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A default Bayesian hypothesis test for mediation

Michèle B. Nuijten & Ruud Wetzels & Dora Matzke &

Conor V. Dolan & Eric-Jan Wagenmakers

# Psychonomic Society, Inc. 2014

Abstract In order to quantify the relationship between mul-
tiple variables, researchers often carry out a mediation analy-
sis. In such an analysis, a mediator (e.g., knowledge of a
healthy diet) transmits the effect from an independent variable
(e.g., classroom instruction on a healthy diet) to a dependent
variable (e.g., consumption of fruits and vegetables). Almost
all mediation analyses in psychology use frequentist estima-
tion and hypothesis-testing techniques. A recent exception is
Yuan and MacKinnon (Psychological Methods, 14, 301–322,
2009), who outlined a Bayesian parameter estimation proce-
dure for mediation analysis. Here we complete the Bayesian
alternative to frequentist mediation analysis by specifying a
default Bayesian hypothesis test based on the Jeffreys–
Zellner–Siow approach. We further extend this default
Bayesian test by allowing a comparison to directional or
one-sided alternatives, using Markov chain Monte Carlo tech-
niques implemented in JAGS. All Bayesian tests are imple-
mented in the R package BayesMed (Nuijten, Wetzels,
Matzke, Dolan, & Wagenmakers, 2014).

Keywords Bayes factor . Evidence .Mediated effects

Mediated relationships are central to the theory and practice of
psychology. In the prototypical scenario, a mediator (M; e.g.,
knowledge of a healthy diet) transmits the effect from an inde-
pendent variable (X; e.g., classroom instruction on a healthy diet)
to a dependent variable (Y; e.g., consumption of fruits and
vegetables). Other examples arise in social psychology, where
attitudes (X) cause intentions (M) and these intentions affect
behavior (Y; MacKinnon, Fairchild, & Fritz, 2007). To quantify
such relationships between mediator, independent variable, and
dependent variable, researchers often use a toolbox of popular
statistical methods collectively known as mediation analysis.

The currently available tools for mediation analyses are
almost exclusively based on classical or frequentist statistics,
featuring concepts such as confidence intervals and p values.
Recently, Yuan and MacKinnon (2009) proposed a Bayesian
mediation analysis that allows researchers to obtain a posterior
distribution (and associated credible interval) for the mediated
effect. This posterior distribution quantifies the uncertainty
about the strength of the mediated effect under the assumption
that the effect does not equal zero. This approach constitutes a
valuable addition to the toolbox of mediation methods, but it
specifically concerns parameter estimation and not hypothesis
testing. As Yuan and MacKinnon stated in their conclusion:
“One important topic we have not covered in this article is
hypothesis testing . . . Strict Bayesian hypothesis testing is
based on Bayes factor, which is essentially the odds of the null
hypothesis being true versus the alternative hypothesis being
true, conditional on the observed data. The use of Bayesian
hypothesis testing . . . would be a reasonable future research
topic in Bayesian mediation analysis.”

Hence, the goal of this article is to add another statistical
method to the toolbox of mediation analysis—namely, the
Bayes factor hypothesis test alluded to by Yuan and
MacKinnon (2009). In the development of this test, we have
assumed a default specification of prior distributions based on
the Jeffreys–Zellner–Siow framework (Liang, Paulo, Molina,
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Clyde, & Berger, 2008), promoted in psychology by Jeff
Rouder, Richard Morey, and colleagues (Rouder & Morey,
2012; Rouder, Morey, Speckman, & Province, 2012; Rouder,
Speckman, Sun, Morey, & Iverson, 2009), as well as ourselves
(Wetzels, Grasman, & Wagenmakers, 2012; Wetzels,
Raaijmakers, Jakab, & Wagenmakers, 2009; Wetzels &
Wagenmakers, 2012; for an alternative approach, see Semmens-
Wheeler, Dienes, & Duka, 2013). In our opinion, the default
specification of prior distributions is useful because it provides a
reference analysis that can be carried out regardless of subjective
considerations about the topic at hand. Of course, researchers who
have prior knowledge may wish to incorporate that knowledge
into themodels to devise a more informative test (e.g., Armstrong
& Dienes, 2013; Dienes, 2011; Guo, Li, Yang, & Dienes, 2013).
Here, we focus solely on the default test as it pertains to the
prototypical, single-level scenario of three variables.

The outline of this article is as follows. First, we briefly
discuss the conventional frequentist tests and the existing
Bayesian mediation analysis proposed by Yuan and
MacKinnon (2009). We then explain Bayesian hypothesis test-
ing in general and introduce our default Bayesian hypothesis
test for mediation.We illustrate the performance of our test with
a simulation study and an example of a psychological study.
Finally, we discuss software in which we implemented the
Bayesian methods for mediation analysis: the R package
BayesMed (Nuijten et al., 2014).

Frequentist mediation analysis

Consider a relation between an independent variable X and a
dependent variable Y (see Fig. 1a). In a linear regression
equation, such a relation can be represented as follows:

Y i ¼ β0 1ð Þ þ τX i þ ε 1ð Þ; ð1Þ

where subscript i identifies the participant, τ represents the
relation between the independent variable X and the depen-
dent variable Y, β0(1) is the intercept, and ε(1) is the residual.
The effect of X on Y, path τ, is called the total effect.

