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5 5 

Finitee Temperature Green's 
Functions s 

5.11 Fermi-liquid to fqH-edge tunneling 

Havingg checked that the thermodynamics of fqH-edges is correctly reproduced in 
thee new quasi-particle language and having established some of the form factors 
propertiess we are now ready to move on and consider transport properties. Fol-
lowingg the set-up of a number of experiments, we shall consider a situation where 
electronss (or holes) from a Fermi-liquid reservoir are allowed to tunnel into a v = -
fqH-edge.. The DC TV-characteristic for this set-up, which were first computed by 
Kanee and Fisher [46] (see also [82, 18]), show a cross-over from a linear (thermal) 
regimee into a power-law behavior at high voltages and thus present a clear finger-
printt of the Luttinger liquid features of the fqH-edge. The experimental results 
fromm [19] are in agreement with these predictions. 
Thee calculations by Kane and Fisher were based on bosonization and on the 
Keldyshh formalism for non-equilibrium transport. Our goal here is to see if we can 
reproducee their results in an approach directly based on the edge quasi-partielc 
formalism.. Before going into this, we would like to stress that the Thermody-
namicc Bethc Ansatz (TBA) quasi-particles' behind the approach of [18] are quite 
differentt from what we have here, the most important distinction being that the 
TBAA quasi-particles are a combination of degrees of freedom of both sides of the 
tunnelingg barrier; they do not exist for a u = - edge in isolation. 

Iff  the v = ~ fqH-edge were to behave as a Fermi-liquid, we could calculate charge 
transportt across a barrier using a simple (Boltzmann) kinetic equation of the form 

I(V,T)<xeI(V,T)<xe j  ̂ <kW {f,(e - eV)F2(t) - F^e - eV)f2(f)} . (5.1) 

withh j{c) and F(e) the Fermi-Dirac distributions for electrons and holes, respec-
tively,, and W the probability for an electron or hole of energy t to cross the barrier 
andd enter the edge. As is well known, this Boltzmann equation leads to an ohmic 
andd temperature-independent current. Now that we have seen that the non-Fermi 
liquidd features of the ^ edge can be captured via the statistics of the edge quasi-
particless we can try to write a 'Boltzmann equation' for transport, to and from 
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fqH-edgess by putting in appropriate generalizations #(e) and G(c) of the quanti-
tiess /2(f) and F2(e), respectively. Before giving precise results we shall consider a 
'naive'' expression based on the intuition from the quasi-particle approach. In first 
approximation,, the factor g(t), which describes the probability for an electron to 
leavee a v — - edge, comprises two effects 

1.. a correlation effect, which can be traced to the non-trivial scaling dimension 
off  the edge electron operator. At zero temperature, this is the so-called 
tunnelingg density of states 

AA++ (e)(e) o c ^ "1 . (5.2) 

2.. a temperature dependence related to the exclusion statistics properties of the 
edgee electrons. As we have seen, the natural factor associated to the presence 
off  an edge electron is the distribution function 

n f l =P(f ))  (5-3) 

Combiningg these factors, we come to the naive expressions 

g(t)g(t) = e*~l n9=p(c) , (5-4) 

andd by similar reasoning we obtain 

G(c)G(c) = ep~l e* ng=p(e) , (5.5) 

wheree the thermal factor e0t np(e) has been dictated by the requirement of detailed 
balancee or outside the context of tunneling by the KMS-condition. 
Onee quickly finds that the Boltzmann equation with factors g and G is not exact 
att finite temperature. Later we shall further comment on this equation and argue 
thatt it can be viewed as part of a first stage in a systematic approach. Before we 
comee to that, we shall in the next section present a particularly simple derivation 
off  the exact perturbative I-V characteristics for tunneling from a Fermi-liquid to a 
vv — I fqH-edge. This derivation uses the idea of a kinetic equation, together with 
thee algebraic properties of the edge electrons. 

