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Abstract The discounted stock price under the Constant Elasticity of Variance model
is not a martingale when the elasticity of variance is positive. Two expressions for the
European call price then arise, namely the price for which put-call parity holds and
the price that represents the lowest cost of replicating the call option’s payoffs. The
greeks of European put and call prices are derived and it is shown that the greeks
of the risk-neutral call can substantially differ from standard results. For instance,
the relation between the call price and variance may become non-monotonic. Such
unfamiliar behavior then might yield option-based tests for the potential presence of
a bubble in the underlying stock price.

Keywords Bubbles · Constant elasticity of variance · Option pricing · Put-call
parity · Risk-neutral valuation

JEL Classification G13

1 Introduction

The elasticity of the variance of returns to the stock price under Geometric Brown-
ian Motion (GBM) is zero and returns thus are assumed to have constant variance.
This assumption was challenged in, for instance, Black (1976) and became the main
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2 D. Veestraeten

argument behind the development of the Constant Elasticity of Variance (CEV) option
pricingmodel in Cox (1975). The discounted stock price is amartingale under theCEV
process with negative or zero elasticity, but is not a martingale for positive values of
the elasticity parameter as was first noted in Emanuel and MacBeth (1982) and Lewis
(2000) . Cox and Hobson (2005) and Heston et al. (2007) interpreted this loss of the
martingale property under positive elasticity of variance as evidence for the presence
of a bubble in the underlying stock price. As a result, there are (at least) two candidate
prices for the call option, namely the price for which the put-call parity holds and the
price that represents the lowest cost of replicating the payoff of the call (see Heston
et al. 2007).

This paper calculates the greeks of European put and call options under CEV
with positive elasticity of variance and interprets them as potential indicators for the
presence of bubbles in the underlying. It is shown that the greeks for the risk-neutral
call can reveal behavior that is in sharp contrast with the standard results as suggested
earlier in Cox and Hobson (2005), Ekström and Tysk (2009) and Pal and Protter
(2010). For instance, risk-neutral call prices can be non-monotonic functions of the
remaining time to maturity in which increasing time initially increases the call’s price
but after some point starts to depress the value of the call. Detecting such pattern then
might point to the presence of a bubble in the stock price. Indeed, the bubble may in
the short run inflate further and thus step up option prices, but the likelihood of its
collapse grows for longer time horizons causing the call price then to decrease in the
time to maturity. Additional tests could be based on a similar non-monotonic relation
between the risk-neutral call price and the variance of the underlying as well as the
potential concave relation between call and stock prices.

The remainder of this paper is organized as follows. Section 2 discusses the loss
of the martingale property for the discounted stock price under CEV with positive
elasticity of variance. Section 3 calculates the European call and put prices. Section
4 discusses the sensitivities of the option prices to their underlying parameters and
interprets their behavior as potential indicators of bubbles in stock prices. Section 5
concludes.

2 The loss of the martingale property under CEV with positive elasticity
of variance

The stock price is assumed to follow a CEV diffusion process with risk-neutralized
drift r S and diffusion coefficient σ 2S2α , respectively

dS = r Sdt + σ SαdW, (1)

with r being the positive, constant risk-free interest rate. The elasticity of the variance
of returns to the stock price equals α−1 and GBM thus emerges as the limit for α = 1.
This paper focuses on positive elasticity of variance, i.e. α > 1, and for brevity the
acronym CEV from now on refers to CEV with positive elasticity of variance.
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On the multiplicity of option prices under CEV with... 3

The transition probability density function p [ST , T ; St , t] is derived in Emanuel
and MacBeth (1982) as1

p [ST , T ; St , t]=2 (α − 1) k
1

2(1−α)

(
zt z

1−4α
T

) 1
4(1−α)

exp [−zt−zT ] I 1
2(α−1)

(
2
√
zt zT

)
,

(2)
with

k = r

σ 2 (1 − α) (exp [2r (1 − α) (T − t)] − 1)
> 0,

zt = kS2(1−α)
t exp [2r (1 − α) (T − t)] ,

zT = kS2(1−α)
T ,

Iq = the modified Bessel function of the first kind of order q.