The relation between X and Y can be mediated by variable
M, which means that a change in X leads to a change in M,
which then leads to a change in Y (see Fig. 1b, c). The
resulting mediationmodel can be represented by the following
set of linear regression equations:

Y i ¼ β0 2ð Þ þ τ 0X i þ βMi þ ε 2ð Þ; ð2Þ

Mi ¼ β0 3ð Þ þ αX i þ ε 3ð Þ; ð3Þ
where τ ′ represents the relation between X and Y after
adjusting for the effects of the mediator M, α represents the
relation between X and M, and β represents the relation
betweenM and Y. Furthermore, ε(1), ε(2), and ε(3) are assumed
to be conditionally normally distributed, independent,

homoskedastic residuals. Throughout the remainder of this
article, we focus on the standardized mediation model (i.e., a
model in which the variables are standardized) and refer to the
regression coefficients α, β, and τ ′ as paths.

The product of α and β is the indirect effect, or the medi-
ated effect, assuming that α and β are independent. The
remaining direct effect of X on Y is denoted with τ ′. If the
mediated effect differs from zero and τ ′ equals zero, the effect
of X on Y is completely mediated byM (see Fig. 1c). If τ ′ has a
value other than zero, the relationship between X and Y is only
partially mediated by M (see Fig. 1b).

A popular method to test for mediation is to test pathsα and β

simultaneously. The estimated indirect effect bαbβ is divided by its
standard error, and the resulting Z statistic is compared with the
standard normal distribution to assess whether the effect is sig-
nificantly different from zero—in which case, the null hypothesis
of no mediation can be rejected.

There exist several ways to calculate the standard error ofbαbβ , but the one used in the Sobel test (Sobel, 1982) is
commonly reported:

bσbαbβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibβ2bσ2

α þ bα2bσ2

β

r
; ð4Þ

where bα and bβ are the point estimates of the regression
coefficients of the mediated effect and bσa and bσβ their
standard errors. The 95% confidence interval for the mediated
effect is then given by bαbβ � 1:96� bσbαbβ .

One problem with the Sobel test is that it assumes a
symmetrical sampling distribution for the mediated effect,
whereas in reality this distribution is skewed (MacKinnon,
Lockwood, & Hoffman, 1998). Consequently, the Sobel test
has relatively low power (MacKinnon, Warsi, & Dwyer,
1995). A solution to this problem is to construct a confidence
interval that takes the asymmetry of the distribution into
account (see, e.g., the product method of MacKinnon,
Lockwood, Hoffman, & West, 2002) or the profile likelihood
method (see Venzon & Moolgavkar, 1988).

Our goal here is not to argue against frequentist statistics in
general, or p values in particular; for this, we refer the inter-
ested reader to the following articles and references therein:
Berger and Delampady (1987), Berger and Wolpert (1988),
Dienes (2011), Edwards, Lindman, and Savage (1963),
O’Hagan and Forster (2004), Rouder et al. (2012), Sellke,
Bayarri, and Berger (2001), Wagenmakers (2007); Wetzels
et al., (2011). Instead, our goal is to outline an additional
Bayesian tool that can be used for mediation analysis. The
availability of multiple tools is useful, not just because differ-
ent situations may require different tools, but also because
they allow a robustness check; if different tools yield opposing
conclusions, the careful researcher does well to report the
results from both tests, indicating that the data are ambiguous
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in the sense that the conclusion depends on the analysis
method at hand.

An alternative: Bayesian estimation

Our end goal is to propose a Bayesian alternative for the
frequentist mediation test. Below, we consider the Bayesian
treatment of the mediation model in detail, but first we briefly
discuss Bayesian inference in general terms. In the Bayesian
framework, uncertainty is quantified by probability. Prior
beliefs about parameters are formalized by prior probability
distributions that are updated by the observed data to result in
posterior beliefs or posterior distributions (Dienes, 2008;
Kruschke, 2010; Lee & Wagenmakers, 2013; O’Hagan &
Forster, 2004).

The Bayesian updating process proceeds as follows. First,
before observing the data under consideration, the Bayesian
statistician assigns a probability distribution to one or more
model parameters θ on the basis of his or her prior knowledge;
hence, this distribution is known as the prior probability
distribution, or simply the prior, denoted p(θ). Next one
observes data D, and the statistical model can be used to
calculate the associated probability of D occurring under
specific values of θ, a quantity known as the likelihood,
denoted p(D|θ). The prior distribution p(θ) is then updated to
the posterior distribution p(θ|D) according to Bayes’ rule:

p θ Djð Þ ¼ p D θjð Þp θð Þ
p Dð Þ : ð5Þ

Note that the marginal likelihood p(D)= ∫p(D|θ)p(θ) dθ
functions as a normalizing constant that ensures that the
posterior distribution will integrate to one. Because the nor-
malizing constant does not contain θ, it is not important for
parameter estimation, and Eq. 5 is often written as follows:

p θ Djð Þ∝p D θjð Þp θð Þ; ð6Þ
or in words:

Posterior Distribution∝Likelihood� Prior Distribution; ð7Þ

where ∝ means proportional to.
In a Bayesian mediation analysis, the above updating prin-

ciple can be used to transition from prior to posterior

distributions for parameters α, β, and τ ′, as proposed by
Yuan and MacKinnon (2009). Their method allows the user
to determine the posterior distribution of the indirect effect
αβ, together with a 95 % credible interval. This interval has
the intuitive interpretation that we can be 95 % confident that
the true value of αβ resides within this interval.

