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Abstract. Segmentation based on color, instead of intensity only, pro-
vides an easier distinction between materials, on the condition that ro-
bustness against irrelevant parameters is achieved, such as illumination
source, shadows, geometry and camera sensitivities. Modeling the phys-
ical process of the image formation provides insight into the effect of
different parameters on object color.
In this paper, a color differential geometry approach is used to detect
material edges, invariant with respect to illumination color and imaging
conditions. The performance of the color invariants is demonstrated by
some real-world examples, showing the invariants to be successful in
discounting shadow edges and illumination color.

1 Introduction

Color is a powerful clue in the distinction between objects. Segmentation based
on color, instead of intensity only, provides an easier discrimination between col-
ored regions. It is well known that values obtained by a color camera are affected
by the specific imaging conditions, such as illumination color, shadow and ge-
ometry, and sensor sensitivity. Therefore, object properties independent of the
imaging conditions should be derived from the measured color values. Modeling
the physical process of the image formation provides insight into the effect of
different parameters on object color [4, 5, 10, 12]. We consider the determination
of material changes, independent of the illumination color and intensity, camera
sensitivities, and geometric parameters as shadow, orientation and scale.
When considering the estimation of material properties on the basis of local

measurements, differential equations constitute a natural framework to describe
the physical process of image formation. A well known technique from scale-space
theory is the convolution of a signal with a derivative of the Gaussian kernel to
obtain the derivative of the signal [8]. The introduction of wavelength in the scale-
space paradigm leads to a spatio-spectral family of Gaussian aperture functions,



introduced in [2] as the Gaussian color model. As a result, measurements from
color images of analytically derived differential expressions may be obtained by
applying the Gaussian color model. Thus, the model defines how to measure
material properties as derived from the photometric model.
In this paper, the problem of determining material changes independent of

the illumination color and intensity is addressed. Additionally, robustness against
changes in the imaging conditions is considered, such as camera viewpoint, illu-
mination direction and sensor sensitivities and gains. The problem is approached
by considering a Lambertian reflectance model, leading to differential expressions
which are robust to a change in imaging conditions. The performance of these
color invariants is demonstrated on a real-world scene of colored objects, and on
transmission microscopic preparations.

2 Determination of Object Borders

Any method for finding invariant color properties relies on a photometric model
and on assumptions about the physical variables involved. For example, hue and
saturation are well known object properties for matte, dull surfaces, illuminated
by white light [5]. Normalized rgb is known to be insensitive to surface orien-
tation, illumination direction and intensity, under a white illumination. When
the illumination color varies or is not white, other object properties which are
related to constant physical parameters should be measured. In this section,
expressions for determining material changes in images will be derived, under
the assumption that the scene is uniformly illuminated by a colored source, and
taking into account the Lambertian photometric model.
Consider a homogeneously colored material patch illuminated by incident

light with spectral distribution e(λ). When assuming Lambertian reflectance, the
reflected spectrum by the material in the viewing direction v, ignoring secondary
scattering after internal boundary reflection, is given by [7, 13]

E(λ) = e(λ) (1− ρf(n, s,v))
2
R∞(λ) (1)

where n is the surface patch normal and s the direction of the illumination
source, and ρf the Fresnel front surface reflectance coefficient in the viewing
direction, and R∞ denotes the body reflectance.
Because of projection of the energy distribution on the image plane vectors

n, s and v will depend on the position at the imaging plane. The energy of the
incoming spectrum at a point x on the image plane is then related to

E(λ,x) = e(λ,x) (1− ρf(x))
2
R∞(λ,x) (2)

where the spectral distribution at each point x is generated off a specific material
patch.
Consider the photometric reflection model (2) and an illumination with lo-

cally constant color. Hence, the illumination may be decomposed into a spectral



component e(λ) representing the illumination color, and a spatial component
i(x) denoting the illumination intensity, resulting in

E(λ,x) = e(λ)i(x) (1− ρf(x))
2
R∞(λ,x) . (3)

The aim is to derive expressions describing material changes independent of the
illumination. Without loss of generality, we restrict ourselves to the one dimen-
sional case; two dimensional expressions will be derived later. The procedure of
deriving material properties can be formulated as finding expressions depending
on the material parameters in the given physical model only.
Differentiation of (3) with respect to λ results in

∂E

∂λ
= i(x)(1− ρf(x))

2R∞(λ, x)
∂e

∂λ
+ e(λ)i(x)(1− ρf(x))

2 ∂R∞

∂λ
. (4)

Dividing (4) by (3) gives the relative differential,

1

E

∂E

∂λ
=

1

e(λ)

∂e

∂λ
+

1

R∞(λ, x)

∂R∞

∂λ
. (5)

The result consists of two terms, the former depending on the illumination color
only and the latter depending on the body reflectance. Since the illumination
depends on λ only, differentiation to x yields a reflectance property.

Lemma 1. Assuming matte, dull surfaces and an illumination with locally con-
stant color,

∂

∂x

{

1

E

∂E

∂λ

}

(6)

determines material changes independent of the viewpoint, surface orientation,
illumination direction, illumination intensity and illumination color.

Proof. See (4)—(5). Further, the reflectivity R∞ and its derivative with re-
spect to λ depend on the material characteristics only, that is on the material
absorption- and scattering coefficient. Hence, the spatial derivative of their prod-
uct is determined by material transitions. ut

Note that Lemma1 holds whenever Fresnel (mirror) reflectance is neglectable,
thus in the absence of interreflections and specularities. The expression given by
(6) is the fundamental lowest order illumination invariant. Any spatio-spectral
derivative of (6) inherently depends on the body reflectance only. According to
[11], a complete and irreducible set of differential invariants is obtained by taking
all higher order derivatives of the fundamental invariant.

