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Wolfgang-Pauli-Strasse 27, Zürich, CH-8093 Switzerland
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Abstract: Two-dimensional conformal field theories with extended W-symmetry algebras

have dual descriptions in terms of weakly coupled higher spin gravity in AdS3 at large

central charge. Observables that can be computed and compared in the two descriptions

include Rényi and entanglement entropies, and correlation functions of local operators. We

develop techniques for computing these, in a manner that sheds light on when and why

one can expect agreement between such quantities on each side of the duality. We set up

the computation of excited state Rényi entropies in the bulk in terms of Chern-Simons

connections, and show how this directly parallels the CFT computation of correlation

functions. More generally, we consider the vacuum conformal block for general operators

with ∆ ∼ c. When two of the operators obey ∆
c ≪ 1, we show by explicit computation that

the vacuum conformal block is computed by a bulk Wilson line probing an asymptotically

AdS3 background with higher spin fields excited, the latter emerging as the effective bulk

description of the excited state produced by the heavy operators. Among other things,

this puts a previous proposal for computing higher spin entanglement entropy via Wilson

lines on firmer footing, and clarifies its relation to CFT. We also study the corresponding

computation in Toda theory and find that this provides yet another independent way to

arrive at the same result.
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1 Introduction

Entanglement entropy has emerged as an interesting new observable in quantum field

theory, yielding information that goes beyond that provided by correlation functions of

local operators. For reviews see e.g. [1, 2]. It has applications to a diverse set of systems,

ranging from condensed matter to string theory and holographic duality. In the latter

context, a particularly appealing feature is that entanglement entropy admits a beautifully

simple realization via the Ryu-Takayanagi formula [3], indicating a potentially far reaching

link between quantum entanglement and spacetime geometry. More generally, one can

study the Rényi entropy, which captures the full content of the reduced density matrix for

a subsystem.

To the extent that the Ryu-Takayanagi formula is an important clue to understanding

the mechanism underlying holography, it is of great interest to generalize to theories that

go beyond ordinary Einstein gravity. One such direction that has been explored is the

case in which higher derivative terms are included in the action [4–6]. Another is to the

case of higher spin gravity, which is the case that we focus on here, in particular its 3d

version and corresponding 2d CFT dual. The study of entanglement entropy in higher spin

theories was initiated in [7, 8] and further work appears in [9–17]. Our two main goals are

the following: first to attempt to derive from first principles the prescriptions advanced

in [7, 8],1 and second to extend these considerations to the case of Rényi entropy in higher

spin theories.

In quantum field theory a useful way to compute entanglement entropy is via the

replica trick. If ρA is the reduced density matrix for a subregion A, the idea is to compute

Tr [ρnA] by introducing n copies of the original field theory with certain twisted boundary

conditions. Equivalently, one computes the path integral for the original theory defined on

an n-sheeted branched cover of the original spacetime. When the field theory in question

is a 2d CFT, in the semiclassical (large-c) limit one can envision computing the partition

function on the branched cover using holography, namely as the saddle point approximation

to the partition function of a three-dimensional bulk theory that contains gravity. In the

present paper we will focus on CFTs which are dual to sl(N,R)⊕ sl(N,R) Chern-Simons

theories in the bulk.2 These include pure AdS3 gravity (N = 2) [18, 19], gravity coupled to

Abelian gauge fields, and also higher spin theories which are dual to CFTs with extended

symmetry algebras of W-type [20–22]. One of our goals is to describe how to exploit the

Chern-Simons description to simplify the calculation of interesting non-local observables in

this class of CFTs, and build towards a constructive proof of the holographic higher spin

entanglement entropy proposal of [7, 8].

For the 2d CFTs dual to pure gravity, a holographic computation of vacuum state Rényi

entropies in the large-c limit was accomplished in [23, 24], and in [23, 25] from a field theory

perspective. The holographic calculation in [23, 24] is based on Schottky uniformization,

wherein the replica Riemann surface is described as a quotient of the complex plane by

1These two proposals were recently shown to be equivalent in [16].
2More precisely, the Chern-Simons theory captures the chiral algebra of the CFT; additional degrees of

freedom are needed to describe the full operator spectrum.
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a discrete subgroup Σ of PSL(2,C) (see e.g. [26]). The bulk manifolds corresponding

to these boundary topologies are handlebodies which can be described as a quotients of

AdS3 by Σ [27]. Roughly speaking, these gravitational saddles correspond to particular

ways of “filling in” the boundary Riemann surface with Euclidean AdS3 space. These

observations were used in [23, 24] in order to evaluate the regularized gravitational action

on the handlebody solutions, thus computing the large-c Rényi entropies for a subsystem

consisting of disjoint intervals in the dual 2d CFT.

In Chern-Simons language, the task at hand consists of constructing the flat connec-

tions that are compatible with the boundary replica Riemann surface. This perspective

provides a convenient way of organizing the calculation of Rényi and entanglement entropies

which circumvents some of the complications associated with the use of metric variables.

But, more importantly, the Chern-Simons formulation generalizes straightforwardly to a

class of theories beyond pure gravity, such as the higher spin theories mentioned above, and

as we shall see accommodates the case of excited states without too much difficulty. Fur-

thermore, while still technically challenging in practice, the topological formulation offers

an a priori systematic way of deforming the CFT by incorporating sources for the stress

tensor and other conserved currents.

We now spell out a few more details about our approach. Our treatment of the Chern-

Simons theory will be entirely classical, and as such is only valid in the limit of large central

charge. We wish to obtain results for the Rényi entropy in excited states which have a nice

classical limit as nontrivial deformations of AdS3; this requires that the energy and higher

spin charges of the background scale like the central charge. By the state-operator map,

the corresponding operators that create such excited states have quantum numbers that

inherit this scaling. Furthermore, it is standard to think of the branched cover as being

created by the insertion of twist operators that sew together distinct copies of the replica

theory, and these twist operators have conformal dimensions that also scale like the central

charge.

An attractive aspect of the Chern-Simons formulation of this problem is that it leads to

equations that directly match up to those obtained in a purely CFT analysis of correlation

functions in this semiclassical limit. This is also the case in the metric formulation, but

here the connection is more immediate and transparent. More precisely, decomposing such

correlation functions into conformal blocks, the conformal blocks are obtained by solving a

certain monodromy problem. This monodromy problem is the same one that is encountered

upon demanding that the Chern-Simons connection has the correct holonomies dictated

by the branched covering. It then becomes clear that what the Chern-Simons action

is computing is a conformal block: the contribution to the correlation function due to

intermediate states which are (Virasoro or more generally WN ) descendants of a primary

state. If one can argue that a specific block dominates in the semiclassical limit, one

thereby establishes that the Chern-Simons computation indeed yields the correct Rényi

entropy. This line of reasoning follows that of [24, 25] in the case of ordinary gravity, but

now formulated more efficiently in Chern-Simons language.

In general it is difficult in practice to compute the Rényi entropy in an excited state

by this method, because it requires the solution of a differential equation that is typically

– 3 –
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intractable. Things simplify greatly if one focusses instead on entanglement entropy. The

key point here is that this involves taking the replica index n → 1, and in this limit the

dimension of the twist operator goes to zero. One just needs to solve the monodromy

problem to first order in n − 1, which is quite straightforward. In the case of ordinary

gravity, one thereby derives the Ryu-Takayanagi formula for the entanglement entropy in

an excited state, where the bulk description of the excited state is as a conical defect or

BTZ solution [28, 29].

When higher spin fields are turned on in the bulk, the Ryu-Takayanagi prescription no

longer applies; it has been proposed [7, 8] that one should instead evaluate a certain Wilson

line observable, which is indeed a rather natural object in the Chern-Simons formulation.

We want to establish the validity of this proposal. Focussing on the case of sl(3,R)⊕sl(3,R)

Chern-Simons theory, what we will show by explicit computation is that the Wilson line

evaluated in a general asymptotically AdS3 background computes, in a rather efficient

fashion, the same answer as that produced by the monodromy analysis. We therefore find

that the Wilson line yields the W3 vacuum block contribution to the correlation function of

two twist operators and two excited state operators. As noted above, whether this gives the

entanglement entropy hinges on whether the vacuum block is the dominant contribution

in the semiclassical limit, but this requires specifying more information about the precise

CFT under consideration. The same issue is present in the case of ordinary gravity, with

the difference that in the dual CFT (with standard Virasoro symmetry) the circumstances

under which the vacuum block may indeed dominate the relevant correlators are somewhat

better understood [25]. In the W-symmetry case we face the additional difficulty that the

non-vacuum blocks of the WN algebra are not as well understood as those of the Virasoro

algebra, and it would be interest to further explore this issue in the future. Nevertheless,

barring this technical assumption, the validity of the Wilson line proposal for computing

entanglement entropy in an excited state of the higher spin theory is now on the same

footing as the validity of the Ryu-Takayanagi formula for an excited state in ordinary

gravity.

Actually, when phrased in terms of conformal blocks the problem of computing Rényi

entropy in the Chern-Simons formulation is a special case of a more general problem of

interest. Namely, we can replace the twist operators by general operators that carry both

a scaling dimension and a higher spin charge, and think of computing the corresponding

vacuum block. This more general setup again can be formulated as a monodromy problem,

both in Chern-Simons theory and in the CFT. And we again can demonstrate agreement

between the perturbative solution of the monodromy problem and the result produced by

a general Wilson line observable. This provides a satisfying answer to the question of what

the general Wilson line evaluated in the general higher spin background is computing: it

is computing the WN vacuum block contribution to the four-point function, where two of

the operators correspond to the background solution and the other two to the Wilson line.

An independent way to approach the computation of Rényi entropy in the Chern-

Simons formulation is to first integrate out the bulk fields and to phrase everything in

terms of an effective theory on the boundary. This effective theory is Liouville theory for

pure gravity, and Toda theory for the higher spin case, and our computations are related
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to four-point functions in these theories. As we will demonstrate, the relevant four-point

functions are essentially fixed by the symmetries of the problem, and this provides yet

another interesting perspective on the problem.

The remainder of this paper is organized as follows. In section 2 we briefly review

the computation of Rényi entropy via correlation functions of twist operators. We then

discuss the conformal block decomposition of such correlators in section 3, and show how

to compute the vacuum block in the semiclassical limit by solving a monodromy problem.

The corresponding bulk problem in Chern-Simons language is discussed in section 4. In

section 5 we discuss the perturbative solution of the monodromy problem. We then com-

pute the Wilson line in section 6 and demonstrate agreement with the result obtained from

the monodromy analysis. Another perspective based on Toda field theory is discussed in

section 7. In this approach one obtains correlation functions by a saddle point approxi-

mation to the Toda path integral. We show how to connect the Toda field at the saddle

point to the data in the Chern-Simons construction. We discuss some aspects of our re-

sults in section 8, including the emergence of black hole solutions as effective descriptions

of CFT microstates. The appendices collect useful formulas and conventions, and some

complementary material.

2 Rényi entropies

The standard way of computing entanglement and Rényi entropies in quantum field theory

is based on the replica trick: given a constant-time region A with complement B = Ac, the

Rényi entropies are defined as

S
(n)
A = − 1

n− 1
lnTr [ρnA] , (2.1)

where n ∈ Z and n ≥ 2, and ρA = TrB [ρ] is the reduced density matrix associated

with region A. In particular, assuming a unique analytic continuation in n exists, the

entanglement entropy SA for subsystem A is then obtained as

SA = −Tr [ρA log ρA] = lim
n→1

S
(n)
A . (2.2)

In a two-dimensional QFT, in the case where A is the union of NI disjoint intervals

one finds (see e.g. [2, 30, 31])

S
(n)
A = − 1

n− 1
[lnZ(Rn,NI

)− n lnZ1] , (2.3)

where Z denotes the partition function and Rn,NI
is a Riemann surface obtained by cutting

the spacetime (a cylinder or plane, say) along A and cyclically gluing n-copies along the

cut, with the last copy joined to the first. Z1 denotes the partition function of the theory

on the original manifold, with no branch points. If the theory was originally defined on the

plane (or the cylinder), the corresponding replica manifold is a Riemann surface of genus

g(Rn,NI
) = (n− 1)(NI − 1) , (2.4)

– 5 –
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with 2NI branch points zi, which can be defined by the curve [24]

yn =

NI
∏

i=1

z − z2i−1

z − z2i
. (2.5)

An alternative description is obtained by replacing the original field theory defined

on the n-sheeted surface by n copies of the field theory defined on the original surface.

Going around a branch point permutes the copies in a manner that reproduces the n-

sheeted construction. In this picture, the branch points correspond to the location of

twist operators. In a conformal field theory, these are primaries of dimension (∆,∆) with

∆ = c
24(n− 1

n). In this language we have

Z(Rn,NI
) = 〈σ(z1, z1)σ̃(z2, z2) . . . σ(z2NI−1, z2NI−1)σ̃(z2NI

, z2NI
)〉 (2.6)

where σ and σ̃ denote twist and anti-twist operators. This construction yields the Rényi

entropy in the vacuum state, but we can generalize to an excited state as follows [32, 33].

Consider an excited state O(z, z̄)|0〉 obtained by acting with a primary operator on the

vacuum state. The reduced density matrix ρA is now obtained by doing a path integral

with insertions of O(z, z̄) and [O(z, z̄)]∗ representing the initial and final excited states.

Passing to the n-sheeted geometry Rn,NI
to compute Tr [ρnA], we now have insertions of

these local operators on every sheet. Passing finally to the replica theory defined on the

original surface, we end up with an insertion of operators that are the product of n local

operators, one from each replica copy. To summarize, in an excited state created by a local

operator we need to compute the 2NI + 2 point correlation function

ZO(Rn,NI
) =

〈

σ(z1, z1)σ̃(z2, z2) . . . σ(z2NI−1, z2NI−1)σ̃(z2NI
, z2NI

)O(n)(z, z̄)[O(n)(z, z̄)]∗
〉

(2.7)

where

O(n)(z, z̄) =
n
∏

a=1

Oa(z, z̄) , (2.8)

with a being the replica index.

