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Abstract.

The implementation of implicit Runge-Kutta methods requires the solution of large
systems of non-linear equations. Normally these equations are solved by a modified
Newton process, which can be very expensive for problems of high dimension. The
recently proposed triangularly implicit iteration methods for ODE-IVP solvers [5] sub-
stitute the Runge-Kutta matrix A in the Newton process for a triangular matrix T
that approximates A, hereby making the method suitable for parallel implementation.
The matrix T is constructed according to a simple procedure, such that the stiff error
components in the numerical solution are strongly damped. In this paper we prove for
a large class of Runge-Kutta methods that this procedure can be carried out and that
the diagonal entries of T are positive. This means that the linear systems that are to
be solved have a non-singular matrix.

AMS subject classification: Primary: 65L06, Secondary: 15A23.
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1 Introduction and motivation.

For solving the stiff initial value problem

v'(t) = f(t,y(t), ylto)=wo, u,fER? ty<t<it,

one of the most powerful methods is an implicit Runge-Kutta (RK) method. In
such a method we have to solve every time step a system of non-linear equations
of the form

(11)  R(Y,)=0; R(Y,):=Y, - (e®yn_1 — hn(A® I)F(Y,),

where A denotes the s x s matrix containing the parameters of the s-stage RK
method, y,—_; the approximation to y(t,—1), e is the s-dimensional vector with
unit entries, I is the d x d identity matrix, h,, is the step size t, — ¢,,.; and ®
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denotes the Kronecker product. The s components Y, ; of the sd-dimensional
solution vector Y;, represent s numerical approximations to the s exact solution
vectors y(tn,—_1 + ¢ihy); here, ¢ denotes the abscissa vector and ¢ ranges from 1 to
s. Furthermore, for any vector X = (X;), F(X) contains the derivative values
(f(X3)). It is assumed that the components of ¢ are distinct and positive.

Once we have solved (1.1), we obtain the step point value y,, = y(t,) by the
formula

Yn = Yn-1+ hn(bT ® I)F(Yn),

where b is a vector of dimension s containing method parameters.
To solve (1.1}, in general one uses a Newton-type iteration scheme of the form

(12) (I - B®h,J,)AY,UHY = _R(Y,0)); Yy, U+D =y ) 4 AY,U+D),

where J,, is an approximation to the Jacobian of the right hand side function f
at t,_1, ,50) is the initial iterate to be provided by some predictor formula and
B is an s x s matrix that defines the type of Newton iteration. To get insight
in the convergence behaviour of (1.2), we apply the scheme to the scalar test
equation 3’ = Ay. Defining the iteration error e%j ) by Yn(j ) Y., we see from

(1.1) and (1.2) that these errors are amplified by the matrix Z defined by
Z(z) = 2(I - 2B)"Y(A— B); z:= Ahy,.

We introduce the stiff and non-stiff amplification matrices of scheme (1.2), no-
tation Zo(B) and Zy(B), respectively, by

Zw(B):= lim Z(z)=1-B7'A

|z| 200
and p
Zo(B) = 1im 28 _4_p.
lzl-0 |2

Choosing B = A would lead to the modified Newton process, for which Z(z) =

0 for all z. However, the computation of Y,Ej ) now requires the solution of a
linear system of dimension sd. For high-dimensional problems this requires a lot
of computational effort. Several attempts have been made to reduce these costs
by selecting matrices B different from A.

In [1}, Cooper and Butcher propose the choice B = P, where P is a matrix
that has a one-point spectrum. By performing a similarity transformation to
(1.2) they arrive at the scheme

PQ = QIL,
(1.3) (I-L@h, J)AXTTY = —(Q '@ DR(Y,Y),
YTSHU = yéj) +(Q@® I)AX,(lJ'“),

where L and () are lower triangular and orthogonal matrices, respectively, that
define the Schur decomposition of P. Since the diagonal entries of L are equal,
implementing (1.3) requires only one LU-decomposition of dimension d.
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In [4], the authors select B = D, where D is a diagonal matrix. Iteration
scheme (1.2) is now suitable for implementation on an s processor machine,
since the s components of Y,ﬁj ) can be computed independently. The matrix D
is constructed such that p(Z (D)) = 0, where p(-) denotes the spectral radius
function. This method was called PDIRK, Parallel Diagonal-implicit Iterated
Runge-Kutta.