The distributional relations in Schroder (1989) allow to specify the following two
integral expressions that facilitate calculation of the below results

J1;β1,β2 =
β2∫

β1

p [ST , T ; St , t] dST = Q

[
2kβ2(1−α)

2 , 2 + 1

α − 1
, 2zt

]

− Q

[
2kβ2(1−α)

1 , 2 + 1

α − 1
, 2zt

]

and

J2;β1,β2 =
β2∫

β1

ST p [ST , T ; St , t] dST

= St exp [r (T − t)]

{
Q

[
2zt ,

1

α − 1
, 2kβ2(1−α)

1

]

− Q

[
2zt ,

1

α − 1
, 2kβ2(1−α)

2

]}
,

where Q [a, b, c] is the complementary non-central chi-square distribution evaluated
at a with b degrees of freedom and non-centrality parameter c.2

The conditional expectation for the CEV process (1), E [ST , T ; St , t], then is

E [ST , T ; St , t] =
+∞∫

0

ST p [ST , T ; St , t] dST

1 The expression for the transition probability density function in (7) in Heston et al. (2007) contains a

misprint as the term
(
xz1−α

) 1
4−α should be

(
xz1−4α

) 1
4(1−α) . Also, the numerator in the first fraction in

the term u on p. 367 should be r rather than 2r .
2 The complementary chi-square distribution arises if the non-centrality parameter equals 0. See Zelen and
Severo (1964) for more detail on the (non-central) chi-square distribution.
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4 D. Veestraeten

E [ST , T ; St , t] = J2;0,+∞

E [ST , T ; St , t] = St exp [r (T − t)]

{
Q

[
2zt ,

1

α − 1
,+∞

]
− Q

[
2zt ,

1

α − 1
, 0

]}

E [ST , T ; St , t] = St exp [r (T − t)]

{
1 − Q

[
2zt ,

1

α − 1
, 0

]}
, (3)

given that Q [a, b,+∞] = 1 as can be inferred from definition 26.4.25 in Zelen
and Severo (1964). The conditional expectation (3) thus falls below St exp [r (T − t)]

since Q

[
2zt ,

1

α − 1
, 0

]
is a distribution. As a result, the discounted stock price is not

a martingale.3 Cox and Hobson (2005) and Heston et al. (2007) interpreted this loss
of the martingale property as evidence that the stock price has a bubble and as a result
is expected to decrease in the future.

3 European call and put option prices

The risk-neutral value of a European put option with exercise price K and time to
maturity T − t , Pt , is given by

Pt = exp [−r (T − t)]

K∫

0

[K − ST ] p [ST , T ; St , t] dST

Pt = exp [−r (T − t)]
{
KJ1;0,K − J2;0,K

}

Pt = exp [−r (T − t)]

{
K

(
Q

[
2kK 2(1−α), 2 + 1

α − 1
, 2zt

]

− Q

[
+∞, 2 + 1

α − 1
, 2zt

])}

− exp [−r (T − t)]

{
St exp [r (T − t)]

(
Q

[
2zt ,

1

α − 1
,+∞

]

− Q

[
2zt ,

1

α − 1
, 2kK 2(1−α)

])}

Pt = K exp [−r (T − t)] Q

[
2kK 2(1−α), 2 + 1

α − 1
, 2zt

]

− St

(
1 − Q

[
2zt ,

1

α − 1
, 2kK 2(1−α)

])
, (4)

which corresponds with the put price that is derived in Hull (2006).

3 Note that result 26.4.11 in Zelen and Severo (1964) implies that Q

[
2zt ,

1

α − 1
, 0

]
= 0 for α = 1. The

discounted stock price then is a martingale in line with the fact that α = 1 yields GBM.