We will focus primarily on the case of a single interval, NI = 1, in which case (2.7) is

a four-point function of primary operators. In general, computing this correlation function

for arbitrary n is as hard as computing a 2n point function of the operator O in the original

CFT; indeed, one obtains such a description by mapping the surface Rn,1 to the plane.

However, simplifications occur in the semi-classical limit in which the central charge c is

taken to infinity. Let us discuss the generic case of a four-point function of primaries,

G(x1, x2, x3, x4) = 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 . (2.9)

In the basic case in which we just have Virasoro symmetry, the semiclassical limit is ob-

tained by considering operators whose conformal dimensions ∆ grow like c, so that ∆
c is

held fixed as c → ∞. As we recall in more detail in the next section, the four-point function

can be decomposed into conformal blocks. The conformal blocks only depend on operator

dimensions and the central charge, and essentially capture all of the information imposed

– 6 –
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by conformal symmetry. In favorable circumstances, the lowest dimension conformal block

corresponding to the exchange of the identity operator and its Virasoro descendants will

dominate in the semiclassical limit.3 The problem then reduces to computing the Virasoro

identity block in the semiclassical limit, which is a much simpler problem, and one that

reduces to computing the monodromies of a certain differential equation, as we discuss in

the next section.

It is easy to come up with examples for which the correlation function is not domi-

nated by the Virasoro identity block. A case that is highly relevant for our purposes is the

following. If the symmetry algebra of the theory contains higher spin currents in the form

a WN algebra, then primaries are labelled by their higher spin charges, along with their

conformal dimension. If the higher spin charges Q grow with c such that Q
c is held fixed

in the semiclassical limit, then there is no reason to expect that the Virasoro blocks corre-

sponding to the exchange of the higher spin currents and their descendants are suppressed

relative to the identity block. But one can still hope for a simplification, namely that what

dominates is the identity block of the full WN algebra. The WN identity block contains the

Virasoro identity block along with the Virasoro blocks of all operators constructed from

the higher spin currents.

Thus, our working assumption will be that the Rényi entropies for excited states con-

taining higher spin charges can be obtained from the vacuum block of the WN algebra

in the semiclassical limit. While this might fail to be the case in generic CFTs with W-

symmetry, it is not unreasonable to expect that these conditions are met for theories with

(holographic) dual weakly-coupled higher spin descriptions, much in the same way that

Virasoro CFTs with Einstein-Hilbert duals meet the criteria for Rényi entropies to be

dominated by the Virasoro vacuum block in the semiclassical limit. We therefore need to

generalize the method that yield the semiclassical Virasoro blocks to the WN context. We

do this in the next section, focussing on the case of W3 symmetry.

3 The monodromy problem from CFT

In this section we first provide a very brief review of the monodromy method for computing

Virasoro conformal blocks in the semiclassical limit, and then explain how this method

works for the W3 algebra. Our discussion of the Virasoro blocks follows [25, 28, 34] closely.

We first define conformal blocks by inserting the identity in the four point function

and expanding it as a sum over a complete set of states |χ〉

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑

χ

〈O1(x1)O2(x2) |χ〉 〈χ |O3(x3)O4(x4)〉 . (3.1)

In a CFT, the Hilbert space can be organized into irreducible representations of the Vira-

soro algebra, with each such representation being labelled by a primary state |α〉. Being

3It was argued in [25] that a necessary condition is the spareness of the spectrum of low-lying operators,

in the sense that the density of states ρ(∆) is bounded by ∼ e2π∆. Further favorable circumstances include,

for example, OPE coefficients that do not grow exponentially with c.

– 7 –
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somewhat schematic and now letting |α〉 stand for the primary state and all of its descen-

dants, we denote the contribution of a single Virasoro representation as Fα, so that

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑

α

〈O1(x1)O2(x2) |α〉 〈α |O3(x3)O4(x4)〉 ≡
∑

α

Fα(xi) .

(3.2)

Fα is the conformal partial wave associated to a given Virasoro representation α.

We now define the semiclassical limit as the limit ∆, c → ∞ with the ratio ∆/c kept

finite, where ∆ refers to the conformal dimensions of the external operators as well as the

primary α. In this limit it is expected that the conformal blocks exponentiate [34, 35]

〈O1(x1)O2(x2) |α〉 〈α |O3(x3)O4(x4)〉 = Fα(xi) ≈ e−
c
6
f(xi) , (3.3)

where the function f(xi) depends on ∆ and c only through the ratio ∆/c. There is no

rigorous derivation of this statement, but a considerable amount of evidence in its favor

has accumulated [36]. Here we will assume this to be correct. The next step is to insert

an operator ψ̂(z) whose dimension is held fixed in the semiclassical limit. The argument

to be made is that the conformal block gets multiplied by a wave function ψ(z, xi)

Ψ(z, xi) = 〈O1(x1)O2(x2) |α〉
〈

α
∣

∣

∣
ψ̂(z)O3(x3)O4(x4)

〉

= ψ(z, xi)Fα(xi) . (3.4)

This can be seen as the definition of ψ(z, xi). The crucial property is that ψ and its

derivatives are of order O(ec
0
). This is very powerful, as ψ̂(z) can be chosen to be a

degenerate operator of the theory. The shortening condition of the degenerate operator

imposes a differential equation on the wave function ψ(z, xi).

It will prove convenient to keep the general notation Oi with i = 1, 2, 3, 4 for the time

being; in the end, however, we will take O3 and O4 to be heavy operators with quantum

numbers denoted by subindex 2, and O1 and O2 to be operators that become light upon

analytic continuation n → 1 in the replica number, with quantum numbers denoted by

subindex 1. In a slightly unorthodox nomenclature, from now on we will refer to the

latter as “light operators”, but it should be kept in mind that their dimensions scale as

∆ ∼ O(c) with the central charge, which is a crucial requirement for the exponentiation

of the conformal block. More concretely, our nomenclature in the remainder of the paper

will be

“light”:
∆

c
= O(n− 1) (3.5)

“heavy”:
∆

c
= O(1) . (3.6)

The light operators O1, O2 (typically twist operators) will be located at 1 and x, while the

heavy operators O3, O4 (typically creating the excited state) will be inserted at 0 and ∞.

We now turn to the study of the consequences of inserting the light operator ψ̂ in a

CFT with Virasoro or W3 symmetry.

– 8 –
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3.1 Virasoro algebra

In the case of the Virasoro algebra we can find a primary with the following shortening

condition
(

L−2 −
3

2(2∆ψ + 1)
L2
−1

)

∣

∣

∣
ψ̂
〉

= 0 , (3.7)

provided ∆ψ = 1
16

[

5− c±
√

(c− 1)(c− 25)
]

, which means that the corresponding repre-

sentation of the Virasoro algebra contains a null vector at level two. Choosing the + sign

in the definition of ∆ψ, we have ∆ψ → −1
2 − 9

2c in the semi-classical limit, so that the

shortening condition reads
(

L−2 +
c

6
L2
−1

) ∣

∣

∣ψ̂
〉

= 0 . (3.8)

Acting with this condition on ψ̂ inside Ψ(z, xi) as defined in (3.4) implies the following

differential equation in the z variable

ψ′′(z) + T (z)ψ(z) = 0 , (3.9)

where T (z) is given by

T (z) =

〈

T̂ (z)O1(x1)O2(x2)O3(x3)O4(x4)
〉

〈O1(x1)O2(x2)O3(x3)O4(x4)〉
=

∑

i

(

hi
(z − xi)2

+
ci

(z − xi)

)

, (3.10)

where T̂ (z) denotes the stress tensor as an operator. Here

hi =
6

c
∆i , (3.11)

are the rescaled conformal dimensions of the operators O(xi), and ci are auxiliary param-

eters related to the conformal blocks f(xi) through a derivative

ci ≡
∂f

∂xi
. (3.12)

Three of these auxiliary parameters can be fixed by demanding smoothness of T (z) as

z → ∞, which requires the large z falloff T (z) ∼ O(z−4). Demanding this and sending

(x1, x2, x3, x4) to (1, x, 0,∞) with a global conformal transformation implies4

T (z) =
h2
z2

+

(

1

(z − 1)2
+

1

(z − x)2
+

2

(1− z)z

)

h1 + cx
x(1− x)

z(1− z)(z − x)
. (3.13)

Equivalently, this follows from (3.10) by writing the most general conformally invariant

four-point function in terms of the standard cross-ratios of the xi and using the Ward

identity for the energy-momentum tensor. Either way, we then have a differential equation

for ψ(z) that involves the parameter cx.

Finally, one needs some constraint on the solutions of the differential equation (3.9) in

order to obtain cx. This constraint comes from the fact that the family of solutions must

4Recall that h1 denotes the chiral conformal dimension of the operators at x and 1; while h2 refers to

the operators at 0 and ∞.
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have specific monodromy, which again arises from the degeneracy of ψ̂. To see this we look

at the OPE between O3(x3)O4(x4) inside the 〈α|ψ̂(z)O3O4〉 part of the conformal block,

which results in a sum of three point functions

∑

β

c34β

〈

α
∣

∣

∣ψ̂(z)Oβ

〉

. (3.14)

Applying the shortening condition (3.8) on this expression imposes a constraint on hβ that

restricts its value to two possibilities for each choice of α [28]:

hβ − hα −∆ψ =
1

2

(

1±
√

1− 24

c
hα

)

. (3.15)

The monodromy of ψ̂(z) as it encircles x3 and x4 must be consistent with these values of

hβ . As we are studying the α-conformal block in the s-channel, this means that ψ̂(z) must

have the same monodromy when moving around x1 and x2, namely

M = −
(

eiπ
√

1−24hα/c 0

0 e−iπ
√

1−24hα/c

)

. (3.16)

In particular, for the identity block we have hα = 0 and the monodromy is the identity

matrix.5

3.2 W3 algebra

We now turn to the study of the degenerate operators of the W3 algebra,

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , (3.17)

[Lm,Wn] = (2m− n)Wm+n , (3.18)

[Wm,Wn] = − 1

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n +

40

22 + 5c
(m− n)λm+n (3.19)

+
5c

6

1

5!
m(m2 − 1)(m2 − 4)δm+n,0 , (3.20)

with

λm =
∑

n

: LnLm−n : − 3

10
(m+ 3)(m+ 2)Lm . (3.21)

This is a nonlinear algebra on account of the λm+n term. However, we will restrict attention

to the semiclassical large-c limit, in which case these terms are suppressed.

As it turns out, there is a W3-primary with null descendants at levels one, two and

three. These null states are obtained by evaluating the matrix of inner products among

all states at these levels, using the above commutation relations in the large c limit. The

5More generally, it will belong to the center of the relevant group.
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operator’s quantum numbers in the semiclassical limit are ∆ψ = −1 and Qψ = ±1/3. The

null states are
(

W−1 +
1

2
L−1

)

∣

∣

∣ψ̂
〉

= 0 , (3.22)

(

W−2 − L2
−1 −

16

c
L−2

)

∣

∣

∣ψ̂
〉

= 0 , (3.23)

(

12

c
L−3 −

24

c
W−3 +

24

c
L−2L−1 + L3

−1

)

∣

∣

∣ψ̂
〉

= 0 , (3.24)

where we have used the first and the second conditions to replace the generators W−1 and

W−2 by Virasoro generators. The conditions listed in (3.22) are only valid in the large c

limit, where the nonlinear terms in the W3 algebra are suppressed. The quantum (finite-c)

version of these null states appeared originally in [37–39].

Inserting the light operator in Ψ(z, xi) implies the following differential equation in the

z variable

ψ′′′(z) + 4T (z)ψ′(z) + 2T ′(z)ψ(z)− 4W (z)ψ(z) = 0 . (3.25)

The functions T (z) and W (z) come from the insertions of the generators L−2 and W−3

respectively and they are given explicitly by

T (z) =
∑

i

(

hi
(z − xi)2

+
ci

(z − xi)

)

, (3.26)

W (z) =
∑

i

(

qi
(z − xi)3

+
c

6

ai
(z − xi)2

+
bi

(z − xi)

)

. (3.27)

We note that the differential equation (3.25) has appeared in [40] in the context of Toda

field theory (see [41] also). Here as before, ci = ∂if . hi and qi denote the rescaled chiral

conformal dimensions and spin-3 charge of the primary at xi: h = 6
c∆ and q = 6

cQ.

Smoothness at infinity now also implies W (z) ∼ O(z−6) at large z. After satisfying these

constraints and performing the global conformal transformation to move the operators at

(x1, x2, x3, x4) to (1, x, 0,∞), these functions read

T (z) =
h2
z2

+

(

1

(z − 1)2
+

1

(z − x)2
+

2

(1− z)z

)

h1 + cx
x(1− x)

z(1− z)(z − x)
, (3.28)

W (z) =
q2
z3

+

(

1

(z − x)3
− 1

(z − 1)3

)

q1 (3.29)

+

(

a1
1− x

(z − x)(z − 1)2z
+ a0

x

(z − 1)(z − x)z2
+ ax

x(1− x)

(1− z)(z − x)2z

)

. (3.30)

We are now using q1,2 to denote the spin-3 charges; the operators at 1 and x carry spin-3

charge ±q1, while those at 0 and ∞ carry ±q2. The monodromy constraint works in the

same way as in the previous subsection. Imposing that the family of solutions of (3.25) has

trivial monodromy around x1 and x2 fixes a1, a0, ax and cx, which we can use to obtain

f(x) and ultimately calculate the identity block of the W3 algebra.
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The structure described above extends in a natural way to the WN case. In this case

we will arrive at an Nth order differential equation, coming from the existence of null states

at levels 1 through N , see the discussion below (4.10).