The approach of Yuan and MacKinnon (2009) is appropri-
ate when estimating the size of the mediated effect. However,
in experimental psychology, the research question is often
framed in terms of model selection or hypothesis testing; that
is, the researcher seeks to answer the question: “does the effect
exist?” Parameter estimation and model selection have differ-
ent aims and, depending on the situation at hand, one proce-
dure may be more appropriate than the other. We contend that
there are situations where a hypothesis test is scientifically
useful (e.g., Iverson, Wagenmakers, & Lee, 2010; Rouder
et al., 2009), and in what follows, we proceed to outline a
default Bayesian hypothesis test for mediation. In order to
keep this article self-contained, we will first introduce the
principles of Bayesian hypothesis testing (Hoijtink, Klugkist,
& Boelen, 2008; Myung & Pitt, 1997; Vandekerckhove,
Matzke, & Wagenmakers, in press; Wagenmakers, Lodewyckx,
Kuriyal, & Grasman, 2010).

Bayesian hypothesis testing

A Bayesian hypothesis test is a model selection procedure
with two models or hypotheses. Assume two competing
models or hypotheses,ℳ0 andℳ1, with respective a priori
plausibility p(ℳ0) and p(ℳ1)=1−p(ℳ0). Differences in
prior plausibility are often subjective but can be used to
formalize the idea that extraordinary claims require extraordi-
nary evidence (Lee & Wagenmakers, 2013, Chap. 7). The
ratio p(ℳ1)/p(ℳ0) is known as the prior model odds. The
data update the prior model odds to arrive at the posterior
model odds, p(ℳ1|D)/p(ℳ0|D), as follows:

p ℳ1 Djð Þ
p ℳ0 Djð Þ ¼

p D ℳ1jð Þ
p D ℳ0jð Þ

p ℳ1ð Þ
p ℳ0ð Þ: ð8Þ

or in words:

Posterior Model Odds ¼ Bayes Factor � Prior Model Odds:

ð9Þ

a b c

Fig. 1 Diagram of the standard
mediation model. a Direct
relation between X and Y, panel. b
Partial mediation. c Full
mediation. Diagonal arrows
indicate that the graphical node is
perturbed by an error term

Behav Res (2015) 47: –958 97 87



Equation 8 shows that the change in model odds brought
about by the data is given by the so-called Bayes factor
(Jeffreys, 1961) which is the ratio of marginal likelihoods
(i.e., normalizing constants in Eq. 5):

BF10 ¼ p D ℳ1jð Þ
p D

���ℳ0

� �: ð10Þ

The Bayes factor quantifies the weight of evidence forℳ1

versus ℳ0 that is provided by the data and, as such, it
represents “the standard Bayesian solution to the hypothesis
testing and model selection problems” (Lewis & Raffery,
1997, p. 648) and “the primary tool used in Bayesian inference
for hypothesis testing and model selection” (Berger, 2006, p.
378).

When BF10>1, this indicates that the data are more likely
underℳ1, and when BF10<1, this indicates that the data are
more likely under ℳ0. For example, when BF10=0.08, the
observed data are 12.5 times more likely under ℳ0 than
under ℳ1 (i.e., BF01=1/BF10=1/.08=12.5). Note that the
Bayes factor allows researchers to quantify evidence in favor
of the null hypothesis.

Even though the default Bayes factor has an unambiguous
and continuous scale, it is sometimes useful to summarize the
Bayes factor in terms of discrete categories of evidential
strength. Jeffreys (1961, Appendix B) proposed the classifi-
cation scheme shown in Table 1. We replaced the labels
“worth no more than a bare mention” with “anecdotal,” “de-
cisive” with “extreme,” and “substantial” with “moderate.”
These labels facilitate scientific communication but should be
considered only as an approximate descriptive articulation of
different standards of evidence.

Under equal prior odds, Bayes factors can be converted to
posterior probabilities p(ℳ1|D)=BF10/(BF10+1). This
means that, for example, BF10=2 translates to p(ℳ1|D)=2/3.

Bayesian hypothesis test for mediation

The Bayesian hypothesis test for mediation contrasts the fol-
lowing two models:

ℳ0 : αβ ¼ 0;
ℳ1 : αβ≠0 :

ð11Þ
Observe that ℳ1 entails that both α≠0 and β≠0, so that

BF10 can be obtained by combining the evidence for the
presence of the two paths. Furthermore, note that in the
standardized model, path α equals the correlation rXM and
path β equals the partial correlation rMY|X. This means that
we can use the existing default Bayesian hypothesis tests for
correlation and partial correlation (Wetzels & Wagenmakers,
2012) and combine the evidence for the presence of the
separate paths to yield the overall Bayes factor for mediation.

The default JZS prior

The construction of good default priors is an active area of
research in Bayesian statistics (e.g., Consonni, Forster, & La
Rocca, 2013; Overstall & Forster, 2010). Most work in this
area has been done in the context of linear regression. It is
therefore advantageous to formulate the tests for correlation
and partial correlation in terms of linear regression, so that
existing developments for the selection of default priors can
be brought to bear.