123



On the multiplicity of option prices under CEV with... 5

The risk-neutral expected discounted value of the payoff to theEuropean call option,
in short the risk-neutral call price Ct , is

Ct = exp [−r (T − t)]

+∞∫

K

[ST − K ] p [ST , T ; St , t] dST

Ct = exp [−r (T − t)]
{J2;K ,+∞ − KJ1;K ,+∞

}

Ct = exp [−r (T − t)]

{
St exp [r (T − t)]

(
Q

[
2zt ,

1

α − 1
, 2kK 2(1−α)

]

− Q

[
2zt ,

1

α − 1
, 0

])}

− exp [−r (T − t)]

{
K

(
Q

[
0, 2 + 1

α − 1
, 2zt

]

− Q

[
2kK 2(1−α), 2 + 1

α − 1
, 2zt

])}

Ct = St

(
Q

[
2zt ,

1

α − 1
, 2kK 2(1−α)

]
− Q

[
2zt ,

1

α − 1
, 0

])

− K exp [−r (T − t)]

(
1 − Q

[
2kK 2(1−α), 2 + 1

α − 1
, 2zt

])
. (5)

The call price (5) corresponds with the price G2 (S, t) that was obtained in Heston
et al. (2007).

Emanuel and MacBeth (1982) reported a second expression for the call price,
denoted byCEM

t , that can be obtained via the put-call parity. Plugging the risk-neutral
put price (4) into the put-call parity yields

CEM
t = Pt + St − K exp [−r (T − t)]

CEM
t = St Q

[
2zt ,

1

α − 1
, 2kK 2(1−α)

]

− K exp [−r (T − t)]

(
1 − Q

[
2kK 2(1−α), 2 + 1

α − 1
, 2zt

])
. (6)

This price is documented in, amongst others, Schroder (1989), Davydov and Linetsky
(2001), Hull (2006) and is specified as G1 (S, t) in Heston et al. (2007).

The relation between the call prices (5) and (6) is

CEM
t − Ct = St Q

[
2zt ,

1

α − 1
, 0

]
. (7)
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6 D. Veestraeten

Hence, CEM
t exceeds Ct .4 The call price CEM

t thus has a bubble given that it exceeds
the cost of a strategy that replicates the payoffs of the call option (see Heston et al.
2007 for more detail).

4 The greeks of European put and call option prices

It is possible to calculate the greeks for the above option prices for general values of α

as definition 26.4.25 in Zelen and Severo (1964) expresses the non-central chi-square
distribution as an infinite sum of chi-square distributions. The required derivatives
then be computed via relation 26.4.19 in Zelen and Severo (1964) and relation 6.5.25
in Davis (1964). But, the resulting expressions become too elaborate for a meaningful
analysis. However, option prices and their greeks can be expressed in (surprisingly)
compact and easy-to-interpret form for particular values of α. For α = 2, the density

function (2) can be simplified via the identity I 1
2
(x) =

√
2

πx
sinh [x] (see Polyanin

2002) into5

pα=2 [ST , T ; St , t]
= St

√
k exp [r (T − t)]

S3T
√

π

{
exp

[
−1

2

{√
2kS−1

T − √
2kS−1

t exp [−r (T − t)]
}2]

− exp

[
−1

2

{√
2kS−1

T + √
2kS−1

t exp [−r (T − t)]
}2]}

.

The conditional expectation then is

Eα=2 [ST , T ; St , t] = St exp [r (T − t)] {1 − 2� [−q1]} ,

where q1 = √
2kS−1

t exp [−r (T − t)] and � [q] = 1√
2π

q∫
−∞

exp
[− 1

2 x
2
]
dx is the

standard normal distribution function.
The risk-neutral put price, Pα=2

t , emerges as

Pα=2
t = K exp [−r (T − t)]

σ St
√
exp [2r (T − t)] − 1√

2r
{φ [q2] − φ [q3]}

+ K exp [−r (T − t)] {� [q2] + � [−q3]} − St {� [q3] − � [−q2]} , (8)

4 Both expressions for the call price satisfy the valuation partial differential equation of Black and Scholes
(1973) and its boundary conditions as discussed in Heston et al. (2007) and Ekström and Tysk (2009) .
Heston et al. (2007) and Ekström and Tysk (2009) furthermore argued that the multiples of the difference
(7) also satisfy the valuation equation such that actually an infinite number of solutions arises.
5 The identities in Polyanin (2002) and Schroder (1989) can be combined to yield similar simplifications
for various other values of α. Cox and Hobson (2005) and Ekström and Tysk (2009) also focused on the
case of α = 2 but with the added restriction of r = 0 in order to express the stock price as the reciprocal
of the radial part of a 3-dimensional Brownian motion.
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On the multiplicity of option prices under CEV with... 7

where q2 = √
2k

{
S−1
t exp

[−r
(
T − t

)]−K−1
}
, q3 = √

2k
{
S−1
t exp

[−r
(
T − t

)]+
K−1

}
and φ

[
q
] = 1√

2π
exp

[ − 1
2q

2
]
.

