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Repolarisation and refractoriness during early
ischaemia in humans

P M I Sutton, P Taggart, T Opthof, R Coronel, R Trimlett, W Pugsley, P Kallis

Abstract
Objectives—To determine whether eVective refractory period (ERP) shortens or lengthens in
the first minutes of ischaemia in humans, and the relation between ERP changes and action
potential duration (APD).
Methods—ERP and monophasic action potential duration (MAPD) were measured from a sin-
gle left ventricular epicardial site in 26 patients undergoing coronary artery surgery. Cardiopul-
monary bypass was instituted and normothermia maintained. Refractory period was determined
by the extrastimulus technique at a basic cycle length of 500 ms, at four times (group 1, 15
patients) or two times (group 2, 11 patients) the preischaemic diastolic threshold. A three minute
period of ischaemia was instituted by aortic cross clamping between the input from the pump
oxygenator and the heart.
Results—After three minutes of ischaemia, mean (SEM) ERP lengthened from 232 (5) ms
(control) to 246 (7) ms (p < 0.005) in group 1, and from 256 (10) ms (control) to 348 (25) ms
(p < 0.005) in group 2. In the same time MAPD shortened from 256 (5) ms (control) to 189
(9) ms (p < 0.001) with no diVerence between groups. Thus postrepolarisation refractoriness
developed during ischaemia. Before ischaemia, ERP showed a good correlation with APD
(R2 = 0.64) but by one minute of ischaemia the correlation was poor (R2 = 0.29).
Conclusions—These results show that during the first three minutes of global ischaemia in
patients with coronary artery disease: (1) ERP lengthened in response to both a low and a high
stimulus strength; and (2) there was a good correlation between ERP and APD before ischaemia,
which was lost by one minute as APD decreased and ERP increased. These findings may have
important implications in arrhythmogenesis.
(Heart 2000;84:365–369)

Keywords: refractoriness; ischaemia; repolarisation

Extensive experimental evidence implicates
enhanced dispersion of refractoriness with
arrhythmogenesis.1 2 A short refractory period
interposed between regions of longer refractory
period facilitates the formation of re-entrant
circuits.3 Under normal conditions the refrac-
tory period is predominantly voltage depend-
ent and ends at full repolarisation of the action
potential.4 On this basis a common an-
tiarrhythmic strategy is the use of drugs which
prolong action potential duration (APD), with
the intention of prolonging refractoriness and
so reducing the likelihood of re-entry.5 APD is
widely used as a measure of refractoriness in
studies related to mechanisms of arrhythmo-
genesis. However, experimental studies have
shown that after the first few minutes of
ischaemia the refractory period changes from
being mainly voltage dependent to being
mainly time dependent—that is, independent
of APD.6–11 This transition is relevant clinically,
as the majority of serious ventricular arrhyth-
mias during ischaemia are caused by re-entry
and occur within the first minutes of onset.3

Information in humans is lacking. Extrapola-
tion of experimental work on ischaemia
induced changes in refractoriness is diYcult
because reports include a shortening,1 12–18 a
lengthening,12 19–21 a lengthening followed by a
shortening,22 23 or a shortening followed by a
lengthening.9 22 24 25 It is likely that at least some
of these diVerences relate to methodological
factors. These include the stimulus strength

used in relation to the activation threshold,
which increases progressively during early
ischaemia,12 and the use of very strong stimuli
which may excite fibres distant from the stimu-
lation site.20 The presence or absence of
residual perfusion (for example low flow
ischaemia) or of diVusion across border zones
between ischaemic and non-ischaemic regions
may also be a factor.26 Extrapolation to the
clinical situation is further hindered by the
known electrophysiological species diVerences
and a lack of comparative information between
diVerent animal models and patients with long
standing coronary artery disease. The present
study attempts to address some of these
diYculties. We have performed studies directly
in patients with chronic heart disease, used
global ischaemia which eliminates border
zones, and incorporated high and low pacing
stimulus strengths. We sought answers to the
following questions. First, in the initial few
minutes of ischaemia in these patients, does the
eVective refractory period lengthen or shorten?
Second, what is the relation of this change to
APD?