A popular default prior for linear regression is Zellner’s g
prior, which includes a normal distribution on the regression
coefficients α, Jeffreys’s (1961) prior on the precision ϕ (i.e.,
a prior that is invariant under transformation), and a uniform
prior on the intercept β0:

p α ϕ; g;Xjð Þ∼N 0;
g

ϕ
XTX
� �−1� 	

;

p ϕð Þ∝ 1

ϕ
;

p β0ð Þ∝1;

ð12Þ

where X denotes the matrix of predictor variables and the
precision ϕ is the inverse of the variance. The coefficient g
is a scaling factor and controls the weight of the prior relative
to the weight of the data. For example, if g=1, the prior has
exactly as much weight as the data, and if g=10, the prior has
one tenth of the weight of the data. A popular default choice is
g=n, the unit information prior, where the prior has as much
influence as a single observation (Kass & Wasserman, 1995)
and the behavior of the test becomes similar to that of BIC
(Schwarz, 1978).

However, Liang et al. (2008) showed that the above spec-
ification yields a bound on the Bayes factor, even when there
is overwhelming information supportingℳ1. This “informa-
tion paradox” can be overcome by assigning the regression

Table 1 Evidence categories for the Bayes factor BF10 (Jeffreys, 1961)

Bayes Factor BF10 Interpretation

>100 Extreme evidence forℳ1

30–100 Very Strong evidence forℳ1

10–30 Strong evidence for ℳ1

3–10 Moderate evidence for ℳ1

1–3 Anecdotal evidence for ℳ1

1 No evidence

1/3–1 Anecdotal evidence for ℳ0

1/10–1/3 Moderate evidence for ℳ0

1/30–1/10 Strong evidence for ℳ0

1/100–1/30 Very Strong evidence forℳ0

<1/100 Extreme evidence forℳ0

Note. We replaced the labels “not worth more than a bare mention” with
“anecdotal,” “decisive” with “extreme,” and “substantial” with
“moderate.”
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coefficients a Cauchy prior instead of a normal prior (Zellner
& Siow, 1980). Equivalently, this can be accomplished by
assigning g from Eq. 12 an Inverse-Gamma(1/2,n/2) prior:

p α ϕ; g;Xjð Þ∼N 0;
g

ϕ
XTX
� �−1� 	

;

p gð Þ ¼ n=2ð Þ1=2
Γ 1=2ð Þ g −3=2ð Þe−n= 2gð Þ;

p ϕð Þ∝ 1

ϕ
:

ð13Þ

The above specification is known as the Jeffreys–Zellner–
Siow, or JZS, prior. The JZS prior was adopted byWetzels and
Wagenmakers (2012) for the default tests of correlation and
partial correlation, and the same tests are used here to compute
the Bayes factor for mediation. It should be stressed, however,
that the framework is general and allows researchers to add
substantive knowledge about the topic under study by chang-
ing the prior distributions (e.g., Armstrong & Dienes, 2013;
Dienes, 2011; Guo et al., 2013).

With the JZS tests for correlation and partial correlation in
hand, we created the default Bayesian hypothesis test for
mediation in three steps, as described in the next paragraphs.

Step 1: evidence for path α

The first step in the hypothesis test for mediation is to establish
the Bayes factor for a correlation between X and M, path α
(see Fig. 1). This test can be formulated as a comparison
between two linear models:

ℳ0 : M ¼ β0 þ ε;
ℳ1 : M ¼ β0 þ αX þ ε;

ð14Þ

where ε is the normally distributed error term. The default JZS
Bayes factor quantifies the extent to which the data support
ℳ1 with path α versus ℳ0 without path α, as follows
(Wetzels & Wagenmakers, 2012):

BF10 ¼ BFα

¼ P D ℳ1jð Þ
P D ℳ0jð Þ

¼ n=2ð Þ1=2
Γ 1=2ð Þ �

Z ∞

0
1þ gð Þ n−2ð Þ=2� 1þ 1−r2

� �
g


 �− n−1ð Þ=2
g −3=2ð Þe−n= 2gð Þ dg;

ð15Þ
where n is the number of observations and r is the sample
correlation.

For the proposed mediation test, we have to multiply the
posterior probabilities of paths α and β, since both indepen-
dent paths need to be present for mediation to hold. Hence, we
need to convert the Bayes factor for path α to a posterior
probability. Under the assumption of equal prior odds, this
conversion is straightforward:

p α≠0 Djð Þ ¼ BFα

BFα þ 1
: ð16Þ

Step 2: evidence for path β

The second step in the hypothesis test for mediation is to
establish the Bayes factor for a unique correlation between
M and Y (without any influence from X), path β (see Fig. 1).
Again, this test can be formulated as a comparison between
two linear models:

ℳ0 : Y ¼ β0 þ τX þ ε;
ℳ1 : Y ¼ β0 þ τ 0X þ βM þ ε;

ð17Þ

where ε is the normally distributed error term. The default JZS
Bayes factor quantifies the extent to which the data support
ℳ1 with path β versus ℳ0 without path β, as in a test for
partial correlation (Wetzels & Wagenmakers, 2012):

BF10 ¼ BFβ

¼ P D ℳ1jð Þ
P D

���ℳ0

� �

¼

Z ∞

0
1þ gð Þ n−1−p1ð Þ=2 � 1þ 1−r21

� �
g


 �− n−1ð Þ=2
g −3=2ð Þe−n= 2gð Þ dgZ ∞

0
1þ gð Þ n−1−p0ð Þ=2 � 1þ 1−r20

� �
g


 �− n−1ð Þ=2
g −3=2ð Þe−n= 2gð Þ dg

;

ð18Þ
where n is the number of observations, r1

2 and r0
2 represent the

explained variance of ℳ1 and ℳ0, respectively, and p1=2
and p0=1 are the number of regression coefficients or paths in
ℳ1 and ℳ0, respectively.