The risk-neutral value of the call option, Cα=2
t , is given by

Cα=2
t = St {2� [q1] − � [q2] − � [q3]} − K exp [−r (T − t)] {� [q3] − � [q2]}

−K exp [−r (T − t)]
σ St

√
exp [2r (T − t)] − 1√

2r
{φ [q3] − φ [q2]} (9)

and the relation between the risk-neutral put and call prices, i.e. the risk-neutral put-call
parity, is

Cα=2
t = Pα=2

t + St {1 − 2� [−q1]} − K exp [−r (T − t)] . (10)

The call price of Emanuel andMacBeth (1982),CEM,α=2
t , can be obtained by plugging

Pα=2
t into the put-call parity

CEM,α=2
t = Pα=2

t + St − K exp [−r (T − t)] (11)

CEM,α=2
t = St {2 − � [q2] − � [q3]} − K exp [−r (T − t)] {� [q3] − � [q2]}

−K exp [−r (T − t)]
σ St

√
exp [2r (T − t)] − 1√

2r
{φ [q3] − φ [q2]} .

(12)

The call price of Emanuel and MacBeth (1982) exceeds the risk-neutral call price
given that

CEM,α=2
t = Cα=2

t + 2St� [−q1] (13)

4.1 Delta

The delta of the risk-neutral put price (8) can be calculated as

∂Pα=2
t

∂St
= � [−q2] − � [q3] + K√

2k
{φ [q2] − φ [q3]} .

It is not possible to analytically show that the delta of the put has the familiar negative
value. However, an extensive grid search confirmed that the delta is always negative.6

The delta of the put together with the risk-neutral put-call parity (10) then specifies

6 The grid search used values for St between 0.01 and 10, K ranged between 0.01 and 15, r moved between
0.02 and 0.1, σ between 0.15 and 0.45 and T − t ranged from 0.1 to 5. The total number of cases that was
evaluated was at 1,048,576.
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8 D. Veestraeten

the delta of the risk-neutral call as

∂Cα=2
t

∂St
=2� [q1] − � [q2] − � [q3] − 2S−1

t

√
2k exp [−r (T − t)]φ [q1]

+ K√
2k

{φ [q2] − φ [q3]} .

The grid search showed that the delta of the risk-neutral call always had the familiar
positive sign. The delta for the call price of Emanuel and MacBeth (1982) can most
easily be obtained via the put-call parity (11) as

∂CEM,α=2
t

∂St
= � [−q2] − � [q3] + 1 + K√

2k
{φ [q2] − φ [q3]} > 0.

The latter expression is always positive given that the sum of the first three terms on
the right-hand side is positive and this also holds for the remaining term.

Both call prices increase in the value of the underlying stock price. However, the
delta of the call price of Emanuel and MacBeth (1982) exceeds the delta of the risk-
neutral call price as, for instance, relation (13) implies

∂CEM,α=2
t

∂St
− ∂Cα=2

t

∂St
= 2� [−q1] + 2S−1

t

√
2k exp [−r (T − t)]φ [−q1] > 0.

4.2 Gamma

The risk-neutral put price (8) is characterized by the familiar convexity in the stock
price given that

∂2Pα=2
t

∂S2t
= S−3

t

√
2kK exp [−2r (T − t)] {φ [q2] − φ [q3]} > 0.

Combining the latter result with the put-call parity (11) implies that the call price of
Emanuel and MacBeth (1982) is a convex function of the stock price

∂2CEM,α=2
t

∂S2t
= ∂2Pα=2

t

∂S2t
> 0.