5.1.11 Kinetic Equation for Inter Edge Transport 

AA careful derivation, based directly on the form of the tunneling Hamiltonian 

HHintint <x t fde [*|;=1 (€)*„= ! (e) +h.c. (5-6) ) 

wheree "P*  denotes the electron creation operator for a fillin g fraction u fqH-edge. 
leadss to the following kinetic equation, see e.g. [82], 

I(\ I(\ \T)xet\T)xet22 r dt[f(e ~ eV)G(t) - F(f - eV)g(e)) . (5.7) 
J—00 J—00 
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wheree G.g are one particle Green's functions 

9v(c)9v(c) = <* I = i ( €ï * „=è( c)>* r , Gv{e) = < * „ = i ( e ) < = i ( e K T (5.8) 

forr edge electrons in the v =  fqH-edge, taken at V = 0. Note that the expres-
sionn 5.7 is perturbative as it gives the lowest non-trivial order in the parameter 
t. t. 
Thee quantities GV(e) and gv{t) can be determined by using two simple observa-
tions.. The first is that of detailed balance, which can be phrased as the requirement 
thatt at zero voltage there should be no current flowing. This fixes the ratio of Gy (e) 
andd gv(c) according to 

GGvv{€)=e{€)=e00«-«-eVeV)g)gvv(€).(€). (5.9) 

Thee second observation uses the algebraic properties of the edge electron operator, 
whichh include the anti-commutation relation 

{^^.(ejU^le'+e^+e^ .. (5.10) 

InIn this formula, E is the operator for the total energy per unit length, and AQ is 
thee operator for the total charge per unit length. Clearly, this anti-commutator 
fixess the sum Gy(e) + gv(e)- The expectation values of energy and charge follow 
directlyy from our analysis in chapter 3. We find 

{E){E) = « (w + ^ i r )  <Ae> = - e " o ^ (5.ii) 
andd obtain the exact expressions 

__ , . (<-eV)> + £ (€_eV)2 + £ , ^ 

Theyy lead to I-V characteristics 

/ ( K . D c c ^ ^^  + ^ r (5,3, 

inn agreement with the result obtained in different approaches [46, 18]. 
Clearly,, the Green's functions 5.8 can be evaluated in other ways, for example by 
usingg a conformal transformation in the x,t domain [82]. We would like to stress 
thatt our derivation is more direct and uses nothing more than the fundamental 
anti-commutationn relation of the edge electrons. For v — |, these are particularly 
simplee as they derive from the so-called N = 2 super-conformal algebra, which has 
beenn well- studied in other contexts. For other filling  fractions the fundamental 
anti-commutatorss look more complicated but are available in principle. 
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5.1.22 Interpretation in Terms of Exclusion Statistics 

Iff  we compare the exact kinetic equation for v = § with a naive generalized Boltz-
mannn equation, we see that the mistake in the latter is in the approximation of the 
Green'ss function g{e) by a the product g(e) of a tunneling density of states times 
aa Haldane distribution for fractional statistics. 
Thee reason why this approximation turns out to be rather poor is that the operator 
AV(c)) = * f _ i (e)*i,= i (<0 inside a fqH-edge is not to be viewed as a simple counting 
operatorr weighted by the appropriate power law of e. This fact can be traced to 
thee non-trivial operator terms in the r.h.s. of eq. 5.10. To further illustrate this 
pointt we evaluated the expectation value of the operator JV«(c) in a normalized 
one-electronn state \a') 

<e'|Ar*(€)|e')) oc eH{e - c') + 6 ( f ' ~ ^ + ^ W ' - e) . (5.14) 

Thiss result shows an interaction effect, in the action of Ny(e) on a one-electron 
state:: rather than just counting quanta of energy e, the operator JV<p(e) is sensitive 
too the presence of quanta at energy e' > e as well. In the Green's function g(e) (for 
€€ > 0), the first term on the r.h.s. of eq. 5.14 corresponds to g(e), while the second 
termm leads to the following correction term 

g(mg(m{€){€) _ g{e) = 6 f°° de' V-W2+e*)  ö3(e') . (5.15) 

Inn figure 5.1 we have plotted the exact result for g(e) against the approximations 
g(t)g(t) and ff (1,o)(<0- Clearly, the correction term included in s( , '0)(e) greatly improves 
thee accuracy of the description. 
Thee situation here can be described as follows. As far as thermodynamics goes, 
thee distribution functions n3(c) and fii(e) give exact results for quantities such as 

specificc heat and conductances. However, the operators $ , ( ( ) , * w=i(e) are not 
one-particlee operators in the usual sense, as they do not simply add or extract a 
singlee quasi-particle from a many-particle state. In edge tunneling experiments, 
thee edge system communicates with a Fermi liquid via the operators ^ ! / = i (e) and 
^„=i( €)) a nd w e c an n o t a v o id interaction effects. We do believe, however, that a 
systematicc expansion based on the quasi-particle picture is possible. Evidence for 
thiss claim is the calculation above and the calculation following in the rest of this 
chapter. . 

