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1. Introduction

In today’s world, the amount of available data is steadily increasing, and it is often of
interest to detect changes in the data. Statistical process monitoring (spm) provides
tools to monitor data streams and to signal changes in the data. One of these tools
is the control chart. The topic of this dissertation is a special control chart: the expo-
nentially weighted moving average (ewma) control chart. The fact that these charts
also play an important role in lean six sigma provides an additional motivation.

Imagine, you work at an educational institute, which offers courses and you are re-
sponsible for the recruitment process of participants in these courses. One of the im-
portant channels through which potential participants find your institute is its web-
site. These potential participants have the option to request a brochure through an
online form. From the website’s data analytics system you can extract the number of
requested brochures: the so-called number of ‘leads’. Figure 1.1(a) shows a run chart
of the total number of leads per week in the first forty weeks of 2015. What can you
learn from the figure? Are you -or should you be- worried about the low number of
leads in the last week?

Answers to these kinds of questions can be found using the tools and techniques
studied in spm. Spm started with the pioneering work of Walter A. Shewhart at the Bell
Telephone and Western Electric companies. He introduced a chart that could be used
to compare the current data with data generated by a normally operating process
(Shewhart, 1926, 1931). Nowadays, we know this chart as the Shewhart control chart.
An example is displayed in Figure 1.1(b). The added ‘control limits’ enable the user to
distinguish ‘normal’ variability in the process from ‘special’ cause variability. Figure
1.1(b) shows one signal in week 21, indicating that in week 21 possibly something
was different compared to the other weeks.

A limitation of the Shewhart control chart is its inability to detect small to mod-
erate sized sustained changes in the process parameters. To overcome this prob-
lem, Roberts (1959) introduced the ewma control chart; it is displayed in Figure 1.1(c).
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Figure 1.1: Example charts

Where the Shewhart control chart plots the current data from the process, the ewma
control chart plots a weighted average of the current and past data from the process.
This chart therefore, has the ability to detect small sustained changes quicker. The
ewma chart in Figure 1.1(c) already signals at week 17 that a change may have oc-
curred.

The goal of this dissertation is to investigate the properties of the ewma control chart
and to give recommendations regarding its design. More specifically, we focus on
evaluating and understanding the effect of estimation error. This first chapter pro-
vides an overview of this dissertation’s contributions and discusses its contributions
within the literature. To this end, we first address the concepts in the dissertation’s
title; statistical process monitoring is discussed in Section 1.1, the control chart is dis-
cussed in Section 1.2, and the ewma control chart is discussed in Section 1.3. Finally,
in Sections 1.4 and 1.5, two problems that show up in the application of (ewma) con-
trol charts are discussed. These lead to the motivation and outline of this dissertation
in Section 1.6.
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1. INTRODUCTION

1.1 Statistical process monitoring

The term statistical process monitoring (spm) might surprise the reader as statistical
process control (spc) is much more widely used. Before we clarify the deliberate choice
for spm, a short introduction to the field of industrial statistics and spc is necessary.

The field of industrial statistics combines knowledge of statistics with process think-
ing (Vining et al., 2015). An industrial statistician uses statistical tools to generate
useful information about how processes can be improved to provide better value for
the customers (Bisgaard, 2012). A well-known methodology to improve processes
is lean six sigma. For an introduction to this methodology the reader is referred to
De Mast et al. (2012). The example of website leads, discussed above, comes from
such an improvement project (see Zwetsloot and Does, 2015).

Statistical process control (spc) is an important area of research in industrial statis-
tics. Spc encompasses a set of problem-solving tools useful for improving and moni-
toring the performance of a process (Montgomery, 2013). The tools of statistical pro-
cess control are widely used in the analyze and control phase of DMAIC, the frame-
work prescribed in lean six sigma. Box et al. (2005, page 565) distinguish between
two procedures in spc: process monitoring and process adjustment or control. “By pro-
cess monitoring is meant continual checking of process operation to detect unusual
data....By contrast, process adjustment is used to estimate and compensate for drifts
or other changes in the data.” The methodologies studied in this dissertation are all
related to process monitoring, hence the choice for spm in the title of this dissertation.
Hereby, we do not imply that adjustment and control are not important. However, it
is beyond the scope of the work presented here.

The foundations for spc (and hence spm) were laid down by Shewhart (1931). For an
overview of current issues and ideas in spm see Woodall and Montgomery (2014).
Shewhart introduced two types of variation. The first is common cause variability.
This is variability due to random noise without a (clear) reason. The second type
is what Shewhart called assignable cause variability. Control charts are designed to de-
tect changes due to assignable causes quickly. Recall the Shewhart control chart in
Figure 1.1(b). It shows one signal of a (possible) special cause of variability at week
21. An investigation of this week reveals the assignable cause for this peak in the
number of leads; there was a recruitment event held in that week. The ewma chart in
Figure 1.1(c) shows signals in weeks 17, 18, and 20. An investigation of these weeks
reveals the assignable cause for this downward shift in the number of leads; in week
15 the website’s headings were changed resulting in a drop in the rank on online
search engines. In week 19 the changes in the headings were reversed.

A process influenced only by common cause variability is called ‘in-control’. To
represent an in-control process, it is often modelled by a probability distribution rep-
resenting the common cause variation in the process. Special cause variability is then

3
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modelled as a change from the ‘in-control’ distributional parameter(s). Such a pro-
cess is called ‘out-of-control’. In this dissertation we use the following definition,
inspired by Does et al. (1999, Chapter 1);

In-control process A process that is stable and is influenced solemnly by common cause
variability. These are causes that are inherent to the process hour by hour, day by day, and
that influence everything and everybody working in the process;

Out-of-control process A process that is influenced by assignable or special causes. These
are cause that are not continuously present in the process or which do not influence everything,
but that arise from specific circumstances.

1.2 Control charts

Control charts are designed to detect changes in a process from an in-control state
to an out-of-control state. A control chart consists of plotting the information on a
process characteristic against time together with so-called control limits. As soon as
this plotted statistic exceeds a control limit, a signal is given. A signal indicates a
possible out-of-control process.

To monitor a process, observations from the process are prospectively collected.
We consider the situation were either a single observation (n = 1) or multiple (n > 1)
observations are collected at each time instance. Furthermore, we consider monitor-
ing a continuous process characteristic that can be modelled as an independent and
normally distributed variable. As the normal distribution is fully determined by its
mean and variance, we consider both control charts for the location (Chapters 2 and
4) as well as for the dispersion (Chapters 3 and 5).

As an alternative to the traditional Shewhart chart, Roberts (1959) introduced the
ewma chart and Page (1954) introduced the cumulative sum (cusum) chart. Both
charts can detect small to moderate sized shifts quicker than the Shewhart chart.
Numerous studies have compared the performance of the ewma and cusum chart,
see for example Hawkins and Wu (2014) and Zwetsloot and Woodall (2015). In this
dissertation, we focus on monitoring using the ewma chart.

There are numerous applications of control charts. Traditionally, they have been
used in quality control and improvement. Examples can be found in Does et al. (1999)
and Lawless et al. (2012). Many applications can also be found in other fields such as
healthcare (see e.g. Woodall, 2006; Tsui et al., 2008; Spiegelhalter et al., 2012) or ser-
vices (see e.g. MacCarthy and Wasusri, 2002; De Mast et al., 2012). Recently, control
charts have been applied to enhance data quality (Jones-Farmer et al., 2014a) and net-
work monitoring (Woodall et al., 2015). In other fields statistical process monitoring
is often known as ‘anomaly detection’ or ‘sequential surveillance’. These methods are
closely related to the control charting techniques. For example Thottan and Ji (2003)

4



1. INTRODUCTION

and Münz and Carle (2008) monitor internet traffic. And Frisén (2009) discusses ap-
plications in finance.

1.3 EWMA control charts

The exponentially weighted moving average (ewma) control chart, as introduced by
Roberts (1959), consists of plotting a weighted average of measurements, giving heav-
iest weights to the most recent observations. This provides the chart with the advan-
tage of being sensitive to small- and moderate-sized sustained shifts in the process
parameters. Figure 1.1(c) shows an example of an ewma control chart. The ewma chart
has received a great deal of attention in the spm literature. See, for example, Crowder
(1987, 1989), Robinson and Ho (1978), Lucas and Saccucci (1990), Jones et al. (2001),
Jones (2002), and Simões et al. (2010).

Mathematically the ewma chart consists of plotting the ewma statistic Zi at time
i defined as Zi = (1 − λ)Zi−1 + λMi, for i = 1, 2, 3, ..., where Mi denotes the mea-
sure of interest, based on the current information of the process characteristic. For
monitoring the location (see Chapters 2 and 4), we set Mi equal to the sample mean.
For monitoring the dispersion (see Chapters 3 and 5), we setMi equal to a dispersion
measure such as the sample standard deviation.

Throughout this dissertation we assume that ‘the current information’ consists of
observations which are collected in samples of size n ≥ 1 from the process. Further-
more, we assume that these observations are independent and normally distributed
with parameters µ and σ. If the process is in control we use that µ = µ0 and σ = σ0.

The factor λ, 0 < λ ≤ 1, is the weighting factor and is referred to as the smoothing
constant. The smaller the value of λ, the heavier the reliance on past data, and the
quicker a small shift in the process parameter is detected. Under the normality as-
sumption, Crowder (1987, 1989) and Lucas and Saccucci (1990) provided the optimal
values of λ that correspond to different magnitudes of mean shifts. If λ = 1, the ewma
chart is equivalent to the Shewhart chart.

Commonly, Z0 is set equal to a target or the expectation of Mi. Setting Z0 larger
than this expectation, is referred to as giving the chart a head start. See Lucas and
Saccucci (1990) for more details on ewma control charts with the head start feature.

The ewma chart signals when the statistic Zi exceeds the control limits. The upper
control limit (UCL) and lower control limit (LCL) can be determined by

UCLi = µZi
+ LσZi

and LCLi = µZi
− LσZi

(1.1)

where L is a positive coefficient. Together with λ, L determines the performance of
the ewma control chart. Under the assumption of independent and normally dis-
tributed data, it follows that the expectation of Zi, denoted by µZi , is equal to the
expectation of Mi. Moreover, the standard deviation of Zi, denoted by σZi

, is equal

5
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to

σZi = σM

√
λ

2− λ
[1− (1− λ)2i].

Where σM denotes the standard deviation ofMi. The standard deviation ofZi is time
dependent. This so-called time-varying standard deviation converges, as i increases,
to

σZi
= σM

√
λ

2− λ
.

Steiner (1999) and Abbasi (2010) studied the difference between ewma charts based
on time-varying and asymptotic limits.

The parameters µM and σM are functions of the process parameters, which are
usually unknown. Therefore, control charts are generally implemented in two phases.
In the first phase, Phase I, the in-control state of the process characteristic is deter-
mined and the distributional parameters are estimated (Vining, 2009; Chakraborti
et al., 2009). In the second phase, Phase II, the estimated process parameters are used
to set up the ewma control chart and the process is prospectively monitored to detect
changes from the in-control state.

In this dissertation we study the ewma chart based on estimated process parameters.
The dissertation consists of two parts, referred to as ‘Phase I’ and ‘Phase II’ in analogy
to the two phases of control charting. In Phase I (Chapters 2 and 3) we consider the
estimation of the process parameters. In Phase II (Chapters 3 and 4) we consider the
performance of the ewma chart when parameters are estimated. The motivation for
each of the two ‘Phases’ is discussed in the following two sections.

1.4 Phase I and contaminated data

In a survey of Phase I analysis, Jones-Farmer et al. (2014) review the major issues and
developments in Phase I analysis. One of the issues is the possibility of unacceptable
data in Phase I. This section discusses this motivation for Chapters 2 and 3.

A motivating example: leads

Consider again the data concerning the number of leads. To set up the control charts
in Figure 1.1 estimates of the process parameters are needed. To this end, historical
data were collected from 2014 (weeks 25 through 52), see Figure 1.2. As indicated in
Figure 1.2 the data may contain various contaminations. It was found that in weeks
25 and 44 the webmaster requested some brochures in order to test functions on the
website. Furthermore, in weeks 32 and 33 there was a problem with the server host
and the brochure request form was not functioning. These contaminated observa-
tions do not belong to the in-control process, and hence need to be identified and
eliminated as they will influence the estimates of the in-control process parameters.

6



1. INTRODUCTION

 

Figure 1.2: Run chart of historical data on the number of leads

This example does not stand alone; it is common for a (Phase I) data set to contain
outliers, shifts or other forms of contaminated observations (see e.g. Vining et al.,
2015). Contaminations in Phase I are problematic as they can influence the parameter
estimates, resulting in Phase II control charts with less ability to detect changes in the
process characteristic.

Approaches for contaminations in the Phase I data

The path that we take to deal with contaminations in Phase I is clear from the titles
of Chapters 2 and 3; both start with the term robust. ‘Robust’ was introduced into
industrial statistics by George Box (1953), by which he meant a (statistical) test which
is still useful if the underlying assumption on the distributional properties of the data
might not be true.

The use of robust estimators in Phase I is generally accepted in the spm litera-
ture. For example, both Jensen et al. (2006) and Jones-Farmer et al. (2014b) noted that
the use of robust estimators is appropriate in Phase I. It was Tukey (1960) who first
considered the robustness of point estimators and detailed how to model contamina-
tions with mixtures of normal distributions. In line with his view, we consider robust
methods to have at least the following properties;

• they downgrade the influence of the contaminated observations in the data on
the final estimate;

• they produce correct estimates if the measurements have not been contami-
nated.

7
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The traditional robust estimators are point estimators. Some references are Rocke
(1989), Tatum (1997), and Janacek and Meikle (1997). Unfortunately, as we will see in
Chapters 2 and 3, robust point estimators are usually not very efficient under uncon-
taminated data.

Another possibility is the use of Phase I Shewhart charts which identify poten-
tially contaminated samples, remove these from Phase I, and use the remaining sam-
ples to estimate the process parameters (e.g. Schoonhoven et al. 2011a, 2011b). An
overview of Phase I charts for univariate data was given by Chakraborti et al. (2009)
and Jones-Farmer et al. (2014b).

A third approach is to use change point methods. These methods are especially
suited for detecting sustained changes in the process parameters. There is a long
tradition of testing for sustained shifts in Phase I; for a literature overview see Amiri
and Allahyari (2012).

The optimal choice of an estimation method requires knowledge of the type of
contaminations. Typically, Phase I Shewhart charts are suitable when outliers can be
present in the Phase I data set and change point methods are suitable if sustained
shifts may occur in the Phase I data set. The aim of Chapters 2 and 3 is to introduce
a new Phase I estimation methodology for the process parameters which provides
reliable estimates regardless of the type of contaminations in Phase I. This is achieved
by using an ewma chart in Phase I.

In Chapter 2, we compare and evaluate various location estimators. In Chapter 3,
we compare and evaluate various dispersion estimators.

1.5 Phase II and the effect of estimation

As a control chart is based on Phase I estimates, its control limits and hence perfor-
mance will be conditional on the Phase I sample obtained. Each Phase I sample (from
the same process) will yield different estimates and different control limits, yielding
control charts which will show varying performance. In this section, we discuss the
effect of estimation on the performance of the ewma chart and give an introduction
and motivation for Chapters 4 and 5.

The performance of control charts is commonly evaluated using characteristic of the
run length distribution. The run length of a control chart is a random variable defined
as the number of successively plotted statistics until the chart signals. One of the most
common measures of control chart performance is the average run length (ARL). It is
favourable to have a largeARL if the process is in control and a smallARL if the pro-
cess is out of control. When parameters are estimated the control chart’s performance
will depend on the estimated parameters and will thus vary among practitioners.
This is because practitioners use different Phase I data sets, which result in different
parameter estimates, control limits, and chart performance (i.e. different ARL val-
ues). In Saleh et al. (2015a) this variation is referred to as practitioner-to-practitioner
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variability. Equivalently, this variation can be viewed as sampling variability. Most
often, charts are evaluated based on the average of the conditional ARLs (AARL),
averaging across the sampling variability.

Figure 1.3 illustrates this sampling variability. It presents a boxplot of 100,000
simulated in-controlARL values for the ewma chart for location. For each of the sim-
ulation runs, parameter estimates of the mean and standard deviation were obtained
based on 50 randomly generated independent and normally distributed samples of
5 observations. Logically, the estimated values for the mean and standard deviation
vary across the 100,000 drawn Phase I samples. With each pair of Phase I estimates an
ewma chart for location was set up. We use λ = 0.1 and L = 2.454 such that the chart
has an in-control average run length of 200, if the estimates are exactly on target. The
ARL was computed for each of these 100,000 estimated pairs and these conditional
ARLs are displayed in Figure 1.3. From the boxplot it follows that 50% of the practi-
tioners would have a chart with an in-controlARL value between approximately 100
and 180 and thus receiving a false alarm every 100 to 180 observations on average.
Furthermore, there are also 5% of the practitioners who will receive (on average) a
false alarm within the first 50 samples.

Figure 1.3: Conditional in-control ARL. The boxplot shows the 5th, 10th, 25th, 50th, 75th,
90th, and 95th percentiles. Dotted line shows specified in-control ARL

The effect of sampling on control charts, as illustrated in Figure 1.3, has received
a great deal of attention in the spm literature. See, for example, Quesenberry (1993),
Chen (1997), Jones et al. (2001, 2002), and Saleh et al. (2015b). Jensen et al. (2006) and
Psarakis et al. (2014) provided reviews of the literature on the performance of control
charts with estimated parameters. The general consensus is that the use of parameter
estimates results in control charts with less predictable statistical performance than
those with known parameters. A specific problem is that charts give more frequent
false alarms.

The results in Figure 1.3 show the necessity to take into account the effect of es-
timation error. In Chapter 4 we study this effect for the ewma chart for location and
suggest an alternative design procedure based on bootstrap. In Chapter 5 we study
the effect of estimation on the ewma chart for dispersion. Various designs exist of the
ewma chart for dispersion. We compare the effect of estimation across three of the
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most commonly applied designs.

1.6 Contribution and outline of this dissertation

In this dissertation we contribute to the development and understanding of the ewma
control chart based on estimated parameters. We study both the ewma chart for loca-
tion as well as for dispersion.

In Chapter 2 a new estimation method for the location based on ewma charting is
introduced. We compare this method to a wide range of existing location estimators.
We consider the situation where Phase I could contain contaminated observations.
This situation is relevant as in most practical applications data disturbances occur.
We conclude that existing estimators are most effective given that it is known which
pattern of contaminations are present in Phase I. However, if it is unknown which
pattern of contaminations is present the new method gives the most precise estimate.

This chapter is based on two papers: Zwetsloot et al. (2014) and Zwetsloot et al.
(2015b). The first paper entitled “A Robust Estimator of Location in Phase I Based on
an EWMA Chart” has been published in the Journal of Quality Technology. It provides
the basis for Chapter 2. The second paper, entitled “Robust Point Location Estimators
for the EWMA Control Chart”, has been accepted for publication in a special issue
on spm in Quality Technology and Quantitative Management. Both papers were com-
bined work with dr. M. Schoonhoven and prof. dr. R.J.M.M. Does. For the paper
Zwetsloot et al. (2014), I took the lead in the computation of the results presented,
M. Schoonhoven took the lead in writing the paper, and R.J.M.M. Does provided su-
pervision. For the paper Zwetsloot et al. (2015b) I took the lead and M. Schoonhoven
and R.J.M.M. Does provided supervision. Both papers originated from my master’s
thesis “A Robust EWMA Control Chart” (Zwetsloot, 2012), written under the super-
vision of prof. dr. R.J.M.M. Does and prof. dr. H.P. Boswijk.

In Chapter 3 we focus on estimating the process dispersion. We follow the same
lines as in Chapter 2, and compare estimation methods for the dispersion when the
data may contain various patterns of contamination. We propose a new estimation
method based on ewma charting, which is an effective estimation method, if the pat-
tern of contamination in the data is unknown.

This chapter has been published under the title “A Robust Phase I Exponentially
Weighted Moving Average Control Chart for Dispersion” in Quality and Reliability
Engineering International. This paper was combined work with dr. M. Schoonhoven
and prof. dr. R.J.M.M. Does (Zwetsloot et al., 2015a) in which I took the lead.

Chapter 4 is concerned with the effect of estimation on the monitoring (Phase II)
performance of the ewma chart for location. We show that it can be extremely difficult
to lower the variation in the performance sufficiently due to practical limitation on the
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amount of the Phase I data. To deal with this, we recommend an alternative design
criterion and a procedure based on bootstrap.

This chapter is based on the paper “Another Look at the EWMA Control Chart
with Estimated Parameters” which has been published in the Journal of Quality Tech-
nology. This paper was combined work with ms. N. Saleh, prof. dr. M.A. Mahmoud,
prof. dr. L.A. Jones-Farmer, and prof. dr. W.H. Woodall (Saleh et al., 2015a). Most of
my efforts have gone into the theory and numerical results for the bootstrap method
presented in Section 5 and Appendix B of this paper (respectively Sections 4.5 and
4.8 of this dissertation).

As Box et al. (1978, Chapter 5) noted “most often we are interested in possible dif-
ferences in the mean level .... Sometimes, however, it is the degree of variation of
the data that is of interest.” In Chapter 5 we consider the Phase II monitoring of the
dispersion. Various designs of the ewma chart for dispersion are available. These de-
signs vary in the choice of the dispersion measure. The most popular choice, in the
literature, is the logarithm of the sample variance. Other designs are based on the
sample variance or the sample standard deviation. In Chapter 5 we compare these
three ewma dispersion charts based on estimated parameters. We argue that the chart
which is less influenced by estimation error (i.e. the chart based on the sample vari-
ance) should be used in practice.

This chapter is based on the single authored paper “A Comparison of EWMA Con-
trol Charts for Dispersion based on Estimated Parameters” that has been submitted
for publication (Zwetsloot, 2015).

Finally, Chapter 6 provides a summary of this dissertation.
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Phase I

Estimation from Contaminated Data

“In the majority of practical instances, the most difficult job of all is to choose the sample that
is to be used as the basis for establishing the tolerance range [control limits].”

W. A. Shewhart (1939, page 76)

“Some robust estimator ... should be used on any data set...; there is little to lose, much to
gain, and sufficient evidence that the result will be positive.”

Rocke, Downs, and Rocke (1982, page 100)





2. Robust
Estimators for Location

One of the issues in Phase I analysis is the possibility of contaminated observations
in the data. To deal with the effect of contaminations, robust estimation methods
are generally recommended. In this chapter, we propose a robust estimation method
for the location parameter. Furthermore, we compare this new method to various
existing estimation methods. This chapter is based on Zwetsloot et al. (2014) and
Zwetsloot et al. (2015b).

2.1 Introduction

It is generally accepted in the literature that a control chart is implemented in two
phases: Phase I, to define the stable state of the process characteristic and to estimate
its distributional parameters; and Phase II to monitor the process. One of the issues
in Phase I analysis is the possibility of unacceptable -contaminated- data in Phase I
(Jones-Farmer et al., 2014b).

The approach we take to deal with contaminations in Phase I, is the use of ro-
bust estimation methods (see Section 1.4). Numerous robust (point) estimators have
been discussed in the literature. Some robust point estimators can be found in Rocke
(1989), Janacek and Meikle (1997), and Langenberg and Iglewicz (1986). Another pos-
sibility, we consider, is the use of Shewhart control charts in Phase I to screen the data.
A review of these methods can be found in Chakraborti et al. (2009) and Jones-Farmer
et al. (2014b). Furthermore, we consider a method particularly suited to detect sus-
tained shifts: a change point detection method. Amiri and Allahyari (2012) provided
an overview on this topic.