The gamma for the risk-neutral call price follows from the risk-neutral put-call parity
(10) as

∂2Cα=2
t

∂S2t
= ∂2Pα=2

t

∂S2t
− 2

5
2 S−4

t k
3
2 exp [−3r (T − t)]φ [q1] .

The gamma of the risk-neutral call thus falls below that of the put in view of k > 0.
Moreover, the gamma will be negative for K = 0 in view of the zero value of the
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Fig. 1 Sensitivity of the risk-neutral call price to its underlying parameters for α = 2

gamma of the put and the positive value of k. The limiting case of K = 0 thus produces
a concave relation between the risk-neutral call price and the stock price as noted in
Cox and Hobson (2005) and Ekström and Tysk (2009). However, larger values for K
may create more intricate patterns in which for instance the familiar convex relation
turns into a concave relationship for larger stock prices. Panel (a) in Fig. 1 illustrates
this for the parameter values K = 5, r = 0.03, T − t = 0.75 and σ = 0.2.

This unfamiliar behavior of the gamma of the risk-neutral call could be of interest
for the identification of bubbles. In fact, detecting concavity in the call option price
might indicate that the underlying stock price has a bubble. Furthermore, observing a
larger gamma for the put than for an identical call might also point to the presence of
a bubble in the stock price.

4.3 Vega

The standard result of a positive relation between option prices and σ is present for
the risk-neutral put price as well as for the call price of Emanuel and MacBeth (1982)
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10 D. Veestraeten

since

∂Pα=2
t

∂σ
= K St

σ
√
2k

{φ [q2] − φ [q3]} > 0

and

∂CEM,α=2
t

∂σ
= ∂Pα=2

t

∂σ
> 0.

The vega of Cα=2
t then can be obtained via the risk-neutral put-call parity (10) as

∂Cα=2
t

∂σ
= ∂Pα=2

t

∂σ
− 2

3
2 k

1
2 exp [−r (T − t)]

σ
φ [q1] .

The vega of the risk-neutral call thus falls below the vega of the identical put. Also, a
strictly negative vega for the risk-neutral call arises for K = 0. However, the relation
between Cα=2

t and σ actually can grow non-monotonic as is illustrated in Panel (b)
of Fig. 1 for the parameter values St = 5, K = 5, r = 0.03 and T − t = 0.75. This
non-monotonic relation between the risk-neutral call price and σ can be interpreted
against the background of the presence of a bubble in the underlying stock price.
Initially, a rise in σ for low values of the latter may further inflate the bubble and thus
boost the call price. However, after some critical level of σ is reached, further rises in
σ (sharply) increase the likelihood that the bubble will burst through which the call
price must decrease.

Ekström and Tysk (2009) used an advanced treatment of partial differential equa-
tions to show that convexity (concavity) of the call in the stock price automatically
implies a positive (negative) relation between the call option price and volatility. This
direct link is confirmed for the present CEV process given that the vega of the above
three prices can always be obtained by multiplying the corresponding gamma with the

positive term
S4t exp [2r (T − t)]

2kσ
.

The analysis of the vega thus may offer an additional option-based test for the
potential presence of a bubble in the underlying stock price. Such bubble might be
present if the call price decreases in response to an increase in volatility or increases
to a smaller degree when compared with the reaction in the price of an identical put.

4.4 Rho

The rho of the risk-neutral put price is given by

∂Pα=2
t

∂r
= K St

2
3
2 k

1
2 r

(
1 − 2kσ 2 (T − t) exp [−2r (T − t)]

)
{φ [q3] − φ [q2]}

+ K (T − t) exp [−r (T − t)] {� [q3] − � [q2] − 1} .
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On the multiplicity of option prices under CEV with... 11

Combining the latter result with the put-call parity (11) allows to express the rho of
the call price of Emanuel and MacBeth (1982) as

∂CEM,α=2
t

∂r
= ∂Pα=2

t

∂r
+ K (T − t) exp [−r (T − t)] .

Agrid search showed that the familiar positive (negative) rho for calls (puts) also holds
for these two option prices.