4 The monodromy problem in the bulk

A holographic computation of Rényi entropies in the semiclassical limit requires evaluating

the gravitational action on the appropriate bulk geometry [23, 24]. The bulk manifolds,

while familiar to many, can be rather cumbersome to describe. In this section we will use

Chern-Simons language as a convenient way to organize the computation. This route not

only circumvents some of the complications associated to metric variables, as we shall see,

but it also makes direct contact with the CFT and generalizes straightforwardly to higher

spin theories.

We will focus on the three-dimensional sl(N,R)⊕ sl(N,R) Chern-Simons theory with

action

ICS ≡ kcs
4π

∫

M
Tr

[

CS(A)− CS(A)
]

. (4.1)

The precise field content of the bulk depends on the choice of how the gravitational sl(2,R)

factor is embedded into sl(N,R). In particular, the Chern-Simons level is related to the

central charge in the dual theory by

kcs =
ℓ

8G3Tr [L0L0]
=

c

12Tr [L0L0]
, (4.2)

where ℓ is the AdS3 radius and L0 is the Cartan generator of the sl(2) subalgebra singled out

by the choice of embedding.6 For concreteness, we will mostly focus on the so-called princi-

pal embedding, characterized by the fact that the fundamental representation of sl(N,R)

becomes an irreducible sl(2,R) representation. The resulting bulk theory describes the

non-linear interactions of the metric and symmetric tensor fields of spins s = 3, . . . , N .

On the bulk manifoldM , let us introduce a radial coordinate ρ and complex coordinates

(z, z̄) on the ρ = const. slices, which we assume have the topology of the plane or a branched

cover thereof. It is convenient to use the gauge freedom of Chern-Simons theory to gauge-

away the radial dependence of the connection as

A = b−1(ρ) (a(z, z) + d) b(ρ) , A = b(ρ) (ā(z, z) + d) b−1(ρ) , (4.3)

and concentrate on the “boundary connections” a and ā. Boundary conditions are incor-

porated by writing the boundary connections in “Drinfeld-Sokolov” form

a =

(

L1 + T (z)L−1 +
N
∑

s=3

Js(z)W
(s)
−s+1

)

dz , ā =

(

L−1 + T (z)L1 +
N
∑

s=3

Js(z)W
(s)
s−1

)

dz ,

(4.4)

6We follow the conventions of [42] for the sl(N) generators.
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where the {L0, L±1} generators correspond to the sl(2) subalgebra and we have in addition

N − 2 multiplets {W (s)
m } with s = 2, . . . , N and m = −(s− 1), . . . , (s− 1). The asymptotic

symmetry algebra of the three-dimensional theory is then found to be WN ⊕WN , where

T (z) and T (z) transform as the the left- and right-moving components of the stress tensor,

and Js(z), Js(z) as primary operators of weights (s, 0) and (0, s) [20, 43].

The task at hand consists of constructing the connections encoding the data dictated

by the configuration in the CFT. For the purpose of computing Rényi entropy, we can

think of the problem geometrically as the connection that supports the replica Riemann

surface on the boundary via appropriate monodromy conditions on the bulk gauge fields.

Putting back the radial dependence of the connection, it is easy to see that the currents

T (z), Js(z) (and similarly in the other chiral sector) correspond to the normalizable modes

of the bulk fields. As usual in holographic dualities, they are then identified with the one-

point function of the operators in the dual CFT. With the replica boundary conditions in

place, the key entry of the holographic dictionary is then

T (z) =
〈

T̂
〉

Rn,NI

, Js(z) =
〈

Ĵs

〉

Rn,NI

, (4.5)

where T̂ and Ĵs are the stress tensor and current operators in the chiral algebra of the dual

CFT, on the Riemann surface Rn,NI
. Since correlators on the branched cover Rn,NI

can

be rewritten using the twist operators described in section 2, we arrive at the alternative

representation of the dictionary:

T (z) =

〈

T̂ (n)(z)σ(z1, z1)σ̃(z2, z2) . . . σ(z2NI−1, z2NI−1)σ̃(z2NI
, z2NI

)
〉

〈σ(z1, z1)σ̃(z2, z2) . . . σ(z2NI−1, z2NI−1)σ̃(z2NI
, z2NI

)〉 , (4.6)

Js(z) =

〈

Ĵ
(n)
s (z)σ(z1, z1)σ̃(z2, z2) . . . σ(z2NI−1, z2NI−1)σ̃(z2NI

, z2NI
)
〉

〈σ(z1, z1)σ̃(z2, z2) . . . σ(z2NI−1, z2NI−1)σ̃(z2NI
, z2NI

)〉 , (4.7)

where T̂ (n) and Ĵ
(n)
s are the stress tensor and higher spin currents in the cyclic orbifold

CFTn/Zn. The latter are simply the sum of the corresponding operators over all copies of

the theory, and in particular invariant under the replica symmetry.

As discussed in section 2 the expectation values in the above formulae can be taken in

the vacuum or in excited states. More broadly, we can consider insertions of generic oper-

ators7 and demand that the currents in the connection are compatible with the local and

global properties of these insertions. A fully general discussion can be quite cumbersome,

but we will implement the following simplifications:

1. Euclidean time is not periodic, and hence we will not impose smoothness around a

thermal cycle. In the CFT side, we then consider theories that were originally defined

on the plane or the cylinder, which will simplify our task of building T (z) and Js(z).

We note however that studying the problem on the torus seems doable; see e.g. [44].

7It is often convenient to think of branch points as the insertion of twist operators, and treat them in

the same footing as other operator insertions.
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2. As a consequence of the above, we will not include sources for the currents. We

will instead describe configurations carrying fixed charges, which is most natural in

Lorentzian signature. Setting the sources to zero implies the boundary conditions

az̄ = āz = 0, so the connection a is holomorphic while ā is anti-holomorphic. In other

words, we do not deform the boundary conditions (4.4).

3. For the purpose of computing Rényi entropies, we will assume that the replica sym-

metry is preserved in the bulk.

As we will discuss below, imposing a suitable set of monodromy conditions fixes the

general form of the stress tensor and higher spin currents. In what follows we will describe

general aspects of the monodromy conditions that encode the data of the CFT operators

and the topology of the replica manifold.

4.1 Differential equation

Let us focus on a single chiral sector for simplicity. In order to compute the monodromies

of the Drinfeld-Sokolov connections (4.4) it is useful to introduce an auxiliary ODE

∂Ψ = a(z)Ψ . (4.8)

Here Ψ is an N -dimensional vector whose i-th component has the form D(i−1)(T, Js)ψ(z),

where ψ(z) is a scalar and D(j)(T, Js) denotes a differential operator of order j acting on

ψ(z), so that the matrix ODE reduces to a single N -th order differential equation. The

algorithm for determining the form of Ψ is straightforward. Start from (4.8) with the

components of Ψ being independent. Then successively solve the equations, starting with

the lowest order equation and working upwards. This determines N − 1 of the components

in terms of the remaining one.

For example, in the sl(2) case one has

Ψ =

(

−∂ψ(z)

ψ(z)

)

⇒ ∂2ψ(z) + T (z)ψ(z) = 0 . (4.9)

Similarly, in the sl(3) case

Ψ =







∂2ψ(z) + 2T (z)ψ(z)

∂ψ(z)

ψ(z)






⇒ ∂3ψ(z) + 4T (z)∂ψ(z) + 2 [∂T (z)− 2W (z)]ψ(z) = 0 .

(4.10)

From a more mathematical perspective, the ODE (4.8) and its relation to either classical

Virasoro or WN conformal blocks have been studied in detail in e.g. [40, 41, 45–47].

Note that (4.9) and (4.10) take the same form as the CFT equations (3.9) and (3.25)

encoding the decoupling of the light degenerate operator ψ̂. In other words, the differential

equation relevant for the computation of semiclassical conformal blocks via the monodromy

method is already built into the Drinfeld-Sokolov connections (4.4) in a very natural way.

In principle one can do even more, because the bottom component of the field Ψ in (4.8)
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is a WN primary, and it will have null states of levels 1 through N . To find these null

states, we can use the fact that WN transformations and the WN arise from the gauge

transformations which preserve the Drinfeld-Sokolov form of the gauge field a(z), and Ψ

must obviously transform with the same gauge parameter. From this one can deduce the

form of the OPE of all the higher spin currents with each component of the vector Ψ and

from this infer the precise form of all the null vectors. We will, however, not need the

detailed form of these null vectors in what follows.

In the general case, the space of solutions of the auxiliary ODE is N -dimensional, so

we can choose a basis of linearly independent solutions Ψ(i), i = 1, . . . , N , and collect them

into a fundamental matrix

Φ(z) ≡
(

Ψ(1) · · · Ψ(N)
)

. (4.11)

The linear independence of the N solutions is then equivalent to the invertibility of Φ(z).

Let us assume that the matrix components of a(z), namely the currents, are meromorphic

functions. If we follow Φ(z) around a closed loop γ in the complex z-plane, the result Φγ(z)

is in general not equal to Φ(z), but rather

Φγ(z) = P
(

e
∮
γ
a)Φ(z) ≡ Φ(z)Mγ . (4.12)

This defines the monodromy matrix Mγ , which measures the lack of analyticity of Φ(z).

A rearrangement of (4.12) yields

Mγ = Φ(z)−1P
(

e
∮
γ
a)Φ(z) (4.13)

emphasizing the relationship between the holonomy built out of the flat connection a(z),

and the monodromy matrix Mγ : they belong to the same conjugacy class. Naturally, the

same considerations apply to the other chiral sector and the corresponding connection ā.

Notice that we can always redefine Φ(z) → Φ(z)g with g ∈ GL(N,C), and that this will

have the effect of conjugating the monodromy Mγ by g. When considering the monodromy

around different closed loops, we should always work with a fixed choice for Φ(z), so that

the ambiguity in Φ(z) has the effect of conjugating all monodromies simultaneously by the

same constant g.

At this stage it is rather clear that the problem of determining the currents T (z) and

Js(z) in the Chern-Simons connections will mimic the discussion in the CFT. In particular,

equations (3.9) and (3.25) capture the holonomies of the bulk connection, making the

agreement evident. In what follows we will phrase various conditions on the currents in

terms of holonomies of a(z).

Before proceeding, it is worth mentioning one issue that can cause confusion. When

we impose conditions on the holonomy, it will sometimes be understood that this is defined

up to an element of the center of the gauge group. In the following we will have occasion to

perform gauge transformations that are non-single valued by an element of the center, and

these change the holonomy around a closed loop accordingly. The gauge fields are in the

adjoint representation, and so of course transform trivially under the center. Ambiguities

in the meaning of “trivial holonomy” can be resolved by matching the holonomy to that

of global AdS3, which represents a smooth connection.
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4.1.1 Monodromy around singular points

Denote by zi a potential singularity in the connection, which could be a branch point,

the position of a primary operator insertion, etc. We now consider the monodromy of the

Drinfeld-Sokolov connection (4.3) around zi,

Mi ≃ Pe
∮
Ci

a
, (4.14)

where the contour Ci is a small loop enclosing zi and no other singularities, and ≃ means

that the constant monodromy matrix Mi is in the same conjugacy class as the holonomy.

By performing gauge transformations on a(z) one can reduce the order of the pole at

zi to some minimal value dubbed the Poincaré rank rP (see e.g. [48, 49]). What this means

is that there exists a gauge where az(z) takes the form

az(z)
z→zi−−−→ (z − zi)

−rP−1a0(z) , (4.15)

where a0(z) has a convergent Taylor series expansion around z = zi, and a0(zi) is non-

degenerate. When rP = 0 the point zi is at most a regular singularity of the differential

equation (4.8), associated with a pole in a(z) and a branch cut in Φ(z). In particular, for

loops enclosing a single pole, rP = 0 implies that the path ordering becomes trivial in the

limit that the loop approaches the pole, and

rP = 0 : Mi ≃ e2πia0(zi) (4.16)

in this case. From the bulk perspective, we would like the gauge connections to have

“well-behaved” monodromy in this sense, and we will then require the singularities in the

currents to have Poincaré rank zero.

Recall now the adjoint action of the L0 generator: e
−xL0W

(s)
m exL0 = e−mxW

(s)
m . Setting

x = ln(z − zi) and acting on (4.4), the gauge-transformed connection reads8

ãz = e− ln(z−zi)L0 (az + ∂z) e
ln(z−zi)L0 (4.17)

= (z − zi)
−1

[

L1 + L0 + (z − zi)
2 T (z)L−1 +

N
∑

s=3

Js(z) (z − zi)
sW

(s)
−(s−1)

]

. (4.18)

It follows that a will have well-behaved monodromy around the zi provided

T (z)
z→zi−−−→ hi

(z − zi)
2 + . . . , Js(z)

z→zi−−−→ q
(s)
i

(z − zi)
s + . . . . (4.19)

Transforming to the cylinder via z − zi = eiw one obtains the zero modes

T (w) = −hi +
1

4
, Js(w) = (−i)sq

(s)
i , (4.20)

showing that the above connections describe the insertion of operators of conformal weight

hi and charges q
(s)
i (up to normalization). For this class of solutions the residue matrix is

simply

a0(zi) = L1 + L0 + hiL−1 +
N
∑

s=3

q
(s)
i W

(s)
−s+1 (4.21)

8Note that this gauge transformation is only single valued up to an element of the center.
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and it has full rank if the hi, q
(s)
i are independent. Summarizing, the eigenvalues of the

matrix (4.21) determine the conjugacy class of Mi around the insertion at zi.