The optimal choice of estimation methods requires the knowledge of the type of
contaminations. Typically, Phase I Shewhart charts are suitable when outliers are
present in Phase I (see, e.g. Schoonhoven et al., 2011b). Change point methods are
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suitable if sustained shifts occur (see, e.g. Sullivan and Woodall, 1996). In practice it
is often unknown if contaminations are present, let alone what patterns of contamina-
tions are present. Therefore, in this chapter, we introduce a new Phase I estimation
methodology for the location which provides reliable estimates regardless of the pat-
tern of contaminations. This is achieved by using an estimation method based on an
ewma chart in Phase I.

This idea follows an insight from Hunter (1986). He provided a useful analysis of
the degree in which the Shewhart, cusum and ewma control charts use the history of
the data to detect a change in the process mean. He pointed out that the Shewhart
control chart only uses the current observation and therefore has no memory while,
in contrast, the cusum control chart uses all of the history paying equal attention to all
past observations and the current observation. This is an oversimplification because,
in fact, the cusum chart uses a decision rule whereby some of the past observations
can become irrelevant. The ewma control chart, gives less weight to data as they get
older. The weight given to the current observation relative to earlier observations
can be chosen by selecting a smoothing parameter between 0 and 1: a value of 1
means that all of the weight is assigned to the current observation and no weight
to previous observations, equivalent to the Shewhart control chart, while a value of
almost 0 results in a control chart with a long memory. We shall use these specific
properties of the ewma control chart in the proposed estimation method.

This chapter is organized as follows. In Section 2.2 we present background in-
formation on the ewma chart for location. In Sections 2.3 and 2.4 various estimation
methods are presented. In Section 2.5 we compare the effectiveness of these estima-
tion methods. In Section 2.6 we describe the results for the Phase II context and in
Section 2.7 we summarize our conclusions.

2.2 The EWMA control chart for location

In this chapter we consider estimating and monitoring the location. To this end sam-
ples of size n ≥ 1 are collected prospectively from the process. We assume that
the process characteristic is independent and normally distributed with µ = µ0 and
σ = σ0 if the process is in control.

To set up the ewma chart, we use the mean of each sample to compute the ewma
statistic

Zi = (1− λ)Zi−1 + λȲi, (2.1)

where Ȳi is the mean of sample i. The chart signals a (possible) out-of-control con-
dition when Zi falls beyond the control limits. The upper control limit (UCL) and
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lower control limit (LCL) are, at time i, equal to:

UCLi/LCLi = µ0 ± L
σ0√
n

√
λ

2− λ
[1− (1− λ)2i], (2.2)

whereL is a positive coefficient which together with λ determines the performance of
the ewma control chart when the process is in control. Furthermore, we set Z0 = µ0.

In practice, µ0 and σ0 are unknown and estimates need to be obtained within
Phase I, the exploratory data analysis phase. To obtain these,m samples of size n are
collected from the process. We denote these observations by Xij , with i = 1, 2, ...,m

and j = 1, 2, .., n, and the Phase I estimates of µ0 and σ0 by µ̂0 and σ̂0, respectively. In
this chapter we consider a limited number of available Phase I data and set m = 50

and n = 5. In Zwetsloot et al. (2014) we also studied Phase I samples of size n = 10.

2.3 Location estimation methods

In this section, we describe various estimation methods, for the location parameter
µ̂0, that can be used within Phase I. We consider point estimators and - especially
useful for the detection of sustained shifts - a change point method. We also present
estimation methods based on control charting in Phase I.

Point estimators

Many point estimators for location have been proposed in the literature, see for exam-
ple Langenberg and Iglewicz (1986), Rocke (1989), and Wang et al. (2007). In Zwet-
sloot et al. (2015b) we compared six of these estimators for µ̂0. One of these estimators
was the overall sample mean, which is known as the most efficient estimator for the
location under uncontaminated normal distributed data. We discovered that, if data
anomalies can be present, the use of the median of the sample means is a good al-
ternative for the traditional overall sample mean. For conciseness we only consider
these two (out of six) point estimators here. The overall sample mean ¯̄X is defined by

¯̄X =
1

m

m∑
i=1

X̄i =
1

m

m∑
i=1

 1

n

n∑
j=1

Xij

 ,

and the median of the sample averages M(X̄) is defined by

M(X̄) = median(X̄1, ..., X̄m).

Change point method

Detecting structural changes in a process characteristic may be done using a change
point method (Amiri and Allahyari, 2012). Change point methods compare the log
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likelihood of all observations, under the assumption that all observations are in con-
trol, with the log likelihood of the observations if a step change has occurred. Sullivan
and Woodall (1996) proposed a change point method for exploratory data analysis
and showed that this method outperforms the Shewhart chart in detecting sustained
shifts. We include their change point method in our analysis.

Denote the maximum likelihood estimator of the variance of the observations in
samples l through k by

σ̂2
l:k =

1

n(k − l + 1)

k∑
i=l

n∑
j=1

(Xij − ¯̄Xl:k)2,

where ¯̄Xl:k is the overall sample average of all observations in samples l through k. To
test for the existence of a sustained shift after sample τ , Sullivan and Woodall (1996)
computed the likelihood ratio statistic as

LRT (τ) = nm ln[σ̂2
1:m]− nτ ln[σ̂2

1:τ ]− n(m− τ) ln[σ̂2
τ+1:m]. (2.3)

Because the expected value of LRT (τ) varies with τ , they first divide LRT (τ) by its
expected value under in-control data. Table 2.1 presents these expected values for
m = 50 and n = 51. A chart can be constructed by plotting the standardized LRT (τ)

versus τ and a sustained shift in Phase I is signalled if LRT (τ) exceeds the upper
control limit UCLCP . Every out-of-control signal indicates a possible sustained shift
in the process, i.e. the process parameters in samples 1, .., τ are different from the
process parameters in samples τ+1, ..,m. When multiple signals are given, we set the
estimated change point (τ̂ ) equal to the τ for which standardized LRT (τ) is largest.
If there is no out-of-control signal we set τ̂ = m.

τ E[LRT ] τ E[LRT ] τ E[LRT ] τ E[LRT ] τ E[LRT ]
1 11 2.04 21 2.02 31 2.02 41 2.04
2 2.21 12 2.03 22 2.02 32 2.02 42 2.05
3 2.14 13 2.03 23 2.02 33 2.03 43 2.06
4 2.10 14 2.03 24 2.02 34 2.03 44 2.07
5 2.08 15 2.03 25 2.02 35 2.03 45 2.08
6 2.07 16 2.03 26 2.02 36 2.03 46 2.10
7 2.06 17 2.03 27 2.02 37 2.03 47 2.13
8 2.05 18 2.02 28 2.02 38 2.03 48 2.21
9 2.04 19 2.02 29 2.02 39 2.04 49
10 2.04 20 2.02 30 2.02 40 2.04 50

Table 2.1: E[LRT ], the expectation of the likelihood ration statistic LRT (τ)

1The values in Table 2.1 differ slightly from the values for E[LRT (τ)] in Table 5 in Zwetsloot et al.
(2014). The values in Zwetsloot et al. (2014) are based on simulation. The values in Table 2.1 are based on
an analytical expression of the expectation of a lognormally distributed variable.
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To determine UCLCP , we set the overall in-control false alarm rate equal to 1

percent. Using 100,000 simulations, we find that UCLCP = 5.75 for m = 50 and
n = 5.

When the change point τ̂ is estimated, we can determine which samples are out of
control. In practice, knowledge of the process would be used to determine whether
the data before or after the estimated τ̂ are in control. In order to prevent the deletion
of a large proportion of clean observations from the Phase I data set (this problem
could occur in our simulation if there is a false alarm at the beginning of the Phase I
data set), we use the following decision rule: ‘the majority of the samples represents
the in-control process’. This implies that, if τ̂ ≤ m/2, we delete samples 1 up to τ̂
from Phase I. If τ̂ > m/2, we delete samples τ̂ + 1 up to m from Phase I. This rule
ensures a more suitable comparison with the other Phase I methods considered in
this chapter. The remaining samples are used to compute the overall sample mean,
yielding an estimate of µ0 based on change point analysis, which we denote by CP .
We believe this is an appropriate decision rule as practitioners can investigate which
sequence before or after the shift is acceptable.

The considered change point estimation method, CP , is designed to detect a sin-
gle change point τ̂ and is at a disadvantage if multiple step changes occur in Phase
I. Alternative change point methods can be designed based on recursive testing for
step changes (see, e.g. Capizzi and Masarotto, 2013).

The proposed estimation method

In this section, we propose an estimation method for the location based on the use
of an ewma chart in Phase I. This new estimation method provides a robust estimate
of the location when it is unknown what type of contaminations may be present in
Phase I.

The proposed Phase I ewma screening estimators consist of the following steps:

1. Compute an initial (robust) estimate of the location and dispersion based on all ob-
servations in Phase I, denote these by µ̂I and σ̂I , respectively. The subscript ‘I’
denotes that the parameter is associated with Phase I charting.

2. Set up a Phase I ewma chart according to Equations (2.1) and (2.2) using µ0 = µ̂I ,
σ0 = σ̂I , Z0 = µ̂I , L = LI , and λ = λI .

3. Delete from Phase I all samples for which the corresponding ewma statistic gives an
out-of-control signal.

4. Use an efficient estimator of µ0 based on the remaining samples. This yields an esti-
mate which is efficient as well as robust to various patterns of contaminations.
We use the overall sample mean based on the remaining samples.

The resulting estimator is denoted by sµ̂I,λI
, where ‘s’ indicates that we use a

screening Phase I chart, µ̂I stands for the initial location estimator chosen in step 1,
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and the subscript λI denotes the value selected for the smoothing constant in step 2.
To operationalize this screening estimator, we need to select an estimator for µ̂I and
σ̂I and values for λI and LI .

The choice of µ̂I is an important one: an efficient estimator could improve the
performance of the Phase I chart under stability but inflate the Phase I control limits
when disturbances are present. On the other hand, a robust estimator could result in
non-optimal performance under stability, but in robust Phase I control limits when
disturbances are present. Our study, in this chapter, evaluates the impact of the most
efficient estimator for the location, the overall sample mean ( ¯̄X), and a robust estima-
tor based on the median of the sample means (M(X̄)).

Throughout this chapter, we use a single method to estimate σ̂I . To ensure that
differences in performance are due to the difference in the estimation of the location.
The estimator for σ̂0 is discussed in the next section.

As far as the choice of λI is concerned in step 2, we take a range of values in
order to study the impact of this parameter. Small values for λI enable detection of
sustained shifts while larger values of λI enable detection of scattered outliers. To
assess this trade-off, we set λI equal to 0.2, 0.6 and 1. When λI = 1, we obtain the
Shewhart chart. Estimators based on Shewhart charts in Phase I were also studied by
Schoonhoven et al. (2011a). To obtain values for LI , we set the false alarm rate at 1
percent, thereby following Chakraborti et al. (2009).

Table 2.2 gives an overview of the Phase I estimators considered and the corre-
sponding values of LI (obtained through 100,000 Monte Carlo simulations).

µ̂0 Description LI
¯̄X Overall sample mean n.a.
M(X̄) Median of the sample averages n.a.
CP Change point estimator n.a.
s ¯̄X0.6 Screening estimator with µ̂I = ¯̄X and λI = 0.6 2.540
sM(X̄)0.2 Screening estimator with µ̂I = M(X̄) and λI = 0.2 2.540
sM(X̄)0.6 Screening estimator with µ̂I = M(X̄) and λI = 0.6 2.610
sM(X̄)1 Screening estimator with µ̂I = M(X̄) and λI = 1 2.617

Table 2.2: Phase I location estimators

2.4 Tatum’s dispersion estimator

We use an estimator for the dispersion which is known for its robustness and was
proposed by Tatum (1997). This estimators was recommended in Schoonhoven and
Does (2012) and Schoonhoven et al. (2011b) if contaminations may be present.

To compute Tatum’s estimator, one first needs to centre each observation on its
sample median creating residuals eij . If n is odd, each sample contains one residual
equal to zero, which is dropped. The resulting n′m residuals, with n′ = n − 1 if n

20



2. ROBUST ESTIMATORS FOR LOCATION

is odd and n′ = n if n is even, are weighted. Large residuals are given less weight
than smaller residuals, which ensures that outliers have less impact on the estimate
of σ0. This gives uij =

hieij
cA∗ , where A∗ is the median of the absolute values of the

n′m residuals,

hi =


1 Ei ≤ 4.5,

Ei − 3.5 4.5 < Ei ≤ 7.5,

c Ei > 7.5,

Ei = IQRi/A
∗, where IQRi is the interquartile range of sample i, and c is a tuning

constant. Where IQRi is defined as

IQRi = Xi(b) −Xi(a), (2.4)

where Xi(o) denotes the o-ordered value in sample i, a = dn/4e, and b = n − a + 1.
The ceiling function dze denotes the smallest integer not less than z. To estimate σ0,
only the residuals that are small, i.e. for which |uij | ≤ 1, are used

S∗ =
n′m√
n′m− 1

√∑m
i=1

∑
j:|uij |<1 e

2
ij(1− u2ij)4

|
∑m
i=1

∑
j:|uij |<1(1− u2ij)(1− 5u2ij)|

.

Tatum (1997) showed that for c = 7 the estimator is robust against various contamina-
tions. An unbiased estimator of σ0 is given by S∗/d(n,m, c), where d(5, 50, 7) = 1.068

(obtained through 100, 000 Monte Carlo simulations). Note that we follow the imple-
mentation as set out in Schoonhoven et al. (2011b).

2.5 Phase I comparison

In this section, we evaluate the effectiveness of Phase I studies that use the methods
presented in Table 2.2. One of the requirements of Phase I is to deliver accurate pa-
rameter estimates. We assess the estimation precision of the proposed methods in
terms of the Mean Squared Error (MSE). In addition, the Phase I analysis is used as
a tool for exploratory data analysis, allowing us to examine the data and learn from
out-of-control observations. We assess this by measuring the percentage of identified
out-of-control observations. First we describe the data scenarios considered in Phase
I.

Contamination scenarios

Recall that the stable, in-control, Phase I data are assumed to beN(µ0, σ
2
0) distributed.

If Phase I contains contaminated observations, we assume that these come from a
shifted normal distribution N(µ0 + δIσ0, σ

2
0), with δI a constant.

Many different patterns of contaminations can occur in practice and have been
studied in the literature. A distinction can be made between scattered and sustained
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special causes of variation. Scattered disturbances are transient in that they affect
single samples. Whereas sustained disturbances last for at least a few consecutive
samples beyond their first appearance. In this dissertation, we evaluate two scattered
scenarios - localized and diffuse - based on Tatum (1997) and Schoonhoven and Does
(2012) and two sustained shift scenarios - single and multiple step shifts - based on
Chen and Elsayed (2002) and Amiri and Allahyari (2012). These four scenarios are
described below, were we set the parameters for the in-control process at µ0 = 0 and
σ0 = 1, without loss of generality. Furthermore, recall that the Phase I data consists
of m = 50 samples of size n = 5.

1. A model for localized location disturbances in which all observations in a sample
have a 90% probability of being drawn from theN(0, 1) distribution and a 10%

probability of being drawn from the N(δI , 1) distribution.

2. A model for diffuse location disturbances in which each observation, irrespective
of the sample to which it belongs, has a 90% probability of being drawn from
theN(0, 1) distribution and a 10% probability of being drawn from theN(δI , 1)

distribution.

3. A model for a single step shift in the location. In which the first 45 samples are
drawn from the N(0, 1) distribution and the last 5 samples are drawn from the
N(δI , 1) distribution.

4. A model for multiple step shifts in the location. In which, at each time point, the
sample has a probability p of being the first of five consecutive samples drawn
from theN(δI , 1) distribution. After any such step shift, each sample again has
a probability p of being the start of another step shift. Phase I consists of 50
samples. If sample 48 shifts, then only 3 samples (48, 49 and 50) are drawn
from the N(δI , 1) distribution, instead of 5. To maintain the 10% (expected)
contamination rate of models 1-3, we set p = 0.023.

The performance of the proposed estimators is evaluated for scenarios where δI =

0, 0.2, 0.4, ..., 2. Note that for δI = 0 the data come from the in-control distribution and
hence no contaminations are present. An overview of the contamination scenarios is
provided in Table 2.3.

Performance measures and simulation procedure

In order to determine the accuracy of the proposed location estimators, we determine
the Mean Squared Error (MSE) for each estimation method under the contamination
scenarios proposed above. The MSE is calculated as

MSE =
1

R

R∑
r=1

(
µ̂r0 − µ0

σ0

)2

=
1

R

R∑
r=1

(µ̂r0)2,
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Contamination scenarios Description
In-control All observations from N(0, 1)
Localized disturbances 90%− 10% random mixture of samples

from N(0, 1) and N(δ2I , 1)
Diffuse disturbances 90%− 10% random mixture of observations

from N(0, 1) and N(δI , 1)
Single step shift Samples 1− 45 are N(0, 1) and samples

46− 50 are N(δI , 1)
Multiple step shifts Shifts of length 5 from N(δI , 1) occurring

with probability 0.023

Table 2.3: Phase I contamination scenarios affecting the location parameter

where µ̂r0 is the value of one of the proposed estimators in the rth simulation run,
and R is the total number of simulations in the Monte Carlo study.

The proposed estimators are also evaluated with two additional performance met-
rics: the true alarm percentage (TAP ) and the false alarm percentage (FAP ). These
additional performance measures reflect the ability of the screening estimators to de-
tect unacceptable observations without triggering false alarms for acceptable obser-
vations. Related measures were presented by Fraker et al. (2008), Chakraborti et al.
(2009) and Frisén (2009). The TAP and FAP are calculated as

TAP =
1

R

R∑
r=1

(#correct signals)r

(#unacceptable observations)r
× 100% (2.5)

and

FAP =
1

R

R∑
r=1

(#false alarms)r

(#acceptable observations)r
× 100%, (2.6)

where r denotes the r-th simulation run.
A Monte Carlo simulation study was conducted. We drew R Phase I data sets

consisting of m = 50 samples of size n = 5, for each of the four contamination sce-
narios, and for each value of δI . The proposed seven location estimators, presented in
Table 2.2, were calculated for each simulation run, and the three performance mea-
sures were computed based on the R runs. We set R = 200, 000 which gives us a
relative simulation error - the standard error of the estimated MSEs expressed as a
percentage of the MSE - which never exceeds 0.5%.

Phase I results: estimation accuracy

First consider for each of the proposed estimation methods, the estimation accuracy
as evaluated by the MSE. The MSE results are presented in Figure 2.1. The y-
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(a) Localized disturbances
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(b) Diffuse disturbances
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(c) Single step shift
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(d) Multiple step shifts

Figure 2.1: MSE of location estimators when various types of contaminations are present
in Phase I

intercept of each subplot shows the MSE of the estimation methods when the data
are in control (δI = 0). The estimator ¯̄X shows the lowest MSE level, as expected.
The other estimators show only slightly larger MSE levels, except for M(X̄), which
is least efficient under in-control data.

Next, we study the situation when contaminations are present in Phase I (δI > 0).
We see that the traditional point estimator ¯̄X is most sensitive to all data scenarios
considered. The estimatorM(X̄) as well as the screening estimators are rather robust
in the scenarios where the mean of an entire sample has shifted, namely localized,
single, and multiple step shifts (see Figures 2.1a, 2.1c, and 2.1d), but not when diffuse
disturbances are present (see Figure 2.1b). The reason is that these estimators trim the
samples with a large mean rather than extreme observations within a sample. The
estimator CP has the lowestMSE level when there is a single step shift (Figure 2.1c)
but its performance in other situations is far worse than that of the other estimators.

Regarding the choice of λI for the screening methods, we had expected that the
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2. ROBUST ESTIMATORS FOR LOCATION

Phase I Shewhart chart, sM(X̄)1, would perform best for localized disturbances as
the Shewhart chart is well known for its detection of single (extreme) disturbances.
However, from Figure 2.1a we can see that the Phase I Shewhart chart is only slightly
superior to the Phase I ewma chart with λI = 0.6: sM(X̄)0.6. Moreover, sM(X̄)0.6
performs better when there are single or multiple step shifts. Note that an ewma chart
with a lower λI , for example sM(X̄)0.2, does not perform as well for localized and
multiple step shifts: a lower value of λI is more suitable for smaller single step shifts.
If the disturbances in applications can be scattered as well as sustained, we recom-
mend in Phase I the use of an ewma chart with λI = 0.6 or a similar intermediate
value, rather than a Shewhart chart.

As for the choice of µ̂I , i.e. whether we use sM(X̄)0.6 or s ¯̄X0.6, it is worth noting
that the method based on the robust estimator M(X̄) for the Phase I chart is as effi-
cient under stable data (δI = 0) as the chart based on ¯̄X . This becomes clear when
we realize that both charts use the efficient estimator ¯̄X to determine the mean af-
ter screening (step 4 of the algorithm). We can conclude that it does not matter for
efficiency of the final estimate whether a less efficient estimator is used to construct
the Phase I chart. The use of a robust estimator like M(X̄) for the Phase I chart does
pay off however: when there are large multiple step shifts (Figure 2.1d for δI > 0.8),
we see that the performance of the Phase I chart based on ¯̄X is not good. The higher
is the value of δI , the higher will be the MSE level. When a non-robust estimator
is used for the Phase I chart, disturbances might affect the Phase I limits so that the
wrong observations are filtered out of the data. As the type of disturbance in Phase
I is often unknown, we recommend the use of a Phase I chart based on a robust es-
timator such as sM(X̄)0.6 rather than a Phase I chart based on an efficient estimator
such as s ¯̄X0.6.

Finally, note that none of the proposed estimation methods perform well when
there are diffuse disturbances, i.e. contaminated observations scattered over the en-
tire Phase I data set (Figure 2.1b). Since the estimators screen whole samples, they
do not identify these individual scattered outliers and therefore use all observations
to estimate the location. We think that the proposed estimators can be augmented
with a method that screens for individual outliers and see this as an issue for future
research.

Throughout we have assumed that m = 50 samples of size n = 5 are available in
Phase I. For the case ofm = 50 samples of size n = 10 the conclusions are comparable
and can be found in Zwetsloot et al. (2014).

To compare the performance of the proposed estimators across the various contam-
ination schemes, we computed the Relative Mean Squared Error (RMSE) of the es-
timators. The RMSE of an estimator, for a specific type of data contamination and
severity δI , is defined as the percentage increase in the MSE level of the estimator
relative to the MSE level of the estimator with the lowest MSE level. For each data
scenario and each estimator, we obtain the RSME level of the estimator for all consid-
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PHASE I: ESTIMATION FROM CONTAMINATED DATA

ered levels of δI . We present the maximum RSME over δI for each estimator in Table
2.4. In the presence of localized disturbances, the estimator sM(X̄)1 has the lowest
maximum RMSE level (i.e. has aMSE which overall is closest to the optimalMSE

for all shift sizes). When there is a single step shift, the change point estimator has the
lowest RMSE level: its MSE is at most 14 percent larger than the optimal estimator
for all considered values of δI . If we consider all disturbance scenarios together (last
row in Table 2.4), we find that the estimator sM(X̄)0.6 is always within 36 percent of
the optimal estimators’ MSE level, irrespective of the pattern of contaminations.

Phase I estimators µ̂0

Scenario ¯̄X M(X̄) CP s ¯̄X0.6 sM(X̄)0.2 sM(X̄)0.6 sM(X̄)1
Localized 836 117 936 73 94 14 9
Diffuse 6 53 11 7 7 8 9
Single 887 140 14 44 61 36 82
Multiple 1071 174 1247 137 59 8 51
All 1071 174 1247 137 94 36 82

Table 2.4: Maximum Relative Mean Squared Error (RMSE) and, in bold, the location esti-
mator with the lowest maximum RMSE for the respective scenarios.