Recently, in [5], a mixture of the two strategies described above was presented
and given the name PTIRK, Parallel Triangularly-implicit Iterated Runge—
Kutta. Here, the matrix B was identified with a lower triangular matrix T
such that A = TU is the Crout decomposition of A, i.e., U is unit upper trian-
gular. One easily verifies that for this T the stiff amplification matrix Z..(T)
is strictly upper triangular. Throughout this paper, T will always denote this
special lower triangular matrix. This choice of B yields, just like in PDIRK,
a stiff amplification matrix that has a zero spectral radius. However, the new
strategy leads to an amplification matrix Z(z) that has a much smaller depar-
ture from normality than the amplification matrix in PDIRK. Consequently, the
amplification after several iterations, i.e., the norm of the powers of Z(z), is now
considerably smaller (see [5, Table 3.1]). Suppose that all diagonal entries of T
are distinct and that the eigenvalue decomposition of T is given by T @ = Q D,
where D is diagonal and @ non-singular. Applying a similarity transformation
in an analogous way as in [1], we arrive at the scheme

TQ = QD,
(1.4) (I-D® haJ,)AXUTY = —(Q '@ )R(Y,Y),
YOt = v 4 (QeNAXYHY.

It is clear that the s components of Y75] ) can be computed in parallel. The
only additional costs of (1.4) with respect to PDIRK are the appliance of the
transformations (Q ® I) and (@' ® I).

In order to ensure the non-singularity of the matrix (I — D ® h,J,) in (1.4),
the positiveness of the diagonal entries of D is required. In [5] the positiveness
of D was proved for s < 5 and conjectured for s > 5. The main scope of this
paper is to prove this conjecture. This will be done in Section 3, using operator
theory.

The outline of the rest of the paper is as follows. Section 2 gives some prelim-
inaries to the conjecture. In Section 4 we prove for s = 2, that the choice B=T
made in PTIRK is in some sense optimal.

2 Preliminaries.

The s x s matrix A belonging to the RK collocation method with abscissa
vector ¢ has the form [3, p.82],

A=CVRV™Y

where C = diag{ci,ca,...,cs}, R = diag{1,1/2,...,1/s} and V is the Vander-
monde matrix generated by c, i.e.,
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s—1
1 C1 Cy
V=
1 ¢ ... ¢t

Here, the abscissae c; have to be distinct. In the sequel the abscissae are also
supposed to be positive. Without loss of generality, we assume that the RK
method is written such that ¢; < ¢3 < ... < c¢s. Let A = TU denote the Crout
decomposition of A. The diagonal entries ¢ of T satisfy the formula [5]

(2.1) thek = ———

where |A;| denotes the determinant of the jth principal sub-matrix of A and
|Ag| := 1. From (2.1) we see that the existence of the Crout decomposition
immediately follows from the positiveness of txy.

In [5] the authors proved the positiveness of ¢, k € {1,2,...,s}, for s <5in
the following way: first they showed that |A;] and |A;| are positive (for general
s); then the positiveness of the remaining |As|, ..., |4;-1| was demonstrated by
computing them explicitly; this approach does not lead to a proof for general s.

Another idea is to investigate whether the matrix VRV ~! is positive definite.
By using the result that every positive definite matrix has an LU-decomposition
with positive diagonal entries {2, p. 140], the proof of the conjecture would then
easily follow, realizing that T = CL, where L is the lower triangular matrix
in the Crout decomposition of VRV L. However, the following example shows
that VRV~ is not always positive definite: If s = 3, ¢ = (1/3,1/2,2/3)T and
= (1,-3,-7)7, then z7VRV 1z = —11.

In the following section the proof of the conjecture will be given by considering
VRV ! as the matrix of an operator on the space of polynomials of degree less
than s with respect to a basis of Lagrange polynomials.

3 Proof of the conjecture.

THEOREM 3.1. Let V be the s x s Vandermonde matriz generated by cy,ca,. . .,
cs, where 0 < ¢ < cg < -+ < ¢, let R be the diagonal matriz diag (1,1/2,...,
1/s). There erist a lower triangular matriz L, and unit upper triangular matriz
U, such that LU = VRV 1. The diagonal entries of L are positive.