It is worth emphasizing that in situations where eigenvalues of the residue matrix

differ by an integer, such as e.g. hi = q
(s)
i = 0, extra care has to be exercised in computing

the monodromy. In this case Mi could have a non-trivial Jordan form, signaling that the

associated ODE admits logarithmic branches of solutions on special slices in parameter

space. We discuss such an example in appendix C.

Let us now discuss the monodromy around z = ∞, which constrains subleading terms

in the expansions (4.19). When there are no operators inserted at z = ∞, one requires the

connection to have trivial monodromy around infinity. This requirement is equivalent to

the usual notion of smoothness of the currents:

T (z → ∞) ∼ 1

z4
, Js(z → ∞) ∼ 1

z2s
, (4.22)

which follows by e.g. using the coordinate ζ = 1/z and demanding finiteness as ζ → 0. If

an operator of charges (h∞, q
(s)
∞ ) is inserted at infinity, we instead require9

T (ζ → 0) =
h∞
ζ2

+ . . . , Js(ζ → 0) =
q
(s)
∞
ζs

+ . . . (4.23)

as in (4.19).

4.1.2 Example: sl(2)

In the sl(2) case the residue matrix (4.21) reduces to

a0(zi) = L1 + L0 + hiL−1 =

(

1/2 hi
−1 −1/2

)

(4.24)

and therefore

Mi ≃ −e2πia0 ≃ −
(

e2πiλ 0

0 e−2πiλ

)

, with λ =
1

2

√

1− 4hi . (4.25)

Let us now specialize to the case where we have two insertions. We set the weights

h1 = h2 ≡ h of the insertions at the endpoints z1, z2 of the interval, and demand the

connection to have trivial monodromy around infinity. Writing

T (z) =
h

(z − z1)2
+

h

(z − z2)2
+

c1
z − z1

+
c2

z − z2
(4.26)

from (4.22) we get

c1 = −c2 =
2h

z2 − z1
. (4.27)

Note that smoothness at infinity also precludes the appearance of additional analytic terms

in (4.26). In the simple case with two insertions, the requirement of trivial monodromy at

infinity is then enough to fix the accessory parameters (c1, c2) in terms of the dimension of

the operators. This is no longer the case for multiple insertions, as we will discuss below.

Obviously, the result above also follows directly by considering the correlation function of

T (z) with two primaries and using the Ward identity for T (z).

9In a slight abuse of notation, we use T (ζ) ≡ Tζζ(ζ) = z4T (z) and Js(ζ) ≡ (−1)sz2sJs(z).
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4.1.3 Example: sl(3)

As a second example, we consider the sl(3) theory in a case with four insertions and charges

assigned as

z = 0 : (h2, q2)

z = x : (h1, q1)

z = 1 : (h1,−q1)

z = ∞ : (h2,−q2) . (4.28)

This configuration includes as a particular case the single-interval cut in an excited state

created by the operator of dimension h2 and spin-3 charge q2, in which case the insertions

at z = 1 and z = x are branch points with q1 = 0 and h1 = (1/4)(n− 1/n) (see below).

Based on the above discussion, the general expressions for the currents T and W

consistent with the assumed singularities is

T (z) =
h2
z2

+
h1

(z − x)2
+

h1
(z − 1)2

+
c0
z

+
c1

z − 1
+

cx
z − x

(4.29)

W (z) =
q2
z3

+
q1

(z − x)3
− q1

(z − 1)3
+

a0
z2

+
b0
z

+
ax

(z − x)2
+

bx
z − x

+
a1

(z − 1)2
+

b1
z − 1

.

Imposing the behavior (4.23) at infinity (with h∞ = h2 and q
(3)
∞ = −q2) we obtain the

constraints

c0 = 2h1 − cx + xcx

c1 = −2h1 − xcx

a0 = −ax +
1

2
(b0 + bx) + (ax − bx)x+

1

2
bxx

2

a1 =
1

2
(b0 + bx)− xax −

1

2
bxx

2

b1 = −b0 − bx .

(4.30)

These relations leave cx, ax, bx and b0 undetermined. Depending on the nature of the

problem, these parameters can be further constrained by imposing additional conditions

around a closed path that encircles the points e.g. z = x and z = 1. In section 5 we will

discuss how this condition can be implemented in practice.

4.1.4 Branch cuts

Let us now comment on the case where the insertion zi is a branch point. Branch points

are merely curvature singularities and we return back to the starting point after circling

around them n times. Hence, for a branch point one requires that the n-th power of the

monodromy around zi is trivial (possibly up to an element of the center). For standard

entanglement entropy calculations, the latter monodromy condition amounts in practice to

eigenvalues [(Mi)
n] = ±eigenvalues

[

e2πiL0
]

, (4.31)
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because e2πiL0 = ±1 is in the center of the gauge group. The choice of plus or minus is

fixed by picking the element of the center that matches with the holonomy along φ ∼ φ+2π

of global AdS3.

Consider the example in 4.1.2: imposing (4.31) on (4.25) gives

nλ =
1

2
⇒ hi =

1

4

(

1− 1

n2

)

. (4.32)

In other words, close to the branch points the stress tensor takes a form consistent with

the insertion of an operator of dimension10

∆ =
nc

6
hi =

c

24

(

n− 1

n

)

, (4.33)

which is known to be the dimension of the twist operators enacting the replica symme-

try [30]. It is worth emphasizing that this result holds for any N > 2 as well, because the

standard branch point twist operators do not carry higher spin charges, and the diagonal-

ization of the residue matrix reduces to the sl(2) block.

For calculations of the generalized entanglement entropy proposed in [15], in which

the corresponding branch point twist operators carry higher spin charges, we expect more

generally

eigenvalues [(Mi)
n] = eigenvalues

[

exp

(

α2L0 +
N
∑

s=3

αsW
(s)
0

)]

, (4.34)

where the coefficients αs are adjusted such that the group element on the r.h.s. belongs to

the center of the gauge group. This more general condition can be interpreted as requiring

that, after circling around the branch points n times, we return back to the starting point

up to a higher spin transformation that acts trivially on the higher spin fields, but possibly

nontrivially on matter fields. Similar conditions have been imposed in supersymmetric

Rényi entropies [50–54]. In appendix B we elaborate further on this generalized notion of

entanglement.

4.2 Variation of the action

By now we have described how to use a suitable set of monodromy conditions that fix the

expectation values of the stress tensor and higher spin currents, and consequently of the

Drinfeld-Sokolov boundary connections. In order to obtain Rényi entropies, the remaining

task is to evaluate the Chern-Simons action on this solution and obtain the saddle-point

approximation to the partition function on the branched cover. In practice, evaluating the

on-shell action requires a rather involved regularization procedure, but for present purposes

this can be circumvented by computing instead the variation of the action with respect to

the positions of the branch points, and integrating the resulting differential equations, along

the lines of [24, 25].

10The extra factor of n in ∆ below is due to the fact that the full stress tensor in the orbifold theory

contains a sum over copies.
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As discussed above (cf. (4.5)–(4.6)), the expression T (z) that appears in the gauge con-

nection obeys the properties of a CFT stress tensor. In particular, when we compute AdS

correlation functions involving the stress tensor, 〈T̂ (z)O(z1) . . .〉, these will be compatible

with the operator product expansion

T̂ (z)O(z1) ∼
hO

(z − z1)2
+

6

c

1

z − z1
∂O(z1) + . . . . (4.35)

Now, a correlation function of twist operators is equal to the bulk partition function with

boundary conditions specified by the branched cover (along with boundary condition at

past and future infinity corresponding to being in an excited state),

〈O2 |σ(x)σ̃(1)| O2〉 = e−Sbulk . (4.36)

Furthermore, the expression for T (z) written in (4.29) is to be identified with the ratio of

correlators with and without insertion of T̂ (z) (cf. (4.6) applied to an excited state)

T (z) =

〈

O2

∣

∣

∣
T̂ (n)(z)σ(x)σ̃(1)

∣

∣

∣
O2

〉

〈O2 |σ(x)σ̃(1)| O2〉
. (4.37)

Putting these facts together, we see that if T (z) ∼ h1

(z−x)2
+ cx

z−x + . . . as z → x, then

cx = −6

c

∂Sbulk

∂x
. (4.38)

Given cx, this equation is integrated to obtain Sbulk, and then (4.36) gives the correlation

function of interest.

To derive the same result more directly from Chern-Simons theory would involve per-

forming a suitable diffeomorphism which moves one of the points but will not change the

action. The diffeomorphism will, however, change the metric (or rather the complex struc-

ture) of the boundary. To undo this change, we need to perform a suitable subsequent

gauge transformation which does change the action and which then will give rise to (4.38)

as well.

5 Perturbative solution of the monodromy problem

As discussed above, thinking either in terms of the vacuum block for a CFT with WN

symmetry, or in terms of a Chern-Simons connection with prescribed boundary conditions,

we are led to the same monodromy problem. In particular, we are instructed to consider

an N -th order ODE on the complex z-plane. In this section we will solve this monodromy

problem perturbatively in the case of four operator insertions: two heavy operators and two

light operators. Here, a light operator is one whose rescaled charges are small, h, q(s) ≪ 1,

so we can carry out perturbation theory in these quantities.

Recall that the insertion of an operator at z = zi, in this language, corresponds to a

regular singular point which creates a pole in a(z) and a branch cut in Φ(z) at z = zi.

As mentioned above we are interested in four insertions, of two heavy operators (of the
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same species) and two light operators (of the same species). For concreteness, we assign a

position and monodromy matrix to each insertion:

z = 0 : M0 heavy ,

z = x : Mx light ,

z = 1 : M1 light , (5.1)

z = ∞ : M∞ heavy .

The monodromy matrices are defined according to which singular point they enclose, how-

ever they depend not only on the local data at the singularity (i.e. charges of the operators)

but as well on all coefficients in a(z) since they are sensitive to the base point used for the

contour γ. However, for a regular singular point, the eigenvalues of Mi depend only on the

residue of a(z) at the location of the operator insertion (local data). Thus different choices

of contour yields monodromy matrices related by a similarity transformation.

We are interested in computing the vacuum block, which means that we should impose

trivial monodromy around a contour that encloses z = x and z = 1, while not enclosing

z = 0. If we choose the contours defining M1 and Mx to share a base point then we would

demand

M1Mx = 1 . (5.2)

This condition is not automatic, and imposing it is the key of our analysis. A simple way

to see that (5.2) is non-trivial goes as follows. If two operators are of the same kind the

monodromy matrices are not necessarily equal, however their eigenvalues are related. For

instance, since at z = x and z = 1 we have the same light operator; it must hold that

M1 = U−1M−1
x U , U ∈ GL(N,C) . (5.3)

In other words their eigenvalues are related, and the inverse is due to the relative orientation

of the insertion of each operator. U is a matrix that brings the monodromies to a common

basis and it depends generically on all coefficients of the ODE. Consistency between (5.2)

and (5.3) imposes restrictions on the components of U .

From the CFT perspective, imposing trivial monodromy picks out the vacuum block.

Other blocks are obtained from nontrivial monodromy: replace the r.h.s. of (5.2) such that

M1Mx encodes the charges of the appropriate primary α. For some CFTs, it is expected

that the vacuum block is the dominant contribution to the four-point function in the large

c limit. To argue that the vacuum block dominates, one would need additional assumptions

about the spectrum of light operators in the CFT [25], among perhaps other conditions.

From the Chern-Simons point of view trivial monodromy is the condition of vanish-

ing holonomy for the connection, which in turn means that the cycle can be smoothly

contracted in the bulk without encountering any nonzero field strength. This parallels the

CFT side, since to compute a non-vacuum block we would expect to need additional matter

in the bulk, and this matter would give rise to nonzero field strength.
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To enforce (5.2), we will solve the ODE perturbatively. We choose as a small parameter

the charges of the operators which we denoted light. Take

a(z) = a(0) + εa(1) , (5.4)

where ε controls the “lightness” of the operators at z = 1, x. We split the fundamental

matrix as Φ = Φ0Φ1 where

(∂ − a(0))Φ0 = 0 , (5.5)

and hence

(∂ − εΦ−1
0 a(1)Φ0)Φ1 = 0 . (5.6)

To linear order in ε, the solution is

Φ1 = 1+ ε

∫

dzΦ−1
0 a(1)Φ0 +O(ε2) . (5.7)

Imposing that M1Mx = 1, implies that for a loop enclosing z = 1, x we must have

∫

γ={1,x}
dzΦ−1

0 a(1)Φ0 = 0 . (5.8)

This equation will fix certain coefficients in a(1) up to linear order in ε. In the examples

below we will see explicitly how it constraints the accessory parameters introduced in the

previous sections.

Independent of the expansion in ε, one could solve the monodromy condition pertur-

batively in x (s-channel) or 1− x (t-channel) while keeping ε fixed (i.e. without assuming

that the operators are light).