Phase I results: detection probability

Apart from the precision of an estimate, it is also important that screening methods
have the ability to detect unacceptable observations without triggering false alarms.
Therefore, we evaluate the TAP and FAP as defined in Equations (2.5) and (2.6) for
those estimation methods that have a screening procedure. The results are presented
in Table 2.5.

Some interesting findings on the TAP and FAP are the following:

• When there are localized disturbances, sM(X̄)1 shows the best performance
since it has the highest TAP and lowest FAP values. Note that sM(X̄)0.6,
which is based on a robust initial estimator, detects more unacceptable observa-
tions than s ¯̄X0.6. This is because the robust Phase I control limits are not biased
by any contaminations.

• All proposed estimation methods detect very few diffuse disturbances. This
is not surprising given that they lack an effective way of identifying outliers
within a sample.

• When there is a single step shift, theCP method performs best, followed by the
methods based on a Phase I ewma chart. The Shewhart chart performs poorly
in this situation, which is to be expected, as this chart is especially designed to
detect individual, scattered disturbances.
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2. ROBUST ESTIMATORS FOR LOCATION

TAP FAP

δI δI
µ̂0 0.4 1 1.6 2 0 0.4 1 1.6 2

Localized
CP 1.4 4.1 11.2 17.0 1.1 1.3 2.6 6.7 11.1

s ¯̄X0.6 3.3 23.0 61.1 82.2 1.0 1.1 1.5 2.3 3.2
sM(X̄)0.2 2.3 15.7 46.7 67.4 1.0 1.2 2.3 5.9 9.7
sM(X̄)0.6 3.4 26.2 71.1 90.9 1.0 1.1 1.3 1.8 2.4
sM(X̄)1 3.8 29.8 77.7 94.8 1.0 1.0 1.1 1.1 1.1

Diffuse
CP 1.1 1.2 1.4 1.9 1.1 1.1 1.2 1.4 1.9

s ¯̄X0.6 1.1 1.4 2.2 2.9 1.0 1.0 1.0 1.0 1.0
sM(X̄)0.2 1.0 1.2 1.7 2.2 1.0 1.0 1.0 1.0 1.1
sM(X̄)0.6 1.1 1.4 2.2 3.1 1.0 1.0 1.0 1.0 1.0
sM(X̄)1 1.1 1.5 2.5 3.4 1.0 1.0 1.0 0.9 1.0

Single step
CP 15.1 90.7 99.3 99.8 1.0 1.7 1.3 0.2 0.1

s ¯̄X0.6 6.9 53.7 89.4 96.1 1.0 1.1 1.5 2.2 3.0
sM(X̄)0.2 7.9 54.7 80.0 87.1 1.0 1.2 1.5 1.6 1.6
sM(X̄)0.6 6.8 55.6 91.9 97.8 1.0 1.1 1.2 1.2 1.2
sM(X̄)1 3.9 30.7 78.8 95.2 1.0 1.0 1.1 1.1 1.1

Multiple steps
CP 4.1 28.6 48.3 53.1 1.2 1.9 7.0 13.9 16.2

s ¯̄X0.6 5.6 43.9 81.9 91.4 1.0 1.1 1.8 3.3 5.0
sM(X̄)0.2 6.8 50.1 78.7 86.6 1.0 1.4 4.3 7.9 9.7
sM(X̄)0.6 5.6 47.9 88.7 96.5 1.0 1.1 1.4 1.8 2.1
sM(X̄)1 3.4 26.1 73.3 92.9 1.0 1.0 1.2 1.2 1.2

Table 2.5: True Alarm Percentage (TAP ) and False Alarm Percentage (FAP )

• When there are multiple step shifts, the CP method, which we use, runs into
trouble as it is designed to detect a single shift. A solution for this could be
the use of a CP method which recursively identifies multiply change points.
The Phase I chart based on a non-robust estimator, s ¯̄X0.6, deletes too many in-
control observations. The ewma chart with λI = 0.6 performs best.

2.6 Phase II performance

Phase I estimators are used to design Phase II control charts. In this section, we eval-
uate ewma control charts in Phase II which are based on estimated parameters when
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PHASE I: ESTIMATION FROM CONTAMINATED DATA

the Phase I data may or may not be contaminated.
Denote the Phase II observations by Yij with i = 1, 2, ... and j = 1, 2, ..., n. They

are assumed to be independent and N(µ0, σ
2
0) distributed if the process is in con-

trol. We model out-of-control Phase II data as N(µ0 + δIIσ0, σ
2
0), where δII is the

standardized shift size and the index ‘II’ indicates Phase II data.

Design of the Phase II EWMA control chart

The Phase II ewma control chart consists of the ewma statistic

Zi = (1− λII)Zi−1 + λII Ȳi,

with Z0 = µ̂0, and control limits

ÛCLi/L̂CLi = µ̂0 ± LII
σ̂0√
n

√
λII

2− λII
[1− (1− λII)2i],

where µ̂0 and σ̂0 are the Phase I estimates of µ0 and σ0. We consider seven ewma
Phase II control charts, each based on a different estimator µ̂0, as presented in Table
2.2. For each of the seven charts we set σ0 equal to Tatum’s estimator, as presented in
Section 2.4.

Furthermore, we set λII equal to 0.13, which Crowder (1989) recommended as
an optimal smoothing constant to detect a shift size of δII = 1. Note that λII differs
from the λI used in the Phase I estimation methods, as Phase I is used for exploratory
data analysis purposes. We take the values for LII from Jones (2002): LII = 2.89 for
n = 5, such that the ewma control chart has an average run length of approximately
370 when the process is in control.

Performance measures and simulation procedure

The performance of a control chart is commonly evaluated using characteristics of the
run length distribution. The run length is a stochastic variable indicating the number
of samples before Zi falls outside the control limits, i.e. a signal that the process may
be out of control. A common measure of control chart performance is the average
run length (ARL). It is desirable to have a high ARL when the process is in control
and a low ARL when the process mean has shifted. When parameters are estimated
a distinction needs to be made between the conditional and unconditional average
run length. The conditional ARL is the ARL given the Phase I parameter estimates
µ̂0 and σ̂0. In order to evaluate the overall behaviour of the ewma control charts, we
consider the average of the conditional ARLs (AARL), this unconditional average
run length, averages over the variability of the parameter estimates µ̂0 and σ̂0.

In order to obtain the AARL, we use the following simulation procedure: first
m = 50 samples of size n = 5 are drawn from the same Phase I disturbance scenarios
used to assess the MSE, with δI = 1. Then µ̂0 and σ̂0 are calculated from the data
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and the control limits are computed. Observations fromN(δII , 1) are drawn until the
associated Zi falls outside the control limits. The corresponding run length equals
i. The calculations are made for δII = 0, 0.1, 0.2, 0.3, 0.4. The entire procedure is
repeated for R = 200, 000 simulation runs. The AARL is computed by averaging
over all 200, 000 run lengths and the results are presented in Table 2.6.

Phase II results

First, consider the situation where the Phase I data are in control (first part of Table
2.6). We see that, for in-control data, Phase II control chart performance is similar
across all estimators (i.e. they have similar in-control and out-of-control AARLs),
except for the control chart based on the robust point estimator M(X̄), which falls
short. This confirms that it is unadvisable to use a robust point estimator: if there are
no contaminations in Phase I, useful information is lost, resulting in a less powerful
control chart. It is better to use a Phase I procedure that only trims Phase I obser-
vations that are considered unacceptable. When no data anomalies are found, the
number of falsely deleted samples is limited.

When there are localized disturbances, the best Phase II performance is achieved
by the screening estimators (s ¯̄X0.6, sM(X̄)0.2, sM(X̄)0.6, and sM(X̄)1) and the con-
trol chart based on the robust point estimator M(X̄). The ewma control chart based
on ¯̄X is less effective as this traditional estimator is influenced by outliers, which
then also affect the resulting Phase II limits. The ewma control chart based on CP

does not work very well: this estimator deletes too many samples on the assumption
that the disturbances will endure. Unfortunately, for n = 5, all ewma control charts
are AARL-biased; this means that the AARL is larger for out-of-control data than
for in-control data. This bias disappears partly for n = 10, see Zwetsloot et al. (2014).
Furthermore, none of the Phase II control charts performs well when there are dif-
fuse disturbances because these charts are typically designed to detect sample shifts
instead of individual outliers.

In the presence of a single step shift, CP performs best followed by the Phase I
ewma charts, (s ¯̄X0.6 ,sM(X̄)0.2, and sM(X̄)0.6). Note that the Phase I Shewhart chart
(sM(X̄)1) is outperformed by the ewma andCP methods because the Shewhart chart
has no memory and does not make use of the time sequence of the observations.

Finally, in the case of multiple step shifts, the CP method does not work well at
all: the resulting control chart has a relatively low AARL for the acceptable situation
and high AARL when the process is out of control, which is not desirable. This is
as expected since the CP method is designed for single step shifts. In the multiple
step shift scenario, the Phase I ewma charts (s ¯̄X0.6, sM(X̄)0.2, and sM(X̄)0.6) perform
best.

To summarize, the type of disturbance and estimation method used in Phase I
strongly determine the performance of the Phase II ewma control chart. We recom-
mend the Shewhart chart in Phase I for scattered observations, the change point
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Phase I AARL

In-control Out-of-control
δII

Scenario µ̂0 0.1 0.2 0.3 0.4

In-control ¯̄X 374 210 61 22 12
M(X̄) 333 214 73 25 12
CP 370 210 63 23 12

s ¯̄X0.6 370 212 62 23 12
sM(X̄)0.2 369 210 62 23 12
sM(X̄)0.6 367 211 63 23 12
sM(X̄)1 365 212 63 23 12

Localized ¯̄X 215 338 213 72 25
(δI = 1) M(X̄) 273 294 153 52 20

CP 217 325 207 75 27

s ¯̄X0.6 260 319 169 55 21
sM(X̄)0.2 252 324 177 58 21
sM(X̄)0.6 271 311 158 51 19
sM(X̄)1 279 308 152 48 19

Diffuse ¯̄X 287 517 296 82 26
(δI = 1) M(X̄) 297 458 296 97 30

CP 288 510 297 84 28

s ¯̄X0.6 291 506 296 83 27
sM(X̄)0.2 289 509 295 83 27
sM(X̄)0.6 292 507 294 84 27
sM(X̄)1 293 505 294 82 27

Single step ¯̄X 210 371 210 61 22
(δI = 1) M(X̄) 278 302 148 48 18

CP 349 209 69 25 13

s ¯̄X0.6 312 298 119 37 16
sM(X̄)0.2 306 302 125 39 16
sM(X̄)0.6 317 284 112 35 15
sM(X̄)1 282 321 145 44 18

Multiple steps ¯̄X 220 266 193 97 39
(δI = 1) M(X̄) 257 264 156 67 28

CP 247 230 143 77 43

s ¯̄X0.6 287 264 137 57 24
sM(X̄)0.2 295 262 129 52 22
sM(X̄)0.6 297 257 127 51 22
sM(X̄)1 268 269 154 66 27

Table 2.6: AARL values for the EWMA control chart for location based on various location
estimators
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method whenever single step changes are likely, and the ewma chart with λI set
around 0.6 when there are multiple step changes, or when there is uncertainty about
the type, the length, or the magnitude of the disturbance.

2.7 Conclusion

In this chapter, we have considered several Phase I estimation methods for situations
where scattered as well as sustained shifts might be present. We have studied the
effectiveness of a Phase I exploratory data analysis in terms of the accuracy of the re-
sulting estimates and the proportion of successfully identified unacceptable samples.
Moreover, we have investigated the impact of data contaminations and the estimators
used in Phase I on the performance of the Phase II ewma control chart.

We have shown that data anomalies can have a huge impact on the quality of
the Phase I analysis as well as on the power of the resulting Phase II ewma control
chart. There is considerable difference in the performance of the Phase I estimation
methods. We have the following recommendations:

First, we recommend the use of a change point or SPC-based method instead of a
single point estimator to arrive at a parameter estimate for the Phase II limits. Such
methods make it possible to perform a Phase I data analysis and ‘learn from the data’
before any monitoring takes place. A learning stage will improve the performance of
the Phase II monitoring.

Second, we have seen that most methods work well in one specific situation: when
there might be scattered contaminations, the Shewhart chart works best but, when
there are sustained shifts, the use of an ewma chart or change point method is more
appropriate. These methods take into account the time sequence in the samples.
When multiple step changes are likely or the type of disturbance is unknown, we
recommend the Phase I ewma chart. The smoothing constant of the ewma chart, λI ,
should ideally be set at around 0.6. A low value overemphasizes the detection of
small shifts while a high value approaches the performance of the Phase I Shewhart
chart.

The methods based on ewma charts not only work well in the multiple step sce-
nario but also in the other contamination scenarios. These estimators provide near-
best estimates of the location in the presence of any pattern of Phase I contaminations.

Finally, we recommend the use of a two-step procedure, namely a robust estima-
tor to estimate the location and construct the Phase I control chart, and an efficient
estimator for post-screening estimation. The use of a robust estimator for the Phase
I chart ensures that Phase I limits are not too sensitive to any disturbances, limiting
the incorrect deletion of clean data, while the use of an efficient estimator subsequent
to screening ensures that final estimates are efficient under stability as well.
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3. Robust
Estimators for Dispersion

A Phase I estimator should be efficient under in-control data and robust against con-
taminations in the data. In this chapter, we focus on estimating the process dispersion
and consider the situation when the data may contain contaminated samples. To deal
with contaminations, we propose a robust estimation method and compare this new
method to various existing methods. This chapter is based on Zwetsloot et al. (2015a).

3.1 Introduction

In Chapter 2 we showed that robust estimation methods for the location can be very
useful if data contaminations may be present. Apart from an estimate for the location
parameter µ0, we also need an estimate for the dispersion parameter σ0. Within con-
trol charting an estimate of σ0 is needed to compute the control limits for the ewma
chart for location. Next to monitoring the location, sometimes it is of interest to detect
changes in the degree of variation in the data. For these so-called control chart for
dispersion an estimate of σ0 is also needed.

The motivation for this chapter, like Chapter 2, is the possibility of contaminations
in the initial (Phase I) data. We focus on estimation of the dispersion. As discussed
in Section 1.4 we use robust estimators to deal with contamination. We show that
most existing (robust) estimation methods are either efficient or robust against either
scattered disturbances or sustained shifts. Furthermore, we develop an estimation
method based on ewma charting, which is efficient under in-control data and robust
to both scattered and sustained contaminations in Phase I.

This chapter is organized as follows. The ewma control chart for dispersion is de-
scribed in Section 3.2. The new estimation technique and some competing methods
are described in Section 3.3. Section 3.4 compares their performance in terms of ef-
ficiency for uncontaminated and various contaminated data sets. In Section 3.5, we



PHASE I: ESTIMATION FROM CONTAMINATED DATA

study the effect of using robust estimation methods on the performance of the ewma
chart for dispersion used in Phase II. Section 3.6 offers some concluding remarks.

3.2 The EWMA control chart for dispersion

Considerable research has been published on the ewma chart for monitoring the pro-
cess dispersion. Recall that for monitoring the location we used the sample average
to plot the ewma statistic (see Equation 2.1). For monitoring the dispersion a choice
for the dispersion measure should be made. Various dispersion metrics have been
proposed in the literature. For example, Knoth (2015) studied the ewma chart based
on the sample variance (S2). Another possibility is the ewma chart based on the sam-
ple standard deviation (S) (e.g., see Ng and Case, 1989). The ewma chart based on
a logarithmic transformation of S2 or S, was developed following an insight from
Box et al. (1978). This chart is the most prevailing chart in the literature, see Crowder
and Hamilton (1992), Shu and Jiang (2008), and Maravelakis and Castagliola (2009),
amongst others.

Knoth (2010) studied these competing statistics and compared ewma dispersion
charts based on R (the range), S2, S, and log(S2) and concluded that “the best per-
formance in terms of the average run length profile is given by the S2 and S ewma
control charts”. In this chapter, we therefore consider an ewma chart for dispersion
based on S. We use S rather than S2 because in practice the process dispersion is
most often evaluated in terms of S. In Chapter 5 we will extend the comparison per-
formed by Knoth (2010).

To monitor the dispersion, the ewma statistic is defined as

Zi = (1− λ)Zi−1 + λSi,

with Si the sample standard deviation of sample i. Again λ is a smoothing constant
satisfying 0 < λ ≤ 1. We set W0 = E[Si] = c4(n)σ0, were c4(n) is the bias
correcting coefficient

c4(n) =

√
2

n− 1

Γ(n/2)

Γ((n− 1)/2)
. (3.1)

Under the assumption of independent and normally distributed observations, the
mean and variance ofZi are equal toE[Zi] = c4(n)σ0 andV [Zi] = σ2

0(1−c24(n)) λ
2−λ (1−

(1− λ)2i), respectively.
When monitoring dispersion, an increase in the dispersion indicates some spe-

cial cause of variation that should be detected and removed, while a decrease in
dispersion indicates a process improvement. As we are most interested in detect-
ing increases, we use an one-sided ewma control chart. Therefore, we reset the ewma
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statistic to its expected value whenever it drops below its expected value, i.e.

Zi = max[ (1− λ)Zi−1 + λSi , c4(n)σ0 ]. (3.2)

Resetting Zi to the target instead of using the natural boundary of zero decreases
the inertial problems. This occurs when the ewma statistics is close to zero while an
upward shift will happen. See Woodall and Mahmoud (2005) for a discussion on
inertial properties of ewma charts.

The ewma chart gives an out-of-control signal whenever Zi exceeds the upper
control limit UCLi, where

UCLi = c4(n)σ0 + Lσ0
√

(1− c4(n)2)

√
λ

2− λ
√

1− (1− λ)2i. (3.3)

Here, L is a positive coefficient which, together with λ, determines the in-control per-
formance of the chart. We use the so called time-varying control limits to enhance the
charts sensitivity to shifts in the first samples (Abbasi, 2010). As σ0 is often unknown
it has to be replaced by an estimate from Phase I.

3.3 Dispersion estimation methods

In this section, we describe various estimation methods that can be used when con-
taminations may be present in the data. We consider efficient and robust point es-
timators, a change point method, and we present the new estimation method based
on ewma control charts in Phase I.

Let Xij , with j = 1, 2, ..., n and i = 1, 2, ...,m, be the Phase I observations of
the process characteristic. Assume Xij to be independent N(µ, σ2) distributed with
mean µ = µ0 and standard deviation σ = σ0 if the process is in control. Throughout
this chapter we set m = 50 and n = 5.

Point estimators

Traditionally, σ0 is estimated with the pooled sample standard deviation:

Sp =

√√√√ 1

m

m∑
i=1

S2
i . (3.4)

We use the unbiased estimator S̃p = Sp/c4(v + 1), where v = m(n − 1) and c4 as
defined in Equation (3.1). Pooling that sample standard deviations provides lower
values of MSE (mean squared error) than averaging them (Mahmoud et al., 2010;
Vardeman, 1999). The pooled sample standard deviation provides a basis for com-
parison as it is the most efficient unbiased estimator under uncontaminated, inde-
pendent, and normally distributed data.
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Next, we include two robust point estimators in our comparison. The first is
based on the sample interquartile ranges as defined in Equation (2.4). We consider a
trimmed version of the mean of the sample IQRs, as proposed by Rocke (1989);

IQRα =
1

m− 2dmαe

m−dmαe∑
o=dmαe+1

IQR(o),

where IQR(o) denotes the o-th ordered value of the sample IQRs. We take α = 20%.
An unbiased estimate of σ0 is given by dividing IQR20 by 0.9261 (obtained through
100,000 Monte Carlo simulations).

The second robust point estimator we consider is the estimator proposed by Tatum
(1997), see Section 2.4. As in Tatum (1997), this estimator is denoted by D7 through-
out this chapter.

Change point method

Change point methods are designed to detect structural changes in the process pa-
rameters. They make use of the log likelihood of the observations. Sullivan and
Woodall (1996) showed that change point methods outperform the Shewhart chart
in detecting sustained shifts in Phase I. We apply a modified version of the estima-
tor they proposed. This method was already discussed in Section 2.3. In Equation
(2.3) we defined the likelihood ratio statistic, which can be used to test for a change
in both the location and the dispersion parameter. Hence, the change point method,
described in Section 2.3, is also relevant as estimation method in this chapter. We ap-
ply the same method and useUCLCP = 5.92 to ensure a false alarm rate of 1 percent.
Furthermore, we use the remaining samples after screening to compute the pooled
standard deviation (instead of the overall samples mean). The estimator is denoted
by CP .

The proposed estimation method

In this section, we propose an estimation method for the dispersion based on ewma
charting in Phase I. The new method provides a robust estimate of the dispersion
when it is unknown what type of contaminations are present in Phase I. The ewma
chart can be viewed as a compromise between the Shewhart chart and methods with
a memory like the CUSUM chart and the change point method. Recall that this in-
sight comes from Hunter (1986), as discussed in Section 2.1. The proposed estimation
method consists of the following steps:

1. Use all observations in Phase I and compute an initial (robust) estimate of the dispersion.
This estimate is denoted by σ̂I .

2. Set up a ewma chart for the Phase I data according to Equations (3.2) and (3.3) using
σ0 = σ̂I , Z0 = c4(n)σ̂I , L = LI , and λ = λI .
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3. Delete from Phase I all samples for which the corresponding ewma statistic gives an
out-of-control signal.

4. Compute an efficient unbiased estimator of the standard deviation, S̃p, based on the
remaining samples.

The resulting estimator is denoted by sσ̂I,λI
, where ‘s’ indicates that we use a

screening Phase I chart, σ̂I stands for the initial dispersion estimator chosen in step 1,
and the subscript λI denotes the value selected for the smoothing constant in step 2.
To operationalize this screening estimator, we need to select an estimator for σ̂I and
values for λI and LI .

In step 1, we select the efficient estimator S̃p and the robust estimator IQR20 as
initial estimator. This provides a comparison with an efficient estimator when no
contaminations are present and with a robust estimator when contaminations occur.

In step 2, small values of λI enable quick detection of sustained shifts, while larger
values of λI enable quick detection of outliers more effectively. To assess the trade-
off between high and low values for λI , we set λI equal to 0.3, 0.5, and 1. For λI =

1, the chart is equivalent to the Phase I Shewhart chart. Estimation methods based
on Shewhart chart in Phase I were also studied by Schoonhoven et al. (2011b) and
Schoonhoven and Does (2012).

We obtained values for LI by setting the false alarm rate in Phase I at 1 percent,
thereby following Chakraborti et al. (2009). Table 3.1 gives an overview of the screen-
ing estimators considered and the corresponding values of LI (obtained through
100, 000 Monte Carlo simulations).