Methods
PATIENTS

We studied 26 patients (22 men and four
women) aged 33–76 years (mean 63 years). All
were undergoing routine coronary artery sur-
gery for the relief of angina. Patients were
selected at random. Patients taking cardioac-
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tive drugs other than â blockers, calcium
antagonists, and angiotensin converting en-
zyme (ACE) inhibitors were excluded. The
study protocol was approved by the hospital
ethics committee, and written informed con-
sent was obtained from each patient.

EPICARDIAL MAP RECORDINGS

The monophasic action potential (MAP)
provides a faithful representation of the time
course of the transmembrane potential,27–29 and
is an established and widely used technique for
investigating the in situ beating heart. Reliable
recordings may be obtained on the human
epicardium.30 31 We recorded an MAP using a
pressure contact electrode from the anterior
left ventricular epicardium. The MAP signals
were fed to a Gould isolated preamplifier
(model 11-5407-58) (Gould Electronics, Il-
ford, Essex, UK) to provide patient isolation
and then to a Gould Universal amplifier
(model 13-4615-58; input impedance
109 ohms) with an output of 2.5 V for 40 mV
input. MAP signals were filtered from dc to
100 MHz . Data were digitised at a sampling
rate of 1 kHz (CED 1401 plus, Cambridge
Electronic Design, Cambridge, UK) and
stored.

PACING PROTOCOL

Patients were studied in two groups. There was
no diVerence between the groups with respect
to age, drug treatment, or number of coronary
arteries with significant disease. Steady state
cathodal pacing (2 ms current pulses, cycle
length of 500 ms) was established using a UHS
20 stimulator (Biotronik, Oxfordshire, UK).
The pacing electrode was positioned on the left
ventricular epicardium immediately adjacent
to the MAP recording site, the rib spreaders
acting as the anode. Stimulus strength was set

at four times control diastolic threshold in one
group of patients (group 1) and at two times
control diastolic threshold in a second group of
patients (group 2), and maintained at these
(preischaemic) levels throughout the test pe-
riod. EVective refractory period (ERP) was
determined using the extrastimulus technique
by decrementing a test pulse (S2) interval by
10 ms after each ninth basic beat (S1) until S2
did not result in an action potential or an ECG
waveform. ERP was taken as the shortest pos-
sible S1–S2 interval that produced a propa-
gated response.

PROCEDURE

Following the initiation of cardiopulmonary
bypass and before revascularisation surgery,
the electrodes were positioned, diastolic
threshold determined, and electrophysiological
measurements made. Normothermia was
maintained. The cardiac surgeon routinely
uses cross clamp fibrillation for the graft anas-
tomoses. This involves clamping the ascending
aorta between the inflow from the pump
oxygenator and the heart. It has been shown
that the resulting short period of ischaemia fol-
lowed by reflow before the grafting induces a
preconditioning eVect and so is protective dur-
ing the subsequent longer periods of ischaemia
required for the graft procedures.32 We there-
fore used a three minute period of precondi-
tioning ischaemia to measure the changes in
refractory period and APD. After three minutes
the cross clamp was released and pacing
discontinued, following which routine surgery
proceeded.

ANALYSIS OF DATA

MAP signals were measured using an interac-
tive computer program, and measurements of
APD were made at 90% repolarisation. This
allowed a visual inspection of the computer
measurements for each complex measured.
Statistical evaluation used analysis of variance
with Bonferroni correction for multiple com-
parisons (SPSS statistical package). Data are
given as mean (SEM).

Results
Figure 1 shows MAP recordings illustrating
several features of the eVects of ischaemia on
APD and ERP. Recordings before ischaemia
are shown in the upper panel. The top left pair
of MAP signals is the last of an S1 train
followed by the test action potential at the
shortest S1–S2 coupling interval (250 ms)
which elicited a propagated action potential.
The top right MAP is the last S1 action poten-
tial at a shorter S1–S2 interval (240 ms) which
fails to elicit an action potential. The refractory
period is therefore 250 ms. The eVect of
ischaemia is shown in a similar format in the
lower panel. The last S1 APD had shortened
(from 262 ms to 230 ms) while the shortest
S1–S2 interval at which a propagated action
potential could be achieved was now longer
(280 ms). The “take oV” of the test action
potential following the S2 stimulus during
control occurred before final repolarisation of
the S1 action potential (top left). During

Figure 1 Monophasic action potential (MAP) recordings (last S1 and S2) during control
(top) and ischaemia (below). The single MAPs on the right show the last MAP in the
subsequent S1 train in which the S1–S2 interval is 10 ms shorter and S2 is unable to elicit
a response. During ischaemia eVective refractory period becomes longer than control and a
gap is present between the repolarisation of the steady state beat (S1) and depolarisation of
the premature beat (S2).
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ischaemia the test action potential upstroke
occurred after full repolarisation owing to pos-
trepolarisation refractoriness (bottom right).