As before, we can convert the Bayes factor for β to a
posterior probability under the assumption of equal prior odds:

p β≠0 Djð Þ ¼ BFβ

BFβ þ 1
: ð19Þ

Step 3: evidence for mediation

The third step in the hypothesis test for mediation is to
multiply the evidence for α with the evidence for β to obtain
the overall evidence for mediation:

Evidence for Mediation ¼ p α≠0 Djð Þ � p β≠0 Djð Þ: ð20Þ

The resulting evidence for mediation is a posterior proba-
bility that ranges from zero when there is no evidence for
mediation at all to one when there is absolute certainty that
mediation is present. We can also express the evidence for
mediation as a Bayes factor through a simple transformation:

BFmed ¼ Evidence for Mediation

1−Evidence for Mediation
; ð21Þ

where a BFmed>1 indicates evidence for mediation and BFmed
<1 indicates evidence against mediation.

Note that we can multiply the posterior probabilities, be-
cause the estimates of path α and β are uncorrelated. This can
be demonstrated by inspecting the relevant element of the
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inverse of the information matrix—that is, the matrix of
second order derivatives of the parameters α and β, with
respect to the log likelihood function. This can be done
numerically, since most SEM programs supply this matrix,
and it can be done analytically. These results can be found in
the supplemental materials.

Testing for full or partial mediation

An optional fourth step in the hypothesis test for medi-
ation is to assess the evidence for full versus partial
mediation. The relation between X and Y is fully medi-
ated by M when αβ differs from zero and the direct
path between X and Y, path τ ′ is zero. The evidence for
τ ′ can be assessed with the JZS test for partial correla-
tion as we did for path β (see Eq. 18). Note, however,
that the specification of the null model has changed:

ℳ0 : Y ¼ β0 þ βM þ ε;
ℳ1 : Y ¼ β0 þ τ 0X þ βM þ ε:

ð22Þ

With this model specification, the default JZS Bayes factor
quantifies the extent to which the data supportℳ1 with path
τ ′ versus ℳ0 without path τ ′.

As before, the resulting JZS Bayes factor for τ ′ can be
converted to a posterior probability:

p τ 0≠0 Djð Þ ¼ BFτ 0

BFτ 0 þ 1
: ð23Þ

Together, the Bayes factor for τ ′ and the Bayes factor
for mediation indicate whether mediation is full or partial:
If the Bayes factor for mediation is substantially larger
than one and the Bayes factor for τ ′ is substantially
smaller than one, there is evidence for full mediation.
On the other hand, if the Bayes factor for mediation is
substantially larger than one and the Bayes factor for τ ′ is
substantially greater than one, there is evidence for partial
mediation.

Simulation study

In order to provide an indication of how the mediation test
performs, we designed a simulation study. The goal of the
simulation study was to confirm that the Bayes factor draws
the correct conclusion: When mediation is present, we expect
BFmed to be higher than 1; when mediation is absent, we
expect BFmed to be lower than 1.

Creating the data sets

We assessed performance of the test in different scenarios. The
parameters α and β could take the values 0, .30, and .70; τ ′

was fixed to zero. We did not vary τ ′ since it has no influence
on the Bayes factor for mediation, which only concerns the
effect αβ. Furthermore, we chose four sample sizes: N=20,
40,80, and 160. The 3×3 parameter values combined with
the four sample sizes resulted in 36 different scenarios. For
each scenario, we created the corresponding covariance
matrix of X, Y, and M, all with a variance of one. This
standardization has no bearing on the results, since they are
scale free. We then used the covariance matrix to generate
for each scenario N multivariate normally distributed values
for X, M, and Y.1

Results

Figure 2 shows the natural logarithm of the Bayes factors for
mediation in the different scenarios. The different shades of
gray of the panels show the strength of the mediation that
governed the generated data: the darker the gray, the stronger
the mediation. In the scenarios in which there was no media-
tion (α=0 and/or β=0), the Bayes factors indicated moderate
to very strong evidence for the null model, depending on the
sample size. In the scenario of strong mediation (α=.7 and
β=.7), the Bayes factors quickly increase from anecdotal
evidence (N=20) to moderate evidence (N=40) and further
on to very strong and extreme evidence for mediation. In the
scenarios of moderate mediation (α=.7 and β=.3 and vice
versa), the Bayes factors start to indicate evidence for media-
tion from sample sizes of around 60. In the scenario of weak
mediation (α=.3 and β=.3), the mediation is too weak for the
proposed test to detect it with small sample sizes. In those
scenarios, the test starts to indicate evidence for mediation
only from a sample size of around 80 onward. In summary, the
proposed test can distinguish between no mediation and me-
diation, provided that effect size and sample size are suffi-
ciently large.

Discussion

The results from the simulation study confirm that the JZS
Bayesian hypothesis test for mediation performs as advertised:
When mediation is absent, the test indicates moderate to
strong evidence against mediation, and when mediation is
present, the test indicates evidence for mediation, provided
that effect size and sample size are sufficiently large. As was
expected, the evidence for mediation increases with effect size
and with sample size.

