
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

A K-6 Computational Thinking Curriculum Framework
Implications for Teacher Knowledge
Angeli, C.; Voogt, J.; Fluck, A.; Webb, M.; Cox, M.; Malyn-Smith, J.; Zagami, J.

Publication date
2016
Document Version
Final published version
Published in
Journal of Educational Technology and Society
License
CC BY-NC-ND

Link to publication

Citation for published version (APA):
Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-
6 Computational Thinking Curriculum Framework: Implications for Teacher Knowledge.
Journal of Educational Technology and Society, 19(3), 47-57. http://A K-6 Computational
Thinking Curriculum Framework

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/a-k6-computational-thinking-curriculum-framework(e39ae82e-d810-4671-89e2-fbe8c4f633f1).html
http://A K-6 Computational Thinking Curriculum Framework
http://A K-6 Computational Thinking Curriculum Framework

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 Computational Thinking

Curriculum Framework: Implications for Teacher Knowledge. Educational Technology & Society, 19 (3), 47–57.

47
ISSN 1436-4522 (online) and 1176-3647 (print). This article of the Journal of Educational Technology & Society is available under Creative Commons CC-BY-ND-NC

3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/). For further queries, please contact Journal Editors at ets-editors@ifets.info.

A K-6 Computational Thinking Curriculum Framework: Implications for
Teacher Knowledge

Charoula Angeli1*, Joke Voogt2, Andrew Fluck3, Mary Webb4, Margaret Cox4, Joyce

Malyn-Smith5 and Jason Zagami6
1University of Cyprus, Cyprus // 2University of Amsterdam, The Netherlands // 3University of Tasmania, Australia //

4King’s College London, UK // 5Education Development Center, USA // 6Griffith University, Australia //

cangeli@ucy.ac.cy // J.M.Voogt@uva.nl // Andrew.Fluck@utas.edu.au // mary.webb@kcl.ac.uk // mj.cox@kcl.ac.uk

// jmsmith@edc.org // j.zagami@griffith.edu.au
*Corresponding author

ABSTRACT
Adding computer science as a separate school subject to the core K-6 curriculum is a complex issue with

educational challenges. The authors herein address two of these challenges: (1) the design of the curriculum

based on a generic computational thinking framework, and (2) the knowledge teachers need to teach the

curriculum. The first issue is discussed within a perspective of designing an authentic computational thinking

curriculum with a focus on real-world problems. The second issue is addressed within the framework of

technological pedagogical content knowledge explicating in detail the body of knowledge that teachers need to

have to be able to teach computational thinking in a K-6 environment. An example of how these ideas can be

applied in practice is also given. While it is recognized there is a lack of adequate empirical evidence in terms of

the effectiveness of the frameworks proposed herein, it is expected that our knowledge and research base will

dramatically increase over the next several years, as more countries around the world add computer science as a

separate school subject to their K-6 curriculum.

Keywords
Computational thinking curriculum, Pedagogical content knowledge, Technological pedagogical content knowledge,

Teacher preparation, K-6

Introduction

In a world in which digital technology plays an important role in carrying out essential daily-life tasks, it is

imperative individuals have the education, knowledge, and skills to critically understand the technological systems

they use, as well as to be able to troubleshoot and problem solve when things go wrong (Wing, 2006; Czerkawski,

2015; National Research Council, 2010). Czerkawski (2015) argues the knowledge that individuals need to have in

order to competently respond to the challenges of the 21st century goes beyond the acquisition of mere skills with

immediate application, to knowledge with long-term value that will enable them to understand the basics of

computer structures and practices. In essence, the society needs citizens who understand the true affordances of

computers in terms of what they can and cannot do, so they themselves become effective authors/creators of

computational tools. Wing (2006) broadened the idea of computation, and proposed that computational thinking

should be considered as a basic skill taught across the curriculum. She defined computational thinking as the thought

process of formulating and solving problems with the use of computers. According to Wing (2006), the teaching of

computational thinking, as a basic skill across the school curriculum, will enable K-12 students to learn abstract,

algorithmic and logical thinking, and be prepared to solve complex and open-ended problems.

How do we then prepare our students to develop the knowledge they need to survive and effectively cope with the

technological challenges of the 21st century? As many educators strongly argued, this educational goal can be

achieved by integrating computer science as a distinct discipline and a school subject in the K-12 curriculum (Barr &

Stephenson, 2011; Fluck, Webb, Cox, Angeli, Malyn-Smith, Voogt, & Zagami, 2016; Goode, Chapman, & Margolis,

2012; Hazzan, Lapidot, & Ragonis, 2011; Tucker, Deek, Jones, McCowan, Stephenson, & Verno, 2003). Fluck et al.

(2016) stated that there is a strong case for integrating computer science in the K-12 curriculum with arguments from

both the educational and economic sectors. Succinctly, the educational case asserts that computer science: (a)

develops and promotes a unique way of thinking about problems, namely computational thinking, that uses the

power of logic, algorithm, abstraction, and precision; (b) empowers individuals to create new artifacts and to move

from being consumers of technology to producers of technology; and (c) redefines the way learners think about other

disciplines, and, this can have a major impact on teaching practices, such as, for example, interdisciplinary teaching

in school. The economic case stresses the critical shortage of applicants in IT-related jobs, especially in Europe,

48

while at the same time the European Commission predicts that major European countries, such as UK, will need an

additional 500,000 IT professionals by 2015 (Husing & Korte, 2010).