Estimator Description LI
S̃p Pooled standard deviation n.a.
IQR20 Trimmed interquartile range n.a.
D7 Tatum n.a.
CP Change point estimator n.a.
sS0.5 Screening estimator with σ̂I = Sp and λI = 0.5 2.553
sIQR0.3 Screening estimator with σ̂I = IQR20 and λI = 0.3 2.970
sIQR0.5 Screening estimator with σ̂I = IQR20 and λI = 0.5 2.900
sIQR1 Screening estimator with σ̂I = IQR20 and λI = 1 2.755

Table 3.1: Phase I dispersion estimators

3.4 Phase I comparison

Next, we evaluate the performance of the proposed dispersion estimation methods
when the Phase I data are in control as well as when the Phase I data contain con-
taminations. Recall that the Phase I data areN(µ0, σ

2
0) distributed if the process is in

control. Without loss of generality, we set µ0 = 0 and σ0 = 1.
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Contamination scenarios

Many different contamination scenarios are studied in the literature. In this chap-
ter, like in Chapter 2, we distinguish between scattered and sustained special causes
of variation. We evaluate two scattered scenarios - localized and diffuse - and two
sustained shift scenarios - single and multiple step shifts-. In this chapter, we use
the same four scenarios also considered in Chapter 2 (in Section 2.5). Here we apply
them to the dispersion parameter:

1. A model for localized variance disturbances in which all observations in a sam-
ple have a 90% probability of being drawn from the N(0, 1) distribution and
a 10% probability of being drawn from the N(0, γ2I ) distribution, with γI =

1, 1.5, ..., 3.5, 4.

2. A model for diffuse variance disturbances in which each observation is drawn
from the N(0, 1) distribution and has a 10% probability of having a multiple
of a χ2

1 variable added to it, with multiplier κI , with κI = 0, 0.5, 1, ..., 2.5, 3.

3. A model for a single step shift in the variance. All observations in the last 5 Phase
I samples are drawn from the N(0, γ2I ) distribution, with γI = 1, 1.5, ..., 3.5, 4.

4. A model for multiple step shifts in the variance. At each time point, the sample
has a probability op p of being the first of five consecutive samples drawn from
the N(0, γ2I ) distribution, with γI = 1, 1.5, ..., 3.5, 4. After any such step shift,
each sample again has a probability of p of being the start of another step shift.
Phase I consists of 50 samples. If say sample 48 shifts, then only 3 samples (48,
49, and 50) are drawn from the N(0, γ2I ) distribution, instead of 5. To maintain
the 10% (expected) contamination rate of models 1-3, we set p = 0.023.

Note that for γI = 1 or κI = 0 all Phase I data come from the in-control distribution
and hence no contaminations are present. In Zwetsloot et al. (2015a) we also con-
sidered these scenarios with an (expected) contamination rate equal to 5%. Table 3.2
presents an overview of the contamination scenarios.

Performance measures and simulation procedure

One of the requirements of Phase I is to deliver an accurate parameter estimate of σ0,
even if Phase I contains contaminated observations. In order to evaluate the accuracy
of the dispersion estimators, we determine their mean squared error (MSE), which
is computed as

MSE =
1

R

R∑
r=1

(
σ̂r0 − σ0
σ0

)2

=
1

R

R∑
r=1

(σ̂r0 − 1)2.

Here σ̂r0 denotes one of the proposed estimators presented in Table 3.1, calculated in
the rth simulation run, and R is the total number of simulation runs.
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Contamination scenarios Description
In-control All observations from N(0, 1)
Localized disturbances 90%− 10% random mixture of samples

from N(0, 1) and N(0, γ2I )
Diffuse disturbances 90%− 10% random mixture of observations

from N(0, 1) and N(0, 1) + κIχ
2
1

Single step shift Samples 1− 45 are N(0, 1) and samples
46− 50 are N(0, γ2I )

Multiple step shifts Shifts of length 5 from N(0, γ2I ) occurring
with probability 0.023

Table 3.2: Phase I contamination scenarios affecting the dispersion parameter

The proposed estimators are also evaluated with two additional quality character-
istics: the true alarm percentage (TAP ) and the false alarm percentage (FAP ). These
additional performance measures reflect the ability of the screening estimators to de-
tect unacceptable observations without triggering false alarms for acceptable obser-
vations. The TAP and FAP are calculated as in Equations (2.5) and (2.6).

A Monte Carlo simulation study was conducted. We drewR Phase I data consist-
ing ofm = 50 samples of size n = 5, for each of the four contamination scenarios, and
each value of γI or κI . We consider γI = 1.25, 1.5, ..., 4 and κI = 0.25, .0.5, ..., 3. The
proposed eight dispersion estimators, presented in Table 3.1, were calculated for each
simulation run, and the three performance measures were computed based on theR
runs. The relative simulation error is defined as the standard deviation of the MSE

expressed as a percentage of the MSE. We set the value of R equal to 100, 000, so
that this error was never larger than 0.5%. The MSE results are presented in Figure
3.1 and the TAP and FAP metrics are shown in Table 3.3.

Phase I results

First consider the situation when the Phase I data are in control. In Table 3.3, the
column corresponding to γI = 1 or κI = 0 shows the false alarm percentage if the
Phase I data are in control. This percentage was set equal to 1% for all estimators. In
Figure 3.1, the y-intercept in each subplot represents theMSE level of the estimators
based on uncontaminated Phase I data. As expected, the pooled sample standard de-
viation S̃p shows the smallestMSE level followed by the CP estimator, the screening
estimators, and D7. The robust point estimator IQR20 has a very large MSE level
for uncontaminated data.

Furthermore, for uncontaminated Phase I data, the four screening estimators show
an approximately equal MSE level. This implies that, from the perspective of effi-
ciency under uncontaminated Phase I data, it does not matter whether we use an
efficient (sS0.5) or robust (sIQR0.5) initial estimator for σ̂I . Furthermore, it also does
not matter, from the perspective of efficiency under uncontaminated Phase I data,
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(d) Multiple step

Figure 3.1: MSE of dispersion estimators when various types of contaminations are present
in Phase I

which λI we use.
Next, we consider the situation when contaminations are present in the Phase

I data (γI > 1 or κI > 0). Overall, the ewma-based methods perform reasonably
well for any type of contamination, while the point estimator S̃p is most sensitive to
contaminations.

When localized or diffuse shifts are present in Phase I, the screening estimators
based on a robust initial estimator show the lowest MSE over all shift sizes (see
Figures 4.1a and 4.1b). The screening estimators show diverging MSE levels, with
sIQR1 and sIQR0.5 having the lowestMSE levels. TheFAP of the estimator sIQR0.3

is the highest among the screening estimators. This is due to the low value of λI , sug-
gesting that it is undesirable to set λI too low.

Note that the estimation methods for the dispersion (considered in this chapter)
show better ability to deal with diffuse contaminations than the estimation methods
for location (considered in Chapter 2). If we compare Figure 2.1b to Figure 4.1b we
see that all the considered estimators for the location are unable to deal with diffuse
contaminations. However, the considered estimators for dispersion based on screen-
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TAP FAP

γI γI
Scenario σ̂0 2 3 4 1 2 3 4

Localized CP 10.7 26.4 30.0 1.0 6.4 19.0 24.5
sS0.5 33.0 57.7 68.4 1.0 0.6 0.8 1.1
sIQR0.3 30.1 68.0 86.0 1.0 2.3 7.1 12.7
sIQR0.5 36.4 73.0 88.4 1.0 1.3 3.7 6.8
sIQR1 39.9 74.8 89.1 1.0 0.5 0.4 0.4

κI κI
1 2 3 0 1 2 3

Diffuse CP 7.9 21.6 25.9 1.0 6.9 20.1 24.9
sS0.5 7.4 14.6 17.9 1.0 2.6 5.0 6.1
sIQR0.3 9.4 28.8 44.7 1.0 4.8 15.7 26.8
sIQR0.5 9.6 26.2 39.5 1.0 4.0 11.4 18.7
sIQR1 9.2 22.7 32.7 1.0 3.2 7.1 10.1

γI γI
2 3 4 1 2 3 4

Single step CP 90.0 98.6 99.5 0.9 1.1 0.2 0.1
sS0.5 58.6 85.0 91.4 1.0 0.1 0.0 0.0
sIQR0.3 62.1 89.6 95.9 1.0 0.4 0.2 0.2
sIQR0.5 59.6 90.6 96.9 1.0 0.4 0.3 0.3
sIQR1 41.1 76.2 89.9 1.0 0.5 0.4 0.4

Multiple steps CP 39.5 53.3 53.7 1.0 11.5 17.0 17.4
sS0.5 45.3 69.1 76.5 1.0 0.6 0.8 0.9
sIQR0.3 54.8 85.9 94.0 1.0 2.1 4.6 6.4
sIQR0.5 51.7 85.9 94.7 1.0 1.0 1.9 2.8
sIQR1 35.4 69.6 85.2 1.0 0.6 0.5 0.5

Table 3.3: True Alarm Percentage (TAP ) and False Alarm Percentage (FAP )

ing can (partly) deal with diffuse contaminations. Recall that diffuse contaminations
effect single observations within a sample. This will increase the value of the sample
standard deviation estimator, hence the estimation methods that screen for large dis-
persion in samples, will occasionally pick up these diffuse contaminations. This will
result in deleting these samples, including the observations which are actually in con-
trol. Table 3.3 confirms this explanation and shows that for the diffuse scenario the
screening estimators delete many in-control observations: the FAP is rather high.

When a single step shift is present in Phase I (Figure 4.1c), the estimator CP shows
a low MSE level, as was to be expected, as CP is specifically designed for a single
step shift. However, quite surprisingly, for small shift sizes (1 < γI < 2), its MSE

level is slightly higher than theMSE level of the screening estimators. The TAP and
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FAP values show the same pattern: CP has the highest TAP and it has the lowest
FAP for single step shifts in Phase I.

When multiple step shifts are present in Phase I (Figure 4.1d), the screening es-
timators based on IQR20 have the lowest MSE. The estimator based on λI = 0.5,
shows the bestMSE performance. It is able to detect most of the contaminated sam-
ples with TAP values up to 94.7%, and incorrectly deletes no more than 3% of the
observations.

To compare the performance of the proposed estimators across the various contam-
ination schemes, we compute the Relative Mean Squared Error (RMSE) of the esti-
mators. Recall from Section 2.5, that the RMSE of an estimator, for a specific type of
data contamination and severity γI or κI , is defined as the percentage increase in the
MSE of the estimator relative to the MSE of the estimator with the lowest MSE.
For each data scenario and each estimator, we obtain the RSME of the estimator for
all considered levels of γI or κI . We present the maximum RSME for each estimator
in Table 3.4.

Surprisingly, the estimator sIQR0.5 has for all contamination scenarios, the lowest
maximum RMSE (i.e. has an MSE which overall is closest to the optimal MSE for
all shift sizes). Even the CP estimator has a larger RMSE for the single step shift
scenario.

Overall, the best estimator is the screening estimator based on IQR20 and λI =

0.5. Irrespective of the contamination scenario in Phase I, it always has a MSE level
that is within 30% of the optimal estimator for that contamination scenario and shift
size.

Throughout this chapter, we have assumed that 10% of the observations in Phase I
are contaminated. In Zwetsloot et al. (2015a) we also studied the situation where 5%
of the observations in Phase I are contaminated. The conclusions for this scenario are
comparable and can be found in the paper.

Phase I estimators σ̂0
Scenario S̃p IQR20 D7 CP sS0.5 sIQR0.3 sIQR0.5 sIQR1

Localized 9955 474 181 9966 397 68 23 26
Diffuse 9559 248 28 7772 814 35 23 25
Single 12707 575 240 41 44 39 30 61
Multiple 9553 690 343 8659 564 25 23 66
All 12707 690 343 9966 814 68 30 66

Table 3.4: Maximum Relative Mean Squared Error (RMSE) and, in bold, the estimator
with the lowest maximum RMSE for the respective contamination scenario.
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3.5 Phase II performance

Phase I estimation methods are used to design the Phase II control chart. In this sec-
tion, we consider the effect of estimating σ0 on the ewma control chart for dispersion
in Phase II, when the Phase I data may or may not be contaminated.

Let Yij , with j = 1, .., n and i = 1, 2, .., be the Phase II data which are independent
and N(µ0, γ

2
IIσ

2
0) distributed, where γII is a constant. If γII = 1, the data are in

control and if γII 6= 1 the data are out of control. We only consider γII ≥ 1 as we
study the one-sided ewma dispersion control chart. Throughout this chapter, we set
µ0 = 0 and σ0 = 1 without loss of generality.

Design of the Phase II EWMA control chart

The Phase II ewma control chart consists of the ewma statistic as defined in Equation
(3.2) together with the upper control limit as defined in Equation (3.3). For σ0, we
consider the eight estimation methods presented in Table 3.1, which results in eight
Phase II ewma control charts. Furthermore, λ is set equal to λII = 0.3. This value
differs from the value of λI (0.5) chosen in Phase I, as Phase I is used for exploratory
purposes. The values of L is denoted by LII and presented in Table 3.5. These values
were determined such that all ewma control charts have an approximate in-control
AARL performance of 200, whereby we followed the design procedure originally
proposed by Jones (2002).

σ̂0

S̃p IQR20 D7 CP sS0.5 sIQR0.3 sIQR0.5 sIQR1

LII 2.607 2.210 2.570 2.580 2.680 2.650 2.660 2.677

Table 3.5: LII for the Phase II EWMA control chart based on σ̂0

Performance measures and simulation procedure

Comparable to Chapter 2, we evaluated the performance of the charts in Phase II
by studying the average of the conditional ARLs: the AARL. The AARL reflects the
performance of the charts averaged over all values of the Phase I parameter estimates.
Solely, studying the AARL does not reflect sampling variation in the performance of
the chart. Therefore, we report additionally the unconditional 10th, 50th, and 90th
percentiles of the run length distribution, to give a better idea of how the ewma chart
performance varies according to the different values of the parameter estimates.

A Monte Carlo simulation study was conducted to evaluate the AARL and the
percentiles of the unconditional run length distribution of the Phase II ewma disper-
sion control chart based on the eight Phase I dispersion estimators presented in Table
3.1. We used the following simulation procedure: first m = 50 samples of size n = 5

43



PHASE I: ESTIMATION FROM CONTAMINATED DATA

are drawn fromN(0, 1). We calculated σ̂0 using the eight proposed estimators. These
estimates were used to set up eight Phase II ewma control charts according to Equa-
tions (3.2) and (3.3). Next, observations fromN(0, γ2II) are drawn until the associated
Zi falls above the control limit. The corresponding run length equals i − 1. The cal-
culations are made for γII = 1, 1.1, 1.2, 1.4. The entire procedure was repeated for R
up to 100, 000 simulation runs, such that the relative simulation error never exceeded
0.1%. The AARL was computed by averaging over all obtained run lengths and the
percentiles are taken by sorting the 100, 000 run lengths and selecting the 10, 000th,
the average of the 50, 000th and 50, 001st, and the 90, 000th run lengths.

This whole procedure was repeated for each of the four Phase I contamination
scenarios, as presented in Table 3.2, where we set γI = 2.5 or κI = 1.5. The re-
sults are presented in Table 3.6. The first part of the table shows the performance
of the ewma control charts when the Phase I data are in control, followed by the re-
sults when Phase I contains out-of-control observations as defined in the four Phase
I contamination scenarios.

For computational convenience and speed, we truncated the simulation at a run
length equal to 30, 000 and set a run length greater than 30, 000 equal to this value.
These values are therefore an underestimate of the actual AARL and percentiles of
the run length distribution.

Phase II results

First, consider the situation where the Phase I data are uncontaminated (first part
of Table 3.6). A general observation is that under in-control data the ewma control
charts show similar performance across all estimators (i.e. they have in-controlARLs
of around 200 and they show similar out-of-control ARLs and percentiles). Which
is logical as the charts are designed for an AARL equal to 200. One exception is the
ewma control chart based on IQR20, which shows smaller percentiles and thus gives
more frequent false alarms.

Next, consider the situation where the Phase I data are contaminated. A general
effect of contaminations in Phase I is an increased in-control ARL as well as an in-
creased out-of-control ARL. This is of course undesirable. The control chart based
on the traditional estimator S̃p is less effective if any type of contamination is present
in Phase I. The control chart based onCP shows good performance for the single step
shift scenario but does not work very well for the other contamination scenarios. The
control chart based on sIQR1 shows the best performance for localized and diffuse
shifts. The estimator sIQR0.5 has the second-best performance for these scenarios.
If there are multiple step shifts present, the best performance is given by the control
chart based on sIQR0.5.

To summarize, the type of disturbance and estimation methods used in Phase I
strongly determines the performance of the Phase II ewma control chart. When it is
unknown which type of contaminations are present in Phase I, we recommend the
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Phase I AARL and percentiles of the unconditional run length distribution
In-control data Out-of-control Phase II data

γII = 1 γII = 1.1 γII = 1.2 γII = 1.4

σ̂0 10th 50th 90th AARL 10th 50th 90th AARL 10th 50th 90th AARL 10th 50th 90th AARL
In-control
S̃p 10 86 467 201 3 23 100 42 1 9 36 15 0 3 11 5
D7 9 79 458 200 3 21 98 42 1 9 35 15 0 3 11 5
IQR20 3 36 348 207 1 12 79 39 0 6 29 13 0 2 9 4
CP 10 84 461 204 3 22 99 42 1 9 36 15 0 3 11 5
sS0.5 10 82 469 204 3 22 99 42 1 9 35 15 0 3 11 5
sIQR0.3 10 82 468 202 3 22 99 42 1 9 36 15 0 3 11 5
sIQR0.5 10 82 471 204 3 22 99 42 1 9 35 15 0 3 11 5
sIQR1 9 79 460 200 3 21 97 41 1 9 35 15 0 3 11 5

Localized (γI = 2.5)
S̃p 203 7606 30000 13701 31 654 30000 5305 9 116 2650 1470 2 15 119 78
IQR20 8 106 1714 988 2 27 255 159 1 11 69 36 0 3 15 6
D7 25 277 3090 1454 6 54 378 202 2 18 94 44 0 5 18 8
CP 56 2356 30000 10674 12 268 30000 5158 4 60 4228 2225 1 10 148 263
sS0.5 23 248 3206 1606 6 49 380 248 2 17 92 52 0 5 18 8
sIQR0.3 16 190 2636 1389 5 40 325 213 2 14 82 46 0 4 17 7
sIQR0.5 14 148 1541 852 4 34 224 123 2 13 63 31 0 4 15 6
sIQR1 15 148 1332 708 4 34 202 103 2 13 59 27 0 4 14 6

Diffuse (κI = 1.5)
S̃p 270 13775 30000 15775 40 1102 30000 8217 11 175 17513 3822 2 19 389 714
IQR20 6 78 1042 611 2 22 175 98 1 9 53 25 0 3 13 5
D7 23 235 1955 885 6 48 279 124 2 16 75 33 0 5 17 7
CP 74 2300 30000 10398 15 270 30000 5342 5 61 7561 2882 1 11 216 840
sS0.5 39 480 6720 2684 9 79 690 417 3 24 142 81 1 6 24 11
sIQR0.3 21 256 3048 1432 6 50 375 191 2 17 93 42 0 5 18 8
sIQR0.5 19 216 2225 1057 5 45 299 144 2 16 78 35 0 4 17 7
sIQR1 21 225 2155 1008 6 46 295 140 2 16 77 34 0 5 17 7

Single step (γI = 2.5)
S̃p 462 9132 30000 13966 57 758 11502 3780 13 131 1254 685 2 16 83 39
IQR20 8 105 1468 836 3 27 228 127 1 11 65 30 0 3 14 6
D7 27 273 2283 1034 6 53 315 138 2 18 82 35 0 5 17 8
CP 10 80 450 200 3 21 97 42 1 9 35 15 0 3 11 5
sS0.5 15 135 904 407 4 31 160 68 2 12 50 21 0 4 13 6
sIQR0.3 13 122 865 405 4 29 153 67 2 11 48 21 0 4 13 6
sIQR0.5 12 110 750 351 4 27 139 60 1 11 45 19 0 4 12 5
sIQR1 15 145 1139 547 4 33 185 83 2 12 55 24 0 4 14 6

Multiple steps (γI = 2.5)
S̃p 38 5501 30000 13464 10 490 30000 7684 4 90 16995 3718 1 12 369 525
IQR20 7 107 3282 1824 2 27 411 457 1 11 97 113 0 3 18 11
D7 21 265 8171 3028 5 53 800 787 2 18 156 202 0 5 24 19
CP 13 163 30000 7059 4 39 30000 5418 2 15 30000 4007 0 5 910 1593
sS0.5 15 161 3049 1977 4 36 366 621 2 14 87 207 0 4 18 22
sIQR0.3 12 124 1332 1019 4 30 202 232 2 12 59 71 0 4 14 11
sIQR0.5 12 114 1079 841 3 28 174 196 1 11 53 58 0 4 13 9
sIQR1 15 156 2482 1624 4 35 313 406 2 13 79 119 0 4 17 16

Table 3.6: AARL values and percentiles of the unconditional run length distribution of the
EWMA control chart for dispersion, based on various dispersion estimation methods, when
the data in Phase I are contaminated
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use of the ewma chart in Phase I based on a robust initial estimator and λI = 0.5

(sIQR0.5).

3.6 Conclusion

In this chapter, we have proposed a new Phase I estimation method for the dispersion
of a process. This method is based on Phase I ewma charting and provides an effi-
cient estimator of the dispersion for in-control Phase I data and a robust estimate of
the dispersion if contaminations are present in Phase I. We have compared this new
method with several estimation methods from the literature, in terms of their accu-
racy (MSE) and the percentage of successfully identified samples (TAP and FAP ).
Moreover, we have investigated the impact of data contaminations in Phase I on the
performance of the Phase II ewma control chart based on the various dispersion esti-
mators.

In this chapter we show that the existing Phase I estimation methods provide ro-
bust estimates for specific patterns of disturbances in Phase I. In particular, estima-
tors based on Phase I Shewhart charts are robust primarily to outliers in Phase I and
change point methods are robust to sustained shifts in Phase I. The new method,
based on Phase I ewma charting, shows MSE levels which are comparable to the
MSE level of the Phase I Shewhart chart estimator if outliers are present and which
are also comparable to theMSE level of the change point methods if sustained shifts
are present. Thus, the proposed method provides a robust estimate for any of the
considered patterns of contaminations in Phase I.

The choice of the smoothing constant for the Phase I ewma chart is important as
it influences robustness against the various patterns of contaminations. By studying
the TAP and FAP , we have discovered that for small values of λ (0.3) the estimator
deletes too many in-control samples from Phase I and for larger values of λ (1) the
estimator does not identify sustained shifts in Phase I optimally. Therefore, we rec-
ommend estimating the process dispersion by means of a Phase I ewma chart with a
smoothing constant of around 0.5.

Furthermore, we recommend the use of a two-step procedure, namely a robust
estimator to estimate the dispersion and construct the Phase I chart, and an efficient
estimator for post-screening estimation.
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Phase II

Effect of Estimation on Performance

“In these matters the only certainty is that nothing is certain.”

Pliny the Elder, Roman scholar & scientist

“Control chart performance is very sensitive to errors in estimating θ0 [the process
parameters]...methods for compensating for these effect remain to be developed.”

Stoumbos et al. (2000, page 996)

“To pull oneself up by one’s bootstraps.”

The Surprising Adventures of Baron Munchausen





4. Designing
EWMA Charts for Location

When in-control process parameters are estimated, the control chart performance in
Phase II will depend on the Phase I data set used. In this chapter, we focus on moni-
toring the location. We show that it can be extremely difficult to lower the variation
in the in-control performance sufficiently due to practical limitations on the amount
of the Phase I data. We recommend an alternative design criterion and a procedure
based on the bootstrap approach. This chapter is based on Saleh, Mahmoud, Jones-
Farmer, Zwetsloot, and Woodall (2015a).