5.22 Form Factor Expansion 

Thee Green's function g(e) can be viewed as a one-point function for the operator 
Nw(t)Nw(t) — * t _ i ( f ) * i / ^ i ( e ). In the formulation on the finite system of size L, this 

operatorr is represented as Nj(m) = aJ-mJ^, with e - am, with a = -  ̂ the 
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9(e) 9(e) 

Figuree 5.1: One-particle Green's function g(e) in units [3]  as a function of the 
energiee e in units [3~x]  for filling  fraction v =  and at zero voltage. The drawn 
curvee is the exact result 5.12; the dashed curve is the approximation g(e) and the 
dottedd curve corresponds to g^1,0\e). 

energyy level spacing in the finite size system. This one-point function is formally 
expressedd as 

E s t a t e ^ <s t a t eI N JJ ( m ) I s t a t e) e xP ( ~ e s t a t e) , 

E s t a t e e « ^S t a t el s t a t e) e xP (__ e s t a t e) 

Thee sum runs over a basis of the full Hilbert space of the edge CFT, and we can 
optt for the fqH quasi-particle basis discussed in chapter 4. The idea is now that 
thee matrix elements (state\Nj(m)\state) are dominated by processes where only 
aa few of the quasi-particles that are present in a concrete basis state |{m;;nj} ) 
participate. . 
Forr the case at hand, the lowest contribution comes from 1-particle states |(mi)), 
forr which one computes the matrix element 

D(1'°)(m;m1)) = i V { (mi) |J_1_m j { 1 + m| (m1) )A :5.r r 

Thee expected presence of an edge electron of energy mi is given by the distribution 
functionn np(ei = ami). This leads to the following contribution to the Green's 
function n 

^ 0 ) ( e ) = f l r ^ ° ) ( m , f f l i ) f i p ( f l m i ) . . 
' » i i 

(5.18) ) 

Iff  we now consider the matrix element of Nj(m) against a two-electron state, we 
findfind (see next subsection) that it is not simply the sum of two 1-particle contribu-
tions.. The left-over part is what we call the irreducible 2-electron matrix element 

D (2'0)(m:: mi. m2) = ,v((mj, m2)| J-3-m J+3+mI(m2, mi))N 
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-A ' ( (m i ) | J_3 -mJ i3 + m| <m i )> .YY - N{{m2)\J-3-mJ+3+m\(m2))N

(5.19) ) 

Itt leads to an additional contribution 0(2'O)(m) to the Green's function 

ffff <<22'°>(e)=a'°>(e)=a Y, Di2^\m:mum2)np(aml)np(am2)  (5.20) 

Similarly,, we define 

DDilil ^(m;mi,ni)^(m;mi,ni) ~ 

1v((n i ,mi) |J_ i -T n j |1 + m| (mi ,n i ) )A'' - ^{(mi ) |7_ i -m J{.1+m](mi ))jV 

(5.21) ) 

and d 
p( 1 '1) (e)=aa ^ D(ul}{m;mum)np(aml)ni.(am) (5.22) 

77111 i " l 

Continuingg in this manner, we build up the following expansion 

{rni\n{rni\n }}}}  i J 

(5.23) ) 

Wee remark that an expansion of precisely this type has been proposed by LeClair 
andd Mussardo [54], see also Saleur [68]. This work was done in the context of 
integrablee qft's, that are fully characterized by a factorized 5-matrix. In such a 
context,, the irreducible form factors are constrained by the form factor axioms, 
andd the distribution functions have their origin in a TBA procedure. Although 
clearlyy in the same spirit, the analysis that we present here is very different at the 
technicall  level. We obtain the relevant form factor by explicit computation in a 
theoryy that is regularized by the finite size of the fqH edge, and we have identified 
thee relevant distribution functions by analyzing the state counting of the (discrete) 
spectrumm of the finite-size system. We thus do not rely on an underlying (massless) 
S-matrixx point of view. 