ACTION POTENTIAL DURATION

In all patients studied, MAP duration at 90%
repolarisation (MAPD90) shortened during
ischaemia. Mean values for all patients were
256 (5) ms (control), 231 (6) ms (p < 0.001)
at one minute, 209 (8) ms at two minutes
(p < 0.001), and 189 (9) ms (p < 0.001) at
three minutes of ischaemia. Figure 2 shows that
the values for group 1 patients (high stimulus
strength) do not diVer from those in group 2
patients (low stimulus strength).

REFRACTORY PERIODS

In contrast to the MAPD shortening, ERP
increased at both stimulus strengths. Figure 3
shows mean values increasing from 232 (5) ms
(control) to 245 (4) ms (p < 0.001), to 248
(7) ms (p < 0.015), and to 246 (7) ms
(p < 0.05) in group 1, and from 256 (10) ms
(control) to 278 (14) ms (p < 0.05), to 308
(18) ms (p < 0.01), and to 348 (25) ms
(p < 0.005) in group 2, after one, two, and
three minutes of ischaemia, respectively. The
increase in refractory period was significant
from one minute of ischaemia onwards for both
groups.

POSTREPOLARISATION REFRACTORINESS

Before ischaemia ERP was shorter than APD.
Figure 4 (left) shows that the diVerence
between ERP and APD was −20 (5) ms for
group 1 and −8 (3) ms for group 2. During
ischaemia this relation reversed, with ERP
becoming longer than APD: 10 (7) ms (group
1) and 41 (9) ms (group 2) at one minute of
ischaemia; 35 (7) ms (group 1) and 92 (14) ms
(group 2) at two minutes; and 48 (9) ms
(group 1) and 137 (19) ms (group 2) at three
minutes (p < 0.001 at all time points for both
groups). The development of postrepolarisa-

Figure 2 Monophasic action potential at 90%
repolarisation (MAPD90) of the left ventricular epicardium
in patients with coronary artery disease during control
conditions and after one, two, and three minutes of
ischaemia (cycle length 500 ms). Values are shown
separately for group 1, paced at four times preischaemic
diastolic threshold, and group 2, paced at two times
preischaemic diastolic threshold. Action potential duration
(APD) shortened progressively during ischaemia. Values
are means, error bars = SEM.
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Figure 3 EVective refractory period (ERP) on the left
ventricular epicardium in patients with coronary artery
disease during control conditions and after one, two, and
three minutes of ischaemia. Mean values for ERP showed a
small increase during ischaemia in group 1 (high pacing
stimulus) and a substantial increase in group 2 (low pacing
stimulus). Values are means, error bars = SEM.
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Figure 4 The relation between action potential duration
(APD) and refractoriness is shown as eVective refractory
period (ERP) minus APD for group 1 and group 2
patients. Under control conditions ERP was shorter than
APD. During ischaemia this relation rapidly reversed, ERP
outlasting APD (postrepolarisation refractoriness). This
eVect is more pronounced in group 2 patients (low stimulus
strength).
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tion refractoriness reflected the combined
eVect of APD shortening (fig 2) and ERP
lengthening (fig 3). The latter was more
pronounced in group 2 patients. During
control the relation between ERP and APD
showed a good correlation (R2 = 0.64,
p < 0.001), which was lost in the course of
ischaemia (R2 = 0.29, p < 0.01; R2 = 0.27,
p < 0.02; and R2 = 0.13, p < 0.14 at one, two,
and three minutes, respectively).