4.1 Introduction

Phase II control charts are designed for monitoring processes and detecting devia-
tions from the in-control values of the process parameter(s). Because the true values
of the in-control parameters are rarely known in practice, practitioners typically be-
gin by collecting baseline information on the process. The performance of the ewma
control chart for location with estimated parameters was first investigated by Jones
et al. (2001), who derived the run length distribution of the chart. Jones et al. (2001)
studied the run length distribution conditioned on specific values of the parameter
estimates and also studied the unconditional run length distribution averaged over
all possible values of the parameter estimates. They assumed uncontaminated Phase
I data. They showed that the ewma chart performance deteriorates substantially when
parameters are estimated, particularly with small amounts of Phase I data. Similar to
Quesenberry (1993), Jones et al. (2001) made sample-size recommendations based on
the increase in the rate of early false alarms of a chart with estimated parameters over
one with known parameters. This approach resulted in recommendations that more
Phase I data are required for ewma charts with small smoothing constants. Smaller
values of the smoothing constant are typically recommended for detecting sustained
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shifts of smaller magnitude (Crowder, 1987; Lucas and Saccucci, 1990).
In Sections 2.6 and 3.5 we evaluated the performance of the ewma chart using

characteristics of the run length distribution averaged over all values of the parame-
ter estimates. We used the AARLmetric. In Section 3.5 we additionally reported the
unconditional 10th, 50th, and 90th percentiles of the run length distribution, which
also gave an idea of how the ewma chart performance varies across the different val-
ues of the parameter estimates. It is difficult, however, to use multiple percentiles to
make recommendations on the amount of Phase I data for control charts with esti-
mated parameters.

Our approach, in this chapter, is to use the standard deviation of the ARL, the
SDARL, as a measure of the amount of sampling variation in control chart perfor-
mance. This variation is often referred to as practitioner-to-practitioner variability.
Recently, several authors have used the SDARL as a metric for determining the nec-
essary amount of Phase I data for control charts with estimated parameters (see, e.g.
Jones and Steiner, 2012; Zhang et al., 2013, 2014; Lee et al., 2013; Faraz et al., 2015).
These studies showed that impractically large amounts of Phase I data are needed
for a practitioner to have confidence that his/her in-control ARL is near the desired
value. The extent of this phenomenon was first recognized by Albers and Kallenberg
(2004, 2005).

The findings of the studies accounting for sampling (or between-practitioner) vari-
ability imply the necessity of having an alternative technique for controlling the chart’s
performance. Recently, Jones and Steiner (2012) and Gandy and Kvaløy (2013) pro-
posed a design procedure, based on the bootstrap, which guarantees, with a specified
probability, a certain conditional performance for control charts. Their approach is
to adjust the control limits such that p% of the in-control ARL values are at least a
specified value; for example, at least 90% of the charts with a particular design would
have in-control ARL values of 200 or more. The main objective of this approach is
to limit the proportion of low in-control ARL values resulting from the use of insuf-
ficient amounts of Phase I data. Gandy and Kvaløy (2013) showed that even with
the use of relatively small amounts of Phase I data, the out-of-control ARLs using
this approach increase only slightly compared to the case when the standard design
method is used.

In this chapter, we extend the work of Jones et al. (2001) by evaluating the per-
formance of the ewma chart with estimated parameters while considering the sam-
pling variability using the standard deviation of the average run length (SDARL).
We also study the effect of the smoothing constant on the sampling variability. Ad-
ditionally, we design the ewma chart for location using this bootstrap approach and
investigate the effect of adjusting the control limits on the out-of-control performance
of the chart.

In Section 4.2, we give an overview of the ewma chart for location with estimated
parameters and present the estimators used for the in-control process parameters. In
Section 4.3, we highlight the importance of incorporating the effect of sampling vari-
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ability -the practitioner-to-practitioner variability- when assessing the ewma chart. In
Section 4.4, we evaluate the ewma chart in terms of the AARL, SDARL, and some
percentiles of the ARL distribution. In Section 4.5, we investigate the in-control and
out-of-control performance of the ewma chart when the control limits are determined
using the bootstrap approach. Finally, we give concluding remarks in Section 4.6.

4.2 The EWMA control chart for location

We observe Yi1, Yi2, ..., Yin, i = 1, 2, 3, ..., independent random samples of size n at
regular time intervals. For each observation it is assumed that it is an independent
and normally distributed random variable with mean µ and standard deviation σ.
The objective is to detect any change in µ from its in-control value µ0. We further
assume that the in-control process standard deviation value is σ0.

The ewma chart statistic at time i is defined as

Zi = (1− λ)Zi−1 + λȲi, (4.1)

where Ȳi is the ith sample mean and λ, 0 < λ ≤ 1, is a smoothing constant. The initial
value Z0 is set to be equal the estimate of the mean from the Phase I data. The ewma
chart signals when the statistic Zi exceeds the control limits given by

µ0 ± L

√
λ

n(2− λ)
[1− (1− λ)2i]σ0 (4.2)

where L is chosen to satisfy a specific in-control performance. The time-varying con-
trol limits in Equation (4.2) are the ‘exact’ limits for the ewma chart. As i increases,
the term (1 − λ)2i approaches zero and the limits in Equation (4.2) converge to the
asymptotic limits given by

µ0 ± L

√
λ

n(2− λ)
σ0. (4.3)

Throughout this chapter, we consider the ewma chart designed using the asymptotic
limits defined in Equation (4.3).

Following a similar procedure to that of Jones et al. (2001), the chart statistic in
Equation (4.1) can be rewritten as

Z∗i = (1− λ)Z∗i−1 + λWi,

where Z∗0 = 0 and Wi is the standardized sample mean defined as

Wi =
Ȳi − µ0

σ0/
√
n
, i = 1, 2, 3, ...,
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for any target mean value µ0 and standard deviation σ0. If µ0 and σ0 are unknown,
they are typically replaced with their corresponding estimators to give

Ŵi =
Ȳi − µ̂0

σ̂0/
√
n
,

or equivalently

Ŵi =
1

Q

(
νi + δ̃ − Z√

m

)
, (4.4)

where Q = σ̂0/σ0 is the ratio of the estimated in-control standard deviation to the
actual in-control standard deviation, νi =

√
n(Ȳi − (µ0 + δσ0)/σ0 is the standardized

Phase II sample mean with δσ0 representing the mean shift, δ̃ = δσ0/(σ0/
√
n) =

δ
√
n is the standardized mean shift, and Z =

√
mn(µ̂0 − µ0)/σ0 is the standardized

difference between the actual in-control mean and the estimated in-control mean. If
the process is in control, then δ̃ = δ = 0. We assume, without loss of generality, that
µ0 = 0 and σ0/

√
n = 1 and, because of standardization, the control limits in Equation

(4.3) become

±L
√

λ

2− λ
(4.5)

Throughout this chapter, we assume that the Phase I data is in control and un-
contaminated, therefore we consider estimating the in-control process mean µ0 by
the overall sample mean defined as

µ̂0 =

∑m
i=1 Ȳi
m

, (4.6)

where Ȳi is the ith Phase I sample mean. The process standard deviation, σ̂0, is esti-
mated by the pooled standard deviation defined as in Equation (3.4):

σ̂0 = Sp/c4(v + 1). (4.7)

In Saleh et al. (2015a) we also consider other estimators for σ̂0 such as the sample
range, the average over the sample standard deviation and Sp multiplied by c4(v+ 1)

which is a biased estimator of σ0. The reader is referred to the paper for the results
related to these estimation methods.

4.3 The effect of sampling error

When the parameters are known, a control chart’s ARL is a constant value; how-
ever, when the parameters are estimated, the ARL becomes a random variable due
to the Phase I sampling. Control charts with estimated parameters have most often
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been evaluated in terms of the average ARL (AARL). This measure was also used
in Chapters 2 and 3. The use of the AARL, however, does not reflect other impor-
tant properties of the ARL. Because the ARL distribution can be skewed, the mean
of the distribution (AARL) may not give an accurate measure of the location. More
importantly, the AARL does not account for the variability in the ARL values. It is
possible to have an AARL value close to the desired value, ARL0, but with the indi-
vidualARL values widely dispersed. The larger the variability in the in-controlARL
values among practitioners, the less confident one would be in a particular chart’s
performance. Basically, sampling error affects each practitioner. As was illustrated
also in Section 1.5.

Figure 4.1 presents relative frequency histograms of 100,000 simulated in-control
ARL values for four ewma smoothing constants based on Jones et al.’s (2001) sample-
size recommendations. The smoothing constant, λ, and the control chart constant, L,
are those producing a chart with known parameters with a specified in-control ARL
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(a) λ = 1.0, L = 2.807, and m = 100
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(b) λ = 0.5, L = 2.777, and m = 200
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(c) λ = 0.2, L = 2.636, and m = 300
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(d) λ = 0.1, L = 2.454, and m = 400

Figure 4.1: Relative frequency histograms of in-controlARL values based on n = 5, various
values of λ, and sample-size recommendations in Jones et al. (2001).
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value ofARL0 = 200. Jones et al. (2001) determined, when n = 5, thatm should be at
least 400 if λ = 0.1, 300 if λ = 0.2, 200 if λ = 0.5, and 100 if λ = 1.0. Figure 4.1 shows
that the in-control ARL values of ewma charts designed using this amount of data
are quite variable. For example in case (d), where λ = 0.1 and 400 samples of size
5 are used to estimate the parameters, the chart can have an in-control performance
varying from 100 up to 300. A chart with an ARL of 100, for example, would give
false signals more frequently than desired. Conversely, a chart with an ARL of 300

would give less frequent false signals than the values specified, but will be somewhat
less sensitive to process changes.

4.4 Phase II performance assessment

In Section 2.6, we considered the performance of the ewma chart in Phase II for the sit-
uation that Phase I data were in control or contained contaminations. Furthermore,
we assumed that Phase I consisted of m = 50 samples of size n = 5. In the current
section we extend this analysis of the Phase II performance and assess the perfor-
mance of the ewma charts based on various Phase I sample sizes m. We assume that
the Phase I data are in control and hence no contaminations are present.

Performance measures and simulation procedure

The results in Figure 4.1 show the necessity of an alternative metric to measure the
performance of control charts with estimated parameters. A straightforward mea-
sure of the practitioner-to-practitioner variability in control charts with estimated
parameters is the standard deviation of the ARL (the SDARL). The SDARL met-
ric was proposed by Jones and Steiner (2012), who used it to determine the effect
of the amount of Phase I data on the risk-adjusted cumulative sum (CUSUM) con-
trol chart. Saleh et al. (2015b) evaluated the Shewhart charts in terms of the SDARL
metric. They concluded that accounting for the sampling variability requires a far
larger amount of Phase I data than that recommended by Quesenberry (1993) in or-
der to reduce the variability among practitioners to an acceptable level. Also, Zhang
et al. (2013, 2014) and Lee et al. (2013) used the SDARLmetric in evaluating the per-
formance of the exponential CUSUM chart, the geometric chart, and the Bernoulli
CUSUM chart, respectively. The use of the SDARL metric shows that the required
amount of data to adequately reduce the variation in the in-control ARL to a reason-
able level is often prohibitively large.

In order to compute the AARL and SDARL metrics, first the conditional ARL
for the ewma chart with estimated parameters needs to be evaluated. In Chapters 2
and 3 this was done with Monte Carlo simulations, in this chapter we use the Markov
chain approach described in the appendix in Section 4.7. The number of states used
was 201. This number was found to balance a high level of accuracy and the accept-
able time of computation. The results were validated using a Monte Carlo simula-
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m

λ 30 50 100 200 300 400 500 600 700 800 900 1, 000 ∞
AARL 0.1 134 147 163 177 183 186 189 190 191 192 193 194 200

0.2 152 162 175 185 189 191 193 194 195 196 196 196 200
0.5 184 186 191 195 196 197 198 198 198 198 199 199 200
1.0 212 206 202 201 201 201 200 200 200 200 200 200 200

SDARL 0.1 81 68 51 37 30 26 23 20 19 17 16 15 n.a.
0.2 97 76 55 39 31 27 24 22 20 19 17 16 n.a.
0.5 124 90 61 43 34 30 27 24 22 21 20 19 n.a.
1.0 143 100 66 45 36 31 28 25 24 22 21 20 n.a.

Table 4.1: In-control AARL and SDARL values when m Phase I samples, each of size
n = 5, are used to estimate the in-control values of the process parameters. Bolded values
correspond to the sample size recommendations of Jones et al. (2001)

tion. The process mean was estimated using the overall samples average defined in
Equation (4.6) and the process standard deviation was estimated using the pooled
standard deviation defined in Equation (4.7). Different values of m, ranging from 30

to 1, 000, with sample size n = 5 were considered. We used the same four combi-
nations of control chart design parameters (λ, L) as considered by Jones et al. (2001):
(0.1, 2.454), (0.2, 2.636), (0.5, 2.777), and (1.0, 2.807). Under the known in-control pa-
rameters assumption, these design parameters produce ARL0 = 200.

Results

Table 4.1 displays the in-control AARL and SDARL values for various number of
Phase I samples m of size n = 5. The last column, m = ∞, refers to the case when
the in-control process parameters are known. The bolded values correspond to the
sample size recommendations of Jones et al. (2001) on the amount of Phase I data to
use.

Although Jones et al.’s (2001) recommendations regarding the amount of Phase I
data were based on reducing the occurrence of early false alarms, they also provided
practitioners with AARL values close to ARL0 as shown in Table 4.1. However, the
results in the second part of Table 4.1 show that these values of m are associated
with large values of the SDARL. Accounting for sampling variability in theARL re-
veals that the recommended amount of data is not nearly large enough to ensure that
individual practitioners will obtain an in-control ARL close to the specified value.
Additionally, our results suggest that the larger the smoothing constant, the larger
the SDARL will be for a given amount of data. For example, given m = 30, λ = 0.1,
the in-control AARL = 134 with SDARL = 81. If λ increases to 0.5 and 1.0, the
in-control AARL increases to 184 and 212 and the corresponding SDARL increases
as well to 124 and 143, respectively. Recall that, when λ = 1, the ewma chart is equiv-
alent to the Shewhart chart. Thus, we can conclude that Shewhart charts have higher
variability in the chart performance than the ewma charts.
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In order to achieve stable in-control ARL performance when process parameters
are estimated, the required amount of Phase I data should yield an in-control AARL
value close toARL0 and a SDARL value that is sufficiently small. Zhang et al. (2014)
suggested that a SDARL within 10% of the ARL0 may be reasonable, although still
reflecting a significant amount of variation. Consequently, based on our results, a
practitioner would need about 600 samples of size n = 5 if λ = 0.1, 700 if λ = 0.2,
900 if λ = 0.5, and 1, 000 if λ = 1.0 to obtain SDARL values of no more than 20 (10%
of 200). In most applications, it will not be realistic to obtain this amount of stable
Phase I data from the process.

Furthermore, we studied the required amount of Phase I data of various values
of the intended in-control ARL (ARL0). Table 4.2 displays the in-control AARL and
SDARL values for different values of ARL0 when λ = 0.1. An equivalent table for
λ = 0.5 can be found in Saleh et al. (2015a, Table 8). The last row of Table 4.2, entitled
m = ∞, refers to the case when the in-control process parameters are known. The
bolded SDARL values in Table 4.2 are those that have a SDARL value within 10%
of ARL0. As shown, the required number of samples m increases with an increase
in the ARL0 value. For example, an ewma chart with λ = 0.1 requires about 400 in-
control samples of size n = 5 when ARL0 = 100, but this increases to 1, 000 samples
of size n = 5 when ARL0 = 500. This phenomenon occurs because the larger the
in-control ARL, the wider the control limits and the further the estimated control
limits are in the tails of the distribution of the control chart statistic. It is well-known
that estimating more extreme quantiles of a distribution requires larger samples to
achieve the same precision as when estimating more central quantiles.

To study the effect of the sample size n, we considered the in-control AARL and

ARL0 = 100 ARL0 = 200 ARL0 = 370 ARL0 = 500
(L = 2.148) (L = 2.454) (L = 2.702) (L = 2.815)

m AARL SDARL AARL SDARL AARL SDARL AARL SDARL
50 79 28 147 68 258 145 341 209
100 86 21 163 51 290 111 385 160
300 94 12 183 30 331 67 442 98
400 95 10 186 26 339 58 453 84
500 96 9 189 23 344 51 461 75
600 97 8 190 20 348 46 466 68
700 97 7 191 19 351 42 470 62
800 97 7 192 17 353 39 474 58
900 98 6 193 16 355 36 476 54

1, 000 98 6 194 15 356 34 478 51
1, 100 98 6 194 14 357 33 480 48
∞ 100 n.a. 200 n.a. 370 n.a. 500 n.a.

Table 4.2: In-controlAARL and SDARL values for the EWMA chart designed for different
ARL0 values with λ = 0.1 when m Phase I samples, each of size n = 5, are used to estimate
the in-control values of the process parameters
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SDARL values for n = 1 and n = 10. In the case of n = 10, the control limits for
10, 000 charts were estimated. Markov chains were used to approximate the condi-
tional ARL; the results are given in Table 4.3. This table shows that smaller number
of samples m are needed than for the case of n = 5. For example, for the in-control
SDARL values to be relatively small, say within 10% of the desired ARL0 value of
200, around 500 samples of size n = 10 are needed irrespective of the value of λ.
Compared to 600 tot 1, 000 samples of size n = 5 as the results in Table 4.1 show.
However, the data requirements, in terms of the total amount observations, i.e. mn,
are similar for the case of n = 5 and n = 10.

m

λ 30 50 100 200 500 1, 000 5, 000 ∞
AARL 0.1 130 144 162 176 188 193 199 200

0.2 144 156 172 183 192 196 199 200
0.5 168 177 186 192 197 198 200 200
1.0 193 194 197 198 199 200 200 200

SDARL 0.1 66 57 44 32 19 12 4 n.a.
0.2 71 58 43 30 18 12 5 n.a.
0.5 77 59 43 29 18 12 6 n.a.
1.0 82 61 42 30 19 13 6 n.a.

Table 4.3: In-control AARL and SDARL for the EWMA chart with n = 10 and ARL0 =
200

In the case of n = 1 the control limits for 10, 000 charts were estimated and the in-
control conditional ARL for each chart was approximated using a Monte Carlo sim-
ulation study. For n = 1 the process standard deviation is estimated by the moving-
range estimator, defined as

MR =
MR

1.128
=

1

2/
√
π

1

m− 1

m∑
i=2

|Yi − Yi−1|.

Table 4.4 contains the in-controlAARL and SDARL values for the ewma chart based
on n = 1. Again, as with n = 5 and n = 10, several thousand observations are needed
for the in-control SDARL values to be relatively small, say within 10% of the desired
in-controlARL value of 200. One has very little to no control over the in-controlARL
value if one follows the common recommendation of 25−50 individual observations
in Phase I. This result was also demonstrated by Saleh et al. (2015b) for λ = 1.

We also investigated the required number of Phase I individual observations when
changing the value of the desired in-control ARL for the ewma chart. These results
can be found in Saleh et al. (2015a, Tables 13 and 14). Higher numbers of observations
are required for the larger value of λ. In addition, the required number of observa-
tions increases as the desired value of the ARL0 increases.
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m

λ 30 50 100 200 500 1, 000 5, 000 ∞
AARL 0.1 249 193 184 184 194 197 199 200

0.2 353 248 212 202 200 199 200 200
0.5 721 365 258 224 209 205 201 200
1.0 976 459 275 234 210 206 200 200

SDARL 0.1 2, 061 235 123 81 51 33 15 n.a.
0.2 1, 518 440 182 100 60 41 18 n.a.
0.5 3, 833 1, 228 308 145 75 48 22 n.a.
1.0 5, 622 1, 302 300 159 79 55 23 n.a.

Table 4.4: In-control AARL and SDARL for the EWMA chart with n = 1 and ARL0 =
200

4.5 Adjusting the control limits

In order to overcome the problem of the often low in-control ARL values when us-
ing estimated parameters, Jones and Steiner (2012) and Gandy and Kvaløy (2013)
argued that determining the control limits should be based on the conditional in-
control ARL instead of the unconditional one. Their proposal was to adjust the con-
trol limits in a way that guarantees, with a suitable high specified probability, that
the conditional in-control ARL meets or exceeds the desired level.

Gandy and Kvaløy (2013) approach is based on bootstrapping the Phase I data
to construct an approximate confidence interval for the control limits. The general
bootstrap procedure, introduced by Efron (1979), is a resampling technique used to
estimate the sampling distribution of any sample statistic. In quality-control appli-
cations, control charts designed based on bootstrap methods have been suggested
as alternatives for the standard design methods. See, for example, Bajgier (1992),
Seppala et al. (1995), Liu and Tang (1996), and Jones and Woodall (1998). Recently,
Chatterjee and Qiu (2009) proposed estimating the control limits of the cusum chart
using the bootstrap. Prior work on the bootstrap methods used in quality control
focused on determining estimated control limits, not on controlling the conditional
ARL performance of control charts.

In order to best describe Gandy and Kvaløy’s (2013) approach, let us first de-
fine P as the true in-control distribution, P̂ as the estimated in-control distribution,
θ = (µ0, σ0) as the vector of process parameters, θ̂ = (µ̂0, σ̂0) as the vector of esti-
mated process parameters, and q as the control chart limit such that the chart has
a specific in-control ARL. The quantities P̂ and θ̂ are obtained from m in-control
Phase I samples each of size n. The quantity q is a function of P and θ or their esti-
mates. For example, q(P ; θ̂) represents the value of control limits conditioned on θ̂,
such that under the true in-control distribution P the performance of the chart equals
the specified in-control ARL. For simplicity, in this chapter, we evaluate a limit q for
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the absolute value of the ewma chart statistic, defined in Equation (4.1), divided by
the quantity

√
λ/(2− λ). Therefore, the control limit q that produces the desired

in-control ARL is equal to the value of L defined in Equation (4.5).
When parameters are unknown, the observed control chart performance depends

on q(P ; θ̂), which is unknown because P is unobservable. Gandy and Kvaløy (2013)
proposed using the estimator q(P̂ ; θ̂) to build a lower one-sided confidence interval
for q(P ; θ̂) using the bootstrap technique. Let (1−α∗)% be the percent of the in-control
ARL values equal to or higher than the ARL0, then we can write

P (q(P̂ ; θ̂)− q(P ; θ̂) > pα∗) = P (q(P ; θ̂) < q(P̂ ; θ̂)− pα∗) = 1− α∗

where pα∗ is a constant. The quantity pα∗ is unknown because it represents the
(α∗) quantile of the unobserved sampling distribution of q(P̂ ; θ̂) − q(P ; θ̂). Note
that Gandy and Kvaløy (2013) incorrectly referred to pα∗ as the (1 − α∗) quantile.
This was a typographical error because it should be the α∗ quantile. Gandy and
Kvaløy (2013) proposed using the bootstrap technique to estimate the distribution
of q(P̂ ; θ̂) − q(P ; θ̂) with the distribution of q(P̂ ∗; θ̂∗) − q(P̂ ; θ̂∗) where P̂ ∗ and θ̂∗ =

(µ̂∗, σ̂∗) are the estimated in-control distribution and process parameters from the
bootstrap samples, respectively. If B is the number of bootstrap samples, then pα∗ is
approximated with p∗α∗ , which represents the (α∗) quantile of [q(P̂ ∗b ; θ̂∗b ) − q(P̂ ; θ̂∗b )],
b = 1, 2, 3, ..., B. The upper bound q(P̂ ; θ̂)− p∗α∗ is then taken as the adjusted control
limit.

The simulation steps followed in this chapter are the same as those listed in Gandy
and Kvaløy (2013, page 651). In our simulation procedure, we used m = 50 samples
of size n = 5, α∗ = 0.1, λ = 0.1, and B = 1, 000 bootstrap samples. We assumed,
without loss of generality, that the unknown true parameters of the in-control distri-
bution are µ0 = 0 and σ0 =

√
n. We assumed that the desired in-controlARL0 is 200.