Notice that from this theorem it immediately follows that for any s x s RK
collocation matrix A with positive distinct abscissae, there exists a lower trian-
gular matrix T with positive diagonal entries such that Z.,(7T') is strictly upper
triangular, by setting T'= CL.

PrOOF. Let P, be the s-dimensional linear space of polynomials of degree
less than s with real coefficients, and C the canonical basis for Py, i.e.,

C={l,z,...,2°'}.
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Define the operator H : P, = P, by H(p) = q where q is defined by

We use the notation mat(H )¢ for the matrix of the operator H with respect to
the basis C. It can be easily verified that

mat(H)c = R.

We denote the kth Lagrange polynomial with respect to ¢y, cp,...,c; by Ii:

z—c
lk(x)=H ~: ke {l,2,...,s}.
ik Gk T €

Notice that I; is of degree s — 1 and thus an element of P,. The Lagrange
polynomials define also a basis for P, which will be denoted by L:

£={l1la...,L}.

We write C. for the matrix that expresses the canonical basis in the Lagrange
basis. Since for every m € {0,1,...,s—1} the equality

" =ciMli+etlo+ ...+ e

should hold, it can be seen that C, = V. Consequently, the matrix of the
operator H with respect to the basis £ is given by

mat(H), = Cc-mat(H)c-C.' = VRV~ = B.
If (H(l)) . denotes the image under H of I; with respect to the basis £, then
Bk
(H(lk))[: = Bey, = R
ﬁnk
where ey, is the kth canonical basis vector of R® and (8;;) = B. We claim that

B11 > 0. To see this, notice that H(l,) is a polynomial with coefficient 3,1 in
the direction of ;. Since lx(c;) = 0 for k > 1, it is clear that

(H(ll))(cl) = Bi1.

With respect to the value of I; in zero, we observe that [1(c;) = 1, and that all
its roots are to the right of ¢;; therefore ; is positive on [0, ¢;], which implies

H(l) () = — / L) dt > .

1

Consequently, 517 > 0.
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It is now possible to define vix := —fB1/Bu; k € {2,...

definition it follows that, for k£ > 1,

/ Vik
0
0
(H(lk + Ulkll))[: = B(ek +uviker) = B 1 =
0
0
Assuming Bg) # 0, we are able to define vy := — é}c) / ﬂéé);
that
Vik \
U2k
0
(H(lk + vogla +U1kll))L =B 0 =
1
0
0

Continuing this procedure, we finally arrive at
k
(H (Z vikli)> = Buy, = 1y,
i=1 c

Vip = _ﬂ(i—l)
1 for i=k,

where

(defining ﬁ,-(]q ) = Bi;) and uy and 7y are vectors defined by

Vik 0
Vk—1,k 0
Uy = 1 and 7 = (k-1)
0 ﬂkk
: (k—1)
0 Bnk

ke {3,

.2
o

,8}-

351

From this

...,8}, such
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If we can show that ﬂ(k U>o0forke {2,3,...,s}, we have demonstrated that
the procedure outlined above can be carried out. By observing that u and ry
are columns of matrices U and L, respectively, for which the relation BU =L
holds, we then have proved Theorem 3.1 using U for U-t.

Uk(z) 3 /
* * T
0 C1 eer Ck—1 Ck Ck+1 .-+ Cg
¢ - -----. > I - ---- >
ug has ug(ck) ug has
k—1 zeros =1 s—k zeros

Figure 3.1: Sketch of Ug(z).

The vectors uj and rx can be considered as polynomials in P, with respect to
the basis £. Moreover, 7 is the image of u; under the operator H:

H(uk) =Tk.

Since ri(ck) = ﬁ(k l), we have to prove that ri(cx) > 0. We define the polyno-
mial Uy of degree s + 1 by

Ui(z) = /O " () dt.