5.1 Example: N = 2

We now reproduce the result obtained in [28]. We are interested in the case of four operator

insertions: two heavy operators, and two light operators. The stress tensor in this case

reads

T (z) =
h2
z2

+

(

1

(z − 1)2
+

1

(z − x)2
+

2

(1− z)z

)

h1 − cx
x(1− x)

z(1− z)(z − x)
, (5.9)

where we assigned charges as

z = 0 : h2 heavy ,

z = x : h1 light ,

z = 1 : h1 light ,

z = ∞ : h2 heavy. (5.10)

Here will scale like h1 ∼ ε and cx ∼ ε, while h2 is fixed. Equation (5.9) can be obtained

either from the CFT arguments in section 3.1 or from the regularity condition in the

Chern-Simons theory discussed in section 4.1.2.
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In the notation (5.4) the zeroth order piece (which is independent of ε) is

a(0) =

(

0 T (0)

−1 0

)

, T (0) ≡ h2
z2

, (5.11)

and the fundamental matrix associated to the zeroth order equation is

Φ0 =

(

−∂ψ
(0)
1 −∂ψ

(0)
2

ψ
(0)
1 ψ

(0)
2

)

, (5.12)

where ψ
(0)
i are the solutions to ∂2

zψ
(0) + T (0)ψ(0) = 0 which gives

ψ
(0)
1 = z(1+α)/2 , ψ

(0)
2 = z(1−α)/2 , α =

√

1− 4h2 . (5.13)

The terms that scale with ε are

a(1) =

(

0 T (1)

0 0

)

, (5.14)

with

T (1) =

(

1

(z − 1)2
+

1

(z − x)2
+

2

(1− z)z

)

h1 − cx
x(1− x)

z(1− z)(z − x)
. (5.15)

We want to impose (5.8); using (5.12) and (5.14) we find

Φ−1
0 a(1)Φ0 =

(

T (1)ψ
(0)
1 ψ

(0)
2 T (1)(ψ

(0)
2 )2

−T (1)(ψ
(0)
1 )2 −T (1)ψ

(0)
1 ψ

(0)
2

)

. (5.16)

Imposing (5.8), which is a contour that only encloses the poles at z = x and z = 1, requires

that the sum of residues around these poles vanish. These residues are

Resz=x

(

zT (1)
)

+Resz=1

(

zT (1)
)

= 0 ,

Resz=x

(

z1+αT (1)
)

+Resz=1

(

z1+αT (1)
)

= [(1 + α)xα − 1 + α]h1 − (xα − 1)xcx , (5.17)

Resz=x

(

z1−αT (1)
)

+Resz=1

(

z1−αT (1)
)

=
[

(1− α)x−α − 1− α
]

h1 −
(

x−α − 1
)

xcx ,

and demanding that they vanish yields

cx =
(1 + α)xα − 1 + α

x(xα − 1)
h1 . (5.18)

From (5.9) we see that cx is the residue of the simple pole at z = x. According to the

discussion that led to (4.38) we can therefore compute the bulk action by integration,

Sbulk =
c

6

∫

cx dx =
c

6

[

2 ln

(

1− xα

α

)

+ (1− α) lnx

]

h1 . (5.19)

The correlation function is therefore

〈

O2

∣

∣

∣
O1(x)Õ1(1)

∣

∣

∣
O2

〉

= e−Sbulk = x−
c
6
h1

(

x−
α
2 − x

α
2

α

)− c
3
h1

(5.20)

which is the result obtained in [28].
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This represents the correlator on the z-plane. To interpret the result it is convenient

to map it to the cylinder, z = eiw. Taking into account the conformal transformation of

the operator at x, we find

〈

O2

∣

∣

∣
O1(w)Õ1(0)

∣

∣

∣
O2

〉

=
C

[

sin
(

αw
2

)] c
3
h1

. (5.21)

As noted in [28], this has a simple bulk interpretation. Consider the conical defect metric

ds2 =
α2

cos2 ρ

(

1

α2
dρ2 − dt2 + sin2 ρdφ2

)

. (5.22)

The metric corresponds to a state with conformal dimension ( c6h2,
c
6h2) with α =

√
1− 4h2.

Introduce a probe particle of mass m = c
3h1. The two-point function of the operator dual

to this particle is obtained in the geodesic approximation as e−mL, where L denotes the

(regularized) geodesic length. Letting the geodesic pierce the boundary at φ = t = 0 and

at w = φ+ it, we find agreement with (5.21). The heavy operator creates the background

geometry, and the light operator corresponds to a probe in this geometry.

Another interesting observation made in [28] is that for h2 > 1
4 the metric (5.22) is a

BTZ black hole. It is intriguing to see that this arises as the semiclassical description of a

heavy operator insertion. We discuss this further in section 8.

If we take h1 = 1
4(n − 1

n) and n → 1, then the light operator corresponds to a twist

operator. The above result for the twist correlator will reproduce the Ryu-Takayanagi

formula for the entanglement entropy in the metric (5.22). This was discussed in [29, 55].

5.2 Example: N = 3

In the sl(3) case, the analysis in sections 3.2 and 4.1.3 instructed us to study the third

order ODE

∂3ψ(z) + 4T (z)∂ψ(z) + 2∂T (z)ψ(z)− 4W (z)ψ(z) = 0 . (5.23)

Recall that the stress tensor T (z) and the spin-3 current W (z) are meromorphic functions

with prescribed singularities at the locations of operator insertions. This yields

T (z) =
h2
z2

+
h1

(z − x)2
+

h1
(z − 1)2

− 2h1
z(z − 1)

− x(1− x)

z(z − 1)(z − x)
cx , (5.24)

W (z) =
q2
z3

+
q1

(z − x)3
− q1

(z − 1)3
+

a0
z2

+
b0
z

+
ax

(z − x)2
+

bx
z − x

+
a1

(z − 1)2
+

b1
z − 1

,

where the seven constants (“accessory parameters”) (a0, ax, a1, b0, bx, b1, cx) are subject to

three relations, which can be written as

a0 = −ax +
1

2
(b0 + bx) + (ax − bx)x+

1

2
bxx

2 ,

a1 =
1

2
(b0 + bx)− xax −

1

2
bxx

2 , (5.25)

b1 = −b0 − bx .
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The remaining free parameters are fixed by monodromy conditions. Our main interest is

to extract the value of cx, since the relation cx = 6
c
∂Sbulk

∂x can then be integrated to find

Sbulk that appears in the semi-classical W3 block.

To proceed, we assume h1, q1 ∼ O(ε), and work to first order in these quantities. No

assumption is made regarding the magnitude of (h2, q2). We consider a closed path that

encircles the points z = x and z = 1, but does not encircle z = 0. We demand trivial

monodromy, which is to say that we will impose (5.2).

With this in mind, we implement the perturbative expansion by writing

a(0) =







0 −2T (0) 4W (0)

1 0 −2T (0)

0 1 0






, a(1) =







0 −2T (1) 4W (1)

0 0 −2T (1)

0 0 0






, (5.26)

with

T (0) =
h2
z2

, W (0) =
q2
z3

, (5.27)

T (1) =
h1

(z − x)2
+

h1
(z − 1)2

− 2h1
z(z − 1)

− x(1− x)

z(z − 1)(z − x)
cx , (5.28)

W (1) =
q1

(z − x)3
− q1

(z − 1)3
+

a0
z2

+
b0
z

+
ax

(z − x)2
+

bx
z − x

+
a1

(z − 1)2
+

b1
z − 1

. (5.29)

We need to evaluate (5.8), and for that we need to build Φ0 as defined in (5.5). The

zeroth order equation is

∂3ψ(0) +
4h2
z2

∂ψ(0) − 4h2
z3

ψ(0) − 4q2
z3

ψ(0) = 0 , (5.30)

and the three independent solutions are

ψ(0)
n = z1+pn , n = 1, 2, 3 , (5.31)

where pn are the three roots of

p3 − (1− 4h2)p− 4q2 = 0 . (5.32)

Recall that these obey p1 + p2 + p3 = 0. Using (4.11), (4.10) and (5.31) gives Φ0. The

combination of interest is

a(1)Φ0=









−2T (1)∂ψ
(0)
1 + 4W (1)ψ

(0)
1 −2T (1)∂ψ

(0)
2 + 4W (1)ψ

(0)
2 −2T (1)∂ψ

(0)
3 + 4W (1)ψ

(0)
3

−2T (1)ψ
(0)
1 −2T (1)ψ

(0)
2 −2T (1)ψ

(0)
3

0 0 0









(5.33)

and hence the relevant integrals we need to compute are

M (1)
nm ≡

∮

γ
dz(Φ−1

0 a(1)Φ0)nm (5.34)

=
2(pn+1 − pm+2)

detΦ0

∮

γ
dz

[

(pn + pm)z1+pn−pmT (1) − 2z2+pn−pmW (1)
]

.
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In order to extract the vacuum block we now need to impose the trivial monodromy

condition M
(1)
nm = 0. The diagonal equations M

(1)
nn = 0 are easily seen to be equivalent to

the equations (5.25). This leaves six equations for four free parameters; however, it turns

out that only four of the equations are independent, leading to a unique solution. After a

considerable amount of computer aided algebra, we obtain

cx =
Ch h1 + Cq q1

2x
∑

n[x
−pn(−pn−1 + pn+1)]

∑

n[x
pn(pn−1 − pn+1)]

(5.35)

where we used the shorthand

Ch=
∑

n

[

(pn+1 − pn−1)(pn − pn+1)
[

xpn−pn−1(2 + pn − pn−1) + x−pn+pn+1(2− pn + pn+1)
]

+ 4p2n − 4pn−1pn+1

]

(5.36)

Cq=
∑

n

[

(pn+1 − pn−1)(pn−1 − pn)(pn+1 − 2pn−1 + pn)(x
pn+1−pn + xpn−pn+1)

]

+
∏

n

(pn−1 − 2pn + pn+1) . (5.37)

To arrive at this form of the solution we used the relation
∑

n pn = 0. Given this

result for cx, it is not easy to evaluate Sbulk = c
6

∫

cx dx. Fortunately, the corresponding

bulk computation will yield Sbulk directly, and then we can confirm that it yields the same

cx upon differentiation.

6 Wilson line computation of vacuum block

In this section we evaluate the action for a Wilson line probe in an asymptotically AdS3
background. Both the Wilson line and the background solution carry arbitrary spin-2 and

spin-3 charges. We will establish, by direct computation, that this action computes the

vacuum W3 block with two heavy operators (corresponding to the background) and two

light operators (corresponding to the probe). In particular we will demonstrate that the

result matches the result we obtained from the CFT/Chern-Simons monodromy compu-

tation (5.35). The Wilson line approach turns out to be a good deal more efficient, as it

directly produces the vacuum block, bypassing the need to perform a final integration as

is the case in the monodromy approach.

Special cases of this computation are relevant to entanglement entropy. In [7], and

its equivalent formulation [8], a specific charge assignment for the probe, with vanishing

spin-3 charge, was proposed to yield entanglement entropy. The present analysis puts

this proposal on a firmer footing, since it demonstrates that the probe yields the vacuum

block contribution to the correlation function of twist operators in the presence of other

operators that set up an excited state. The missing step to prove that this probe computes

entanglement entropy is to establish that only the vacuum block contributes in the limit

of large central charge, a result which will require some additional assumptions about the

spectrum of operators in the CFT, and which we do not delve into here. See [25] for

discussion of the necessary conditions in the case of Virasoro blocks.
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A probe carrying nonzero spin-3 charge was argued in [15] to compute a generalized

spin-3 version of entanglement entropy, an object that appears quite natural to define on

the bulk side of the AdS/CFT correspondence, but whose meaning is at present obscure in

the CFT. In [15] it was suggested that this spin-3 entropy could be computed in the CFT

from the correlators of some sort of twist operators carrying nonzero spin-3 charge. Our

present results will not really shed any new light as to the definition of these novel twist

operators, but we will verify that the Wilson line probe can be used to compute the vacuum

block contribution to the correlation function of these operators in an excited state.

We consider the following connection, corresponding to an asymptotically AdS3 solu-

tion with cylindrical boundary, w ∼= w + 2π:

a = (L1 + T (w)L−1 +W (w)W−2) dw (6.1)

a = L−1dw , (6.2)

with T (w) and W (w) both constant, the dependence on w being displayed just to remind

us that these quantities are defined on the cylinder. We write

T (w) = −h2 +
1

4
, W (w) = −iq2 , (6.3)

where (h2, q2) are the charges carried by the operator that creates the excited state. In (6.1)

we have chosen to turn on only holomorphic currents to reduce clutter, but it is straight-

forward to include their anti-holomorphic counterparts.

The general framework for defining and computing probe actions has been described

in [7], and the specific computation done here is essentially the same as one appearing

in [16]. We therefore just sketch the main steps.

The Wilson line is taken to extend between two points on the boundary, one of which

we fix to be w = 0 with the other left arbitrary. A large ρ cutoff at ρ = − ln ǫ is imposed to

regulate divergences; this maps to a UV cutoff in the CFT according to the usual IR/UV

relation in AdS/CFT.

We first define

L = e−ρL0e−aww , R = eL−1we−ρL0 . (6.4)

L and R are the gauge transformations that generate the flat connections (6.1) starting

from “nothing”. The probe action is defined in terms of the matrix M , defined as11

M = [R(si)L(si)][R(sf )L(sf )]
−1 ∼= eln ǫL0eawwe− ln ǫL0e− ln ǫL−1w . (6.5)

As ǫ → 0, the traces of M behave as

Tr [M ] =
m1

ǫ4
+ . . . , (Tr [M ])2 − Tr

[

M2
]

=
2m2

ǫ4
+ . . . (6.6)

which defines the quantities m1,2. In particular, the eigenvalues of M as ǫ → 0 behave as

λM ≈ (m1

ǫ4
, m2

m1
, ǫ4

m2
). The probe action is expressed in terms of these eigenvalues as

I = Tr [ln(λM )P0] (6.7)

11Here ∼= means conjugate to.
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where for a probe carrying charges (h1, q1) we have

6

c
P0 =

h1
2
L0 +

3q1
2

W0 . (6.8)

In our standard sl(3) conventions with

L0 = diag(1, 0,−1) , W0 = diag

(

1

3
,−2

3
,
1

3

)

(6.9)

we thus have 6
cP0 = diag(h1+q1

2 ,−q, −h1+q1
2 ) and

6

c
I =

h1
2

ln
(m1m2

ǫ8

)

+
3q1
2

ln

(

m1

m2

)

. (6.10)

It is not difficult to evaluate m1,2, and we find

m1 =
2w2

detmn(p
n−1
m )

3
∑

n=1

(pn − pn+1)e
ipn+2w ,

m2 =
2w2

detmn(p
n−1
m )

3
∑

n=1

(pn − pn+1)e
−ipn+2w , (6.11)

where pn are the eigenvalues of iaw as given in (6.1). Here pn+3 ≡ pn, and they satisfy the

cubic equation

p3n − (1− 4h2)pn − 4q2 = 0 , (6.12)

which we recognize as being the same equation that appeared in (5.32). The probe action

is read off from (6.10).