Adding computer science as a separate school subject to the core K-12 curriculum is, however, a complex issue that

involves many legislative, administrative, political, and educational challenges. The latter are the focal point of this

paper. In particular, there are two major educational challenges related to: (a) what computer science content to teach

across different educational levels, and (b) what body of knowledge do teachers need to have to be able to teach the

computer science curriculum. Over the years, a variety of computer science curricula, representing different views

about what is important to teach in computer science and when, have been proposed in the literature and or enacted

in different countries, such as UK, USA, Austria, Germany, Mongolia, Israel, Greece, Cyprus, and recently Australia.

Well-known efforts in the United States are, amongst others, the Computer Science Principles, Exploring Computer

Science, Beauty and Joy of Computing, Project Lead the Way (PLTW), and Code.org. Computer Science Principles is

part of a larger national effort in the United States, namely the CS 10K Project that aims to develop effective high

school computing curricula enacted in 10,000 high schools taught by 10,000 well-prepared teachers by 2016.

Computer Science Principles constitutes a framework of standards from which high school computer science courses

can be built (Astrachan & Briggs, 2012). The framework is specified through a set of six Computational Thinking

Practices (i.e., connecting computing, developing computational artifacts, analyzing problems and artifacts,

abstracting, communicating, and collaborating), and a set of seven Big Ideas of computer science (i.e., creativity,

abstraction, data and information, algorithms, programming, Internet, and global impact), and has been adopted by

several high schools in the United States for developing computer science courses, such as the Beauty and Joy of

Computing, Code.org, and PLTW (Astrachan & Briggs, 2012; desJardins, 2015). The Beauty and Joy of Computing

course focuses on the Big Ideas of computing, and its main objective is to expose students to the beauty and joy of

programming by engaging them in meaningful projects using the Snap! programming language. Similarly, Code.org

is a high school course with lessons and programming projects around the seven Big Ideas of computing as well,

whereas, the PLTW uses Python as its primary programming environment to expose students to different

computational thinking projects.

Analogously, in various other countries similar initiatives have also been undertaken for introducing computer

science to high school students (van Diepen, Perrenet, & Zwaneveld, 2011; Micheuz, 2008; Furber, 2012).

Undoubtedly, during the last two decades, a lot of work has been done by the computer science education community

in promoting computer science as a school subject in secondary education. Unfortunately, the same conclusion

cannot be reached about the status of computer science in the elementary school curriculum (grades K-6,

approximately from 6 to 12 years old).

A number of computer science education researchers have written about their concerns in regards to teaching

computer science in K-6 (e.g., Armoni, 2012). These concerns are primarily linked to the incompatibility between

abstraction, an essential process in computer science, and children’s weakness to understand abstraction because of

their very young age. Armoni (2012) explained that abstraction is an inherent component of computer science that is

always encapsulated during the process of thinking about and automating a solution to a problem. From a Piagetian

perspective, children before the age of seven cannot really understand concrete logic, whereas children between

seven and eleven years old can solve problems that apply to concrete objects, but not problems that apply to abstract

concepts or phenomena. Conversely, Gibson (2012) argued that high school is too late for exposing students to

computer science for the first time, and stated that early exposure during kindergarten is necessary. In his research,

Gibson (2012) found that young children can think abstractly when concrete reference systems are used to situate

their thinking.

Recently, there has been much impetus in bringing computer science experiences to elementary school children

(Kumar, 2014). Kumar (2014) wrote about the proliferation of app development startup companies that have targeted

“early childhood computing education as the next emerging frontier” (p. 52), and about formal deliberative

initiatives for developing computer science curricula for K-6 students. Succinctly, we acknowledge the effort by

Prottsman (2014) who reported on the development of the Thinkersmith curriculum in 2011, which introduced a

stand-alone set of unplugged activities for K-8 specifically designed to provide students with strong computer

science foundations without using computers. Lessons in this curriculum, such as Binary Baubles, used materials

found in games and crafts to teach authentic computer science concepts. In 2013, Code.org expanded on what

ThinkerSmith created, and offered a 20-hour unplugged curriculum for grades K-8. After the wide adoption of this

curriculum, in 2015 Code.org developed further the existing 20-hour unplugged curriculum, which now includes

49

more than 55 lessons. CS Unplugged, another unplugged computer science (CS) approach proposed by Bell, Witten,

Fellows, Adams, and McKenzie (2015), is a collection of activities that teach computational thinking through

engaging games and puzzles that use cards, string, crayons and lots of physical movement. Students learn about

binary numbers and algorithms without using computer programming.

Clearly, early computing education is now at the forefront, and, studies toward this line of research are urgently

needed in order to develop an informed body of knowledge about learning and teaching computer science in K-6.