Notice that Ug(0) = 0 and, for z > 0, the sign of 74 equals the sign of Uy
(the latter holds since Uy = zry). Since lx(c;) = 0 for ¢ < k and r4 has only
components in the direction of {; with j > k, we see that ry(c;) = 0 fori < k
and consequently

Uk(c;) =0 for i<k

This means that uy (being the derivative of Uy) has k—1 zeros in the interval
{0, ck—1). All components of u in the direction of the last s—k Lagrange poly-
nomials are zero. Consequently, ux(c;) = 0 for ¢ > k, so that uy has s—k zeros
in the interval [cg+1, ck-
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We now consider 2 cases (see also Figure 3.1):

(3.1) urlce1) > 0,
(3.2) ug(ek-1) < 0.

Remark that, since all ¢; are distinct, Uy has a single zero in cg_;, so that
the situation ug(ck—1) = 0 does not arise. Suppose that (3.2) holds. Since
uk(ck) = 1, the polynomial uy should have a zero in the interval (cx—1,ck). In
that case, uy has (k —~ 1) + (s — k) + 1 = s zeros. However, the degree of u; is
only s—1, proving that only situation (3.1} can occur, and u; > 0 on (cg—1, k).

From Ug(cg—1) = 0, it now follows that Ug(cy) > 0. Since 74 has the same
sign as Uy, we have proved the theorem. O

4 Is PTIRK optimal?

In this section we investigate the optimality of the matrix T in PTIRK. Since
the number of parameters becomes too large to handle conveniently for s > 2,
we restrict ourselves here to methods with 2 implicit stages, i.e., s = 2.

In the class of lower triangular matrices, T is optimal in the sense that it leads
to the smallest stiff amplification matrix measured in the infinity norm:

THEOREM 4.1. If L is a 2 x 2 lower triangular matriz, then

1Zoo (L)oo 2 (| Zoo(T)loo-

PROOF. Write L~1 = (l”) with Iy2 = 0. Then

1+ liaci(—2¢c2+ ) lic1?
Zo(L) = 2(ca — 1) 2(co— 1)
* *
Define for z > 0:
) 2
o(z) = 1_‘_cl( co + ¢1) a

2{(ca — €1) o 2{ca — 1) !
Then g(z) > g(Zmin) = ¢1/(2¢2 — ¢1), where
Tmin = 2(c2 — c1)/(c1(2¢2 — e1)).

Since || Zoo (T)|loo = g(@min), it follows that || Zeo (L)]loe = | Zoc (T oo O

For two well-known stiffly accurate RK methods with 2 implicit stages, it
is possible to show that in the class of lower triangular matrices that lead to
a ‘small’ stiff amplification matrix, T is optimal in the sense that it has the
smallest non-stiff amplification matrix, again measured in the infinity norm:

THEOREM 4.2. If L is a 2 x 2 lower triangular matriz with the property that
p(Z (L)) = 0, then, for the 2-stage Radau IIA, and the 3-stage Lobatto IIIA
method,

1Zo(L)lloo 2 [1Z0(T) | oo-
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PROOF. Write A = (a,-j) and L = (lij) with l1o = 0. Then “Z(](L)”oo =
max(m,, ma), where m; and m, are given by

my = |ay; — lip| + |ar2] and mo = |agy — loy| + |a1s — 2o}

Let J be the interval such that if [;; ¢ J, then m; > ||Zy(T)||o. Notice that
J only depends on c. From o(Z, (L)) = 0 it follows that trace(Z..(L)) =
det(Z (L)) = 0. Using these two equations, it is possible to express l; and lps,
and thus mo, in I;;. We have to prove that for l;; € J, ma > {|Zo(T)||oo.- We
treat the two methods separately.

Radau IIA.
c=(1/3,1)T, | Zo(T)|leo = 3/20, J = [7/20,29/60], and

3 —24lL,+5+181F,| |1
i) = |2 i > - - .
ma(lu) =7 + 6111 6111
It can be verified that 1mi€nJ(m2(l“)) = mga(t1;) = 3/20.
11
Lobatto I1IA.
¢=(0,1/2,1)7, [|Zo(T)lloc = 1/12, J = [7/24,3/8), and
2 120 +2+1202, 1 1
1) = |2 ' 24 ) .
ma(ln) = |3+ 301, ‘6 1211,
The reader is invited to check that lmier}] (m2(li1)) = ma(t1y) = 1/12. a
11
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