The four-point function on the cylinder is then e−I . To compare this to our previous

computation we bring this to the z-plane via z = eiw. Taking into account the conformal

transformation of the operator at w, the four-point function on the plane is

z−2h1e−I
∣

∣

∣

w=−i ln z
= e−Ĩ ,

6

c
Ĩ =

[

h1
2

ln

(

z2m1m2

ǫ8

)

+
3q1
2

ln

(

m1

m2

)]∣

∣

∣

∣

w=−i ln z

.

(6.13)

The comparison with the monodromy-based result is obtained by writing z = x and taking

the x-derivative,

6

c
∂xĨ =

1

2x

[

2 +

∑3
n=1(pn − pn+1)pn+2x

−pn+2

∑3
n=1(pn − pn+1)x−pn+2

−
∑3

n=1(pn − pn+1)pn+2x
−pn+2

∑3
n=1(pi − pn+1)x−pn+2

]

h1

+
3

2x

[∑3
n=1(pn − pn+1)pn+2x

pn+2

∑3
n=1(pn − pn+1)xpn+2

+

∑3
n=1(pn − pn+1)pn+2x

−pn+2

∑3
n=1(pn − pn+1)x−pn+2

]

q1 . (6.14)

We now compare this result to (5.35). As written the formulas appear different, but using
∑

n pn = 0 one can in fact show that cx = 6
c∂xĨ. We have therefore confirmed that the

Wilson line computes the W3 vacuum block in the semi-classical limit, to linear order in

the light charges.
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7 The Toda perspective

Having discussed computations based on monodromies and Chern-Simons theory, and on

Wilson lines, we now turn to yet another perspective on the same type of computations,

namely that of Toda theory. Recall that Liouville theory describes a theory of 2d quantum

gravity and encodes all universal correlation functions of the stress tensor in any conformal

field theory. It can be obtained by coupling a CFT to a background metric in conformal

gauge, and then integrating out the degrees of freedom of the CFT. It can also be obtained

from 3d gravity with a negative cosmological constant by computing the partition function

with fixed boundary metric in conformal gauge.

Similarly, Toda theory is believed to arise as the effective action for CFTs coupled to

higher spin background fields in conformal gauge. Since a complete metric-like formulation

of higher spin theories is unknown, it is difficult to verify this directly. There are however

several indirect arguments to support this statement, see e.g. [56, 57].

Toda theory for systems with WN symmetry is a theory of N − 1 scalar fields with

background charge and with a potential term which is a sum of exponentials, one for

each simple root of sl(N). Standard vertex operators for the scalar fields correspond to

primaries of the underlying WN symmetry of Toda theory, and operators with arbitrary

higher spin charges can be obtained in this way. The type of computation we have been

doing corresponds to a four-point correlation function in Toda theory of two “heavy” and

two “light” operators, where one works to first order in the quantum numbers of the light

operators, so that their backreaction can be neglected. We will now first review such types

of computations in Toda theory, then revisit the relation between Chern-Simons theory

and Toda theory. Toda theory could be a natural framework to connect the monodromy

computation in section 5 and the bulk Wilson line in section 6.

7.1 Semiclassical correlators in Toda theory

Toda theory for SL(N) is a theory where the basic variable is a diagonal SL(N) matrix

G0(z, z̄). We can of course parametrize G0 with exponentials of scalar fields, but find it

more convenient to work with G0. The action of Toda theory reads

SToda = κ

∫

d2z

(

1

2
Tr

[

G−1
0 ∂G0G

−1
0 ∂̄G0

]

− Tr
[

G0L−1G
−1
0 L1

]

)

, (7.1)

where the same sl(2) generators L±1 are used as those which appear in the boundary

conditions of Chern-Simons theory through the Drinfeld-Sokolov connections (4.4), and κ

is some normalization constant.

Correlation functions are of the form

〈V1(z1) . . . Vk(zk)〉 =
∫

DG0 e
−SToda

∏

i

eTr[qi logG0(zi)] , (7.2)

with qi an algebra-valued matrix that contains the information of the charges carried by

Vi(z). The semiclassical answer is found by evaluating the integrand on the solution of the
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field equations

∂̄
(

∂G0G
−1
0

)

+
[

G0L−1G
−1
0 , L1

]

=
∑

i

qi
κ
δ(2)(z − zi) . (7.3)

Since logG0 will diverge logarithmically near z = zi this answer is in general divergent, but

one can regulate the theory by cutting out small discs around the points zi as explained for

Liouville theory in [36] and used for Toda theory in e.g. [40]. It is in general not possible

to solve (7.3) exactly. However, when we can separate the set of operators in a set of

“heavy” and “light” operators12 we can proceed as follows. We first find the saddle point

for the correlation function involving only the heavy operators, Ĝ0, write G0 = Ĝ0(1 + ǫ),

solve (7.3) to first order in ǫ, and compute the correction to the saddle point to first order

in ǫ as well.

By varying (7.3), we find that ǫ obeys the field equation

∂̄∂ǫ+
[

Ĝ0 [ǫ, L−1] Ĝ
−1
0 , L1

]

=
∑

i

′qiδ
(2)(z − zi) , (7.4)

where the sum on the right hand side only involves the light fields. Near z = zi, we have

ǫ ∼ qi
2πκ log |z− zi|2 + . . .. Now naively, if we perturb a saddle point to first order the value

of the on-shell action does not change since the original saddle point obeys the equation of

motion. We have to be careful here, because ǫ is divergent, but for the regularized theory

the same statement remains true. The only additional contribution to the semiclassical

correlation function is coming from the light vertex operators evaluated on the saddle

point Ĝ0. Therefore, we obtain

e−SToda = 〈V1(z1) . . . Vk(zk)〉semiclassical ∼ e−Sheavy

∏

i

′eTr[qi log Ĝ0(zi)] , (7.5)

where the product involves only the light operators, and SToda is the regulated semiclassical

action. Our discussion has been somewhat sketchy, for example in case there is a continuous

family of saddle point solutions for the correlation function of heavy operators, one is left

with a finite dimensional integral on the right hand side. For more discussion on these types

of computations for Liouville and Toda theory, see e.g. [34, 40]. We will elaborate on these

finite dimensional integrals below, as they will turn out to be crucial for our discussion.

7.2 Chern-Simons theory versus Toda theory

The boundary conditions for Chern-Simons theory involved the Drinfeld-Sokolov gauge

fields (4.4) which we will rewrite as pure gauge as

∂gg−1 = a = W + L1 , ḡ−1∂̄ḡ = ā = W + L−1 , (7.6)

12To make the identification of heavy and light more explicit, one usually introduces a dimensionless

coupling constant b, and heavy and light fields are those for which the qi scale as b−1 and b respectively.

In terms of conformal dimensions, heavy operators have dimensions which scale as c and light operators

have dimensions which are of order unity as b → 0 and c → ∞. Note that this definition of “light” differs

from that in 3.5; however the difference is immaterial provided we work to first order in the light operator

dimension. In either case, we proceed by evaluating the light operators on the saddle point fixed by the

heavy operators, and so the result is the same.
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where W and W are holomorphic and anti-holomorphic and contain all the higher spin

currents. The group element or fundamental matrix g(z) is in general multi-valued and it

is the monodromy of g(z) that we used to determine the contribution of the identity block

to the four-point function, and the functions appearing in the bottom row of g(z) obey

suitable Nth-order differential equations.

Next, following [58] form the combination

G = g(z)ḡ(z̄) = G−G0G+ , (7.7)

where the decomposition on the right hand side is in terms of matrices that have negative,

zero and positive grade with respect to the sl(2) grading (in other words, G− is upper tri-

angular and G+ is lower triangular, each with ones along the diagonal, and G0 is diagonal).

One can show, using the grading defined by the sl(2) embedding, that (7.6) implies

∂G+G
−1
+ = G−1

0 L1G0 , G−1
− ∂̄G− = G0L−1G

−1
0 . (7.8)

We know from (7.7) that ∂̄(∂GG−1) = 0. In the following, we will show that this also

happens to be the usual equation of motion of WZW theory. Inserting the decomposi-

tion (7.7) in this equation and using (7.8) we get

∂̄
(

∂G−G
−1
− +G−∂G0G

−1
0 G−1

− +G−L1G
−1
−

)

= 0 . (7.9)

The degree zero (i.e. diagonal) part of this equation, combined once more with (7.8), gives

∂̄(∂G0G
−1
0 ) +

[

G0L−1G
−1
0 , L1

]

= 0 , (7.10)

which is precisely the classical Toda field equation (7.3). Therefore there is a general way

to construct classical solutions of Toda theory starting from a set of (anti-)holomorphic

higher spin currents.

If we plug (7.7) into (7.6), and use (7.8), the remaining equations are

∂G−G
−1
− +G−(∂G0G

−1
0 + L1)G

−1
− = L1 +W ,

G−1
+ ∂̄G+ +G−1

+ (G−1
0 ∂̄G0 + L−1)G+ = L−1 +W , (7.11)

which determine G− and G+ exactly in terms of G0 (i.e. there are no integration constants).

Moreover, this provides explicit expressions forW andW in terms ofG0, which are precisely

the expressions for the conserved higher spin currents of Toda theory. This procedure is

also known as the Miura transformation.

The above shows that the boundary conditions of Chern-Simons theory determine a

solution of the Toda field equations, and conversely a solution of the Toda field equations

yields a suitable pair of gauge fields in Drinfeld-Sokolov form. This suggests that one

should be able to reformulate higher spin theories in 2 + 1 dimensions, in such a way that

the connection to Toda theory becomes much more apparent, and it would be interesting

to work this out in more detail. From a Chern-Simons point of view, this probably would

require us to work in a different gauge. As we mentioned before, for ordinary gravity this
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corresponds to the case where the boundary metric is in conformal gauge, and one can

easily work out the corresponding gauge choice for Chern-Simons theory.

An important subtlety is that in our discussion the holomorphic and anti-holomorphic

higher spin currents need not be each other’s complex conjugate. In particular, we can de-

scribe operators with different left and right conformal dimensions and higher spin charges.

Such operators do not exist in standard Toda theory, where the scalar fields are real, and

in order to accommodate such operators one must consider complexified solutions of Toda

theory.

From (7.11), and with a bit of algebra, we deduce that the stress tensor that appears

in the Drinfeld-Sokolov connection is equal to

T (z) =
1

Tr [L1L−1]

(

Tr
[

(

G−1
0 ∂G0

)2
]

− ∂Tr
[

L0G
−1
0 ∂G0

]

)

, (7.12)

and this is, up to overall normalization, also the stress tensor of the Toda theory. We can

evaluate this stress tensor for the saddle-point solution of Toda theory which describes the

correlation function of a combination of heavy and light operators, again to first order in the

light operators. Writing G0 = Ĝ0(1 + ǫ), where ǫ obeys the linearized field equation (7.4),

we obtain

T (z) = T heavy(z) +
1

Tr [L1L−1]

(

2Tr
[

∂ǫĜ−1
0 ∂Ĝ0

]

− Tr
[

L0∂
2ǫ
]

)

+ . . . (7.13)

and using the asymptotic behavior of ǫ near the insertion of a light operator, ǫ ∼ qi
2πκ log |z−

zi|2, we find that the expansion of T (z) near z = zi equals

T (z) =
1

2πκTr [L1L−1]





Tr [L0qi]

(z − zi)2
+ 2

Tr
[

qiĜ
−1
0 ∂Ĝ0(zi)

]

z − zi
+ . . .



 . (7.14)

We therefore see that the residue pi at z = zi equals

pi =
1

πκTr [L1L−1]
Tr

[

qiĜ
−1
0 ∂Ĝ0(zi)

]

= − 1

πκTr [L1L−1]

∂SToda

∂zi
(7.15)

and for

κ =
c

6πTr [L1L−1]
(7.16)

this agrees precisely with (4.38). In other words, derivatives of the semiclassical correlation

functions of Toda theory do give rise to the relevant first order pole in the expansion of

the stress tensor.

There are several other ways to obtain this result. One is to start with the the semi-

classical approximation to the correlation function of a number of heavy operators and

to expand the answer to first order in the conformal dimensions of a subset of the opera-

tors. Another is to use the fact that one is computing the correlation function of a set of

primaries and use the Virasoro Ward identities.
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7.3 Semiclassical correlators in Toda revisited

As we mentioned above, we have to be careful when doing an actual Toda computation,

since the classical saddle point for the computation involving the heavy operators may

have a number of free parameters. That such free parameters indeed exist is easy to see

from (7.6): we can make redefinitions g(z) → g(z)h and ḡ(z̄) → h′ḡ(z̄) with arbitrary h,

h′ in (7.6). This will generate an ambiguity in the solution of the Toda equations that we

can associate to the gauge fields a and ā. In general this ambiguity can be expressed as

follows: for any V ∈ SL(N,C), and for a given saddle point g(z), ḡ(z̄) which solve (7.6),

we can define a solution G0(V ) of the Toda field equations through the decomposition

G(V ) = g(z)V ḡ(z̄) = G−(V )G0(V )G+(V ) . (7.17)

The free parameters that we have in Toda theory are therefore given by an arbitrary

V ∈ SL(N,C). Accordingly, (7.5) is not quite true as stated, the right hand side should

still involve an integral over the SL(N,C) group element V

e−SToda = 〈V1(z1) . . . Vk(zk)〉semiclassical ∼ e−Sheavy

∫

DV
∏

i

′eTr[qi log Ĝ0(V ;zi)] , (7.18)

where DV represents an SL(N,C)-invariant measure.