5.33 Finite T Green's Function for p = 2 

Ass a proto-type study for a form factor expansion based on CFT quasi-particles, 
wee now analyze the Green's function g(e), for p = 2 in that spirit. Obviously, an 
exactt result is easily obtained 

»WW = Tshj  (5'24) 
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Thee Bose-Einstein denominator in this expression has its origin in the fact that 
thee operators J, Jf satisfy bosonic commutation relations. In the spirit of the 
quasi-particlee formulation, we wish to treat the J, .^-quanta as quasi-particles 
withh exclusion statistics g~2, and see if we can recover the Green's function g(e) 
inn such an approach. 
Too evaluate explicitly the leading terms in the form factor expansion 5.23 for g(e), 
wee need to evaluate the relevant irreducible matrix elements. While it is clear that 
thesee matrix elements have very special mathematical properties, we here compute 
themm by a simple brute force computation, relying on the algebraic properties of the 
operatorss J , Q and ^ , which form a representation and a doublet representation 
off  SU{2)u 

[Jt^r] [Jt^r] 

\}a£\}a£ 3, UJr\ 

[QS,<P^] [QS,<P^] 

[J?,tf] [J?,tf] 

Vtitf] Vtitf] 

—— sös+T 4- Qs+ 

—— 2sos+r 

== r 

—— 2 7

~~ $t+r 

== 0 

(5.25) ) 

Furthermore,, we use the explicit form of the two-particle states |(m2,mi)) and 
\{m\\n\))\{m\\n\)) at p — 2, 

2 2 
\(rn-\(rn-22.mi)).mi)) = [m2,mi> + - V " |m2 + Lmi - / ) , (5.26) 

and d 

|(mi;ni))) - | m i ; m )- — - TT Y*  |mi + i;m - / ) , (5.27) 
(mi+2n11 + l ) £ j l 

with h 

|m2,mi)) = J-3-m2J--i-mi\Q) , \mi;ni) = i _ 1_m i ^ _ i _n i |0) . (5.28) 

Thesee states have the following norms 

W (m2.mi)) = ((mi,m2) | (m2,mi)) = m 2 ~ m i (m2+3) (m1 +1 ), (5.29) 
m22 — mi + o 

and d 

JV(mi ;n i )) = {(ni,mi)\{müm)) = ™l + 2"1 + 2) (mt + 1 ) ^ . (5.30) 
ÏTÏ11 + ZJl\ + 1 
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Onee electron 

Forr the (irreducible) one electron matrix element we found 

Z?(1'0)(m;mi)) = ;v<(mi) |J_i_mJ+1 +J(mi))j V -

( mm + 1 \ 
1 -- m ) Q ( m < m i) . (5.31) 

Twoo electrons 

Forr the irreducible two electron matrix element we find 

D ( 2 '0 ,(m;m2,mi)) = 

- 2 ( m2 + 3)) . - 2 ( m i + l ) 
++ Om-mi+2 

++

m-2m-2 - nil + 3 m2 — mi + I 

44 1 1 

(m22 — mi + 3) (m2 — mi + 1) (mi + l)(m2 +3) 

x[0(mm < mi — 2)P(m;mi ,m2) 

+0 (mm < m2 < m + m i )Q(m;mi ,m2) 

+0 (mm < m2) i?(m;mi,m2) ] , (5.32) 

with h 

j P(m;mi,m2)) = 

(rn-2(rn-2 — ni\ + 3)(mi - m — 2)(2mi - m2 — 3) 

+(mii  - m - 2)(mi - m - 3)(-3m2 + x"M + ö m ~ "ï") 

++ (m + 3)[-2(m2 - m, + 3)(2mi - m - 1) 

-2mi (mii  + 1) + (m + 3)(m2 + mi — m + 1)] 

<2(m;mi,m2)) — 

(mii  - m2 + m + l)[(m2 - mi + 3)2 + 2(m2 - mi + 3)(mi - m2 + m) 

2 2 
++ o (m i ~ m2 + m ) ( m i  - m2 + m- 1)] 

i?(m;mi,m2)) — 

(m22 - m)(mi + l)(m2 - mj + 3) + -mi (mi + l)(mi + 3m2 - 3m + 2) 
o o 

(5.33) ) 
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Thee polynomials P. Q and R enjoy special properties, which include 

(P(P + Q + /?) (m:mi ,m2) = - (mj —m-i - l)(mi - m2 - 2)(mi - m2 - 3) . (5.34) 