Proposition 2. Assuming matte, dull surfaces and an illumination with locally
constant color, N is a complete set of irreducible invariants, independent of the
viewpoint, surface orientation, illumination direction, illumination intensity and
illumination color,

N =
∂n+m

∂λn∂xm

{

1

E

∂E

∂λ

}

(7)

for m ≥ 1, n ≥ 0.



These invariants may be interpreted as the spatial derivatives of the normalized
slope (Nλ) and curvature (Nλλ) of the reflectance function R∞.

3 Measurement of Spatio-Spectral Energy

So far, we have established invariant expressions describing material changes
under different illuminations. These are formal expressions, assumed to be mea-
surable at an infinitesimal small spatial resolution and spectral bandwidth. The
physical measurement of electro-magnetic energy inherently implies integration
over a certain spatial extent and spectral bandwidth. In this section, physically
realizable measurement of spatio-spectral energy distributions is described. We
emphasize that no essentially new color model is proposed here, but rather a
theory of color measurement. The specific choice of color representation, often
referred to as color coordinates or color model, is irrelevant for our purpose.

Let E(λ) be the energy distribution of the incident light, and let G(λ0;σλ) be
the Gaussian at spectral scale σλ positioned at λ0. Measurement of the spectral
energy distribution with a Gaussian aperture yields a weighted integration over
the spectrum. The observed energy in the Gaussian color model, at infinitely
small spatial resolution, approaches in second order to [2, 9]

Êσλ(λ) = Êλ0,σλ + λÊ
λ0,σλ
λ +

1

2
λ2Ê

λ0,σλ
λλ + . . . (8)

Êλ0,σλ =

∫

E(λ)G(λ;λ0, σλ)dλ (9)

Ê
λ0,σλ
λ =

∫

E(λ)Gλ(λ;λ0, σλ)dλ (10)

Ê
λ0,σλ
λλ =

∫

E(λ)Gλλ(λ;λ0, σλ)dλ (11)

were Gλ(.) and Gλλ(.) denote derivatives of the Gaussian with respect to λ.

Definition 3. The Gaussian color model measures, up to the 2nd order, the
coefficients Êλ0,σλ , Êλ0,σλ

λ and Êλ0,σλ
λλ of the Taylor expansion of the Gaussian

weighted spectral energy distribution at λ0 [9].

Introduction of spatial extent in the Gaussian color model yields a local
Taylor expansion at wavelength λ0 and position x0 [2]. Each measurement of a
spatio-spectral energy distribution has a spatial as well as spectral resolution.
The measurement is obtained by probing an energy density volume in a three-
dimensional spatio-spectral space, where the size of the probe is determined by
the observation scale σλ and σx,

Ê(λ,x) = Ê +

(

x

λ

)T [
Êx

Êλ

]

+
1

2

(

x

λ

)T [
Êxx Êxλ

Êλx Êλλ

](

x

λ

)

+ . . . (12)



where

Êxiλj (λ,x) = E(λ,x) ∗Gxiλj (λ,x;σx) . (13)

Here, Gxiλj (λ,x;σx) are the spatio-spectral probes, or color receptive fields. The
coefficients of the Taylor expansion of Ê(λ,x) represents the local image struc-
ture completely. Truncation of the Taylor expansions results in an approximate
representation, which is best possible in the least squares sense [8].
For human vision, the Taylor expansion is spectrally truncated at second

order [6]. Hence, higher order derivatives do not affect color as observed by the
human visual system. The Gaussian color model approximates the Hering basis
for human color vision when taking the parameters λ0 ' 515 nm and σλ ' 55 nm
[2]. Again, this approximation is optimal in least square sense.
For an RGB camera, principle component analysis of all triplets results in

a decomposition of the image independent of camera gains and dark-current.
The principle components may be interpreted as the intensity of the underlying
spectral distribution, and the first- and second-order derivative, describing the
largest and one but largest variation in the distribution. Hence, the principal
components of the RGB values denote the spectral derivatives as approximated
by the camera sensor sensitivities.
Concluding, measurement of spatio-spectral energy implies probing the en-

ergy distribution with Gaussian apertures at a given observation scale. The hu-
man visual system measures the intensity, slope and curvature of the spectral
energy distribution, at fixed λ0 and fixed σλ. Hence, the spectral intensity and
its first and second order derivatives, combined in the spatial derivatives up to
a given order, describe the local structure of a color image.

4 Results

Geometrical invariants are obtained by combining the color invariants Nλ and
Nλλ in the polynomial expressions proposed by Florack et al. [3]. For example,
the first order spatial derivatives yields the edge detectors

Nλx
2 +Nλy

2 and Nλλx
2 +Nλλy

2 . (14)

Figure 1a–c shows the result of applying the edge detector
√

Nλx
2 +Nλy

2 under

different illuminants.
Color edges can be detected by examination of the directional derivatives in

the color gradient direction [1], by solving for

Nλww =
Nλy

2Nλyy + 2NλyNλxNλxy +Nλx
2Nλxx

Nλx
2 +Nλy

2
= 0

Nλw =
√

Nλx
2 +Nλy

2
≥ α

and similar for Nλλ. Salient edges are determined by the value of α. An example
is shown in Fig. 1d.



Fig. 1. Illumination invariant edges for epithelial tissue (a) visualized by transmission

light microscopy. Edges Nλw =
√

Nλx
2 + Nλy

2 are shown for (b) a white illumination

(halogen 3400K), and (c) a reddish illumination (halogen 2450K). Despite the different
illuminants, edge strength is comparable. Figure d shows zero crossing detection in an
image of colored objects. In white the Nλww crossings (bluish-yellow edges), in black
the Nλλww crossings (reddish-green edges).
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