis/~ is given by 

m a t ( H ) c  = C c ' m a t ( H ) c ' C c  -1 = V R V  -1 =: B. 

If ( H ( l k ) )  c denotes the image under H of lk with respect to the basis L, then 

( H ( I k ) ) c  = Bek  = " , 

Znk 

w h e r e  ek  is the kth canonical basis vector of R s and (~ij) = B. We claim that  
~11 > 0. To see this, notice that  H ( l l )  is a polynomial with coefficient ~11 in 
the direction of 11. Since lk(c l )  = 0 for k > 1, it is clear that  

( g ( l l ) ) ( C l )  : / ~ 1 1 .  

With respect to the value of ll in zero, we observe that  11(cl) = 1, and that  all 
its roots are to the right of cl; therefore 11 is positive on [0, cl], which implies 

1 focl 11 (t) dt > O. ( g ( l l ) ) ( e l )  = C l  

Consequently, /311 > O. 
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I t  is now possible to define vik : =  - - ~ l k / ~ i l ;  k E { 2 , . . . , 8 } .  From this 
definition it follows tha t ,  for k > 1, 

(H(Ik  + v i k l i ) ) s  = B ( e k  -~- V l ke l )  = B 

( Vik 
0 

0 
1 
0 

0 

/~ B(i) 
-~_ 2k 

nk 

__~(i)/~(1); k E {3, . . ,  8}, such Assuming 13(~ ) r 0, we are able to define v2k :---- 2k / 22 
tha t  

Vi k 

V2k 
i 0 

1 
0 

Continuing this procedure,  we finally arrive at  

/~ 0 
f~(2) 

~-- ~3k . 

S 2 ) nk 

where 
re(i-i) 
~'ik for i < k, 

Vik = B(i- i )  
r~ii 

1 for i = k ,  

(defining/3} ~ -- ~ij) and uk and rk are vectors defined by 

U k ~-- 

y l  k 

V k - i , k  
1 
0 

0 

and rk = 

0 / 
0 
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~(k-~) 
If we can show that ~'kk > 0 for k E {2, 3 , . . . ,  s}, we have demonstrated that 
the procedure outlined above can be carried out. By observing that uk and rk 
are columns of matrices U and L, respectively, for which the relation BU = L 
holds, we then have proved Theorem 3.1 using U for ~-1 .  

Uk(x) / 

= �9 I ! ! I .  
X 

C1 . . .  O k -  1 Ck C k + l  . . .  Cs 

/ 

. . . . . . .  ~ ~ '~ '  . . . .  , ~  

Uk has Uk(Ck) Uk has 
k - 1  zeros -- 1 s - k  zeros 

Figure 3.1: Sketch of Uk(x). 

The vectors uk and rk can be considered as polynomials in P8 with respect to 
the basis/2. Moreover, rk is the image of Uk under the operator H: 

H(u ) = rk. 

o(k-1) 
Since rk(ck) = ~'kk , we have to prove that rk(ck) > O. We define the polyno- 
mial Uk of degree s + 1 by 

Uk(x) =  k(t) at. 

Notice that Uk(O) = 0 and, for x > 0, the sign of rk equals the sign of Uk 
(the latter holds since Uk = xrk). Since lk(ci) = 0 for i < k and rk has only 
components in the direction of lj with j _> k, we see that rk(ci) = 0 for i < k 
and consequently 

Uk(ci )=O for i < k. 

This means that uk (being the derivative of Uk) has k - 1  zeros in the interval 
(0, ck-1). All components of uk in the direction of the last s - k  Lagrange poly: 
nomials are zero. Consequently, uk(ci) = 0 for i > k, so that Uk has s - k  zeros 
in the interval [ck+l, ck]. 
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We now consider 2 cases (see also Figure 3.1): 

(3.1) uk(ck-1) > O, 

(3.2) u,~(ck_,) < o. 