Accordingly, the authors propose a curriculum framework with a focus on promoting computational thinking skills

for ages 6 to 12. While computational thinking is just one element of computer science, albeit an important one

(Fluck et al., 2016), the authors suggest a curriculum for K-6 with an explicit focus on computational thinking,

before covering more theoretical and applied concepts of computer science in secondary education. Particularly, this

study sought to address the following questions: (a) what computational thinking skills should a curriculum promote

in K-6? and (b) what knowledge do teachers need to have to be able to teach a computational thinking curriculum in

K-6?

A definition of computational thinking

While the concept of computational thinking in education can be traced back to the work of Seymour Papert (Papert,

1980), Wing’s (2006) article has rekindled the interest for promoting computational thinking in K-12. Other efforts

aiming at developing a definition for computational thinking include, among others, the National Academy of

Sciences workshop (National Research Council, 2010), the initiative undertaken by Furber (2012), and workshops

organized by the Computer Science Teachers Association (CSTA) and the International Society for Technology in

Education (ISTE).

Succinctly, the 2010 National Research Council’s report differentiated computational thinking from computer

literacy, computer programming, and computer applications (i.e., games), and broadened the term to include core

concepts from the discipline of computer science, such as abstraction, decomposition, pattern generalization,

visualization, problem-solving, and algorithmic thinking.

Similarly, Furber (2012) offered a concise definition of computational thinking as “the process of recognizing aspects

of computation in the world that surrounds us, and applying tools and techniques from computer science to

understand and reason about both natural and artificial systems and processes” (p. 29).

CSTA and ISTE, in collaboration with leaders from higher education, industry, and K-12 education, developed an

operational definition of computational thinking as a problem-solving process that includes, but is not limited to, the

following elements: (a) Formulating problems in a way that enables us to use a computer and other tools to help

solve them; (b) Logically organizing and analyzing data; (c) Representing data through abstractions, such as, models

and simulations; (d) Automating solutions through algorithmic thinking (i.e., a series of ordered steps); (e)

Identifying, analyzing, and implementing possible solutions with the goal of achieving the most efficient and

effective combination of steps and resources; and (f) Generalizing and transferring this problem-solving process to a

wide variety of problems.

Despite the fact that currently there is not one unanimous definition of computational thinking, it seems fair to

conclude that, based on the literature reviewed in this study, researchers have come to accept that computational

thinking is a thought process that utilizes the elements of abstraction, generalization, decomposition, algorithmic

thinking, and debugging (detection and correction of errors). Abstraction is the skill of removing characteristics or

attributes from an object or an entity in order to reduce it to a set of fundamental characteristics (Wing, 2011). While

abstraction reduces complexity by hiding irrelevant detail, generalization reduces complexity by replacing multiple

entities that perform similar functions with a single construct (Thalheim, 2000). Abstraction and generalization are

often used together as abstracts are generalized through parameterization to provide greater utility. Decomposition is

the skill of breaking complex problems into simpler ones (National Research Council, 2010). Algorithmic thinking is

a problem-solving skill related to devising a step-by-step solution to a problem and differs from coding (i.e., the

technical skills required to use a programming language) (Selby, 2014). Additionally, algorithmic notions of

sequencing (i.e., planning an algorithm, which involves putting actions in the correct sequence), and algorithmic

notions of flow of control (i.e., the order in which individual instructions or steps in an algorithm are evaluated) are

50

also considered important elements of computational thinking (Selby, 2014). Debugging is the skill to recognize

when actions do not correspond to instructions, and the skill to fix errors (Selby, 2014).

Table 1 shows the elements of computational thinking as these have been discussed and defined in this section.

Accordingly, this conceptual framework is the one that was adopted for developing the computational thinking

curriculum framework for K-6 presented in the next section.

Table 1. The elements of computational thinking

Element Definition

1. Abstraction The skill to decide what information about an entity/object to keep and what to ignore

(Wing, 2011).

2. Generalization The skill to formulate a solution in generic terms so that it can be applied to different

problems (Selby, 2014).

3. Decomposition The skill to break a complex problem into smaller parts that are easier to understand

and solve (National Research Council, 2010; Wing, 2011).

4. Algorithms

a. Sequencing

b. Flow of control

The skill to devise a step-by-step set of operations/actions of how to go about solving

a problem (Selby, 2014).

The skill to put actions in the correct sequence (Selby, 2014).

The order in which instructions/actions are executed (Selby, 2014).

5. Debugging The skill to identify, remove, and fix errors (Selby, 2014).

A computational thinking curriculum framework for K-6

Based on the five computational thinking skills shown in Table 1, a computational thinking curriculum framework is

developed and presented in Table 2. Table 2 shows indicators of competence for all five computational thinking

skills, namely, abstraction, generalization, decomposition, algorithmic thinking, and debugging, in a progression

from simple to complex across the educational levels of K-2, 3-4, and 5-6. Succinctly, the framework aims at

engaging children in thinking and problem solving by developing a solution to a problem, automating the solution

through algorithmic thinking, and generalizing this solution to new problems when common patterns are identified or

recognized. In essence, the framework aims at introducing students of a very young age to the thinking processes of

computational thinking so they become competent to learn more advanced theoretical and practical topics of

computer science in secondary education. In addition, the framework targets the development of all five

computational thinking skills across all K-6 levels, albeit at different levels of competence, through the use of

examples and tasks that are within the reach of children either with or without external support (external reference

systems). It is noted that the boundaries specified for each level may possibly vary from school to school and from

classroom to classroom. By the same token, it is also expected that refinements to the curriculum framework will be

ongoing once data become available from pilot offerings of different curricula, aligned with the proposed framework,

in diverse contexts.