Even though the default test performs well in a qualitative
sense, it has one shortcoming that remains to be addressed:

1 We generated data that covaried exactly according to the input covari-
ance matrix. Because the covariances of the data were equal to the
covariances of the population, there was no need to control for random
sampling, and we simulated only one experiment per scenario. The full
simulation code is available in the supplemental materials.
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With the proposed method, it is not possible to perform a
one-sided test. This is regrettable because, in many situa-
tions, the researcher has a clear idea on the direction of the
possible paths α, β, and τ ′. In order to perform a one-sided
Bayesian hypothesis test, the prior needs to be restricted
such that it assigns mass to only positive (or negative)
values. This is not possible in the mediation test as outlined
above.

Extension to one-sided tests

As was mentioned above, our default prior on a regression
coefficient is a Cauchy(0,1) distribution. This prior instanti-
ates a two-sided test, since it represents the belief that the
effect is just as likely to be positive as negative. In many
situations, however, researchers have strong prior ideas
about the direction of the effect (Hoijtink et al., 2008). In
the Bayesian framework, such prior ideas are directly
reflected in the prior distribution. More specifically, suppose
that we expect path α to be greater than zero and we seek a
test of this order-restricted hypothesis against the null

hypothesis that α is zero. For this we consider the following
three hypotheses:

ℳ0 : α ¼ 0;
ℳ1 : α∼Cauchy 0; 1ð Þ;
ℳ2 : α∼Cauchyþ 0; 1ð Þ;
where Cauchy+(0,1) indicates that α can take values only on
the positive side of the Cauchy(0,1) distribution (i.e., it is a
folded Cauchy distribution).

The test of interest features the comparison between the
one-sided hypothesis ℳ2 versus the null hypothesis ℳ0;
that is, we seek the Bayes factor BF20. This Bayes factor can
be derived in many ways—for instance, using relatively
straightforward techniques such as the Savage-Dickey density
ratio (Dickey & Lientz, 1970; Wagenmakers et al., 2010;
Wetzels, Grasman, & Wagenmakers, 2010) or relatively intri-
cate techniques such as the reversible jump MCMC (Green,
1995). Here, we apply a different method that is possibly the
most reliable and the least computationally expensive (Morey
& Wagenmakers, 2014; Pericchi, Liu, & Torres, 2008). This
method takes advantage of the fact that we can easily calculate
the two-sided Bayes factor, BF10. With this Bayes factor in
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Fig. 2 Performance of the default
JZS Bayesian hypothesis test for
mediation in different scenarios.
Each panel shows the natural
logarithm of the Bayes factor for
mediation for different values of
α and β and different sample
sizes. The white panels
correspond to scenarios in which
there is no mediation; the gray
panels to scenarios in which there
is mediation. The darker the
panel, the stronger the mediation
that is present. The horizontal
dotted line at zero indicates the
boundary that separates evidence
for the null model (below the line)
and evidence for the mediation
model (above the line). Note that
the scaling in the scenario of
strong mediation is different from
the other scenarios to give a more
adequate overview of the results

Behav Res (2015) 47: –958 97 91



hand, we only need to apply a simple correction to derive the
desired one-sided Bayes factor BF10. Specifically, note that
the Bayes factor is transitive:

BF20 ¼ BF21 � BF10; ð24Þ
which is immediately apparent from its expanded form

p D ℳ2jð Þ
p D ℳ0jð Þ ¼

p D ℳ2jð Þ
p D ℳ1jð Þ �

p D ℳ1jð Þ
p D ℳ0jð Þ: ð25Þ

Thus, the desired one-sided test on α requires only BF21

and BF10. We already have access to BF10, and this leaves the
calculation of BF21—that is, the Bayes factor in favor of the
order-restricted model ℳ2 over the unrestricted model ℳ1.
As was shown by Klugkist, Laudy, and Hoijtink (2005), this
Bayes factor equals the ratio of two probabilities that can be
easily obtained: The first is the posterior probability that α>0,
under the unrestricted model ℳ1; the second is the prior
probability that α>0, again under the unrestricted model
ℳ1. Formally,

BF21 ¼ p α > 0 ℳ1;Djð Þ
p α > 0 ℳ1jð Þ : ð26Þ

Since the prior distribution is symmetric around zero, the
denominator equals .5, and Eq. 26 can be further simplified to

BF21 ¼ 2⋅p α > 0 ℳ1;Djð Þ ð27Þ
One straightforward way to determine p(α>0|ℳ1,D) is

(1) to use a generic program for Bayesian inference such as
WinBUGS, JAGS, or Stan; (2) implementℳ1 in the program
and collect Markov chain Monte Carlo (MCMC) samples
from the posterior distribution of α; (3) approximate p(α>
0|ℳ1,D) by the proportion of posterior MCMC samples for
α that are greater than zero.2

In our implementation of the one-sided mediation tests, we
make use of Eqs. 24 and 27. In order to obtain BF21, we
implemented the unrestricted models in JAGS (Plummer,
2009). We confirmed the correctness of our JAGS implementa-
tion by comparing the analytical results for the two-sided Bayes
factor BF10 against the Savage-Dickey density ratio results based
on theMCMCsamples from JAGS (seeAppendix 2). The JAGS
code itself is provided in Appendix 1, since it allows researchers
to adjust the prior distributions if they so desire. Finally, note that
our one-sided mediation test can incorporate order-restriction on
any of the paths simultaneously.