The rho for the risk-neutral call is given by

∂Cα=2
t

∂r
= ∂CEM,α=2

t

∂r
+

√
2k exp [−r (T − t)]

r

(
1 − 2kσ 2 (T − t)

)
φ [q1] .

The latter expression typically returns a positive value. However, it can turn negative
for options that are deep in-the-money as is illustrated in Panel (c) of Fig. 1 where
K = 0.5, St = 5, σ = 0.2 and T − t = 0.75.

4.5 Theta

The expression for the sensitivity of the risk-neutral put to the remaining time until
maturity, theta, is

− ∂Pα=2
t

∂ (T − t)
= σ 2k

1
2 K St

2
1
2

exp [−2r (T − t)] {φ [q3] − φ [q2]}
− r K exp [−r (T − t)] {� [q3] − � [q2] − 1} ,

and this derivative, as in the standard case of GBM, may be positive or negative. The
put-call parity (11) then specifies the theta of the call price of Emanuel and MacBeth
(1982) as

−∂CEM,α=2
t

∂ (T − t)
= − ∂Pα=2

t

∂ (T − t)
− r K exp [−r (T − t)] .

The term r K exp [−r (T − t)] guarantees that the theta of the call of Emanuel and
MacBeth (1982) is negative given that the terms φ [q2] − φ [q3] and � [q3] − � [q2]
both are positive.

The theta for the risk-neutral call is

− ∂Cα=2
t

∂ (T − t)
= −∂CEM,α=2

t

∂ (T − t)

+ 2
3
2 k

1
2 exp [−r (T − t)]

(
kσ 2 exp [−2r (T − t)] + r

)
φ [q1] .

Adding the second term on the right-hand side then actually can generate a positive
value for the theta of the risk-neutral call. The possibility of encountering a positive
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theta was discussed in Pal and Protter (2010) within the context of the inverse Bessel
process. Note that the relationship between Cα=2

t and T − t can be non-monotonic as
is illustrated in Panel (d) of Fig. 1 for K = 5, St = 5, r = 0.03 and σ = 0.2. Such
sequence of an initial rise of the call price in the remaining time until maturity followed
by a decline might be compatible with the presence of a bubble in the underlying. In
fact, the bubble may grow further in the short run causing the call to increase in value.
However, longer time horizons make it more likely that the bubble will collapse which
then negatively impacts upon the price of the call.

The above findings for the theta of the call may be useful within the search for
bubbles in the underlying stock on two accounts. First, a negative link between Euro-
pean call prices and the remaining time until maturity might point to the presence of
a bubble in the stock price as noted earlier. Second, a negative relation between the
European call price and its time tomaturity immediately implies that the early-exercise
feature of the identical American call option will now have positive value even when
no dividends are paid (Cox and Hobson 2005; Pal and Protter 2010). Hence, observing
prices for American calls on stocks that pay no dividends being in excess of prices
of otherwise identical European call options might likewise signal the presence of a
bubble in the underlying.

5 Conclusions

The Constant Elasticity of Variance (CEV) model allows for a more elaborate specifi-
cation of the volatility of returns. Option pricing under the CEV process with positive
elasticity of variance, however, is complicated by the fact that the discounted stock
price no longer is a martingale as was first noted in Emanuel and MacBeth (1982) and
Lewis (2000). This loss of the martingale property under positive elasticity of vari-
ance was interpreted as evidence of stock-price bubbles in Cox and Hobson (2005)
and Heston et al. (2007) . Heston et al. (2007) proceeded by showing that such bubbles
generate (at least) two candidate prices for the call option, namely the price for which
put-call parity holds and the price that represents the lowest cost of replicating the
option’s payoffs.

This paper calculates and illustrates the greeks of European put and call options
under CEV with positive elasticity of variance and discusses their potential role in
testing for the presence of bubbles in the underlying stock price. It was found that the
greeks of the risk-neutral call may exhibit behavior that deviates considerably from the
standard results. For instance, call prices may become non-monotonic in the variance
of the underlying stock. Detecting such patterns then might indicate the presence of a
bubble in the underlying as low levels of variance may further inflate the bubble and
step up option prices whereas the likelihood of a collapse in the bubble and the option
price sharply increases for larger dispersion.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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