Table 2. A computational thinking curriculum framework for K-6

Skill Grade level (age level)

 K-2 (ages 6 to 8) 3-4 (ages 9 to 10) 5-6 (ages 11 to 12)

Abstraction  With the use of external

reference systems, create a

model/representation* to solve a

problem (i.e., using specific

directional language - forward,

left turn, right turn, back - and

turns of a given degree (90, 180,

270, 360), children create a path

and write instructions to enable

others to follow the path, or

children design a mat based on a

story, and have their Bee-Bot

 Create a

model/representation to

solve a problem (i.e.,

create an object and

assign properties to it

during an activity of

digital game design and

creation).

 Create a new

model/representation

to solve a problem

(i.e., create a

simulation using

Scratch).

51

follow the path from the

narrative).

Generalization  Identify common patterns

between older and newer

problem-solving tasks, and use

sequences of instructions

previously employed, to solve a

new problem (i.e., use a

sequence of instructions from an

older path, to program the Bee-

Bot to follow a new path that

includes the older path).

 Remix and reuse (by

extending if needed)

resources that were

previously created.

 Remix and reuse (by

extending if needed)

resources that were

previously created.

Decomposition  Break a complex task into a

series of simpler subtasks (i.e.,

break a longer path into a series

of smaller paths that the Bee-Bot

can follow).

 Break a complex task

into simpler subtasks.

 Develop a solution by

assembling together

collections of smaller

parts.

 Break a complex task

into simpler subtasks.

 Develop a solution by

assembling together

collections of smaller

parts.

Algorithmic

thinking
 Define a series of steps for a

solution.

 Put instructions in the correct

sequence.

 Define a series of steps

for a solution.

 Put instructions in the

correct sequence.

 Repeat the sequence

several times (iteration).

 Define a series of steps

for a solution.

 Put instructions in the

correct sequence.

 Repeat the sequence

several times

(iteration).

 Make decisions based

on conditions.

 Store, retrieve, and

update variables.

 Formulate

mathematical and

logical expressions.

Debugging  Recognize when instructions do

not correspond to actions.

 Remove and fix errors.

 Recognize when

instructions do not

correspond to actions.

 Remove and fix errors.

 Recognize when

instructions do not

correspond to actions.

 Remove and fix errors.

Note. *model/representation = can be conceptual, mathematical, mechanical, textual, graphical, etc.

Curriculum design issues: A focus on a holistic design approach

The framework presented in Table 2 constitutes a general framework that can be used to develop various

computational thinking programs, courses, or modules in K-6. The curriculum framework is conceptualized in a

generic form to allow teachers the freedom and agency to adapt and customize the framework as they see fit for their

own classrooms and students. According to van den Akker (2010), this enactment perspective, where teachers create

their own curriculum realities, is increasingly replacing the fidelity perspective on implementation where teachers

faithfully follow curricular prescriptions from external sources. Accordingly, this trend “puts even more emphasis on

teachers as key people in curriculum change” (van den Akker, 2010, p. 185), underlining the utmost importance of

relevant teacher preparation. In view of that, the authors herein propose the holistic design approach as one method

that teachers can use to enact the computational thinking framework proposed in this paper.

A holistic design approach attempts to “deal with complexity without losing sight of the separate elements and the

interconnections between those elements” (van Merriënboer & Kirschner, 2007, p. 6). It is the opposite of an

atomistic design where complex contents and tasks are reduced to simpler elements, promoting this way content

compartmentalization and fragmentation. Compartmentalization and fragmentation support the separation of a whole

52

into small, distinct, and often isolated parts. For example, teachers teach children to think computationally by

teaching them abstraction, then decomposition, followed by generalization, algorithmic thinking, and debugging. It is

doubtful if in the end children will have the opportunity to practice the whole complex skill (computational thinking,

in this case) in its entirety, and doubtful if they will ever learn to think computationally. On the other hand, a holistic

design approach aims at eliminating compartmentalization and fragmentation by focusing on whole complex and

authentic learning tasks, without losing sight of the individual elements that make up the complex whole. Thus, with

this approach, if implemented correctly by the teacher, children learn to think computationally to solve a problem,

and also learn all other constituent and interconnected pieces of knowledge (theoretical and or practical) that are

directly related with the computational thinking task. We support the holistic design approach for teaching

computational thinking and emphasize here two design steps in the process, namely, (a) the design of problem-

solving tasks with a focus on real-life issues, and (b) the sequencing of problem-solving tasks from simple to

complex. We do acknowledge that more design steps exist in the literature.