Example: the firefighter data

To illustrate the workings of the various mediation tests, we
will apply them to the same example data Yuan and

MacKinnon (2009) used, concerning the PHLAME firefighter
study (Elliot et al., 2007). In this study, it was investigated
whether the effect of a randomized exposure to one of three
interventions (X) on the reported eating of fruits and vegeta-
bles (Y) was mediated by knowledge of the benefits of eating
fruits and vegetables (M; see Eqs. 1, 2, and 3). The interven-
tions were either a “team-centered peer-led curriculum” or
“individual counseling using motivational interviewing tech-
niques,” both to promote a healthy lifestyle, or a control
condition. The correlation matrix of the data is shown in
Table 2.

The conventional approach: the frequentist product method

Yuan and MacKinnon (2009) first reported the results of the
conventional frequentist product method mediation analysis.
This method tests whether the indirect effect αβ differs sig-
nificantly from zero. The estimate for αβ was .056 with a
standard error of .026 (estimated with the Sobel method;
Sobel, 1982), with the 95 % confidence interval (.013,.116)
(see Table 3) (MacKinnon, Lockwood, &Williams, 2004; the
interval takes into account thatαβ is not normally distributed).
Since the 95 % confidence interval does not include zero,
frequentist custom suggests that the test provides evidence
that the effect of X on Y is mediated by M.

The Yuan and MacKinnon (2009) approach: Bayesian
parameter estimation

Next, Yuan and MacKinnon (2009) reported the results of their
Bayesian mediation analysis, which is based on parameter
estimation with noninformative priors. The mean of the poste-
rior distribution of αβ was .056 with a standard error of .027.
The 95% credible interval forαβwas (.011,.118) (see Table 3).
These Bayesian estimates are numerically consistent with the
frequentist results. It should be stressed, however, that the 95%
credible interval does not allow a test. As summarized by
Berger (2006), “Bayesians cannot test precise hypotheses using
confidence intervals. In classical statistics one frequently sees
testing done by forming a confidence region for the parameter,
and then rejecting a null value of the parameter if it does not lie
in the confidence region. This is simply wrong if done in a
Bayesian formulation (and if the null value of the parameter is
believable as a hypothesis)” (p. 383; see also Lindley, 1957;
Wagenmakers & Grunwald, 2006).

2 The approximation can be made arbitrarily close by increasing the
number of MCMC samples.

Table 2 Correlation
matrix of the PHLAME
firefighter data (N=354)

X Y M

X 1.00 .08 .18

Y .08 1.00 .16

M .18 .16 1.00
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The Bayes factor approach: the default Bayesian hypothesis
test

We will now consider the results of the proposed Bayesian
hypothesis test with the default JZS prior setup. First, we
estimated the posterior distribution of αβ, using the method
of Yuan and MacKinnon (2009), but now with the JZS prior
instead of a noninformative prior. The resulting posterior dis-
tribution had a mean of .056 and a 95 % credible interval of
(.012,.116) (see Table 3). This is consistent with the results of
both the frequentist test and the Bayesian mediation estimation
routine of Yuan and Mackinnon. As was expected, the choice
of the JZS prior setup over a noninformative prior setup does
not much influence the results in terms of parameter estimation.

The advantage of the JZS prior specification is that we can
also formally test whether the effect differs from zero. Our
analytical test indicates that the Bayes factor for path α is
10.06, which corresponds to a posterior probability of 10.06/
(10.06+1)=.91. The Bayes factor for path β is 2.68, which
corresponds to a posterior probability of 2.68/(2.68+1)=.73. If
we multiply these posterior probabilities, we obtain the poste-
rior probability for mediation: .91×.73=.66.This posterior prob-
ability is easily converted to a Bayes factor: .66/(1−.66)=1.94.
Hence, the data are about twice as likely under the model with
mediation than under the model without mediation. In terms of
Jeffreys’s evidence categories, this evidence is anecdotal or “not
worth more than a bare mention.”

It is also possible to include an order-restriction in the medi-
ation model at hand. According to the theory, we expect a
positive relation between the mediator “knowledge of the ben-
efits of eating fruits and vegetables” and the dependent variable
“the reported eating of fruits and vegetables,” or in other words,
we expect path β to be greater than zero. If we implement this
order-restriction, our test indicates a newBayes factor for path β
of 5.33, with a corresponding posterior probability of 5.33/
(5.33+1)=0.84. If we multiply the posterior probability of α
with the new posterior probability of β, we obtain the new
posterior probability of mediation: .91×.84=.76, with a corre-
sponding Bayes factor for mediation of .76/(1−.76)=3.17. With
the imposed order restriction, the observed data are now about
three times as likely under the mediation model than under the
model without mediation, which according to the Jeffreys’
evidence categories constitutes evidence for mediation on the
border between “anecdotal” and “moderate.”

R package: BayesMed

In order to make our default Bayesian hypothesis tests avail-
able, we built the R package BayesMed (Nuijten et al., 2014).
R is a free software environment for statistical computing and
graphics (R Core Team, 2012), which makes it a good plat-
form for our test.