Because we found that the Shewhart chart has higher levels of between-practitioner
variability than the ewma chart, we additionally designed it using this bootstrap ap-
proach. The same simulation settings were used for the Shewhart chart. The pro-
cedure followed in calculating the control limits, q(P̂ ; θ̂), q(P̂ ∗b ; θ̂∗b ), and q(P̂ ; θ̂∗b ), for
each of the Shewhart and ewma control charts is discussed in detail in the appendix
in Section 4.8. Once the limit (q(P̂ ; θ̂) − p∗α∗ ) was determined, the corresponding in-
control and out-of-control ARLs were calculated. For the ewma chart, the Markov
chain approach described in the appendix in Section 4.7 was used in calculating the
ARL.

Figures 4.2 and 4.3 contain the boxplots of the in-control and out-of-control ARL
distributions, respectively, for the ewma and Shewhart control charts. For both the
ewma and Shewhart charts, the limits computed with the bootstrap adjustment are
indicated as “Adjusted Limits”. For reference, charts with “Unadjusted Limits” were
computed with m = 50 samples of size n = 5 using (λ, L) = (0.1, 2.454) for ewma
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Figure 4.2: In-control distribution of the conditional ARL when m = 50 and n = 5. The
boxplots show the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the conditional
in-control ARL distribution

charts and L = 2.807 for Shewhart charts. The out-of-control ARL values were com-
puted with a mean shift of δ̃ = 1, and the boxplots were constructed from 2, 000ARL

values. In Figure 4.2, one can see, as expected, that the adjusted limits resulted in
about 90% of the in-control ARL values for both the ewma and Shewhart charts of
at least 200 when computed using the bootstrap approach. Interestingly, more than
75% of the ewma charts and 50% of the Shewhart charts with unadjusted limits had
an in-control ARL below 200, indicating a higher incidence of false alarms.

An interesting feature of Figure 4.2 is that the ewma charts based on the bootstrap
design have a much more variable in-control ARL distribution than the charts based
on unadjusted limits. Although the in-control ARL distribution of the ewma chart is
extremely skewed to the right and more variable than that of the unadjusted limits,
the out-of-controlARL distribution of the ewma chart with the adjusted limits is very
tight, as shown in Figure 4.3. The ewma design based on the bootstrap approach has
a slightly more variable out-of-control ARL distribution than the standard design.
The median out-of-control ARL is around 12 for the adjusted limits and around 9
for the unadjusted limits. This small loss in out-of-control performance comes with
“guaranteed” in-control performance with 90% of the bootstrap adjusted charts hav-
ing in-control ARL values above 200 as compared with only 25% of the charts with
unadjusted limits. Although the increased variability in the in-control ARL distri-
bution of the ewma charts based on the adjusted limits was initially surprising to us,
we quickly realized that we are not too concerned about charts with large in-control
ARL values as long as they can quickly detect an out-of-control event.

Another interesting feature of Figures 4.2 and 4.3 is that the out-of-control ARL
values of the Shewhart chart with the adjusted limits are considerably higher than
those of the ewma chart with either adjusted or unadjusted limits. Hence, if the goal
is to avoid frequent false alarms and to detect this sustained shift quickly, then the
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Figure 4.3: Out-of-control distribution of the conditional ARL when m = 50 and n = 5.
The boxplots show the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles of the conditional
in-control ARL distribution

ewma chart remains much preferred to the Shewhart chart.
Figure 4.4 shows the relationship between the in-control ARL values and the out-
of-control ARL values of the ewma chart. The scatterplot presents the out-of-control
ARL versus the in-controlARL, categorized by the standardized mean being under-
estimated (< 0) or overestimated (> 0). The lower smooth part of the scatterplot
represents the case when the process mean is underestimated. Unexpectedly, the
high out-of-control ARL values are associated with the lowest in-control ARL val-
ues. It can be concluded from this figure that the increase in the out-of-controlARL is
due to overestimating the process mean rather than having a higher in-control ARL.
Another point to note from Figure 4.4 is that a positive sustained shift along with
an underestimated in-control mean increases the effective shift size and, as a con-
sequence, results in a low out-of-control ARL value. Overestimating the in-control
mean, on the other hand, leads to a decrease in the effective shift size and, thus, a
significant increase in the out-of-control ARL.

4.6 Conclusion

In this chapter, we have extended the work of Jones et al. (2001) by using the SDARL
metric in evaluating the in-control performance of the ewma control chart when the
parameters are estimated. Accounting for the practitioner-to-practitioner variability
led to some quite different conclusions regarding the chart performance. First, the
ewma chart requires more Phase I data than previously recommended in order to have
consistent chart performance among practitioners. Additionally, we found that charts
designed with large values of the ewma smoothing constant have more variability in
the ARL distribution; thus, we recommend more Phase I data be used with larger
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Figure 4.4: Scatterplot of the in-control vs. the out-of-control conditional ARL values of the
EWMA control chart categorized by the mean estimates overestimating or underestimating
the process mean

smoothing constants. Because ewma charts are typically used when quickly detecting
small sustained shifts is of interest, the charts are most often designed with small
values of the smoothing constant (λ < 0.25).

With our recommendations regarding the required amount of Phase I data, we
can easily see the difficulty in controlling the in-control ARL value of an ewma chart.
We support the use of the bootstrap-based design approach of Jones and Steiner
(2012) and Gandy and Kvaløy (2013), which was recently proposed for controlling
the probability of the in-control ARL being at least a specified value. Our results
show that adjusting the ewma control limits accordingly can result in a highly skewed
in-control ARL distribution. However, such increases in the in-control ARL did not
have much of an effect on the out-of-control performance of the chart. In our opinion,
this design approach is very promising and should be considered while evaluating
and comparing control charts. Controlling a percentile of the in-control ARL distri-
bution can provide satisfactory chart performance among a wide range of practition-
ers.

We found that, if one considers the necessary amount of data for stable perfor-
mance as determined by the SDARL, fewer observations are required for designing
an ewma chart than a Shewhart chart. Thus, the ewma chart, with a small smoothing
constant, has an advantage over the Shewhart chart, which would require more Phase
I data to achieve similar stability in terms of ARL performance across samples. Ad-
ditionally, based on the bootstrap design, we found that the ewma chart is preferred
to the Shewhart chart because, with the former, one can simultaneously avoid too
frequent false alarms and detect out-of-control sustained shifts more quickly.
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4.7 Appendix: calculating the AARL and SDARL

In this chapter, the ewma chart is evaluated using the in-control AARL and SDARL
metrics. These metrics were calculated using the following Markov chain approach.
Let ±h be the control limits given in Equation (4.5), t be the number of the subin-
tervals between the upper and lower control limits (namely, the number of transient
states), andw be the width of each subinterval defined asw = 2h/t. Saleh et al. (2013,
Appendix B) derived the transition probabilities plj , l = 1, 2, ...t and j = 1, 2, ..t, for
the ewma chart when process parameters are estimated. The probability plj refers
to the probability of moving from the transient state l to the transient state j. They
calculated plj using

plj =Φ

(
Q

[
Sj + w/2− (1− λ)Sl

λ

]
− δ̃ +

Z√
m
|µ̂0, σ̂0

)
−

Φ

(
Q

[
Sj − w/2− (1− λ)Sl

λ

]
− δ̃ +

Z√
m
|µ̂0, σ̂0

)
where Φ(.) is the cumulative standard normal distribution function, the quantities Z
and Q are defined in Equation (4.4), and S(.) represents the (.)th interval midpoint.

We define R to be a t × t matrix consisting of the probabilities of moving from
one transient state to another such that R = [plj ], and u to be a t × 1 vector of ones.
According to Markov chain approach, the ARL vector is computed as

ARL = (I − R)−1u (4.8)

where I is the identity matrix of dimension t×t. Here,ARL is a (t×1) vector contain-
ing theARLs corresponding to all the possible initial states. We have Z∗0 = 0. Hence,
for an odd value of t, the (t + 1)/2-th element (middle element) corresponds to the
ARL satisfying this assumption. The ARL defined in Equation (4.8) is a function of
the random variables µ̂0 and σ̂0, or more generally the random variables Z and Q.
Hence, we can write the AARL as

AARL = E(ARL) =

∫ ∞
0

∫ ∞
−∞

ARLgZ(z)fQ(q)dzdq (4.9)

and the SDARL as

SDARL = [E(ARL2)− [E(ARL)]2]1/2

where

E(ARL2) =

∫ ∞
0

∫ ∞
−∞

ARL2gZ(z)fQ(q)dzdq (4.10)

Here,ARL is the element of the vectorARL corresponding to the initial state, and the
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gZ(z) and fQ(q) are the probability density functions of the random variables Z and
Q, respectively. Because the samples are assumed to be independent and normally
distributed, the random variables Z and Q are independent. The variable Z follows
the standard normal distribution, whileQ follows a scaled chi (χ) distribution. Saleh
et al. (2013) provided the functional form of the probability density function of Q.
The integrations in Equations (4.9) and (4.10) were approximated using the Gaus-
sian quadrature method. The numerical results were validated using Monte Carlo
simulation.

4.8 Appendix: the bootstrap approach

In this chapter, we design the Shewhart and ewma control charts using the bootstrap
approach. We start here with providing the steps of applying Gandy and Kvaløy
(2013) algorithm, then we list the calculation steps for the Shewhart and ewma chart.

Gandy and Kvaløy’s Algorithm

The steps of Gandy and Kvaløy (2013) algorithm for obtaining bootstrap-based con-
trol limits can be summarized as follows:

1. We let the true unknown in-control distribution P be N(µ0, σ
2
0), with µ0 = 0

and σ2
0 = n. We generate a Phase I data set of m samples each of size n from

N(0, n) and compute µ̂0 and σ̂0. We then compute the quantity q(P̂ ; θ̂), where
P̂ = N(µ̂0, σ̂

2
0) is the estimated in-control distribution and θ̂ = (µ̂0, σ̂0) is the

estimate of the parameters that are used to run the chart.

2. We then generate B = 1, 000 bootstrap samples from P̂ and compute θ̂∗b =

(µ̂∗0, σ̂
∗
0) for each of the b = 1, 2, ..., B samples. It is important to note that µ̂∗0

and σ̂∗0 are calculated the same way as µ̂0 and σ̂0 were calculated.

3. We finally compute the quantities q(P̂ ∗b ; θ̂∗b ) and q(P̂ ; θ̂∗b ) for b = 1, 2..., B. We
obtain the value of p∗α as theαpercentile of the bootstrap distribution of q(P̂ ∗b ; θ̂∗b )−
q(P̂ ; θ̂∗b ). The final (adjusted) control limit for the chart is then taken as q(P̂ ; θ̂)−
p∗α.

We generated the ARL distribution by repeating the steps 1-3 for a number of times
(we used 2, 000 times). Next, we explain in detail how to compute the different values
of q for the Shewhart and ewma charts.

Gandy and Kvaløy’s (2013) approach is based on three limits; q(P̂ ; θ̂), q(P̂ ∗b ; θ̂∗b ), and
q(P̂ ; θ̂∗b ). The three limits are defined as follows:

1. The quantity q(P̂ ; θ̂) represents the value of L that produces the desired in-
control ARLwhen the Phase II data are generated from P = N(µ̂0, σ̂

2
0) and the

limits are constructed using θ = (µ̂0, σ̂0).
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2. The quantity q(P̂ ∗b ; θ̂∗b ), b = 1, 2, 3, ..., B, represents the value of L that produces
the desired in-control ARL when the Phase II data are generated from P̂ ∗b =

N(µ̂∗b , σ̂
∗2
b ) and the limits are constructed using θ∗b = (µ̂∗b , σ̂

∗
b ).

3. The quantity q(P̂ ; θ̂∗b ), b = 1, 2, 3, ..., B, represents the value of L that produces
the desired in-control ARL when the Phase II data are generated from P̂ =

N(µ̂0, σ̂
2
0) and the limits are constructed using θ∗b = (µ̂∗b , σ̂

∗
b ).

Calculation of q for the Shewhart Control Chart

Consider the Shewhart control chart where the chart statistic is the sample mean (Ȳi)
and the control limits are µ0 ± Lσ0/

√
n, with L being the control limit constant cho-

sen to satisfy a specific in-control performance. Finding the quantity q(P̂ ; θ̂) implies
finding L such that

P
(
µ̂0 − Lσ̂0/

√
n < Ȳ < µ̂0 + Lσ̂0/

√
n
)

= 1− α

where α is the false-alarm probability and Ȳ ∼ N(µ̂0, σ̂
2
0/n). This can be simplified

to
P

(∣∣∣∣ Ȳ − µ̂0

σ̂0/
√
n

∣∣∣∣ > L

)
= P (|Z| > L) = α.

It follows that L = Z1−α/2 or equivalently q(P̂ ; θ̂) = Z1−α/2. Similarly, q(P̂ ∗b ; θ̂∗b ) =

L = Z1−α/2, for b = 1, 2, ...B. For Shewhart charts, α is the reciprocal of the in-control
ARL. In our study, α = 0.005 and thus Z1−α/2 = 2.807.

For the quantity q(P̂ ; θ̂∗b ), we need to find L such that

P
(
µ̂∗b − Lσ̂∗b/

√
n < Ȳ < µ̂∗b + Lσ̂∗b/

√
n
)

= 1− α

where Ȳ ∼ N(µ̂0, σ̂
2
0/n) or equivalently

P

(
Z <

µ̂∗b + Lσ̂∗b/
√
n− µ̂0

σ̂2
0/
√
n

)
− P

(
Z <

µ̂∗b − Lσ̂∗b/
√
n− µ̂0

σ̂2
0/
√
n

)
= 1− α. (4.11)

In such a case, a search algorithm is required for finding the value of L that satis-
fies Equation (4.11). A search algorithm could be of a binary search type or any other
trial and error type.

Our studies showed thatL is always bounded between two values. Refer to the quan-
tity in Equation (4.11) as P (Z < b2) − P (Z < b1) = 1 − α. It can be deduced that, if
µ̂∗0 ≥ µ̂0, then necessarily b1 ≥ Zα/2, which implies that

L ≤ σ̂0
σ̂∗0
Z1−α/2 +

µ̂∗0 − µ̂0

σ̂∗0/
√
n
.
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Also, if µ̂∗0 ≤ µ̂0, then necessarily b2 ≤ Z1−α/2, which implies that

L ≤ σ̂0
σ̂∗0
Z1−α/2 +

µ̂0 − µ̂∗0
σ̂∗0/
√
n
.

Hence, an upper bound for L can be defined as

σ̂0
σ̂∗0
Z1−α/2 +

|µ̂0 − µ̂∗0|
σ̂∗0/
√
n
.

Additionally, b2 − b1 ≥ 2Z1−α/2 because the symmetric interval is the shortest
interval for a standard normal density containing a given probability. Thus, sub-
stituting with the expressions for b1 and b2 and solving for L provides that L ≥
(σ̂0/σ̂

∗
0)Z1−α/2. Consequently, we can say that L ∈ (L1, L2), where

L1 =
σ̂0
σ̂∗
Z1−α/2 and L2 = L1 + ∆,

where ∆ =
√
n(|µ̂0 − µ̂∗0|/σ̂∗0). These bounds can help to speed up the search algo-

rithm to solve Equation (4.11) for L.
Alternatively, to solve Equation (4.11) for L one can use a very strong relation-

ship between L/L2 and ∆/L2 discussed in Saleh et al. (2015a, Appendix B). Recently,
Goedhart et al. (2015) provided an analytical expression to approximateL, this makes
the bootstrap approach for the Shewhart chart redundant.

Calculation of q for the EWMA Control Chart

For the ewma chart, finding the quantity q(P̂ ; θ̂) is similar to the case of finding q(P ; θ);
i.e., the value of L that produces the desired in-controlARLwhen the in-control pro-
cess parameters are known. This is because the in-control distribution is defined with
the same estimated parameters (θ̂) used in building the control chart limits. Hence,
it follows that q(P̂ ; θ̂) is equal to 2.454 for λ = 0.1. Similarly, q(P̂ ∗b ; θ̂∗b ) = 2.454 for
b = 1, 2, 3, ..., B.

For finding q(P̂ ; θ̂∗b ), were the estimates of the in-control distribution differ from
that corresponding to the control limits, a search algorithm is required for finding
the value of L satisfying an in-control ARL of 200 under data from P̂ . The search
algorithm was of a trial-and-error type and was validation using the Markov chain
technique described in Section 4.7 for each and every iteration. For the Markov chain
approach the standardized sample mean Ŵ , as defined in Equation (4.4), should be
based on the quantities Q = σ̂∗b/σ̂0, νi =

√
n(Ȳi − (µ̂0 + δσ̂0))/σ̂0, δ̃ =

√
nδ, and

Z =
√
mn(µ̂∗b − µ̂0)/σ̂0.
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5. Comparing
EWMA Charts for Dispersion

Various designs of the ewma chart for dispersion exist. As shown in Section 1.4, using
so-called Phase I estimates effects the performance of control charts. In this chapter,
we compare the various designs of the ewma chart for dispersion based on estimated
parameters and argue that the chart for which the performance is least influenced by
sampling error (the chart based on the sample variance) should be used in practice.
This chapter is based on Zwetsloot (2015).

5.1 Introduction

Various ewma charts for dispersion have been proposed in the literature; they differ
in the dispersion measure used. For example, Knoth (2015) studied the ewma chart
based on the sample variance (S2). Another possibility is the ewma chart based on the
sample standard deviation (S), which was the studied in Chapter 3. The ewma chart
based on a logarithmic transformation of S2 or S, is the most prevailing chart. For
example, see Crowder and Hamilton (1992), Shu and Jiang (2008), and Maravelakis
and Castagliola (2009), amongst others.

The process parameters need to be estimated in most practical applications, and,
as discussed in Chapter 1, using estimated parameters severely affects the Phase II
performance of control charts. In Chapter 4 we showed that sampling error severely
affects the performance of the ewma chart for location. Less research has been con-
ducted on the effect of estimation on the ewma chart for dispersion, even though
Jensen et al. (2006) noted that “it seems reasonable to expect that the effect of param-
eter estimation would be more severe on charts that are used to monitor the variance
than for charts to monitor the mean”.

An exception is Maravelakis and Castagliola (2009) who studied the effect of esti-
mation on the ewma chart based on a variant of the ln(S2) statistic. They compared
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the effect of various Phase I sample sizes on the performance of the chart. They con-
cluded that 80 samples of size 5 are not yet enough data to have comparable per-
formance to the known parameter case. Our findings in Chapter 3 are in line with
these results. There we showed that the performance of the ewma chart for disper-
sion based on the sample standard deviation S is strongly influenced by sampling
variability. The effect of sampling variability has also been studied for other types
of dispersion charts. For example, Epprecht et al. (2015) and Faraz et al. (2015) both
studied the Shewhart chart for dispersion based on estimated parameters. All these
studies focus on a single chart and quantified the effect of sampling error by compar-
ing the performance of that chart based on estimated parameters to the performance
of the same chart based on known parameters.

In this chapter, we look at the effect of estimation on the chart’s performance from
a different perspective. Rather than quantifying the effect of Phase I estimation for
a single chart, we use the effect of estimation on the performance as a comparison
metric for multiple charts. We argue that the ewma chart for dispersion which is least
influenced by sampling variability should be used in practical applications.

Therefore, the objective of this chapter is to give an advice on which ewma chart for
dispersion to use when process parameters are estimated. That is, which ewma chart
should be used in practice? We conduct an extensive simulation study to evaluate and
compare the effect of Phase I estimation on the various ewma charts for dispersion.
We evaluate the performance in terms of both the conditional performance as well as
the unconditional (marginal) performance.

This chapter is organized as follows. In Section 5.2, we discussed how to set up
the ewma charts for dispersion. Next, in Section 5.3 we use an example to illustrate
the effect of estimation on the three considered charts. In Section 5.4, we discuss the
simulation set up. Afterwards, in Section 5.5, a performance comparison of the charts
is given. Furthermore, in Section 5.6, we discuss the out-of-control performance. In
Section 5.7 we extend the comparison to various designs. Finally, in Section 5.8, we
provide some concluding remarks.

5.2 Three EWMA control charts for dispersion

Throughout this chapter, we assume that we observe process observations in samples
of size n > 1 at regular time intervals i = 1, 2, .... Furthermore, we assume that the
process observations are independent and normally distributed with mean µ and
standard deviation σ. Data are assumed in control if µ = µ0 and σ = σ0.

When monitoring the dispersion, it is often of interest to detect increases in the
dispersion as these indicate some special cause of variation or performance deteri-
oration. Contrary, a decrease in dispersion indicates a process improvement. With
this in mind, most research on charts for dispersion has focussed on the one-sided
charts, where the statistic is reset to a so-called reflection boundary, if it drops below
this boundary. As in Chapter 3, we consider one-sided charts here.
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Recall, from Equation (3.2), that for one-sided monitoring the ewma statistic at
time i is defined as

Zi = max [(1− λ)Zi−1 + λMi, E[Mi]] , for i = 1, 2, ..., (5.1)

whereMi is a measure for the dispersion in the ith sample (in Chapter 3 we used the
sample standard deviation forMi). Again λ, 0 < λ ≤ 1, is a smoothing constant. The
initial value Z0 is set equal to the expectation of Mi.

The ewma chart signals when the statistic Zi exceeds the upper control limit given
by

µM + L

√
λ

2− λ
σM . (5.2)

whereL is chosen to satisfy a specific in-control performance, and µM and σM are the
mean and standard deviation of Mi, respectively. For ease of computation we con-
sider the ewma chart with this asymptotic limit, for the difference between asymptotic
and exact limits see Section 1.3 and Abbasi (2010).

Several dispersion measures (Mi) have been studied in the literature. For exam-
ple, the sample variance S2 was used by Knoth (2005, 2015). Another possibility is
the sample standard deviation S, which was studied in Chapter 3 (or equivalently
Zwetsloot et al., 2015a). Following an idea of Box et al. (1978, Chapter 5.4) it became
popular to use a dispersion measure based on the logarithm of the sample variance.
The rationale behind this is that tests for comparing variances become less sensitive
to non normality of the original data, as the statistic is approximately more normally
distributed than S2 itself. Also taking a logarithm of S2 or S changes the model
from a variance shift to a location shift model. Thus an increase in the underlying
process dispersion will show as an increase in the mean level of the plotted ewma
statistic, whereas the variance of the plotted ewma statistics remains equal (Crowder
and Hamilton, 1992). This idea has been used and studied quite extensively, see for
example Crowder and Hamilton (1992), Castagliola (2005), and Shu and Jiang (2008).

In this chapter, we consider three measures of dispersion (Mi): the sample vari-
ance S2, the sample standard deviation S, and the logarithm of the sample variance
ln(S2). For conciseness, we only consider these three charts, as the other proposed
statistics in, for example, Castagliola (2005) or Abbas et al. (2013), are all extensions
of the S, S2, and lnS2 based charts. Therefore, we expect that the results for these
charts will be comparable to conclusions drawn here.