Remark  tha t ,  since all ci are distinct,  Uk has a single zero in ck-1,  so tha t  
the s i tuat ion uk(ck-1) = 0 does not arise. Suppose tha t  (3.2) holds. Since 
uk(ck) = 1, the polynomial  uk should have a zero in the interval (ck-],Ck). In 
tha t  case, uk has (k - 1) + (s - k) + 1 = s zeros. However, the degree of Uk is 
only s - - l ,  proving t ha t  only s i tuat ion (3.1) can occur,  and uk > 0 on (ck- ] ,  ck). 

From Uk(ck-1) = 0, it now follows tha t  Uk(ck) > 0. Since rk has the same 
sign as Uk, we have proved the theorem. [] 

4 Is PTIRK optimal? 

In this section we invest igate the opt imal i ty  of the ma t r ix  T in P T I R K .  Since 
the number  of pa ramete r s  becomes too large to handle conveniently for s > 2, 
we restrict  ourselves here to methods  with 2 implicit  stages, i.e., s = 2. 

In the class of lower t r iangular  matrices,  T is op t imal  in the sense tha t  it leads 
to the smallest  stiff amplif ication ma t r ix  measured  in the infinity norm: 

THEOREM 4.1. If L is a 2 x 2 lower triangular matrix, then 

PROOF. Write L -1 = (lij) with I]2 = 0. Then  

Z~(L)  = 

Define for x > 0: 

1+11,1c1( -2c2+cl )  /1,1Cl 2 ) 

2 (c2 - c l )  2 (c2 - c l )  �9 
�9 * 

g(X)  = 1 -~- C1 ( - -2C2  -~ c l )  X n t- C12 

2 ( c 2  - c l )  2 ( c 2  - c l )  x .  

Then  g(x) > g(Xmin) -- cl/(2c2 - cl), where 

X m i n  = 2(C2 - -  Cl)/(C1(2C2 -- e l ) ) .  

Since IIZo~(T)II~ = g(Xmin) , it follows tha t  I [Z~(L) [ I~  >_ I]Z~(T)Hoo. [] 

For two well-known stiffly accurate  RK methods  with 2 implicit  stages, it 
is possible to show tha t  in the class of lower t r iangular  matr ices  tha t  lead to 
a ' smal l '  stiff amplif icat ion mat r ix ,  T is op t imal  in the sense tha t  it has the 
smallest  non-stiff amplif ication mat r ix ,  again measured  in the infinity norm: 

THEOREM 4.2. If L is a 2 x 2 lower triangular matrix with the property that 
p(Z~(L))  = O, then, for the 2-stage Radau IIA, and the 3-stage Lobatto IIIA 
method, 

HZo(n)l[~ _> [IZo(Z)[[~. 
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PROOF. Write  A = (aij) and L = (lij) with /12 ---- 0. Then  IfZo(L)ll~ = 
max(m1,  m2), where m l  and m2 are given by 

m l  = Jan - / n }  + lax~l and m2 = la21 -/211 -t- la12 -/221. 

Let J be the interval such t ha t  if/11 ~ J ,  then  m l  > IIZ0(T)H~. Notice tha t  
J only depends  on c. From a(Z~(L) )  = 0 it follows tha t  t r a c e ( Z ~ ( L ) )  = 
d e t ( Z ~ ( L ) )  = 0. Using these two equations,  it is possible to express 121 and/22,  
and thus m2, in I n .  We have to prove tha t  for I n  E J ,  m2 _> I lz0(r) l l~.  We 
t rea t  the  two me thods  separately.  

Radau IIA. 

c = (1/3,  1) T, IIZ0(T)llo~ = 3/20, J = [7/20, 29/60], and 

m 2 ( / n )  = ~ + 
-2411,1 q- 5 + 18112,1 

6/1,1 

1 
-t- 6/1,1 " 

It can be verified tha t  min  ( m 2 ( / n ) )  = m 2 ( t n )  = 3/20. 
111EJ 

Lobatto IIIA. 

c = (0, 1/2, 1) T, HZ0(T)II~ = 1/12, J = [7/24, 3/81, and 

m 2 ( l 1 1 )  = 
2 - 1 2 / 1 , 1 +  2 + 1212,1 

311,1 

1 1 

+ 6 1211,1 " 

The  reader  is invited to check tha t  min(m2(In))  -- m 2 ( t n )  = 1/12. 
l l i e  J "  " ""  
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