Onee electron and one quasi-hole 

Thee irreducible matrix element with one electron and one hole is found to be 

D^D^ ,x,x\m\m\\m\m\ ,ri\) — 

mii  + 1 
'm.\'m.\ ,m ii  + 2ni + 1 

1 1 
+ 0 (mm < mi) 

CC{{
mm ^(m-1 + 2ni + 2)(mi + 2m + l)(mi + 1) 

C „ 1 ^ 1 + m5 ( m ; m i , n i ) + C n,, 2 T (m:mi ,n i) ;5.35) ) 

with h 

5(m;mi ,n i)) = 

88 4 
(mii  + 2ni + l ) 2 + (m + m - m i ) (- - 4(m! + 2nr + 2)) + - (m + m - mi)2 

T(m;; mi ,n i) = 

2(mii  - m)((mi + 2rn + l ) 2 - 1) + 2 (2^ + l)(mi - m - 1) 

+2(?mm + l ) ( 2 m + l ) . (5.36) 

5.3.11 Evaluating the Series 

Withh the information collected in the previous subsections, we can evaluate the 1-
particlee and 2-particle contributions </1,0* , g^2  ̂ and f/1,1' to the Green's function 

Thee expressions 5.18, 5.20, and 5.22 for (/('2>°> and g(l,v*  are discrete sums, which 
wee wish to study in the limi t a —> 0. In this limit , one may view the expressions as 
Riemannn sums and evaluate them using continuous integrals; however, one needs 
too be careful because the integrands as they stand have singularities, and the sums 
aree not term-by-term convergent. One may check however that by carefully redis-
tributingg some of the terms, one obtains convergent sums that can be approximated 
byy the corresponding continuous integrals. Proceeding in this manner, and using a 
numericall  integrator, we obtained the results plotted in figure 5.3 and figure 5.2 . 
Wee observe that the form factor series converge in the following sense: while the 
1-particlee terms agree with the exact result for e greater than about 3fcsT, the 
resultt with 2-particle terms included has reached the exact value at t greater than 
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9(e) 9(e) 

Figuree 5.2: One-particle Green's function g(e) in units [/? = ^ f ] for fillin g fraction 
v'v' = | as a function of energy in units [/?-1] - The upper solid curve is the exact 
result,, the data points represent the sum of all contributions with up to two particles 
present.. The lower solid curve represents the naive approximation discussed in the 
introductionn of this chapter. 

aboutt '2ksT. For energies e <<£ fcsT, the thermal factors do not efficiently suppress 
manyy particle contributions, and the convergence of the form factor expansion is 
expectedd to be slow. 
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Wee remark that the asymptotic behavior for e > fc^T of the 2-particle terms is 

<?<2'°>(e)) - c2e~0t g{1'l)(z) ~ c^3' (5.37) 

withh _ 

C22 = - 2 / <&iÖ2(ei) , ci = / dc iö i ( ê i) , (5.38) 
Joo 2 Jo 2 

Remarkably,, the duality relation 3.26 between the distributions leads to the relation 

cc22 = - ci (5.39) 

meaningg that the Boltzmann tails of the 2-particle terms precisely cancel. This 
'conspiracy'' was needed as, numerically, it is seen that the deviation between the 
exactt curve g(c) and the 1-particle term p(1,0^(e) is far smaller than the individual 
Boltzmannn tails of <?(2'° and g(l> lK 

5.44 Conclusions 

Thee results in this chapter show that with the fqH-basis we identified the basis in 
whichh the one-point Green's function can be approximated very efficiently using 
onlyy form factors which involve a few quasi-particles. From our results in the 
precedingg chapter we can see that in an alternative basis, like the CS-basis, the 
numberr of quasi-particles needed to describe the same form factors ranges from a 
feww for low energy states to many for the high energy states. This shows that the 
fqH-basiss gives the most efficient description of the degrees of freedom relevant for 
thee description of the one point Green's functions on the fqH-edge. 
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Figuree 5.3: One-particle Green's function g(e) for filling  fraction v' = | as a 
functionn of energy, both in units [fcsT]. The upper solid curve is the exact result; 
thee data points are the numerical results for: </1,0) (diamonds), </2'0^ (circles) and 
^(1,1)) (c r o s s e s) The sum of all contributions is represented by squares. 