The ewma chart statistic in Equation (5.1) can be rewritten as

Wi = max [(1− λ)Wi−1 + λDi, E[Di]] , for i = 1, 2, ..., (5.3)
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where Di is the standardized dispersion measure defined as

Di =
S2
i

σ2
0

, Di =
Si
σ0
, or Di = ln

(
S2
i

σ2
0

)
,

depending on the considered chart for dispersion. Here σ0 is the in-control process
standard deviation. In practice, σ0 is unknown, and is typically replaced with an
estimator σ̂0 to give

D̂i =
S2
i

σ̂2
0

, D̂i =
Si
σ̂0
, or D̂i = ln

(
S2
i

σ̂2
0

)
. (5.4)

Following a similar procedure as in Epprecht et al. (2015) we rewrite D̂i as

D̂i = χ2
i

1

n− 1

γ2

Q2
, D̂i = χi

1√
n− 1

γ

Q
, or D̂i = ln

(
χ2
i

1

n− 1

γ2

Q2

)
. (5.5)

Here the information of the sample at time i is represented by the random variable
χ2
i = (n − 1)S2

i /σ
2. Which follows a chi-squared distribution with n − 1 degrees of

freedom, as we assumed that the process observations are independent and normally
distributed. The constant γ = σ/σ0 is the ratio of the actual standard deviation at time
i to the in-control standard deviation. If the process is in control γ = 1. Finally, the
variable Q = σ̂0/σ0 represents the precision of the Phase I estimate. Note that Q is a
random variable, each realization comes from a Phase I sample.

As estimator for the in-control process standard deviation we use the pooled sam-
ple standard deviation, as defined in Equation 3.4. Mahmoud et al. (2010) recom-
mended to use the pooled sample standard deviation in quality monitoring applica-
tions. Note that Sp is a biased estimator of σ0, whereas S2

p is an unbiased estimator
of σ2

0 .
When we use the standardizedDi for the ewma statistic, the control limit as given

in Equation (5.2) becomes

µD + L

√
λ

2− λ
σD. (5.6)

AsDi is standardized, the values µD and σD are independent of σ0, see the appendix
in Section 5.9 for details. Therefore, the control limit equals a constant depending on
the chosen statistic D, the set value for λ, the sample size n, and the chosen ARL0

which determines L. We denote the control limit as

UCL(D,λ, n,ARL0). (5.7)

In the appendix (Section 5.9) the values of UCL(D,λ, n,ARL0) are provided.
Throughout this chapter, we refer to the ewma chart based on the sample variance
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as s2-ewma, to the ewma chart based on the sample standard deviation as s-ewma, and
to the ewma chart based on the logarithm of the sample variance as ln s2-ewma. Table
5.1 gives an overview of the three proposed ewma charts for dispersion.

Chart Statistic Description

s2-ewma S2

σ2
0

Ewma chart based on the sample variance

s-ewma S
σ0

Ewma chart based on the sample standard deviation

ln s2-ewma ln S2

σ2
0

Ewma chart based on the log of the sample variance

Table 5.1: Overview of the EWMA charts for dispersion

5.3 The effect of sampling error

For each chart, its performance will depend on the Phase I estimate. We are interested
in comparing the effect of estimating the process dispersion across the three ewma
charts. An overestimate of the in-control process dispersion leads to wider control
limits, or equivalently, to an over-correction of the standardized statistic defined in
Equation (5.5). Hence increases in the process dispersion will be more difficult to de-
tect. Vice versa, if a practitioner obtains an underestimate of the process dispersion,
the control chart will give more frequent false alarms than expected. This variability
in performance is often referred to as practitioner-to-practitioner variability and can
be alternatively seen as sampling variation for a single user.

To illustrate the sampling variability, consider a practitioner who collected a ref-
erence sample of m = 50 samples of size n = 5 and estimated the process standard
deviation using the pooled sample standard deviation (Sp). Table 5.2 provides the
percentiles of the cumulative distribution function of Sp or equivalentlyQ for σ0 = 1.
The distribution function of Q = σ̂0/σ0 can be found in Chen (1997). From Table 5.2
we see that with a probability of 0.95 the practitioner will obtain an estimate of σ0
between 0.903 and 1.099 when σ0 = 1. Note that, in contrast with Chapter 3, we only
consider in-control Phase I data.

To illustrate the effect of estimation on the performance, we design three ewma

Percentiles
2.5 5 10 25 50 75 90 95 97.5

Q 0.903 0.918 0.936 0.966 1.000 1.034 1.064 1.083 1.099

Table 5.2: Percentiles of the distribution of Q based on m = 50 samples of size n = 5
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charts for dispersion based on known (σ̂0 = σ0), underestimated (σ̂0 = 0.903σ0),
and overestimated (σ̂0 = 1.099σ0) process dispersion. The charts are set up with
λ = 0.15 and UCL such that under known parameters the in-control ARL equals
200. The derivations of the values for UCL can be found in the appendix in Section
5.9 and theUCL equals 1.5894, 1.1924, and, 0.2389 for the s2-, s-, and ln s2-ewma chart,
respectively.

Figure 5.1(a) shows the Phase II data, which were generated for this example. We
simulated the first twenty Phase II samples as in-control observations and the next
ten samples as out-of-control observations with γ = 1.5. Figures 5.1(b)-(d) show the
three ewma charts used to monitor these data. The dotted horizontal lines equal the
control limit and reflection boundary, respectively. The solid line shows the ewma
statistic based on known process dispersion. Around this line two dotted lines show
the ewma statistic based on under- and overestimated process dispersion.

First consider Figure 5.1(b); it shows the s2-ewma chart with three plotted ewma statis-
tics. The solid line, based on known process dispersion, signals an out-of-control con-
dition at sample 21, just after the actual shift in the process. Whereas the top dotted
line, based on underestimated process dispersion, signals (a false alarm) at sample
12. The lower dotted lined, based on overestimated process dispersion, signals at
sample 25. Thus, depending on the obtained Phase I estimate a practitioner can get,
for this situation with a probability of 0.95, a signal between sample 12 and 25.

Next, consider Figures 5.1(c) and (d) which show the s-ewma and ln s2-ewma charts,
respectively. The charts based on known process dispersion both signal at sample 24,
a bit later than the s2-ewma chart. This is in line with the results in Knoth (2010), who
showed that, for the case of known parameters, the s2-ewma chart signals shifts of size
γ = 1.5 the quickest. For the underestimated case the S and lnS2 charts do not signal
a false alarm around sample 12, contrary to the s2-ewma chart, and signal the shift in
the process at sample 21, respectively, sample 22. Hence there are real differences in
performance between the three ewma charts for dispersion. Figures 5.1(b)-(d) show
the necessity to take into account the effect of sampling variability.

Note that for λ = 1 the ewma chart is equivalent to the Shewhart chart. Epprecht
et al. (2015) study the Shewhart chart for dispersion based on S2 and illustrate the
sampling variability. Contrary to the ewma chart, it makes no differences for the She-
whart chart which statistic (S2, S, or lnS2) is used for monitoring. Figures 5.1(b), (c)
and (d) would be identical for the Shewhart chart. This difference is explained by the
time dependence in the plotted ewma statistic. The plotted statistic for the Shewhart
control chart is time independent, hence the probability that a statistic, for example S,
exceeds the control limits is equal to the probability that a monotone transformation
of that statistic, for example S2, exceeds the control limits (which has also been trans-
formed according to the same monotone transformation). However, for the ewma
chart the plotted statisticWi is a weighted average of Si or S2

i and these weighted av-
erages are no long one-on-one transformations. Therefore, the ewma charts signal at
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Figure 5.1: Example Phase II data and three EWMA charts for dispersion applied to these
data

different times if they are based on different statistics. Consequently, the ewma charts
based on S2 and S, or any other dispersion metric, will show different performance
as illustrated in Figures 5.1(b), (c), and (d). We will show that as λ increases towards
1 the difference in performance becomes smaller.

5.4 Performance measures and simulation procedure

Above it was illustrated that the performance of the ewma control chart can vary
depending on the chosen dispersion statistic and the obtained Phase I data set. For
a comprehensive comparison of these charts we evaluate the performance using the
conditionalARL, as well as the chart’s overall performance evaluated in terms of the
AARL and SDARLmetrics, as introduced in Sections 1.5 and 4.4. We will show that
for the ewma charts for dispersion the AARL values can be similar but the charts
show very different patterns in the variability of the conditional ARLs. The larger
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this variability the larger the uncertainty about the performance of a single chart.
We compute the conditional ARL with the statistical software package R using

the functions ewma.arl and lns2ewma in the package spc (Knoth, 2014). These func-
tions are designed to compute ARL values for charts based on known parameters.
They can be used to compute conditional ARLs for charts based on estimated pa-
rameters by using Equation (5.5). Note that the plotted statistic Di is proportional to
γ/Q. This equivalence is used to compute the conditional ARLs. For more details
see Section 5.6. We compute the conditional ARL for 50, 000 random generated re-
alizations of Q. The mean and standard deviation of these 50, 000 conditional ARLs
give the AARL and SDARL values. Furthermore, these results were validated us-
ing a Markov chain approach and integral equations comparable to the Markov chain
approach and integral equations discussed in Section 4.7.

Implementation of the ewma charts involves several design choices - the chart itself
(S2, S, or lnS2), the size of the shift the chart is tuned to (λ), the desired in-control
performance (ARL0) which also determines the value of L, the size n of the collected
samples, and the number of samples m collected in Phase I. We explore the impact
of these factors on the performance of the ewma charts with simulation. We assume
that the in-control process follows a normal distribution where we set, without loss
of generality, µ0 = 0 and σ0 = 1. As soon as the process goes out of control, the
process dispersion equals γ, which will have a value > 1.

5.5 Comparison of the in-control performance

In this section, we first consider a single configuration of the ewma charts for disper-
sion, and use this chart as an illustrative comparison of the three dispersion charts.
We use the same setting as in Section 5.3; λ = 0.15, n = 5, and UCL = 1.5894, 1.1924

and 0.2389, such that the charts have an ARL0 = 200 under known parameters. In
Section 5.7, we will discuss the effect of these selected design settings and generalize
our comparison to a range of design settings.

Figure 5.2 displays the AARL and SDARL values for each of the three dispersion
charts versus the number of Phase I samples m = 50, 100, ..., 200 used to estimate σ̂0.

Figure 5.2(a) shows, as expected, that all three charts suffer from estimation error.
The smaller the value of m, the larger the difference between the AARL and the de-
signed value of ARL0 = 200. The figure also shows that the three charts react differ-
ently to Phase I estimation; the s2-ewma chart has anAARLwhich is the closest to the
designed value of ARL0 = 200. Whereas, the s-ewma has a higher AARL followed
by lnS2 with the highest AARL for each considered values of m. However, recall
that for an in-control process a highARL is desirable. From this perspective all three
charts show acceptable performance. Note that by adjusting the UCL one can influ-
ence theAARL value. We have designed charts such that theARL0 equals 200 under
known parameters. Of course the chart can also be designed to have AARL = 200

74



5. COMPARING EWMA CHARTS FOR DISPERSION

125 150 175 200 
m 

50 75 100 

450 

400 
 
 
350 
 
 
300 
 
 
250 

200 

A
A

RL
 

𝑺𝑺𝟐𝟐  
𝑺𝑺 
ln 𝑺𝑺𝟐𝟐 

(a) AARL

200 175 150 125 
m 

100 75 50 

1600 

1400 

1200 
 
1000 
 

800 
 

600 
 

400 
 

200 
 

0 

SD
A

RL
 

𝑺𝑺𝟐𝟐  
𝑺𝑺 
ln 𝑺𝑺𝟐𝟐 

(b) SDARL

Figure 5.2: In-controlAARL and SDARL of each of the three EWMA charts for dispersion
versus m, the number of Phase I samples

instead of ARL0 = 200.
The AARL is an average of conditional ARLs. To study the variability in these

values we studied the SDARL displayed in Figure 5.2(b). Note that the y-axis has a
different scale than Figure 5.2(a). The results may be surprising - it shows that the
SDARL differs strongly across the three dispersion charts. The ln s2-ewma chart has
a SDARL of over 1500, when the chart is designed with a Phase I estimate based on
m = 50 samples of size n = 5. Whereas the SDARL of the s2-charts is half of this
values and lies around 700. Concluding, the AARL of the charts are relatively close
together, however theSDARL values differ strongly across the three charts especially
form in the range of 50−100. Note that the SDARL value is dependent on theAARL
value.

Another aspect seen from Figure 5.2(b) is the effect of increasing the sample size
in Phase I. The SDARL goes down substantially for m up to 150, afterwards it only
declines very slowly as m increases to 200. In order to achieve a predictable ARL
performance when process parameters are estimated, the SDARL should be small.
Zhang et al. (2014) suggested that a SDARLwithin 10% of theARL0 may be reason-
able, this implies a SDARL value < 20. For m = 5000 (not shown in the figure) the
SDARL of the three charts equals around 20. Hence only for 5000 samples (or more)
of size n = 5 the charts will have predictable conditional ARL performance.

As a comparison consider the ewma chart for location. In Chapter 4 we showed
that for this ewma chart for location, designed with λ = 0.1, around m = 600 to 800

samples of size n = 5 are needed to have a SDARLwithin 10% of theAARL. For the
ewma chart for dispersion designed with λ = 0.1, around 5000 samples are needed.
This difference in required number of samples confirms the prediction in Jensen et al.
(2006) that charts designed for monitoring the dispersion are more affected by sam-
pling error than charts designed to detect location shifts. It seems that impractical
large sample sizes are needed to decrease the variability in the performance of the
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ewma chart for dispersion.

To better understand these very large SDARL values, we study the conditionalARL
of the three dispersion charts. Figure 5.3 shows, in the lower panel, the curves of the
conditional ARL for the three ewma charts for dispersion versus the standardized
Phase I estimate Q. Note that the conditional ARLs are on a logarithmic scale. The
horizontal dotted line represents the ARL0 = 200 value. For Q = 1 the charts obtain
this value, as designed. The top panel in Figure 5.3 shows the probability density
function of Q based on m = 50 and m = 500 Phase I samples of size n = 5. The
functional formula of the density of Q can be found in Chen (1997).
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Figure 5.3: ConditionalARL versusQ, the standardized Phase I estimate. Dotted horizontal
line represents the pre-specified ARL0. Top panel shows probability density plots of Q

Figure 5.3 shows that the conditional ARL increases as Q increases, i.e. if the
process dispersion is overestimated in Phase I. What is - perhaps - surprising is that
the conditional ARL profile shows values up to (and over) 10,000 runs. This phe-
nomenon occurs because the larger the estimated in-control process dispersion, the
smaller the values of Di (as it is divided by this estimate) and thus the ewma statis-
tic stays small and has a (very) small chance to exceed the upper control limit. The
density plots shows that conditional ARLs of 10,000 have very small probability of
occurring if the sample size is large (m = 500) and a larger, but still small, probability
of occurring if the sample size is small (m = 50).

Another feature that can be seen from Figure 5.3 is that the choice for a dispersion
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statistic (i.e. Di) has a large effect on the conditional ARL. Note that, especially for
overestimated values ofQ the s- and ln s2-ewma charts have conditional ARLs which
are much larger than the conditional ARLs of the s2-ewma chart. For overestimating
the standard deviation by 10 percent (Q = 1.1), the conditional ARL equals 1789 for
the s2-ewma chart, 2156 for the s-ewma chart, and 2291 for the ln s2-ewma chart. The
probability of obtaining Q = 1.1 depends on the number of Phase I samples as can
be seen in the top panel of Figure 5.3. This difference in conditional ARL coincides
with the different values for the SDARL displayed in Figure 5.2(b) for m = 50 and
with the near identical SDARL values for m > 150.

With respect to in-control data, the difference of overestimated standard deviation
(Q > 1) is not really a concern as the ARL is very high; one expects it to be 200 and
if it is a lot higher than this should not be a problem. Of course, the out-of-control
performance should not be much higher than expected. This is discussed in Section
5.6. A more problematic feature in Figure 5.3 is when Q < 1, i.e. when the process
dispersion is underestimated. All three charts have very low conditionalARLs. Thus
all three charts give more frequent false alarms than expected.

Concluding, the in-control performance of the three ewma charts for dispersion
based on estimated parameters is strongly influenced by sampling error. Especially,
if the process dispersion is overestimated by at least 10%, the conditional ARL in-
creases heavily. Furthermore, when the process dispersion is underestimated, the
charts yield more frequent false alarms. We showed that increasing the number of
Phase I samples decreases the sampling variability. However at least m = 5000 sam-
ples are needed to have a reasonable low variability. All three ewma charts suffer from
this, although they are affected differently. The s2-ewma chart has the lowest condi-
tional ARL values. This translates into the smallest SDARL. Hence the s2-ewma
chart has the most predictable in-control performance, when the process dispersion
is estimated based on limited Phase I data (m < 150).

5.6 A note on the out-of-control performance

Apart from in-control performance, the out-of-control performance of a chart is very
important. It reflects the ability to detect process changes, and therefore reflects the
main goals of process monitoring. Usually, the performance of charts is compared for
a range of possible out-of-control scenarios, whereby for the ewma chart one focusses
on sustained shifts in the process parameter. As we focus on one-sided charts we
study increases in the process dispersion from the in-control level σ0 to σ > σ0, or
equivalently γ > 1.

The out-of-control performance of the three charts based on known parameters
is compared by Knoth (2010). In his analysis he showed that differences in out-of-
control performance are small, especially for increases in the process dispersion. He
showed that the s-ewma chart detects shifts of size 1 < γ < 1.3 slightly better than the
other two charts and that the s2-ewma chart detects shifts of size γ > 1.3 the quickest.
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Knoth (2010) considered two-sided charts.

In this section, we are interested in the out-of-control performance of the three
charts when process parameters are estimated. More specifically, we are interested in
the difference between the out-of-control performance for the three considered ewma
charts. To evaluate the out-of-control performance it is clarifying to consider the stan-
dardized version of Di from Equation (5.5)

Di ∼ χ2
i

1

n− 1

γ2

Q2
, (5.8)

where ”∼” implies that Di is proportional to the right-hand side of this equation.

The out-of-control performance is modelled as γ > 1. As long as the ratio of
γ/Q remains constant, the value of Di is constant, and thus the performance of the
ewma chart remains equivalent. Thus the conditional ARL for out-of-control data
with γ = 1.25 where the chart is set up with an on target Phase I estimate (Q = 1),
is by definition equal to the in-control conditional ARL (γ = 1) where the chart was
set up with an Phase I estimate Q = 0.8 as 1.25/1 = 1/0.8. Therefore, studying out-
of-control situations for γ > 1, is equivalent to studying the in-control conditional
performance forQ < 1. Recall that in Figure 5.3 we studied the conditional in-control
ARL for a range of values of Q. For the low values of Q the three considered ewma
charts for dispersion showed similar performance. Hence, the out-of-control perfor-
mance of the chart based on estimated parameters will be similar across the three
charts. Therefore, the out-of-control performance is not very relevant for our com-
parison as the three charts have similar out-of-control performance if the parameters
are estimated.

To illustrate this point, Figure 5.4 shows the conditional out-of-control ARLs for
each chart versus the out-of-control shift size γ. In each subfigure the charts are based
on a different Phase I estimate; in Figure 5.4(a) the charts are designed based on an
overestimated Phase I estimate of the dispersion (Q = 1.099), in Figure 5.4(b) the
charts are designed based on known dispersion (Q = 1), and in Figure 5.4(c) the
charts are designed based on an underestimated Phase I estimate of the dispersion
(Q = 0.903).

Figure 5.4 shows that the out-of-control performance depends on the Phase I es-
timate; for overestimated dispersion the out-of-control ARL is larger than for under-
estimated dispersion. Given a Phase I estimate, the three charts show similar out-of-
control ARL values. The conditional ARL values vary slightly for large shift sizes;
the out-of-control conditional ARL differ at most 2 across the charts. In conclusion:
the out-of-control performance is nearly equivalent across the three considered ewma
charts for dispersion, irrespective of the Phase I estimate (Q) used to set up the chart.
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Figure 5.4: Out-of-control conditional ARL versus γ, the ratio of the out-of-control to the
in-control process dispersion. Panels show different Phase I estimate

5.7 Extending the comparison to various designs

So far we have studied a single set up of the ewma charts for dispersion, where we
set λ = 0.15, the in-control ARL0 = 200, and we used a sample of size n = 5. In this
section, we consider the effect of changing these setting on the relative performance
of the three dispersion charts.

To explore the effect of the desired in-control performance, we set theARL0 equal
to 100, 370, and 500 which covers the commonly used choices. The corresponding val-
ues ofL can be found in the appendix in Section 5.9. Figures 5.5(a)-(c) show the curves
of the conditionalARL for the three ewma charts versus the standardized Phase I esti-
mate Q, for each value of ARL0, respectively. Unsurprisingly, as the ARL0 increases
the conditional ARL also increases for all three charts. The difference between the
three charts is similar for the ARL0 equal to 100, 370, and 500. As well as similar to
the case considered as illustrative example (Figure 5.3) were ARL0 = 200. Hence,
the choice of ARL0 does influence the level of the conditional ARL, however it does
not influence our comparison. Our conclusion that the s2-ewma chart has the most
predictable conditional ARL performance, holds for a range of ARL0 values.

Next, we study the effect of λ on the ewma chart’s performance. The values of
λ should be chosen based on the out-of-control shift that the charts should detect
quickly. Ewma charts are typically used when quick detection of small sustained
shifts is of interest, and the charts are most often designed with small values of the
smoothing constant (λ < 0.3). Crowder and Hamilton (1992) advise λ ≈ 0.15 for
a shift of 25 − 30 percent of the target value. Recall that for λ = 1 the charts are
equivalent to the Shewhart charts and that there is no difference in performance be-
tween Shewhart charts based on S2, S, or lnS2. Hence, as λ tends to 1 we expect the
difference in conditional ARL between the charts to become smaller.

This expectation is confirmed by Figures 5.5(d)-(f), which display the curves of the
conditional ARL versus the standardized Phase I estimate Q for three values of λ =

0.1, 0.3, and 1, respectively. For λ = 0.3 there is still substantial difference between
the conditional ARLs. As expected for λ = 1, there is no difference in performance
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across the three chart. As ewma charts are typically designed with λ < 0.3, one can
expect that the ewma charts show different performance in practice, in line with the
conclusions drawn in the previous sections for λ = 0.15.

Finally, we consider the choice of n. In this chapter we have considered monitor-
ing samples of size n > 1. Thereby we compare within sample variation over time.
The size of the sample is set at n = 3, 7, and 9. Figures 5.5(g)-(i) show the curves of the
conditional ARL for each ewma chart versus the standardized Phase I estimate Q for
n = 3, 7, and 9, respectively. For a given overestimated value Q > 1, the conditional
ARL is larger for larger n. Note that n influences how many Phase I observations
there are, hence the distribution of Q depends on n. Therefore, the probability of a
given Q to occur differs across the values of n. We see that in comparing the three
ewma chart for dispersion, the conditional ARL patterns prevail; the differences be-
tween the charts that we saw in Figures 5.3 prevail for the various values of n.

Overall we see that the conclusions based on the illustrative setting used in the
previous sections hold when these settings are changed.

5.8 Conclusion

In this chapter, we have extended the work of Knoth (2010) by comparing ewma charts
for dispersion based on estimated parameters. We have used the conditional ARL to
compare performance across charts. First, the s2-ewma chart has the most predictable
performance; the conditional ARL lies the closest to the designed value. Addition-
ally, we found that sampling error more strongly affects the charts for dispersion than
the chart for location. Thus, we recommend more Phase I data to be used than typi-
cally advised for the ewma chart for location.

By considering the conditional performance of the charts, we discovered that the
difference in performance arises from large overestimation of the process dispersion.
Furthermore, the conditionalARL values can be surprisingly high. The charts based
on lnS2 and S show the largest conditionalARL values compared to the chart based
on S2.

Furthermore, the three charts have near equivalent out-of-control conditionalARL
performance. The s2-ewma chart shows the largest out-of-control ARL values. How-
ever, this difference is so small that we consider it to be of no practical value to em-
phasize it. Hence, irrespective of the Phase I estimate that they were designed with,
all three charts can detect sustained shifts equally quick.