Discussion
We found that ERP lengthened during a short
period of global ischaemia in the human heart
following pacing with high and low stimulus
strength. The high stimulus strength resulted
in less ERP prolongation. It is known that
refractoriness depends on APD and becomes
dissociated from it during ischaemia.6–11 We
therefore investigated the relation between
ERP and APD in the human heart. Under
control conditions ERP approximated MAPD,
and there was a good correlation between the
two. During ischaemia MAPD shortened while
ERP increased, resulting in postrepolarisation
refractoriness from the first minute of ischae-
mia onward.

Previous studies on ischaemia induced
changes reported lengthening12 19–21 or
shortening1 12–18 of refractoriness. These diVer-
ences may relate to methodological aspects of
ERP measurement in ischaemia. Indeed, in
dogs ERP either lengthened or shortened
depending on the stimulus intensity.12 During
ischaemia, stimulus threshold increases follow-
ing an initial decrease12 20 33 depending on the
site of stimulation relative to the ischaemic
border.33 Thus most investigators use a fixed
stimulus strength ranging from twice to 15
times diastolic threshold.15 However, in re-
gional ischaemia high intensity stimulation
may inadvertently excite distant myocardium
where ERP is shorter and excitability is
increased.20 21 33 We therefore chose a model of
global ischaemia, where border zone related
phenomena are absent, and used two stimulus
strengths. In humans ERP prolongation oc-
curred over a wide range of stimulus strength.

Postrepolarisation refractoriness occurs in
various models of ischaemia,6–11 although it has
hitherto not been described in humans. It is
caused by the combined eVects of hypoxia and
the accumulation of extracellular potassium
(Ko).

11 34 35 In border zone tissue where the rise
in Ko is moderate,36 refractory periods
shorten.20 21 37 In the centre of the ischaemic
area Ko is similar to that found in global
ischaemia.26 The resting membrane potential38

and the recovery of excitability7 show a
corresponding gradient from the periphery to
the centre. Thus we speculate that the factors
that influence Ko, such as diVusion and residual
perfusion during low flow ischaemia,39 would
influence ERP and the relation of ERP to APD.
This may result in local ERP diVerences.

The observed changes in MAPD and refrac-
toriness in response to ischaemia show a much
faster time course in patients (with ischaemic
heart disease) than in experimental animals.40

This highlights the importance of performing

these studies directly in patients. Some aspects
of methodology require mention. Our observa-
tions on MAPD/ERP were confined to a single
left ventricular site in each patient. MAPD
varies at diVerent ventricular sites41 42 and the
eVects of ischaemia are heterogeneous26 as well.
However, our study employed global ischaemia
which substantially reduces heterogeneity, and
the recording sites were selected randomly on
the left ventricular anterior wall, with consist-
ent findings within each group. Also, the
patients were on cardiopulmonary bypass and
therefore the hearts were in a non-working
state. This would have reduced the ischaemic
burden and the influence of mechanoelectric
feedback.31 As anticipated from the small
heterogeneity, no arrhythmias occurred during
ischaemia in these hearts.

This study examines one end of a spectrum
of ischaemia—that is, zero perfusion/zero
diVusion—in contrast to border zones of
regional ischaemia or low flow ischaemia.
Although extrapolation to the clinical setting
requires caution, we would suggest that the
results represent the central ischaemic zone
where perfusion is absent and diVusion gradi-
ents are small.26

Mechanisms of arrhythmia are frequently
interpreted and modelled using APD as a
measure of ERP. Our results suggest that while
the relation between APD and ERP may persist
during early ischaemia in peripheral regions,
ERP would be prolonged beyond repolarisa-
tion in central areas. These findings may be
relevant to class III antiarrhythmic
agents34 35 43 44 and APD alternans as precursor
of ventricular fibrillation.45 46 Also, recent stud-
ies have centred on the role of the cycle length
dependence of APD in the breakup of spiral
waves into multiple wavelets characteristic of
ventricular fibrillation.45–48 This has the poten-
tial for an alternative antiarrhythmic strategy,
namely altering the slope of the APD/ERP
relation.47 48 The early dissociation of APD and
ERP within the first minutes of ischaemia, at a
time when re-entrant arrhythmias develop,
would be expected to alter the dynamics of the
relation. Furthermore, our results and the
above discussion suggest that this eVect would
be inhomogeneous.

This work was supported by the British Heart Foundation (PT).
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