BayesMed includes both the basic test for mediation
(jzs_med) and the accompanying tests for correlation (jzs_cor)
and partial correlation (jzs_partcor), as well as the associated
Savage-Dickey density ratio versions (jzs_medSD,
jzs_corSD, and jzs_partcorSD, respectively). Furthermore,
we added the possibility of estimating the indirect effect αβ,
based on the procedure outlined in Yuan and MacKinnon
(2009), but with a JZS prior setup. Finally, we also included
the firefighter data. The use of the tests and their options are
described in the help files within the package.

Concluding comments

We have outlined a default Bayesian hypothesis test for me-
diation and presented an R package that allows it to be applied
easily. This default test complements the earlier work by Yuan
andMacKinnon (2009) on Bayesian estimation for mediation.
In addition, we have extended the default tests by allowing
more informative, one-sided alternatives to be tested as well.
Nevertheless, our test constitutes only a first step.

A next step could be to extend the test to multiple mediator
models. This should be relatively straightforward: The media-
tion model (Eqs. 2 and 3) needs to be changed to allowmultiple
mediators. Next, the presence of each path can still be assessed
in the same way by calculating the Bayes factor for each path
(see Steps 1 and 2 above) and combining the separate Bayes
factors into an overall Bayes factor for mediation.

Another extension could be to add a scaling factor to the
JZS prior to adjust the spread of the prior distribution.3 At the
moment, the prior includes a Cauchy(0,r=1), but a smaller or
larger r would make the prior smaller or wider, respectively.

Other avenues for further development include, but are not
limited to, the following: (1) integrate the estimation and
testing approaches by using the estimation outcomes from
earlier work as a prior for the later test (Verhagen &
Wagenmakers, in press); (2) explore methods to incorporate
substantive prior knowledge (e.g., Dienes, 2011); (3) extend
the test to interval null hypotheses—that is, null hypotheses
that are not defined by a point mass at zero but, instead, by a
practically meaningful area around zero (Morey & Rouder,
2011); and (4) generalize the methodology to more complex
models such as hierarchical models or mixture models.

3 We thank an anonymous reviewer for pointing this out to us.

Table 3 Three estimates of the mediated effect bαbβ for the PHLAME
firefighter data set with associated 95 % confidence/credible intervals

bαbβ CI95%

Frequentist product method .056 (.013, .116)

Yuan & MacKinnon (2009) .056 (.011, .118)

Default Bayesian hypothesis test .056 (.012, .116)
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As for all Bayesian hypothesis tests that are based on Bayes
factors, users need to realize that the test depends on the spec-
ification of the alternative hypothesis. In general, it is a good
idea to conduct a sensitivity analysis and examine the extent to
which the outcomes are qualitatively robust to alternative plau-
sible prior specifications (e.g., Wagenmakers, Wetzels,
Borsboom, & van der Maas, 2011). Such sensitivity analyses
are facilitated by our JAGS code presented in Appendix 1.

In sum, we have provided a default Bayesian hypoth-
esis test for mediation. This test allows users to quantify
statistical evidence in favor of both the null hypothesis
(i.e., no mediation) and the alternative hypothesis (i.e.,

full or partial mediation). The test also allows informa-
tive hypotheses to be tested in the form of order-
restrictions. Several extensions of the methodology are
possible and await future implementation.
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Appendix 1. JAGS code

JAGS code for correlation
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JAGS code for partial correlation

Appendix 2. Testing the correctness of our JAGS
implementation

To assess the correctness of our JAGS implementation, we
compared the analytical results for the two-sided Bayes factor
against the Savage-Dickey density ratio results based on the
MCMC samples from JAGS. The distribution that fit the
posterior samples best4 is the nonstandardized t-distribution
with the following density:

p x ν;μ;σjð Þ ¼
Γ

ν þ 1

2

� 	
Γ

ν
2

� � ffiffiffiffiffiffiffiffiffiffiffiffi
πνσð Þp 1þ 1

ν
x−μ
σ

� �2
� 	− νþ1

2

; ð28Þ

with ν degrees of freedom, location parameter μ, and scale
parameter σ. With the samples of the parameter of interest, we
can estimate ν, μ, and σ and, thus, the exact shape of the
distribution and the exact height of the distribution at the point
of interest.

We checked the fit of this distribution and the performance
of the SD method in a small simulation study. We considered
the following sample sizes: N = 20, 40, 80, or 160. We
simulated correlational data by drawing N values for X from
a standard normal distribution, and conditional on X, we
simulated values for Y according to the following equation:

4 We compared the fit of four distributions: a nonstandardized t-distribution, a
normal distribution, a nonparametric distribution estimated with the spline
interpolation function splinefun in R, and a nonparametric distribution esti-
mated with the R function logspline that also uses splines to estimate the log
density. All four distributions fitted reasonably well: The Bayes factors of the
analytical test and the SD method are similar with all different posterior
distributions. All four distributions are therefore included in the R package
BayesMed and can be used when applying the SD method.
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Y i ¼ β0 þ τX i þ ε; ð29Þ
where the subscript i denotes subject i and τ represents the
relation between X and Y. For each of the four sample sizes, we
generated 100 data sets, in each of which τ was drawn from a
standard uniform distribution.

Next, we tested the correlation in each data set with both
the analytical Bayesian correlation test and the SD method
with the nonstandardized t-distribution and compared the
results. The results are shown in Fig. 3. The figure shows that
the proposed SD method performs well: The Bayes factors of
the analytical test and the SDmethod are similar for all sample
sizes and correlations.
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