We now specialize to the case of two light operators with charges q1 and q2 at locations

z1 and z2.
13 The fields that enter in the integral G0(V ; z1) and G0(V ; z2) are given by

g(zi)V ḡ(z̄i) = G−(V ; zi)G0(V ; zi)G+(V ; zi) . (7.19)

Because the measure is invariant, we immediately see that the answer can only depend on

the combinations

X = g(z1)g(z2)
−1 , Y = ḡ2(z̄2)

−1ḡ1(z̄1) . (7.20)

Moreover, if we e.g. change g(z1) into A−g(z1) with some constant A−, then A− can be

completely absorbed into G−(V ; z1) and will not affect G0(V ; z1) and hence also not affect

the integrand. With similar considerations for the other group valued fields, the integral

must be invariant under14

X → A−XB− , Y → C+Y D+ . (7.21)

Finally, suppose that we multiply g(zi) by a constant diagonal matrix A0 on the left. By

conjugating A0 through G−(V ; zi), we see the only effect on the Toda field G0(V ; zi) is that

it gets changed to A0G0(V ; zi). But then the integrand picks up a multiplicative factor

e−SToda → eTr[qi logA0]e−SToda . (7.22)

13To avoid cluttering, we will abuse notation and simply refer to the background solution Ĝ0 as G0.
14Here “−” denotes upper triangular and “+” lower triangular, both with one’s along the diagonal.
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If we similarly consider multiplying ḡ(z̄i) by a constant diagonal matrix from the right, we

find that in terms of X, Y the following identies must hold

X → A0X then e−SToda → eTr[q1 logA0]e−SToda ,

X → XA0 then e−SToda → eTr[−q2 logA0]e−SToda ,

Y → A0Y then e−SToda → eTr[−q2 logA0]e−SToda ,

Y → Y A0 then e−SToda → eTr[q1 logA0]e−SToda . (7.23)

With these observations, we can completely determine the two-point function of light op-

erators in a background generated by heavy operators as we now illustrate for the case

of SL(2).

For SL(2), it is easy to verify that X21 and Y12 are invariant under (7.21), and that

the two-point function cannot depend on any of the other matrix entries of X and Y .

We denote the final answer by Z(X21, Y12), and the charges by qi = diag(qi,−qi). The

rescalings in (7.23) then turn into

Z(eλX21, Y12) = e−2q1λZ(X21, Y12) = e−2q2λZ(X21, Y12) , (7.24)

and

Z(X21, e
λY12) = e−2q2λZ(X21, Y12) = e−2q1λZ(X21, Y12) . (7.25)

These equations only have a solution if q1 = q2, which is indeed the case for which the light

operators have the same conformal dimension, and moreover we obtain

Z = N (X21Y12)
−2q1 , (7.26)

where N is some normalization constant. For the SL(2) case, the group elements or fun-

damental matrices g(z), ḡ(z̄) can be chosen to be equal to

g(z) =

(

1+α
2α z

−1+α
2 −1−α

2 z
−1−α

2

− 1
αz

1+α
2 z

1−α
2

)

, ḡ(z̄) =

(

1+α
2α z̄

−1+α
2

1
α z̄

1+α
2

1−α
2 z̄

−1−α
2 z̄

1−α
2

)

. (7.27)

Setting z1 = x and z2 = 1 with x real, we find

X21 =
x

1−α
2 − x

1+α
2

α
, Y12 = −x

1−α
2 − x

1+α
2

α
. (7.28)

We finally get

Z = N







α2

(

x
1−α
2 − x

1+α
2

)2







2q1

, (7.29)

which agrees perfectly with (5.20) obtained using the monodromy method.

It is interesting to see that the Toda computation involves the matricesX and Y , which

are also the main building blocks of the Wilson loop computation. It would be interesting

to prove directly that the Toda computation and the Wilson loop computations agree.
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It turns out that symmetries are also sufficient to compute the two-point function in

the SL(N) case. One can prove that the following variables

X [p] = detN−p+1≤i≤N,1≤j≤p(Xij) , Y [p] = det1≤i≤p,N−p+1≤j≤N (Yij) , (7.30)

are the only quantities we can make out of the SL(N) matrices X and Y which are invariant

under (7.21). The Toda correlation function can therefore only be a function of these

variables.

Repeating the same arguments as in the SL(2) case, we can determine the semiclassical

correlation function for arbitrary N . If we denote qi = diag(qi)k, then the two point

function of light operators is only non-vanishing if

(q2)i = −(q1)N+1−i , (7.31)

and if this condition is satisfied the correlation function equals

Z = N
N−1
∏

p=1

(X [p]Y [p])(q1)N+1−i−(q1)N−i . (7.32)

Equation (7.32) is the main result of our Toda computation, and it expresses the

correlation function explicitly in data determined by the background. In principle, the

same methods could be used to analyze higher point functions, and it would be interesting

to explore this in more detail. As we mentioned above, it would also be worthwhile to

compare this result to both the Wilson line computation as well as to the monodromy

computation. Our derivation has perhaps been somewhat heuristic, as it relied on scaling

arguments based on an integral over the non-compact group SL(N,C). This group has

infinite volume and a more careful treatment of this integral would be desirable. It is also

not entirely clear to us whether one should actually do the full integral or choose a suitable

real slice, which is related to the fact that most of our discussion relied on a complexification

of Toda theory whose precise interpretation also requires further clarification.

Something which deserves a further explanation is why our computation appears to

pick out the vacuum block. We suspect that the integral over V plays a crucial role here. It

is tempting to speculate that the integral over V projects the intermediate channel between

the heavy and the light operators onto the identity operator, and that one might be able

to obtain the contributions of other blocks by inserting a suitable SL(N,C) character into

the path integral. We hope to return to this issue in the future.

As an aside, we notice that it is relatively straightforward to analyze single-valuedness

of a Toda solution from the point of view of monodromies. Consider a solution of the Toda

field equations given by g(z)V ḡ(z̄) = G−G0G+. If the Toda field G0 is regular when going

around a point zi where g(z) → g(z)Mi and ḡ(z̄) → M̄iḡ(z̄) then G−G−G+ must be single

valued as well, since G− and G+ are local in terms of G0. Therefore a necessary condition

for single-valuedness is that for all i

g(z)V ḡ(z̄) = g(z)MiV M̄iḡ(z̄) , (7.33)
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which is equivalent to

V = MiV M̄i , (7.34)

for all i. In particular, the background solution generated by a heavy chiral operators, e.g.

M̄0 = 1 but M0 6= 1, does not correspond to a single valued Toda field. We have ignored

this fact in our computation and further work is required to determine the implications of

this observation for the complexified theory.

8 Discussion

We end our work by discussing some important features of our results and some possible

future directions.

8.1 Microstates versus effective geometries

It is interesting to think more about the meaning of the agreement between the bulk and

CFT computations presented here. Recall that on the CFT side we are computing a con-

tribution to a vacuum four-point function, or equivalently a two-point function evaluated

in an excited state. The excited state is one that is produced by acting with a heavy

local operator on the vacuum. We are only keeping the leading large c part of the vacuum

(Virasoro or W3) block contribution to these correlation functions. As we have found, this

CFT result is reproduced by computing the action of a probe particle moving in a back-

ground solution whose charges correspond to those of the heavy CFT operator. The large

c approximation corresponds to treating the probe and background classically, and the

restriction to the vacuum block corresponds to including only massless higher spin fields

in the bulk, and not additional matter fields.

As discussed in [28], the above story is particularly interesting when the charges carried

by the background are such that we are in the black hole regime. If we turn off the spin-3

charges so that we have a pure metric solution in the bulk, we recall that a BTZ black hole

is obtained by taking the conformal dimension of the heavy operator to obey h, h > 1
4 . The

BTZ black hole solution is usually thought of as describing a system in thermal equilibrium;

for example, the correlation functions computed in this background will be periodic in

imaginary time, indicating a well defined temperature. On the other hand, the CFT

computation that we are comparing to makes reference to a specific microstate, not a

thermal ensemble. Apparently, upon taking the large c limit and restricting to the vacuum

block, the microstate has been replaced by an effective thermal ensemble. This type of

phenomenon has been discussed before in the AdS/CFT correspondence (see [59, 60]) and

clearly has bearing on the black hole information paradox.

With the results found here, we can ask how the story changes when we include higher

spins. In particular, we can ask whether for sufficiently large conformal dimension the

effective background solution is a higher spin black hole. We first address when we would

expect a black hole interpretation to be appropriate. Recall that on the cylinder the

correlation function is built out of combinations of eipnw, where p1,2,3 are the three distinct

roots of the cubic p3n−(1−4h2)pn−4q2 = 0. For real pn these exponentials are oscillatory for
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real time on the cylinder, while they grow/decay exponentially if pn acquire an imaginary

part. Imaginary parts occur for h2 > hcrit2 , where hcrit2 = 1
4 − (10864 q

2
2)

1/3. For h2 > hcrit2 , it

is then easy to see that the correlation function on the cylinder will decay to zero at large

real time. This behavior is what one expects in the presence of an event horizon, with the

infinite redshift at the horizon being responsible for the exponential decay. A solution with

a mass gap would instead lead to oscillatory behavior.

This conclusion can also be reached by examining the holonomy of the connection

around the angular direction. As first shown in [61], the entropy of a higher spin black hole

can be written S = 2πkcsTr[L0(λφ − λφ)], where λφ is a diagonal matrix whose entries are

the eigenvalues of aφ. Clearly this identification requires the eigenvalues to be real, and a

quick computation shows that this requires h2 > hcrit2 , as above.

However, two closely related facts make the identification with a higher spin black hole

more subtle than in the BTZ case. First, a proper higher spin black hole solution should

have trivial holonomy around a Euclidean time circle. For this to be the case, the connection

needs to have both aw and aw turned on, whereas we have seen that the CFT result matches

on to a connection with only aw. Turning on aw would require introducing sources (chemical

potentials) in the CFT computation, thus deforming the CFT Hamiltonian. Second, the

correlators we have computed are not periodic in imaginary time, as would be expected

for a thermal interpretation. This can be seen from the fact that the pn are not rational

multiples of each other, and is also a consequence of the lack of trivial holonomy around a

thermal circle.

To interpret this, consider the simpler situation of a charged black hole in Einstein-

Maxwell theory. Usually, one sets At = 0 at the horizon, so that Aµ is a well defined

vector field on the Euclidean geometry. Doing so, correlation functions of fields exhibit

thermal periodicity. Suppose one instead applies a constant shift to At so as to set At = 0

at infinity. In this case, correlation functions of charged fields will not exhibit thermal

periodicity, as is easily seen by noting that the gauge transformation that relates the two

cases is not single valued around the thermal circle. Our higher spin background with

aw = 0 is analogous to the Einstein-Maxwell black hole with At = 0 at infinity. To obtain

the usual higher spin black hole we should perform a non-single valued higher spin gauge

transformation. This bulk gauge transformation should be accompanied by a corresponding

finite W3 transformation acting on the operators in the CFT so as to maintain agreement

between the bulk and boundary correlators. Carrying out this transformation explicitly

is rather cumbersome, but the point is that, suitably interpreted, our computations are

consistent with emergence of a higher spin black hole solution.

8.2 Multiple intervals and higher genus boundary geometries

In this paper we considered the entanglement entropy for a single interval on the plane;

let us briefly comment on the more general case. As we discussed, for NI intervals one

should introduce 2NI twist operators, so that the excited state entanglement entropy is

captured by a 2NI + 2-point correlation function. The monodromy analysis has to be

extended accordingly. In the expressions for T (z) and W (z) we should allow for poles at
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the locations of all the twist operators,

T (z) =

2NI
∑

i=1

hi
(z − zi)2

+
pi

z − zi
, (8.1)

W (z) =

2NI
∑

i=1

qi
(z − zi)3

+
ai

(z − zi)2
+

bi
z − zi

. (8.2)

Note that in writing this we have made the important assumption of replica symmetry,

which implies that T (z) and W (z) should be single valued in z. If we relax the condi-

tion of replica symmetry, then nothing would stop us from adding additional holomorphic

quadratic and cubic differentials15 to the right hand side. Assuming replica symmetry, we

are still left with the challenging problem of fixing the accessory parameters by imposing

trivial monodromy around various cycles. However, if we are only interested in entan-

glement entropy rather than Rényi entropy, the problem is a rather trivial extension of

the single interval case. Recall that for entanglement entropy we work to first order in

ε ∼ n−1. At first order there is no crosstalk between distinct intervals, and so the solution

is found from superposition. This point was emphasized in [24, 25], and of course agrees

with the Ryu-Takayanagi formula in the Virasoro case. In our case, we will get agreement

with the Wilson line results if we simply take multiple Wilson lines connecting the various

endpoints in pairs. The correct pairing of endpoints depends on the locations of the twist

operators, and there can be phase transitions as these are varied; again, see [24, 25] for

more discussion. For the Rényi entropy, there will be a more intricate interplay between

the distinct intervals.

Replacing the plane by a higher genus Riemann surface also introduces new aspects

that could be interesting to consider. The case of the torus is of particular relevance due

to its thermal interpretation, and is related to the discussion of black holes in the previous

subsection. In the monodromy analysis, the large z falloff conditions on T (z) and W (z)

will be replaced by periodicity conditions around the nontrivial cycles. For a single interval

on the torus, this problem was addressed in the Virasoro case in [44]. Unless W (z) = 0,

in SL(N) Chern-Simons theory the periodicity along the thermal cycle requires one to

reintroduce the az̄ and āz components of the connections. The currents T and W will no

longer be holomorphic, and our ODE might turn into an unpleasant PDE. Still the problem

of constructing a regular connection supported by this background should be doable. In the

CFT it is not evident that we must modify drastically our currents. It would be interesting

to realize the bulk conditions of the CS connections as constraints for the n-point functions

on the torus for a WN CFTs .