The common view in the literature is that the ewma chart based on a logarith-
mic transformation of the sample variance should be used to monitor the dispersion.
In this chapter we found that this chart, if based on estimated parameters, has the
largest variability in the conditional ARLs, measured by the SDARL. Therefore, we
recommend to use the ewma chart based on the sample variance in practice, as it has
the most predictable performance. Initially Box et al. (1978, page 122) suggested us-
ing ln(S2) as it “is more robust to non normality in the original data”. Hence the
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Figure 5.5: In-control conditionalARL values versusQ, the standardized Phase I estimates.
Panels show charts designed with various values of ARL0, λ, and n

comparison of the dispersion charts probably alters for different distributions of the
process characteristic.

We found that the necessary number of data in Phase I, in order to obtain pre-
dictable performance is impractically large (m = 5000). In Chapter 4 we applied a
different design approach for the ewma chart for location: rather than designing the
chart to have a specified ARL0 the charts were designed to have at most say 10 per-
cent of the charts with an conditional ARL smaller than the specified ARL0. This
so-called guaranteed conditional performance design has been studied for the She-
whart S2-chart by Faraz et al. (2015). This approach can also be carried out for the
ewma charts for dispersion. We have no reason to doubt that our conclusion that the
s2-ewma chart has the most predictable performance would carry over to this guar-
anteed performance design scheme.

In this chapter we have considered a single Phase I estimator; the pooled sample
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PHASE II: EFFECT OF ESTIMATION ON PERFORMANCE

standard deviation. The choice for this estimator influences the charts performance
(see, e.g. Chapter 3). However, since we use the same estimator for all three charts,
we expect that our conclusions considering the comparison across the charts, will
carry over to other choices of Phase I estimators.

We have only considered one-sided ewma charts for dispersion. Our comparison
is probably influenced by this choice. Recall that the difference between the charts
mostly prevails for overestimatedQ. In the case of a two-sided chart many more false
alarms will probably be observed, hence the conditional ARL will not be as high as
shown here for the one-sided charts. This is left for future research.
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5. COMPARING EWMA CHARTS FOR DISPERSION

5.9 Appendix: computation of the upper control limit

The ewma chart for dispersion signals when the ewma statistic (as defined in Equation
5.3), exceeds the upper control limit as given in Equation (5.7):

UCL(D,λ, n,ARL0).

In this appendix we provide the values of theUCL. These values depend of the choice
of the dispersion statistics used to monitor D, the selected sample size n, the choice
of λ, and the choice of ARL0. For a specific value of λ the UCL can be determined
by referring to Figure 5.6. Each figure shows the UCL versus λ for a specified ARL0

for known parameters. A search algorithm was used to obtain the values for UCL.
Next we derive the functional form of UCL(D,λ, n,ARL0). Recall that UCL =

µD + L
√
λ/(2− λ)σD where µD and σD are the mean and standard deviation of D̂i

which is defined as in Equation (5.4):

D̂i =
S2
i

σ̂2
0

, D̂i =
Si
σ̂0
, or D̂i = ln

(
S2
i

σ̂2
0

)
.

Because we have assumed that the process characteristic is normally distribution,
it follows that S2 is gamma distributed. The values of µD and σD follow from the
gamma and log-gamma distribution. They are given in Table 5.3 and derivations can
be found in Mahmoud et al. (2010) and Crowder and Hamilton (1992).

After some simplification it follows that UCL(D,λ, n,ARL0) =
1 + LS2

√
λ

2−λ

√
2

(n−1) if D = S2

σ2
0

;

c4(n) + LS

√
λ

2−λ

√
1− c24(n) if D = S

σ0
;

ln
(

2
n−1

)
+ ψ

(
n−1
2

)
+ LlS2

√
λ

2−λ

√
ψ′
(
n−1
2

)
if D = ln

(
S2

σ2
0

)
.

Where LS2 , LS , and LlS2 are the corresponding control chart constants, ψ() is the
digamma function, andψ′() is the trigamma function. Furthermore, the control chart-
ing constant c4(.) is defined in Equation 3.1.

D µD σD
S2

σ2
0

1
√

2
n−1

S
σ0

c4(n)
√

1− c24(n)

ln S2

σ2
0

ln
(

2
n−1

)
+ ψ

(
n−1
2

) √
ψ′
(
n−1
n

)
Table 5.3: Mean and standard deviation of dispersion measures D
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(c) ln s2-ewma and n = 3
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(d) s2-ewma and n = 5
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6

0 0.2 0.4 0.6 0.8 1

U
C

L

0

0.5

1

1.5

2
ARL0=100
ARL0=200
ARL0=370
ARL0=500

(f) ln s2-ewma and n = 5
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(g) s2-ewma and n = 7
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(h) s-ewma and n = 7
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(j) s2-ewma and n = 9
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Figure 5.6: UCL versus λ for various ewma charts for dispersion and various sample sizes
n.
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6. Summary
EWMA Control Charts in

Statistical Process Monitoring

In this dissertation we contribute to the development and understanding of the ewma
control chart based on estimated parameters. The presented research is based on
Zwetsloot, Schoonhoven, and Does (2014, 2015a, 2015b), Saleh, Mahmoud, Jones-
Farmer, Zwetsloot, and Woodall (2015a), and Zwetsloot (2015). In this concluding
chapter, we summarize our findings.

6.1 EWMA control charts

All processes show variation. Part of this variation is inherent to the process when it
functions in a predictable manner. However, sometimes variation may occur because
of special causes of variation. Deciding which observation occurs because of special
causes is not always easy. As Box, Hunter and Hunter (2005, page 566) pointed out
“nothing looks so unrandom as a series of random numbers”. Control charts are used
to operationalize ‘common’ and ‘special’ causes of variability.

The original control chart was developed by W. A. Shewhart in a memorandum
issued on May 16, 1924. The exponentially weighted moving average (ewma) control
chart was introduced by S. W. Roberts in 1959. The ewma statistic is a weighted aver-
age of measurements, giving heaviest weights to the most recent observations. This
provides the chart the advantage of being sensitive to small- and moderate-sized sus-
tained shifts in the process parameters.

It is generally accepted that a control chart is implemented in two phases: Phase
I, to define the stable state of the process characteristic and to estimate the process
parameters; and Phase II to monitor the process. For an overview of Phase I methods,
see Chakraborti et al. (2009) and Jones-Farmer et al. (2014b).



EWMA CONTROL CHARTS IN STATISTICAL PROCESS MONITORING

In this dissertation, we study the ewma chart based on estimated parameters. We
consider monitoring both the location as well as the dispersion. We assume that the
process characteristic can be modelled as an independent and normally distributed
random variable.

6.2 Motivation

We consider the problem of estimating process parameters from data which can contain
contaminated observations. In practice, data sets often contain outliers, step shifts,
recording errors, and other data quality issues (Jones-Farmer et al., 2014b; Vining
et al., 2015). Al these types of ‘contaminations’ are problematic as they can influence
the parameter estimates, resulting in control charts with less predictable statistical
performance. The possible presence of contaminations in Phase I, provides the mo-
tivation for Chapters 2 and 3.

Moreover, we consider the effect of sampling variability on the monitoring performance
of the ewma chart. It is well known that the performance of control charts is influ-
enced by Phase I estimation (Jones et al., 2001; Jensen et al., 2006; Psarakis et al., 2014).
Generally, control charts based on estimated parameters are evaluated by studying
the performance averaged over all possible Phase I estimates. However, the perfor-
mance of a control chart will depend on the ‘actual’ estimate. This conditional per-
formance can be very different from the ‘average’ performance. It is this variability
in conditional performance that motivates Chapters 4 and 5.

6.3 Methods

We study robust estimation methods, to ensure accurate estimates of the in-control pro-
cess parameters if contaminations are present. Using a simulation study, we com-
pare the performance of the considered estimation methods for in-control data and
for various contamination scenarios. The effectiveness of the estimation methods is
evaluated in terms of the accuracy of the resulting estimates and the proportion of
successfully identified contaminated observations. Furthermore, we propose new
estimation methods for the location and the dispersion, based on ewma charts.

To evaluate the effect of sampling variability on the ewma chart’s performance,
we study the variability of the conditional average run lengths. Furthermore, in Chapter
4, we consider an alternative procedure for controlling the ewma chart’s performance
proposed by Jones and Steiner (2012) and Gandy and Kvaløy (2013). This procedure
is based on bootstrapping to guarantee, with a specified probability, a certain condi-
tional performance for each chart. The main objective of this approach is to limit the
proportion of ewma charts with a low actual in-control ARL.

Furthermore, in Chapter 5, we compare three designs for the ewma chart for dis-
persion. We use the effect of sampling variation on the performance as a comparison metric.
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6. SUMMARY

The main objective of this comparison is to give a recommendation on which ewma
chart for dispersion to use if parameters need to be estimated.

6.4 Results

The results show that data contaminations can have a huge impact on the accuracy
of the estimates obtained in Phase I. Existing estimation methods provide accurate
estimates for specific patterns of contaminations. The new method, based on ewma
charting, provides accurate estimates for any of the considered contamination sce-
narios.

Furthermore, we show that to set up ewma charts, more Phase I data are required
than previously recommended, in order to decrease the sampling variability to a rea-
sonable level. Moreover, we found that sampling variation has a larger effect on the
ewma chart for dispersion than on the ewma chart for location.

Also, our results show that using a bootstrap-based design approach, results in
highly skewed in-controlARLdistributions. However, such increases of the in-control
ARL did not have much of an effect on the out-of-control performance.

Finally, we found that the ewma chart based on the sample variance (S2) has the
most predictable performance, compared to the charts based on the sample standard
deviation (S), or on the logarithm of the sample variance (lnS2).

6.5 Discussion and recommendations

We recommend the use of estimation methods based on screening if contaminations
may be present in Phase I. These methods are efficient under stability and robust to
contaminations. We recommend to implement the robust estimation as follows: (1)
first screen the initial data to delete the contaminated observations and ‘learn from
the data’; (2) perform the screening with an ewma chart designed with a smoothing
constant around 0.5. This balances the ability to detect outliers and sustained shifts;
(3) use a two-step procedure, namely a robust estimator to construct the initial chart,
and an efficient estimator for post-screening estimation.

Automatic implementation of these methods would be unwise. As noted by Jones-
Farmer et al. (2014b) careful consideration prior to eliminating process observations
in a Phase I analysis is important. The method can be used to signalling those sam-
ples which need to be investigated. Furthermore, it ensures that - even if we oversee
a contaminated observation - the resulting estimates are near to the target.

A limitation of the proposed method for location is its inaccuracy if single scat-
tered outliers (diffuse disturbances) are present. Furthermore, we have only com-
pared the estimation methods for independent and normally distributed in-control
data.
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We recommend to take the effect of sampling variability into account when choos-
ing and designing ewma control charts, as parameter estimation has a large impact
on performance. Furthermore, we support the use of the bootstrap-based design
approach of Jones and Steiner (2012) and Gandy and Kvaløy (2013), which was re-
cently proposed for controlling the probability of the in-control ARL being at least a
specified value. Charts based on bootstrap show less frequent false alarms and are
still able to detect sustained shifts quickly.

A limitation of the bootstrap-based design is its relative complexity; it requires
advanced statistical knowledge to implement the design. Another limitation is that
we have only considered the parametric bootstrap method for independent and nor-
mally distributed data. Gandy and Kvaløy (2013) also proposed a non-parametric
version of the bootstrap algorithm. The implementation of this method for the ewma
chart is left for future study.

We recommend the use of the ewma chart based on the sample variance (S2). Be-
cause, it has the lowest variability in conditional ARL performance compared to the
other considered ewma charts for dispersion.

Throughout this dissertation, we primarily considered data collected in samples
of size n = 5. The methods to estimate and monitor the dispersion, as presented in
Chapter 3 and 5, are not easily implemented for n = 1. As the standard deviation
estimators are based on the assumption that n > 1. However, we feel confident that
the results will hold for other sample sizes n > 1 and can be modified to n = 1.
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Samenvatting
EWMA Regelkaarten in
Statistische Procesmonitoring

De hoeveelheid beschikbare data neemt alsmaar toe. Het detecteren van verande-
ringen in datastromen is vaak van belang. Statistische procesmonitoring biedt een
aantal instrumenten om verandering in data te detecteren. Eén van deze instrumen-
ten is de regelkaart. Het onderwerp van dit proefschrift is een speciale regelkaart, de
ewma regelkaart, die gebaseerd is op het exponentieel voortschrijdende gemiddelde
van de data.

In deze samenvatting beschrijven we eerst de concepten van een regelkaart en
vervolgens van de ewma regelkaart. Daarna vatten we de bevindingen van dit proef-
schrift samen in twee gedeelten - corresponderend met de opsplitsing van dit proef-
schrift. We sluiten af met een conclusie.

De regelkaart: een voorbeeld

Stelt u zich voor: u werkt bij een onderwijsinstituut en bent verantwoordelijk voor het
rekruteren van deelnemers aan een programma. Veel potentiële deelnemers vinden
uw instituut online en bezoeken vervolgens de website. Hier kan deze potentiële
deelnemer een brochure aanvragen via een online formulier. Vanuit de database van
de website houdt u het aantal brochure-aanvragen per week bij: de zogeheten ‘leads’.
Figuur nl.1(a) laat een tijdgrafiek zien van het aantal leads in de eerste veertig weken
van 2015. Wat kunnen we leren van deze grafiek? Bent u ongerust - of zou u het
moeten zijn - over het lage aantal leads in de laatste week?

De methoden en technieken van statistische procesmonitoring (ook statistische
procesbeheersing genoemd) geven antwoord op dit soort vragen. Dit vakgebied be-
gon met de introductie van de regelkaart door Walter A. Shewhart (op 16 mei 1924).
De regelkaart is een grafische weergave van de proceskarakteristiek (in het voorbeeld
het aantal leads) tezamen met twee ’regelgrenzen’. Deze grenzen laten de gebrui-
ker onderscheid maken tussen ‘normale’ procesvariatie en variatie veroorzaakt door
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Figuur nl.1: Voorbeelden van regelkaarten

‘speciale’ oorzaken. Figuur nl.1(b) laat een voorbeeld van een Shewhart regelkaart
zien. Het signaal in week 21 duidt erop dat er in week 21 misschien iets anders ge-
beurde dan in de andere weken.

Een regelkaart functioneert goed, wanneer de kaart ‘speciale’ oorzaken van varia-
tie snel detecteert en dan een zogeheten ‘out-of-control’ signaal geeft. Hierbij is snel-
heid van detectie van belang; dit wordt gekwantificeerd met behulp van de ‘Average
Run Length (ARL)’, oftewel de gemiddelde tijd om tot een signaal te komen. Daar-
naast stelt men altijd een ‘in-control’ ARL in; dit is de gemiddelde tijd om tot een
signaal te komen als het proces normaal functioneert, dus in feite de tijd om tot een
vals alarm te komen. Een regelkaart presteert goed als de ‘in-control ARL’ lang is en
de ‘out-of-control ARL’ kort.

De EWMA regelkaart

Een beperking van de Shewhart regelkaart is dat deze kleine veranderingen in het
proces moeilijk detecteert en dus een (te) hoge out-of-control ARL heeft bij kleine
verschuivingen in het proces. Om dit probleem op te lossen ontwikkelde Roberts in
1959 de ewma regelkaart. Deze kaart detecteert kleine verschuiving sneller, doordat
deze regelkaart gebruik maakt van zowel de huidige meting als van de voorafgaande
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metingen. Figuur nl.1(c) laat een ewma regelkaart zien met een mogelijke verschui-
ving in week 17 en week 20.

De ewma regelkaart geeft gewicht aan alle data; hoe verder de data in het ver-
leden liggen hoe kleiner het gewicht. Wiskundig bestaat de ewma regelkaart uit de
’ewma grootheid’ Zi, gedefinieerd als Zi = (1 − λ)Zi−1 + λMi, op tijdstip i. Hier is
Mi de maatstaaf van het proces waarin men geı̈nteresseerd is, zoals bijvoorbeeld het
gemiddelde of de spreiding van de proces karakteristiek. The factor λ is de wegings-
constante (smoothing constant). Deze constante λ wordt gekozen tussen 0 en 1: een
waarde van 1 betekent dat alleen gewicht wordt toegekend aan de huidige data. Hoe
kleiner λ wordt gekozen, hoe meer gewicht data in het verleden krijgt.

De ewma kaart signaleert een verschuiving in het proces zodra Zi één van de twee
regelgrenzen overschrijdt. Om de regelgrenzen te kunnen bepalen, dienen eerst het
gemiddelde en de standaarddeviatie (spreiding) van de proceskarakteristiek te wor-
den vastgesteld. In de praktijk zijn deze parameters vaak niet bekend en dienen ze te
worden geschat. Het is daarom gebruik dat een regelkaart in twee fasen wordt geïm-
plementeerd. In Fase I worden de proces parameters geschat op basis van historische
data. Waarna in Fase II deze schattingen worden gebruikt om de regelgrenzen op te
stellen zodat het proces gemonitord kan worden.

In dit proefschrift bestuderen we de ewma regelkaart gebaseerd op schattingen
van de proces parameters. Dit proefschrift bestaat uit twee delen: in Fase I (Hoofd-
stukken 2 en 3) bestuderen we het schatten van de parameters. In Fase II (Hoofdstuk-
ken 4 en 5) bestuderen we de prestatie van de ewma regelkaart gebaseerd op deze
schatters.

Fase I: schatten op basis van vervuilde data

Data vervuiling zorgt voor slechte prestaties van de regelkaart. In de eerste fase
van dit proefschrift (Hoofdstukken 2 en 3) wordt gekeken naar het schatten van para-
meters gebaseerd op data welke vervuilde waarnemingen kan bevatten. In de praktijk is een
dataset vaak niet perfect representatief voor het ‘normale’ proces. Deze Fase I dataset
kan bijvoorbeeld verstoringen, meetfouten, uitschieters of andere data vervuilingen
bevatten. Schattingen van parameters op basis van vervuilde Fase I data zijn vaak on-
zuiver en dit kan resulteren in een regelkaart met een statistische prestatie die minder
voorspelbaar is.

Robuuste schatters als alternatief. Als oplossing voor vervuilde data in Fase I be-
studeren we robuuste schatters. De term robuust betekent dat een schatter het effect
van vervuilde data op de uiteindelijke schatting verlaagt. We bestuderen en verge-
lijken verschillende schattingsmethoden, zowel bestaande als een nieuwe methode.
We vergelijken hoe robuust deze methoden zijn bij verschillende scenario’s met ver-
vuiling in Fase I. Daarnaast kijken we ook of onder zuivere Fase I data de schatters
correcte en precieze (‘efficiënte’) schattingen opleveren.

Ewma regelkaart als robuuste schatter geeft consistente schattingen. De resulta-
ten laten zien dat bestaande robuuste schattingsmethoden accurate schattingen op-
leveren voor specifieke scenario’s met vervuiling. De nieuw geı̈ntroduceerde schat-
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tingsmethode, gebaseerd op een ewma regelkaart, geeft accurate schattingen voor
alle bestudeerde scenario’s, maar is niet optimaal bij een specifiek scenario.

Fase II: effect van schatting op prestatie

Prestatie regelkaart gebaseerd op geschatte parameters slechter. In het tweede
gedeelte van dit proefschrift (Hoofdstukken 4 en 5) kijken we naar het effect van schat-
ten op de prestatie van de regelkaart in Fase II. Vanuit de literatuur is bekend dat dit effect
groot kan zijn. Doorgaans wordt de prestatie van een regelkaart, gebaseerd op Fase
I schattingen, geëvalueerd op basis van de gemiddelde prestatie. Daarbij wordt ge-
middeld over alle mogelijke Fase I schattingen. Echter de prestatie van de regelkaart
hangt af van de ‘eigenlijk’ geschatte waarde. Deze conditionele prestatie kan heel
erg afwijken van de ‘gemiddelde’ prestatie. Het is de variabiliteit in de conditionele
prestatie die Hoofdstukken 4 en 5 motiveert.

Gebruik de conditionele prestatie. Om het effect van schatten op de prestatie van
de regelkaart in Fase II te bestuderen, kijken we naar de variabiliteit in de conditionele
prestatie van de ARL. Daarnaast bekijken we in Hoofdstuk 4 een alternatieve proce-
dure om de regelkaart op te zetten, gebaseerd op de conditionele prestatie. Deze
methode, wordt gebaseerd op het ‘bootstrappen’ van de Fase I data.

In Hoofdstuk 5, vergelijken we drie verschillende ewma regelkaart voor het moni-
toren van de spreiding. We vergelijken de regelkaarten op basis van de conditionele prestatie,
met als doel een advies te geven over welke regelkaart te gebruiken indien parame-
ters geschat zijn in Fase I.

Bootstrapmethode is een goed alternatief. De resultaten van Hoofdstuk 4 laten
zien dat het effect van schattingen op de ewma regelkaart groter is dan voorheen aan-
getoond. We raden aan om een regelkaart op te zetten met de bootstrapmethode
waarmee het aantal regelkaarten dat vroegtijdig een vals alarm geeft beperkt kan
worden.

Gebruik ewma regelkaart voor de spreiding op basis van steekproef variantie In
Hoofdstuk 5 bestuderen we de ewma regelkaart voor de spreiding. We laten zien dat
het effect van schattingen op de prestatie van deze kaart groot is. Het is zelfs groter
dan voor het gemiddelde (zoals bestudeerd in Hoofdstuk 4). We raden aan om de
ewma kaart op basis van de steekproef variantie (S2) te gebruiken, omdat deze de
meest voorspelbare prestatie laat zien.

Aanbevelingen, discussie en conclusie

We hebben het effect van data vervuiling in Fase I bestudeerd. We raden aan om een
robuuste schatter gebaseerd op het filteren van de data te gebruiken indien vervuiling
aanwezig kan zijn. Deze methoden zijn efficiënt onder zuivere data en robuust voor
verstoringen. We raden de volgende procedure aan: (1) filter de data en verwijder de
vervuilde observaties; (2) gebruik een ewma regelkaart met een wegingsconstante van
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ongeveer 0.5 voor de filtering; (3) gebruik een twee-staps procedure, waarbij eerst een
robuuste schatter wordt gebruikt voor de initiële regelkaart en daarna een efficiënte
schatter voor de data na filtering.

Een beperking is dat deze methode niet goed werkt bij het scenario met diffuus
verspreide verstoringen. Verder is een beperkende factor dat we alleen data beschou-
wen welke onafhankelijk en normaal verdeeld zijn.

Verder hebben we laten zien dat het effect van een schatter groot is op de prestatie
van de ewma regelkaart. Daarom is het gebruik van de conditionele ARL aan te ra-
den. Hierbij wordt het effect van Fase I schattingen op de Fase II prestatie namelijk
heel inzichtelijk. We ondersteunen het gebruik van de bootstrapmethode voor het
opzetten van de ewma regelkaart. Op deze manier kan het aantal valse alarmen dat
de regelkaart geeft beperkt worden.

Een beperking van de bootstrapmethode is dat deze relatief complex is. Verder
hebben we alleen gekeken naar de parametrische bootstrap voor onafhankelijke en
normaal verdeelde data.

We hebben een vergelijking gemaakt tussen drie ewma regelkaarten voor de sprei-
ding. Wanneer deze regelkaarten gebaseerd zijn op schattingen, is de prestatie van
deze kaarten verschillend. We raden aan de ewma kaart op basis van de steekproef
variantie te gebruiken. Deze kaart geeft namelijk, in vergelijking met de andere twee,
de kleinste variabiliteit in de (conditionele) prestatie.
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