With regard to the first design step, it is argued that the sources of the computational thinking curriculum ought to be

problems, issues, and concerns directly related to life itself. A curriculum of this kind will result in usable knowledge

- that is, knowledge that can be applied directly in the context of real life, problems and concerns at hand - and not in

inert knowledge (Voogt, Fisser, Good, Mishra, & Yadav, 2015; Webb, Fluck, Cox, Angeli-Valanides, Malyn-Smith,

Voogt, & Zagami, 2015). Educational researchers have found that a curriculum that is focused on problem solving

around real-world problems can result in greater intellectual curiosity, motivation, improved attitude toward

schooling, and higher achievement in college (Wolf & Brandt, 1998). Consequently, a curriculum designed around

real-life problems can be a way to make computational thinking relevant to students’ lives, and, thus, a way to keep

them interested in the subject matter. Ultimately, this may end up in increasing substantially the number of students

who will eventually pursue computer science as their major field of study later in college.

From an implementation point of view, a curriculum designed around real-life problems demands a wider range of

content, simply because authentic real-world problems are usually multidisciplinary in nature. As a consequence, a

curriculum from this perspective poses new demands on teaching often requiring close collaboration among teachers

with different content expertise. It should be noted that real-life problem-solving tasks constitute challenging design

endeavors, and, a curriculum designer may approach the design process through the means of rapid prototyping

before designing an entire educational program, course, or module.

With regard to the sequencing of the problem-solving tasks, a sequence from simple whole tasks to more complex

whole tasks is recommended. It is made clear that each problem-solving task, irrespective of complexity, engages the

learner in whole-task problem-solving experiences. In the context of computational thinking, this means that each

learning task, simple or complex, confronts the learner with all or almost all of the constituent computational

thinking skills for a real-life computational thinking experience. All tasks are meaningful, authentic, and relevant to

children’s life. A sequence of tasks constitutes the backbone of the computational thinking curriculum. It is also

evident that children may need guidance and support as they start working on more challenging tasks. Support may

be provided in the form of external reference systems to help students gradually develop abstractions. Students may

also need guidance with the problem-solving process itself.

The knowledge that teachers need to teach the curriculum

As Gal-Ezer and Stephenson (2010) stated, having a curriculum is important, but preparing teachers to teach the

curriculum is also critical. Amongst computer science teacher educators, the framework of pedagogical content

knowledge (PCK) has been highly regarded as an appropriate framework for defining the knowledge teachers need

to have to be able to teach computer science (e.g., Hubwieser, Magenheim, Mühling, & Ruf, 2013; Saeli, 2012).

Succinctly, PCK refers to a body of knowledge, which is highly context sensitive, cannot be conceptualized in

isolation from teachers’ classroom and teaching experiences, and is beyond and above a simple synthesis of

knowledge of subject matter and pedagogy (Shulman, 1986; Shulman, 1987). PCK is an amalgam of knowledge that

“embodies the aspects of content most germane to its teachability” (Shulman, 1986, p. 9), and refers to the

transformation of content into forms that are understandable to learners. According to van Driel and Berry (2012),

having a good PCK means that teachers have several representations of the most commonly taught topics within a

certain subject. The more representations teachers have at their disposal and the better they recognize learning

difficulties, the more effectively they can deploy their PCK (van Driel & Berry, 2012).

53

Within the domain of computer science, a number of computer science education researchers attempted to define

PCK for computer science, either in general ways (Hubwieser et al., 2013; Saeli, Perrenet, Jochems, & Zwaneveld,

2011; Stephenson, Gal-Ezer, Haberman, & Verno, 2005) or more specific ways (Saeli, 2012). Saeli et al. (2011)

concentrated on the teaching of programming in secondary education, and provided a general conceptualization of

PCK for the domain of programming in terms of its constituent elements (i.e., what to teach about computer

programming, how to teach programming, and what are learners’ difficulties in programming). In a following study,

Saeli (2012) was able to provide a more specific conceptualization of PCK for the domain of programming in the

context of secondary education, which included details about each constituent knowledge base. In terms of the

content to be taught, she mentioned loops, data structures, arrays, problem-solving skills, decomposition, parameters,

and algorithms amongst others. Regarding teachers’ pedagogical knowledge she mentioned offering a simple

programming language to better facilitate students’ effort to learn the syntax of the language, and choosing several

worthy problems to solve. Lastly, she identified learners’ difficulties about different programming concepts, such as

loops, arrays, variables, and general problem-solving skills.

In the early 2000s, though, a number of educational researchers undertook systematic efforts for extending and

enriching the concept of PCK by adding Technology Knowledge as another essential category of teachers’

knowledge base (Angeli & Valanides, 2005; Koehler & Mishra, 2008; Niess, 2005). From this perspective, the

introduction of Technology Knowledge in the existing framework of PCK successfully expanded PCK to TPCK -

that is, Technological Pedagogical Content Knowledge (Angeli & Valanides, 2005; Angeli & Valanides, 2009;

Koehler & Mishra, 2008; Niess, 2005). A conceptualization of the framework of TPCK is proposed by Angeli and

Valanides (2005; 2009) as shown in Figure 1. According to Figure 1, TPCK is conceptualized as a unique body of

knowledge that is formed by the contribution of five distinct knowledge bases, namely, content knowledge,

pedagogical knowledge, knowledge of learners, knowledge of the educational context, and technology knowledge

(Angeli & Valanides, 2005; Angeli & Valanides, 2009). This body of knowledge grows when teachers are engaged

systematically in useful educational practices, either in their own classrooms or teacher professional development

programs.