On a general Riemann surface, the general ansatz for T (z) will include a sum over

holomorphic quadratic differentials with free coefficients, and likewise forW (z). It would be

interesting to verify that the appropriate monodromy conditions uniquely fix all coefficients

in the problem.

15More properly meromorphic differentials in the presence of additional insertions such as the operators

creating an excited state.
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A Conventions

Here we collect some useful formulas for handy reference. The Chern-Simons action is

ICS ≡ kcs
4π

∫

M
Tr

[

CS(A)− CS(A)
]

(A.1)

where

CS(A) ≡ AdA+
2

3
A3 . (A.2)

The bulk Newton constant is related to the central charge and the Chern-Simons level as

c =
3ℓ

2G
= 12Tr [L0L0] kcs . (A.3)

The generalized vielbein and metric are

e =
1

2
(A−A) , gµν =

1

Tr [L0L0]
Tr [eµeν ] . (A.4)

The sl(N) generators are defined as in [42]. In particular, for sl(3) we have16

L1 = −
√
2







0 0 0

1 0 0

0 1 0






, L0 =







1 0 0

0 0 0

0 0 −1






, L−1 =

√
2







0 1 0

0 0 1

0 0 0






,

W2 = 2







0 0 0

0 0 0

1 0 0






, W1 = − 1√

2







0 0 0

1 0 0

0 −1 0






, W0 =

1

3







1 0 0

0 −2 0

0 0 1






, (A.5)

W−1 =
1√
2







0 1 0

0 0 −1

0 0 0






, W−2 = 2







0 0 1

0 0 0

0 0 0






.

16In a slight abuse of notation, in the main text we have also used the symbols Ln, Wm to denote the

modes of the W3 algebra (3.17). We trust that the intended meaning should be clear from the context.
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The commutation relations then read

[Lm, Ln] = (m− n)Lm+n ,

[Lm,Wn] = (2m− n)Wm+n ,

[Wm,Wn] = − 1

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n . (A.6)

The connection corresponding to the Euclidean BTZ solution is (where, as is standard, we

have gauged away the dependence on the radial coordinate)

a = (L1 − PL−1)dw ,

a = (L−1 − PL1)dw , (A.7)

and the metric is

ds2 = dρ2 + Pdw2 + Pdw2 +
(

e2ρ + PPe−2ρ
)

dwdw . (A.8)

Here w = φ+ it, and w = φ− it. The components of the conventionally normalized CFT

stress tensor are

TCFT(w) = − c

6
P , TCFT(w) = − c

6
P . (A.9)

The Virasoro zero modes are

L0 =
c

6
P +

c

24
, L0 =

c

6
PCFT +

c

24
. (A.10)

The BTZ solutions have P, P ≥ 0. Conical defects have −1
4 < P,P < 0. The stress tensor

on the z-plane, z = eiw, is given by

TCFT(w) = −z2TCFT(z) +
c

24
, TCFT(w) = −z2TCFT(z) +

c

24
. (A.11)

It will be convenient to pull out a factor of c/6 from the definition of the stress tensor and

define

TCFT =
c

6
T , TCFT =

c

6
T . (A.12)

With this in mind, for SL(3) we will write the connections on the plane as

a = (L1 + T (z)L−1 +W (z)W−2) dz ,

a =
(

L−1 + T (z)L1 +W (z)W2

)

dz . (A.13)

An operator at the origin with charges (h, q) will correspond to

T (z) =
h

z2
, W (z) =

q

z3
, T (z) =

h

z2
, W (z) =

q

z3
. (A.14)

Transforming to the cylinder via z = eiw then gives

T (w) = −h+
1

4
, W (w) = −iq , T (w) = −h+

1

4
, W (w) = iq . (A.15)

At q = q = 0, conical defects have 0 < h, h < 1
4 ; and BTZ solutions have h, h > 1

4 . On the

cylinder the connections of course have the same basic form as on the plane,

a = (L1 + T (w)L−1 +W (w)W−2) dw ,

a =
(

L−1 + T (w)L1 +W (w)W2

)

dw . (A.16)
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B Spin-3 Entropy

In this appendix we will discuss some aspects of spin-3 entanglement and thermal entropy

as defined in [15]. The microscopic definition of these entropies is still rather unclear. Our

aim here is to investigate some properties of the bulk definitions which could give further

guidance to a proper boundary CFT definition.

B.1 Generalized Rényi entropies

For the purpose of computing Rényi entropies, the quantum numbers of the (anti-)twist

operator is fixed by demanding that it captures the correct geometric data of the problem.

In the canonical definition of Rényi entropy, given by (2.3) and (2.7), the twist operators

encode the data of the branch cuts in the replicated geometry. As explained in section 4.1.4,

the equation that determines the conformal dimension of the twist operator is

eigenvalues [(Mi)
n] = ±eigenvalues

[

e2πiL0
]

, (B.1)

which gives that the (anti-)twist operator has weight

∆ =
nc

6
h =

c

24

(

n− 1

n

)

. (B.2)

In the presence of extended algebras, such as WN , it is rather natural to design a

“new twist operator” that carries quantum numbers associated to the additional higher

spin conserved currents [15]. And along the lines of the derivations in (2.7), it is tempting

to give a geometrical interpretation to this new twist. For concreteness, we focus on N = 3.

In this case, we know that by imposing regularity of a bulk Wilson line [15] the quantum

numbers of the spin-3 twist are at leading order

h = O(n− 1)2 ,
nc

6
q = − c

12
(n− 1) +O(n− 1)2 . (B.3)

Since the operator is charged under the spin 3 current, it seems like we are inducing a

“branch cut” via a spin-3 gauge transformation (whatever this means!). It seems reasonable

to then generalize the r.h.s. of (B.1) so that we can accommodate the charges in (B.3).

Writing (B.1) as

exp (2πiL0) = exp

(

2πin

(

L0 +
1− n

n
L0

))

, (B.4)

a reasonable generalization is to impose

eigenvalues [(Mi)
n] = eigenvalues

[

exp

(

2πin

(

L0 + 3
1− n

n
W0

))]

. (B.5)

This combination of matrices has the feature that in the limit n → 1 we would repro-

duce (B.3), and the r.h.s. is in the center of SL(3). It will as well nicely fit with the thermal

S3 entropy (discussed below). However, beyond being a simple and elegant choice, (B.5)

is not unique. The leading terms in (B.3) do not provide enough data to unambiguously
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determine the condition on the monodromy matrix at finite n. To either confirm or re-

fute (B.5) we need to understand what is the geometrical interpretation17 of the spin-3

twist fields.

B.2 Thermal S3

In this subsection we will show how to obtain the generalized thermal entropy of [15] from

an Euclidean Chern-Simons action.

The Euclidean Chern-Simons action for a general pair of Drinfeld-Sokolov connections

carrying zero modes (namely charges and their conjugate chemical potentials) on the torus

with identifications z ∼= z + 2π ∼= z + 2πτ was computed in [61, 62]. By performing a

Legendre transformation, the thermal entropy of the system is found to be

S = −2πikcsTr [(az + az̄) (τaz + τ̄ az̄)] + barred (B.6)

= −2πikcsTr [aφh] + barred , (B.7)

where

aφ ≡ az + az̄ , h ≡ τaz + τ̄ az̄ . (B.8)

We emphasize that the form of the connection, variational principle and boundary terms

remain exactly the same as for the derivations in [61, 62]. The main difference comes about

in regularity condition of the connections around the thermal cycle. We propose that

spin-3 smoothness: eigenvalues [h] = eigenvalues [3iW0] , (B.9)

as opposed to eigenvalues [h] = eigenvalues [iL0] which is the smoothness condition that

yields the usual thermal entropy. This new smoothness condition is compatible with the

conditions imposed on the Wilson line [15]. It as well seems compatible with the condition

imposed on the branch cuts for the generalized spin-3 Rényi entropy (B.5).

We will use canonical boundary conditions, which map to deformations of the Hamilto-

nian in the dual CFT. As explained in detail in [62], this means the charges sit in (az +az̄)

and their conjugate potentials in az̄. More precisely, we consider the following constant

flat sl(3) connection:

aφ = az + az̄ = L1 −
6

c
LL−1 −

6

c
WW−2 , (B.10)

az̄ = −ν3
2

(

a2φ − 1

3
Tr

[

a2φ
]

1

)

. (B.11)

For simplicity, let us consider the non-rotating case, and define an inverse “spin-3 temper-

ature” β3 through

τ = −τ̄ =
iβ3
2π

. (B.12)

The smoothness conditions (B.9) reduce to

det [az − az̄] = − 16π3

(β3)
3 , Tr

[

(az − az̄)
2
]

=
24π2

(β3)
2 . (B.13)

17In this context, a geometrical interpretation will likely require treating spin-3 gauge transformation and

diffeomorphisms in an equal footing.
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In contrast to the usual definition of smoothness, we can solve for the charges in terms of

the potentials in a simple manner. The solution to (B.13) is

6

c
L =

3

(2ν3)
2

(

1 + 2π
ν3
β3

)

,

6

c
W =

1

2 (ν3)
3

(

1 + 3π
ν3
β3

)

. (B.14)

Using the spin-3 smoothness condition (B.9) in (B.6) we find that the spin-3 thermal

entropy is

S3 = −2πikcsTr [(az + az̄) (τaz + τ̄ az̄)] + barred (B.15)

= 6πkcsTr [W0λφ] + barred , (B.16)

This is an expression for the entropy as a function of the charges (L,W) and it agrees

with the results in [15]. However, the smoothness condition (B.9) gives a different re-

lation between charges and potentials. In particular the first law in terms of these new

definitions is

δS3 = 2πi (τ3δL+ α3δW) + barred , (B.17)

where we have defined

τ3 =
iβ3
2π

, α3 =
i

π
β3ν3 . (B.18)

This shows consistency (integrability) for our new definition of potentials. Summarizing, a

linear “spin-3 first law” (B.17) is satisfied with thermal potentials given by (B.18), which

as we have seen follow from the smoothness conditions (B.14).

We can also define the “spin-3 free energy” or spin-3 grand-canonical potential, which

is the Legendre transform of the spin-3 entropy. Quoting the formula from [62]

lnZ3 = −2πikcsTr
[τ

2
(az + az̄)

2 + (τ̄ − τ)L1az̄ + barred
]

, (B.19)

and using the above solution of the smoothness conditions we find a very simple expression:

lnZ3 = −kcs
ν3

(

6π +
β3
ν3

)

+ barred . (B.20)

C Resonant monodromy

Branch cuts introduce resonant singular points in the ODE. They can also occur if the

charges of the heavy operators are tuned appropriately. In this case Φ is not invertible

and some of our steps should be revisited. In this appendix we will elaborate more on

the properties of the monodromy matrix for this peculiar case, which could be useful for

future work.

In order to exemplify the significance of logarithmic branches of solutions and global

properties of the monodromy around singular points, consider the sl(2) case (4.9) with

T (z) =
h

z2
+

p

z
, (C.1)
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where, without loss of generality, we have chosen the singularity to be at z = 0. The

relevant ODE is then

ψ′′(z) +

(

h

z2
+

p

z

)

ψ(z) = 0 . (C.2)

It will prove convenient to define the quantity ν through

h =
1

4

(

1− ν2
)

, (C.3)

in terms of which the roots of the indicial equation around z = 0 are

∆± =
1

2
± ν

2
⇒ ∆+ −∆− = ν , (C.4)

which implies that the cases where ν is an integer will generically admit logarithmic

branches in the solution.

Let us first briefly revisit the non-resonant case, i.e. ν /∈ Z. In this case, the general

solution of (C.2) can be taken to be

ψ(z) = c+
√
pz Jν (2

√
pz) + c−

√
pz J−ν (2

√
pz) . (C.5)

Using standard properties of Bessel functions we can follow the solution as z → ze2πi, and

from (4.12) we read off

Mγ = −
(

eiπν 0

0 e−iπν

)

= −
(

eiπ
√
1−4h 0

0 e−iπ
√
1−4h

)

(C.6)

in agreement with (4.25). Not surprisingly, in the generic case the monodromy matrix is

diagonalizable and it only depends on the leading singular behavior close to z = 0 (namely

on h).

Suppose we are now in the resonant case

ν = m ∈ Z (C.7)

instead. A basis of linearly-independent solutions of (C.2) in this case is

ψ(z) = c1
√
pz Jm (2

√
pz) + c2

√
pz Ym (2

√
pz) . (C.8)

Using standard properties of Bessel functions18 we can follow the solution as z → ze2πi

and from (4.12) we read off

Mγ = −eiπm

(

1 2i c2c1
0 1

)

. (C.9)

The difference with the non-resonant case is that the monodromy matrix has now only

one non-zero eigenvector, and it is a non-diagonalizable Jordan block. Note that the ratio

18In particular, it is useful to note Ym(x) = 2
π
Jm(x) log

(

x
2

)

−
(

x
2

)−|m|
Pm(x2) , where Pm(x2) is an

analytic function of x2 around x = 0.
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c2/c1 would be fixed if we impose a boundary condition at z = ∞, say. Hence, the resonant

monodromy depends on global properties of the solution, and not just local data in the

vicinity of z = 0. In particular, subleading terms in the expansion of T (z) around z = 0

are now important. Note however that the eigenvalues of the monodromy matrix, namely

the local monodromy data, can be correctly obtained by the naive analytic continuation of

the eigenvalues of the non-resonant monodromy matrix (C.6) to integer ν.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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and their gravity duals, JHEP 12 (2014) 001 [arXiv:1409.0542] [INSPIRE].

[53] L.F. Alday, P. Richmond and J. Sparks, The holographic supersymmetric Rényi entropy in
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