Figure 1. Technological Pedagogical Content Knowledge (adopted from Angeli & Valanides, 2005)

TPCK is an important body of knowledge for the field of computer science, because technology is at the center of the

computer science domain, either, as a means in itself (i.e., to learn to use the technology as a goal), or as a means for

achieving or teaching something else (i.e., to use technology in order to solve a problem or to teach a computer

science concept). For the purposes of this study, the authors provide a conceptualization of TPCK for the construct of

computational thinking, as it is defined in Table 1, in order to better explain what teachers need to know to be able to

teach a computational thinking course aligned with the framework proposed in Table 2.

54

Analytically, content knowledge (CK) is defined as knowledge about computational thinking (CK
CT

). This includes

knowledge and understanding about the skills of abstraction (including modeling), denoted as CK
CT(A)

,

generalization, denoted as CK
CT(G)

, decomposition, designated as CK
CT(D)

, algorithmic thinking, designated as

CK
CT(Algo)

, and debugging, denoted as CK
CT(Debug)

. CK
CT(Algo)

includes knowledge of several computational thinking

concepts, such as, data, processing, information, sequencing, loops, parallel processing, events, conditions, operators,

variables, and dataflow of control.

Learner knowledge for computational thinking (LK
CT

) includes knowledge about learners’ difficulties in (a)

developing abstractions that are beyond of any particular programming language or tool, denoted as LK
CT(A)

, (b)

generalizing from one solution to another by identifying common patterns, denoted as LK
CT(G)

, (c) decomposing

complex problems to simpler ones, designated as LK
CT(D)

, (d) thinking algorithmically to solve a problem (including

difficulties in understanding relevant concepts, such as sequencing, loops, flow of control, conditions, etc.), denoted

as LK
CT(Algo)

, and (e) debugging, denoted as LK
CT(Debug).

Pedagogical knowledge for computational thinking (PK
CT

) includes the general pedagogical knowledge applicable to

all other content domains (i.e., the use of questions to promote understanding, use of examples, explanation,

demonstration), in addition to knowledge about subject-specific pedagogical practices pertinent to computational

thinking. PK
CT

 is defined in terms of the following teaching tactics: (a) model how to problem solve or think about a

problem in iterative and incremental ways, (b) present or explain a solution to a problem in terms of a series of steps,

(c) model decision making based on conditions, (d) do something based on (and expanding) what others or you have

done (reuse and remix), (e) show how a complex problem can be decomposed into simpler problems and develop a

solution in increments, (f) show how to design a model before writing a computer program for solving the problem,

and (g) try things out as you go and make revisions based on what happens.

Technology knowledge for computational thinking (TK
CT

) includes knowledge and skills about how to (a)

operate/use a variety of technologies, (b) invent new technologies/tools, (c) solve a task using technical processes,

methods, and tools, and (d) learn and adapt to new technologies.

Context knowledge for computational thinking (CX
CT

) is defined from the point of view explicated by Porras-

Hernández and Salinas-Amescua (2013) who proposed to regard context knowledge along two important

dimensions, namely (a) scope (macro, mezzo, and micro level context) and (b) actor (students’ and teachers’ inner

and external context). Macro context is defined by social, political, technological, and economic conditions at a

global level that influence the value and worth of adding computer science and computational thinking to the school

curriculum. Mezzo context is defined by the social, cultural, political, organizational, and economic conditions

settled in the local community and the educational institution about the value of computational thinking in children’s

lives. Finally, micro context is the level that deals with in-class conditions for learning (e.g., available resources for

computational thinking, available technologies, norms and policies, beliefs, expectations, teachers’ and students’

goals about computational thinking). In addition, Porras-Hernández and Salinas-Amescua (2013) argued that in order

to comprehend teachers’ uses of technology, it is important to consider teachers’ and students’ (actors’) unique

characteristics, as they are brought in the context as separate objects of knowledge with internal (e.g., students’

needs, preferences, misconceptions, learning difficulties, prior knowledge, teachers’ self-efficacy, pedagogical

beliefs) and external contexts (e.g., ethnicity, culture, community, and socioeconomic background).

Lastly, TPCK for computational thinking (TPCK
CT

) is defined as knowing how to: (1) Identify a range of creative

and authentic computational thinking projects; (2) Identify a range of technologies with an appropriate set of

affordances in terms of providing the necessary technological means for practicing/teaching the whole range of

computational thinking skills with each project; and (3) Use the affordances of technology to transform CK
CT

 and

PK
CT

 using representations that make the overall computational thinking experience comprehensible for all learners.

55

The question that naturally arises at this point is: “What form should teacher preparation take, so that teachers

develop their TPCK
CT

 competencies adequately?” In the next section, we provide preliminary research evidence

from a teacher education course on preparing teachers how to teach computational thinking.

Teacher preparation in developing TPCK competencies for computational thinking

In the fall of 2015, fifteen elementary school teachers pursuing a master’s degree in instructional technology were

enrolled in a course on learning how to teach computational thinking in their K-6 classrooms. All teachers were

unfamiliar with computational thinking and had no prior experiences with computer programming. The teachers

participated in 13 three-hour weekly meetings. The participants were engaged in hands-on design activities with the

Scratch computer programming environment. The learning-by-design approach, which has been shown to be

effective in contemporary teacher development studies (McKenney, Kali, Markauskaite, & Voogt, 2015), was used in

the course to engage teachers in designing models of different problem situations before constructing computer

programs for solving the problems.

The course instructor initially engaged the teachers in authentic problem solving by asking them to think about the

city/town they were living and identify ways of how people’s lives in those places could be improved. The teachers

explained their thinking about possible improvements and then the instructor asked them to think about how computers

could be used for solving some of the problems they identified. A brainstorming activity resulted in ten different ideas

that constituted the real-life tasks that the course instructor used to teach the teachers about computational thinking. The

ten tasks were sequenced from simple to complex based on the involvedness of the solution.

For each problem, teachers were taught how to create a model first before writing a computer program for solving the

problem. Creating a model proved to be extremely difficult for the teachers and often times they asked their

instructor for help. Early attempts in creating models resulted in models containing lots of unnecessary information,

but, gradually teachers, with the help of the course instructor learned that models are abstractions of something free

from inessential detail. The teachers were taught how to create models through a process that was explicitly taught to

them and involved identification of the important entities of the model, their characteristics (parameters in the

model), and relationships, either quantitative or qualitative, between the parameters of the entities. The teachers

showed commitment in developing the best models they could possibly create, and, often times they exhibited lots of

creative ideas of how to make them better.

In regards to teaching teachers computer programming, the course instructor used systematically the following

pedagogical strategies: (a) decide what sprites are needed for your project, (b) decide what scripts are needed for

your project, (c) organize the scripts in meaningful ways for you and others, (d) develop some code, try it out, then

develop some more, (e) test and debug, and (f) build or extend on existing projects or ideas. During the programming

tasks, computational concepts such as, data, processing, information, sequencing, loops, parallel processing, events,

conditions, operators, variables, and dataflow of control, were explicitly explained and illustrated with lots of

programming examples. Teachers had no difficulties with understanding programming concepts, even though they

found the concepts of variables and conditional logic more challenging than the others.

Concluding remarks

In conclusion, the authors in this paper presented a computational thinking curriculum framework for designing a

curriculum for K-6, an area of research that is still in its infancy, described design guidelines for enacting the

curriculum framework, and defined TPCK
CT

 as the body of knowledge that teachers need to have to be able to teach

the curriculum in K-6. In addition, the authors provided an example of a teacher preparation course that was

specifically designed to promote teachers’ TPCK
CT

. It is recognized that more empirical evidence in the form of rich

educational cases is needed in terms of further investigating the effectiveness of the frameworks proposed herein in a

variety of contexts. It is expected that with the gradual adoption of computer science as a distinct school subject in

the K-6 curriculum of countries around the world, our knowledge and research base regarding the issues discussed in

this paper will dramatically expand over the next several years.

56

References

Angeli, C., & Valanides, N. (2005). Preservice teachers as ICT designers: An Instructional design model based on an expanded

view of pedagogical content knowledge. Journal of Computer-Assisted Learning, 21(4), 292-302.

Angeli, C., & Valanides, N. (2009). Epistemological and methodological issues for the conceptualization, development, and

assessment of ICT-TPCK: Advances in technological pedagogical content knowledge (TPCK). Computers & Education, 52, 154-

168.

Armoni, M. (2012). Teaching CS in kindergarten: How early can the pipeline begin? ACM Inroads, 3(4), 18-19.

Astrachan, O., & Briggs, A. (2012). The CS principles project. ACM Inroads, 3(2), 38-42.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and what is the role of the

computer science education community? ACM Inroads, 2(1), 48-54.

Bell, T. C., Witten, I. H., Fellows, M. R., Adams, R., & McKenzie, J. (2015). CS Unplugged: An Enrichment and extension

programme for primary-aged students. Retrieved from http://csunplugged.org/wp-

content/uploads/2015/03/CSUnplugged_OS_2015_v3.1.pdf

Czerkawski, B. (2015). Computational thinking in virtual learning environments. In Proceedings of E-Learn: World Conference

on E-Learning in Corporate, Government, Healthcare, and Higher Education 2015 (pp. 993-997). Chesapeake, VA: Association

for the Advancement of Computing in Education (AACE).

desJardins, M. (2015). Creating AP® CS principles: Let many flowers bloom. ACM Inroads, 6(4), 60-66.

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J. (2016). Arguing for computer science in the

school curriculum. Educational Technology and Society, 19(3), 38-46.

Furber, S. (2012). Shut down or restart? The way forward for computing in UK schools. London, UK: The Royal Society.

Gal-Ezer, J., & Stephenson, C. (2010). Computer science teacher preparation is critical. ACM Inroads, 1(1), 61-66.

Gibson, J. P. (2012, July). Teaching graph algorithms to children of all ages. In Proceedings of the 17th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education (ITiCSE’12) (pp. 34–39). New York, NY: ACM.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: The Exploring computer science program. ACM

Inroads, 3(2), 47-53.

Hazzan, O., Lapidot, T., & Ragonis, N. (2011). Guide to teaching computer science: An Activity-based approach. London, UK:

Springer.

Hubwieser, P., Magenheim, J., Mühling, A., & Ruf, A. (2013, August). Towards a conceptualization of pedagogical content

knowledge for computer science. In Proceedings of the ninth annual international ACM conference on International computing

education research (pp. 1-8). New York, NY: ACM.

Husing, T., & Korte, W. B. (2010). Evaluation of the implementation of the Communication of the European Commission: E-skills

for the 21st century. Bonn, Germany: Empirica. Retrieved from http://hdl.voced.edu.au/10707/323186

Koehler, M. J., & Mishra P. (2008). Introducing TPCK. In AACTE Committee on Innovation and Technology (Eds.), Handbook

of Technological Pedagogical Content Knowledge (TPCK) for educators (pp. 3–29). New York, NY: Routledge.

Kumar, D. (2014). Digital playgrounds for early computing education. ACM Inroads, 5(1), 20-21.

McKenney, S., Kali, Y., Markauskaite, L., & Voogt, J. (2015). Teacher design knowledge for technology enhanced learning: An

Ecological framework for investigating assets and needs. Instructional science, 43(2), 181-202.

Micheuz, P. (2008). Some findings on informatics education in Austrian academic secondary schools. Informatics in Education,

7(2), 221-236.

National Research Council. (2010). Committee for the workshops on computational thinking: Report of a workshop on the scope

and nature of computational thinking. Washington, DC: National Academy Press. doi:10.17226/12840

Niess M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical

content knowledge. Teaching and Teacher Education, 21, 509–523.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books, Inc.

57

Porras-Hernández, L. H., & Salinas-Amescua, B. (2013). Strengthening TPACK: A Broader notion of context and the use of

teacher's narratives to reveal knowledge construction. Journal of Educational Computing Research, 48(2), 223-244.

Prottsman, K. (2014). Computer science for the elementary classroom. ACM Inroads, 5(4), 60-63.

Saeli, M. (2012). Teaching programming for secondary school: A Pedagogical content knowledge based approach (Unpublished

doctoral dissertation). Technische Universiteit Eindhoven, Netherlands.

Saeli, M., Perrenet, J., Jochems, W. M., & Zwaneveld, B. (2011). Teaching programming in secondary school: A Pedagogical

content knowledge perspective. Informatics in Education, 10(1), 73-88.

Selby, C. C. (2014). How can the teaching of programming be used to enhance computational thinking skills? (Unpublished

doctoral dissertation). University of Southampton, Southampton, UK.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4–14.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1-23.

Stephenson, C., Gal-Ezer, J., Haberman, B., & Verno, A. (2005). The New educational imperative: Improving high school

computer science education. New York, NY: Computer Science Teachers Association (CSTA).

Thalheim, B. (2000). Fundamentals of entity-relationship modeling. New York, NY: Springer.

Tucker, A. B., Deek, F., Jones, J., McCowan, D., Stephenson, C., & Verno, A. (2003). A Model curriculum for K-12 computer

science. New York, NY: ACM/Computer Science Teachers Association.

van Diepen, N., Perrenet, J., & Zwaneveld, B. (2011). Which way with informatics in high schools in the Netherlands? The Dutch

dilemma. Informatics in Education, 10(1), 123-148.

van Driel, J. H., & Berry, A. (2012). Teacher professional development focusing on pedagogical content knowledge. Educational

Researcher, 41(1), 26-28.

van den Akker, J. (2010). Building bridges: How research may improve curriculum policies and classroom practices. In Beyond

Lisbon 2010: Perspectives from research and development for education policy in Europe (pp. 177-195). Aarau, Switzerland:

CIDREE.

van Merriënboer, J. V., & Kirschner, P. A. (2007). Ten steps to complex learning: A Systematic approach to four-component

instructional design. Mahwah, NJ: Lawrence Erlbaum.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory education: Towards an

agenda for research and practice. Education and Information Technologies, 20(4), 715-728.

Webb, M., Fluck, A., Cox, M., Angeli-Valanides, C., Malyn-Smith, J., Voogt, J., & Zagami, J. (2015). Curriculum: Advancing

understanding of the roles of computer science/informatics in the curriculum. In K-W Lai (Ed.), EDUsummIT 2015 Summary

Report (pp. 60-68). Retrieved from http://www.curtin.edu.au/edusummit/local/docs/edusummit2015-ebook.pdf

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Wing, J. M. (2011, March). Computational thinking. Retrieved from

https://csta.acm.org/Curriculum/sub/CurrFiles/WingCTPrez.pdf

Wolf, P., & Brandt, R. (1998). What do we know from brain research? Educational Leadership, 56(3), 8-13.

